Notes for MAT-INF1310-8
 Snorre Christiansen, May 25, 2005

1 High order equations and systems

Exercise 1.1 Pick $k \geq 1$ and reals a_{k-1}, \cdots, a_{0}. Recall that the k-th order linear equation:

$$
\begin{equation*}
x^{(k)}(t)+a_{k-1} x^{(k-1)}(t)+\cdots+a_{0} x(t)=0 \tag{1}
\end{equation*}
$$

can be analysed via the system of k first order equations:

$$
X^{\prime}(t)=A X(t), \quad A=\left(\begin{array}{ccccc}
0 & 1 & 0 & & \tag{2}\\
& 0 & 1 & 0 & 0 \\
0 & & \ddots & \ddots & 0 \\
& & & 0 & 1 \\
c_{0} & c_{1} & \cdots & c_{k-2} & c_{k-1}
\end{array}\right)
$$

with $c_{l}=-a_{l}$ for each l.
Prove (by induction on k and development of a determinant along the first column) that for each λ :

$$
\begin{equation*}
\operatorname{det}(\lambda I-A)=\lambda^{k}+\sum_{l=0}^{k-1} a_{l} \lambda^{l} \tag{3}
\end{equation*}
$$

With this exercise the methods for solving (1) with the help of the characteristic polynomial, can be interpreted as a special case of the eigenvalue method for systems such as (2).

2 Complex and matrix exponentials

Exercise 2.1 Let $f: \mathbb{C} \rightarrow M_{2}(\mathbb{R})$ be the map such that for each $a, b \in \mathbb{R}$ we have:

$$
f(a+i b)=\left(\begin{array}{rr}
a & -b \tag{4}\\
b & a
\end{array}\right)
$$

Prove that for each $u, v \in \mathbb{C}$ we have:

$$
\begin{equation*}
f(u+v)=f(u)+f(v) \tag{5}
\end{equation*}
$$

and (more technical):

$$
\begin{equation*}
f(u v)=f(u) f(v) \tag{6}
\end{equation*}
$$

Use this to prove (at least formally) that for each $u \in \mathbb{C}$:

$$
\begin{equation*}
f(\exp (u))=\exp (f(u)) \tag{7}
\end{equation*}
$$

Deduce that for each $a, b \in \mathbb{R}$:

$$
\exp \left(\begin{array}{rr}
a & -b \tag{8}\\
b & a
\end{array}\right)=e^{a}\left(\begin{array}{rr}
\cos b & -\sin b \\
\sin b & \cos b
\end{array}\right) .
$$

Use this to give a formula for the solution of differential equations of the form (with $a, b \in \mathbb{R}$ given):

$$
x^{\prime}(t)=\left(\begin{array}{rr}
a & -b \tag{9}\\
b & a
\end{array}\right) x(t) .
$$

3 Summer holiday pleasure

Exercise 3.1 Pick $n \geq 1$ (you can start with $n=2$ and $n=3$) and a matrix $A \in M_{n}(\mathbb{R})$. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by:

$$
\begin{equation*}
f(h)=\operatorname{det}(I+h A) . \tag{10}
\end{equation*}
$$

Prove that:

$$
\begin{equation*}
f^{\prime}(0)=\operatorname{tr}(A) \tag{11}
\end{equation*}
$$

Suppose $X: \mathbb{R} \rightarrow M_{n}(\mathbb{R})$ is a differentiable matrix valued function, such that $X(t)$ is invertible for each $t \in \mathbb{R}$. Show that for each t we have a Taylor expansion for small h of the form:

$$
\begin{equation*}
X(t+h)=X(t)\left(I+h X(t)^{-1} X^{\prime}(t)+\mathcal{O}\left(h^{2}\right)\right) \tag{12}
\end{equation*}
$$

Define a function $g: \mathbb{R} \rightarrow \mathbb{R}$ by:

$$
\begin{equation*}
g(t)=\operatorname{det}(X(t)) \tag{13}
\end{equation*}
$$

Show that we have:

$$
\begin{equation*}
g^{\prime}(t)=\operatorname{det}(X(t)) \operatorname{tr}\left(X(t)^{-1} X^{\prime}(t)\right) \tag{14}
\end{equation*}
$$

Suppose that in fact X is a solution to the linear differential equation:

$$
\begin{equation*}
X^{\prime}(t)=A(t) X(t) . \tag{15}
\end{equation*}
$$

for some continuous matrix valued function $A: \mathbb{R} \rightarrow M_{n}(\mathbb{R})$. Show that g satisfies the linear differential equation:

$$
\begin{equation*}
g^{\prime}(t)=\operatorname{tr}(A(t)) g(t) \tag{16}
\end{equation*}
$$

If you know about the comatrix of a matrix you can try to generalize this exercise to case of non invertible matrices $X(t) \ldots$

Exercise 3.2 Suppose that we are given n continuous functions $a_{l}: \mathbb{R} \rightarrow \mathbb{R}$ for $l=0, \cdots, n-1$. Consider the differential equation:

$$
\begin{equation*}
x^{(n)}(t)+a_{n-1}(t) x^{(n-1)}(t)+\cdots+a_{0}(t) x(t)=0, \tag{17}
\end{equation*}
$$

Transform this into a first order system of equations and use the preceding exercise to show that if x_{1}, \cdots, x_{n} are n solutions to (17), then their Wronskian W satisfies the differential equation:

$$
\begin{equation*}
W^{\prime}(t)+a_{n-1}(t) W(t)=0 \tag{18}
\end{equation*}
$$

