Notes for MAT-INF1310-9
 Snorre Christiansen, June 14, 2005

1 Final exam - suggestions for solutions

Exercise 1 Since $\exp (2 t-x)=\exp (2 t) \exp (-x)$ the equation is separable. We have:

$$
\begin{equation*}
x^{\prime}(t) \exp (x(t))=\exp (2 t) \tag{1}
\end{equation*}
$$

Integrating from 0 to t gives:

$$
\begin{equation*}
\exp (x(t))-\exp (0)=1 / 2(\exp (2 t)-\exp (0)) \tag{2}
\end{equation*}
$$

Hence:

$$
\begin{equation*}
\exp (x(t))=1 / 2(\exp (2 t)+1) \tag{3}
\end{equation*}
$$

which gives:

$$
\begin{equation*}
x(t)=\log (1 / 2(\exp (2 t)+1)) \tag{4}
\end{equation*}
$$

Exercise 2

a. For all $t \in \mathbb{R}$ we have:

$$
\begin{equation*}
x_{1}^{\prime \prime \prime}(t)+x_{1}^{\prime \prime}(t)+x_{1}^{\prime}(t)+x_{1}(t)=-e^{-t}+e^{-t}-e^{-t}+e^{-t}=0 \tag{5}
\end{equation*}
$$

hence x_{1} is a solution.
b. (H) is a third order linear differential equation whose highest order coefficient vanishes nowhere, hence V has dimension 3. The characteristic polynomial is P defined by:

$$
\begin{equation*}
P(\lambda)=\lambda^{3}+\lambda^{2}+\lambda+1 \tag{6}
\end{equation*}
$$

From question (a) we infer that -1 is a root of P. Dividing $P(\lambda)$ by $\lambda+1$ we obtain:

$$
\begin{equation*}
P(\lambda)=(\lambda+1)\left(\lambda^{2}+1\right)=(\lambda+1)(\lambda+i)(\lambda-i) . \tag{7}
\end{equation*}
$$

From this we deduce that a basis for V is given by the functions:

$$
\begin{equation*}
x_{1}, \cos , \text { and } \sin . \tag{8}
\end{equation*}
$$

Alternatively one can obtain the roots of P by using that, for $\lambda \neq 1$:

$$
\begin{equation*}
P(\lambda)=\left(\lambda^{4}-1\right) /(\lambda-1) \tag{9}
\end{equation*}
$$

and that $\lambda^{4}-1=0$ iff $\lambda \in\{i,-1,-i, 1\}$.
c. i is a simple root of the characteristic polynomial. We look for a particular solution x_{P} in the form:

$$
\begin{equation*}
x_{P}(t)=A t \cos (t)+B t \sin (t) \tag{10}
\end{equation*}
$$

Then we have:

$$
\begin{align*}
x_{P}^{\prime}(t) & =A(\cos (t)-t \sin (t))+B(\sin (t)+t \cos (t)) \tag{11}\\
x_{P}^{\prime \prime}(t) & =A(-2 \sin (t)-t \cos (t))+B(2 \cos (t)-t \sin (t)) \tag{12}\\
x_{P}^{\prime \prime \prime}(t) & =A(-3 \cos (t)+t \sin (t))+B(-3 \sin (t)-t \cos (t)) \tag{13}
\end{align*}
$$

Summing we obtain:

$$
\begin{align*}
& x_{P}^{\prime \prime \prime}(t)+x_{P}^{\prime \prime}(t)+x_{P}^{\prime}(t)+x_{P}(t) \tag{14}\\
= & (-2 A+2 B) \cos (t)+(-2 A-2 B) \sin (t) \tag{15}
\end{align*}
$$

The choice $A=-1 / 4$ and $B=1 / 4$ gives the particular solution:

$$
\begin{equation*}
x_{P}(t)=-t / 4 \cos (t)+t / 4 \sin (t) \tag{16}
\end{equation*}
$$

The general solution to equation (E) is:

$$
\begin{equation*}
x_{P}(t)=a e^{-t}+b \cos (t)+c \sin (t)-t / 4 \cos (t)+t / 4 \sin (t), \quad a, b, c \in \mathbb{R} \tag{17}
\end{equation*}
$$

Exercise 3

a. Use whatever method to obtain:

$$
\begin{equation*}
\binom{x(t)}{y(t)}=\alpha\binom{\cos (t)}{\sin (t)}+\beta\binom{-\sin (t)}{\cos (t)} \quad \alpha, \beta \in \mathbb{R} \tag{18}
\end{equation*}
$$

b. We have:

$$
\begin{align*}
E^{\prime}(t) & =2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t) \tag{19}\\
& =2 x(t)(-y(t))+2 y(t)(x(t)+a y(t)) \tag{20}\\
& =2 a y(t)^{2} \tag{21}\\
& \leq 0 \tag{22}
\end{align*}
$$

Therefore E is decreasing.
c. The characteristic polynomial P_{a} of $A(a)$ is given by:

$$
\begin{equation*}
P_{a}(\lambda)=-\lambda(a-\lambda)+1=\lambda^{2}-a \lambda+1 \tag{23}
\end{equation*}
$$

The discriminant Δ_{a} is:

$$
\begin{equation*}
\Delta_{a}=a^{2}-4 \tag{24}
\end{equation*}
$$

If $|a|>2$ we have two real roots:

$$
\begin{equation*}
r_{ \pm}=(1 / 2)\left(a \pm \sqrt{a^{2}-4}\right) \tag{25}
\end{equation*}
$$

Since $a^{2}-4<a^{2}$ both roots are <0 when $a<-2$, and both are >0 when $a>2$ (alternatively, the expression of P_{a} shows that the roots must have the same sign and that their sum is a, which gives - luckily - the same answer).

If $a=-2$ we have the double real root:

$$
\begin{equation*}
r=-1<0 \tag{26}
\end{equation*}
$$

and if $a=2$ we have the double real root:

$$
\begin{equation*}
r=1>0 \tag{27}
\end{equation*}
$$

If $|a|<2$ we have two (distinct) complex roots:

$$
\begin{equation*}
r_{ \pm}=(1 / 2)\left(a \pm i \sqrt{4-a^{2}}\right) \tag{28}
\end{equation*}
$$

They have strictly negative real part if and only if $a<0$.
All in all the real part of the roots of P_{a} are all strictly negative if and only if $a<0$.

To show that:

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} x(t)=0, \quad \lim _{t \rightarrow+\infty} y(t)=0 \tag{29}
\end{equation*}
$$

the idea is that the real part ρ of any eigenvalue gives rise to an exponential term of the form $t \mapsto \exp (\rho t)$ in the general solution, which is multiplied by other terms that are constant (distinct real roots), bounded (complex roots) or polynomial (double roots) in t. When $\rho<0$ the exponential converges sufficiently rapidly to 0 . More precisely:

If $a<-2$ the general solution of the linear system has the form:

$$
\begin{equation*}
\binom{x(t)}{y(t)}=\alpha e^{r_{+} t} v_{+}+\beta e^{r_{-} t} v_{-} \tag{30}
\end{equation*}
$$

with $r_{+}<0$ and $r_{-}<0$.
If $a=-2$ one sees that the eigenspace associated with the eigenvalue -1 has dimension 1. The general solution of the linear system has the form:

$$
\begin{equation*}
\binom{x(t)}{y(t)}=\alpha e^{-t} v_{1}+\beta e^{-t}\left(t v_{1}+v_{2}\right) \tag{31}
\end{equation*}
$$

If $0>a>-2$ the general solution of the linear system has the form (with $\left.\omega=(1 / 2) \sqrt{4-a^{2}}\right)$:

$$
\begin{equation*}
\binom{x(t)}{y(t)}=e^{(a / 2) t}\left(\alpha \cos (\omega t) v_{+}+\beta \sin (\omega t) v_{-}\right) \tag{32}
\end{equation*}
$$

In all three cases the convergence holds.
d. Putting $E(t)=x(t)^{2}+y(t)^{2}$ we obtain as in (b):

$$
\begin{align*}
E^{\prime}(t) & =2 \sin \left(t^{2}\right) y(t)^{2} \tag{33}\\
& \leq 2 y(t)^{2} \tag{34}\\
& \leq 2 E(t) \tag{35}
\end{align*}
$$

Hence Gronwall's lemma gives, for all $t \geq 0$:

$$
\begin{equation*}
E(t) \leq E(0) e^{2 t}=e^{2 t} \tag{36}
\end{equation*}
$$

This shows that:

$$
\begin{equation*}
x(t)^{2} \leq e^{2 t}, \quad \text { hence }|x(t)| \leq e^{t} \tag{37}
\end{equation*}
$$

We have shown that $C=1$ is an adequate choice (it's the smallest possible one - why?).

