MAT-INF1310, Spring 2009

Mandatory Assignment 1
Deadline: March 6, 14:30.
In order to pass, it is enough to solve 4 of the 7 problems. Remember that all claims have to be argued for. A correct answer is not considered without sufficient arguments.

1. Find a solution of the differential equation

$$
\frac{d y}{d x}=2 x y+3 x^{3} e^{x^{2}}
$$

which satisfies $y(\ln 2)=0$.
2. Suppose that the fish population $P(t)$ in a lake is attacked by a disease at time $t=0$, with the result that the fish cease to reproduce (so that the birth rate is $\beta=0$) and the death rate δ (deaths per week per fish) is thereafter proportional to $1 / \sqrt{P}$. If there were initially 900 fish in the lake and 441 were left after 6 weeks, how long did it take all the fish in the lake to die?
3. Find all solutions of the differential equation $y^{\prime \prime}-4 y^{\prime}+9 y=x e^{x}$.
4. Let y_{1} and y_{2} denote two linearly independent solutions of the differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

where p and q are continuous functions on an open (non-empty) interval I containing the point a. Suppose that Y is a third solution of the equation. This means that there are unique numbers $c_{1}, c_{2} \in \mathbb{R}$ for which

$$
Y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x), \quad x \in I
$$

Express the values of the constants c_{1} and c_{2} in terms of the values of the functions y_{1}, y_{2}, and Y (and their derivatives) at the point a.
5. Verify that if c is a constant, then the function defined by

$$
y(x)= \begin{cases}1 & \text { if } x \leq c \\ \cos (x-c) & \text { if } c<x<c+\pi \\ -1 & \text { if } x \geq c+\pi\end{cases}
$$

satisfies the differential equation $y^{\prime}=-\sqrt{1-y^{2}}$ for all x. Then determine (in terms of a and b) how many different solutions the initial value problem $y^{\prime}=-\sqrt{1-y^{2}}, y(a)=b$ has.
6. Suppose that the mass in a mass-spring-dashpot system with $m=10, c=9$ and $k=2$ is set in motion with $x(0)=0$ and $x^{\prime}(0)=5$ (see Figure 2.4.1 on page 135 in Edwards \& Penney). Find how far the mass moves to the right before starting back toward the origin.
7. Let p, q and r be continuous functions on some open (non-empty) interval I. Prove that the equation

$$
y^{(3)}+p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=0
$$

has three solutions on the interval I which are linearly independent.

