1. obligatory exercise in MAT-INF 1310, Spring 2006

Deadline of delivery: Friday 17. March, 14:30.

Problem 1. Solve the initial value problem

$$
\frac{d x}{d t}=x^{\prime}=\frac{t+1}{2 x}, \quad x(0)=1
$$

Problem 2. If a particle with mass m moves in one dimension and has the position $x(t)$ at the time t, the Newton law of motion

$$
m x^{\prime \prime}=F\left(t, x, x^{\prime}\right)
$$

is valid, where m is the mass, $x^{\prime \prime}=\frac{d^{2} x}{d t^{2}}$ is the acceleration and the force F is a function of the time t, the position x and the velocity x^{\prime}.
(i) First assume that F is a force of fricton proportional to a positive power α of the velocity x^{\prime} and that F is growing linearly with time, i.e.

$$
F\left(t, x, x^{\prime}\right)=-t\left(x^{\prime}\right)^{\alpha}
$$

Assume in addition that $x(0)=0$ and $x^{\prime}(0)=1$ and that $m=1$.
Show that the velocity $x^{\prime}(t)$ converges to 0 for all $\alpha \geq 1$. Show that there is a constant α_{0} such that $\lim _{t \rightarrow \infty} x(t)$ is finite when $1 \leq \alpha<\alpha_{0}$ but $\lim _{t \rightarrow \infty} x(t)=+\infty$ when $\alpha_{0} \leq \alpha$. Show that if $0<\alpha<1$, then the velocity will decrease to 0 after a finite time $t_{0}>0$ and compute t_{0}. Show that the solution of the differential equation is not unique in this case but it is a unique solution which is constant for $t \geq t_{0}$.
(In this problem you will find expressions for $x(t)$ involving integrals which cannot be computed explicitely but nevertheless the questions may be answered.)
(ii) If the force F er independent of t, Newton's law of motion takes the form

$$
m x^{\prime \prime}=F\left(x, x^{\prime}\right)
$$

and if in this case the velocity $y=x^{\prime}$ is a function of $x, y=y(x)$, show that

$$
\begin{equation*}
m y \frac{d y}{d x}=F(x, y) \tag{*}
\end{equation*}
$$

Use this to find $x(t)$ if

$$
F\left(x, x^{\prime}\right)=-x\left(x^{\prime}\right)^{2}+x^{2}\left(x^{\prime}\right)^{4}
$$

and

$$
x(0)=0 \quad \text { og } \quad x^{\prime}(0)=1
$$

(iii) If F depends only on the position x we say that F er conservative and we introduce the potential $V(x)=-\int_{0}^{x} F(x) d x$.
In that case, if $y=y(x)$ is a solution of $(*)$ then

$$
\frac{1}{2} m y(x)^{2}+V(x)
$$

is independent of x. (The constant value E of this expression is called the total energy of the particle. $\frac{1}{2} m y^{2}$ is the kinetic energy and $V(x)$ the potential energy.)
(iv) Adopt the conditions in (iii). Show that

$$
\frac{d x}{d t}= \pm \sqrt{\frac{2}{m}} \sqrt{E-V(x)}
$$

Describe how this can be used to find $x(t)$ if $x(0)$ and $x^{\prime}(0)$ are given, and use this method to find $x(t)$ if $m=2, E=1$ and $V(x)=x^{2}=$ the harmonic oscillator potential. assume that $x(0)=0$ and $x^{\prime}(0)>0$.

Problem 3. In this problem we will consider the coupled system

$$
x^{\prime}=x^{2}-y^{2} \quad y^{\prime}=x-y
$$

of differential equations, where $x^{\prime}=\frac{d x}{d t}, y^{\prime}=\frac{d y}{d t}$
(i) Use Picards methiod on pp. 680-681 in EP to compute the three first approximations $\left.\left.\left(x_{0}(t), y_{0}(t)\right),\left(x_{1}(t)\right), y_{1}(t)\right), x_{2}(t), y_{2}(t)\right)$ to the solutions for a general initial condition $x(0)=b_{1}, y(0)=b_{2}$.
(ii) Find all constant solutions of the system, i.e. find all $(a, b) \in \mathbb{R}^{2}$ such that the pair $x(t)=a, y(t)=b$ of constant functions is a solution.
(iii) Plot the direction field of this system (i.e, plot the vector $\left(x^{\prime}, y^{\prime}\right)$ as a function of (x, y)) using a mathematics program like Maple or Matlab (see p.p. 479-480 i EP). State which commands you use in the program
(iv) Using

$$
\frac{d x}{d y}=\frac{x^{\prime}}{y^{\prime}}
$$

we obtain a first order differential equation for x as a function of y. Solve this equation and plot the graphs of some solution curves. Compare the results with the results from (iii).
(v) Plot and give a description of what happens to the solution curve starting in $\left(\frac{1}{4}, 0\right)$ at $t=0$ when $t \rightarrow+\infty$ and $t \rightarrow-\infty$.

SLUTT

