Notes for MAT-INF1310 — 9
Snorre Christiansen, June 14, 2005

1 Final exam - suggestions for solutions

Exercise 1 Since exp(2t — ) = exp(2t) exp(—x) the equation is separable.
We have:

2/ (1) exp(a(t)) = exp(2t). (1)

Integrating from 0 to ¢ gives:

exp(z(t)) — exp(0) = 1/2(exp(2t) — exp(0)). (2)
Hence:
exp(x(t)) = 1/2(exp(2t) + 1), 3)
which gives:
x(t) = log(1/2(exp(2t) + 1)). (4)

Exercise 2

a. For all t € R we have:
V@) + () + () o (t) = —e et —eTt et =0, (5)

hence z; is a solution.

b. (H) is a third order linear differential equation whose highest order coeffi-
cient vanishes nowhere, hence V' has dimension 3. The characteristic polynomial
is P defined by:

PO =X+ N+ A+1. (6)

From question (a) we infer that —1 is a root of P. Dividing P(\) by A + 1 we
obtain:

PO =M+ +1) =N+ 1A +i)(A—1i). (7)

From this we deduce that a basis for V is given by the functions:
x1, cos, and sin. (8)
Alternatively one can obtain the roots of P by using that, for A # 1:
P) =0\ =1/ -1), (9)

and that M — 1 =0iff A € {i,—1,—i,1}.



c. i is a simple root of the characteristic polynomial. We look for a particular

solution zp in the form:
xp(t) = Atcos(t) + Btsin(t).

Then we have:

2p(t) = A(cos(t) — tsin(t)) + B(sin(t) + t cos(t)),
2h(t) = A(—2sin(t) —tcos(t)) + B(2cos(t) — tsin(t)),
2P (t) = A(—3cos(t) +tsin(t)) + B(—3sin(t) — tcos(t)).

Summing we obtain:

wp(t) + zp(t) + p(t) + 2p(1)
= (—2A+2B)cos(t) + (—2A — 2B) sin(t).

The choice A = —1/4 and B = 1/4 gives the particular solution:
xp(t) = —t/4cos(t) + t/4sin(t).

The general solution to equation (E) is:

rp(t) = ae”" + beos(t) + csin(t) — t/4cos(t) +t/4sin(t), a,b,c€R.

Exercise 3

a. Use whatever method to obtain:
() _ cos(t) — sin(t)
( y(t) ) B O‘( sin(t) ) +ﬂ< cos(t) ) a,feR.

E'(t) = 2x(t)2'(t) + 2y(t)y (1),
= 2z(t)(—y(t)) + 2y(t)(x(t) + ay(t)),
= 2ay(t)?,
< 0.

Therefore F is decreasing.

c. The characteristic polynomial P, of A(a) is given by:
PN =-Xa—-XA)+1=X—a\+1.

The discriminant A, is:
A, =a’— 4.

If |a] > 2 we have two real roots:

ry = (1/2)(a + v a? —4).

(10)



Since a? — 4 < a? both roots are < 0 when a < —2, and both are > 0 when
a > 2 (alternatively, the expression of P, shows that the roots must have the
same sign and that their sum is a, which gives — luckily — the same answer).

If @ = —2 we have the double real root:

r=-1<0, (26)
and if ¢ = 2 we have the double real root:
r=1>0. (27)

If |a| < 2 we have two (distinct) complex roots:

ry =(1/2)(a £ iv/4 — a?). (28)

They have strictly negative real part if and only if a < 0.

All in all the real part of the roots of P, are all strictly negative if and only
if a < 0.

To show that:

Jim a() =0, lm_y(t) =0, (29)
the idea is that the real part p of any eigenvalue gives rise to an exponential
term of the form ¢ — exp(pt) in the general solution, which is multiplied by
other terms that are constant (distinct real roots), bounded (complex roots)
or polynomial (double roots) in ¢. When p < 0 the exponential converges
sufficiently rapidly to 0. More precisely:

If a < —2 the general solution of the linear system has the form:

( %; ) — ad oy + fetu_. (30)

with r; <0 and r— <0.
If @ = —2 one sees that the eigenspace associated with the eigenvalue —1
has dimension 1. The general solution of the linear system has the form:

< ggg ) = ae"tvy + Be " (tvy + vy). (31)

If 0 > a > —2 the general solution of the linear system has the form (with

w=(1/2)V4 — a?):

y(t)

In all three cases the convergence holds.

( .’E(t) > — 6(a/2)t(a COS(Wt)'U-F + ﬁsin(wt)v_). (32)

d. Putting E(t) = z(t)? + y(t)? we obtain as in (b):

E'(t) = 2sin(t?)y(t)?, (33)
< 2y(t)? (34)
< 2E(t). (35)



Hence Gronwall’s lemma gives, for all ¢ > 0:
E(t) < E(0)e*" = e*. (36)

This shows that:
z(t)? <e*', hence |z(t)] < et (37)

We have shown that C' =1 is an adequate choice (it’s the smallest possible one
— why?).



