
MAT-INF1310, Spring 2009
Mandatory Assignment 1
Deadline: March 6, 14:30.

This document contains guidelines for how to solve the problems posed in the first mandatory
assignment. The solutions below might lack arguments needed in a complete solution.

1. Find a solution of the differential equation

dy

dx
= 2xy + 3x3ex2

which satisfies y(ln 2) = 0.

Solution: We want to solve the differential equation

y′ − 2xy = 3x3ex2
.

For this purpose we use an integrating factor T given by

T (x) = exp
(∫

(−2x)dx

)
= e−x2

.

Multiplying both sides of the equation by the integrating factor T gives

d

dx

(
e−x2

y
)

= e−x2
y′ − 2xe−x2

y = 3x3.

Next, we integrate both sides in this equality with respect to x and get

e−x2
y =

3
4
x4 + C.

This gives us a general solution y(x) = (3x4/4 + C)ex2
of the equation y′ − 2xy = 3x3ex2

.
In order to have y(ln 2) = 0, it is required that C = −3(ln 2)4/4. Thus, the solution of the
initial value problem is

y(x) =
3
4
(
x4 − (ln 2)4

)
ex2

.

�

2. Suppose that the fish population P (t) in a lake is attacked by a disease at time t = 0,
with the result that the fish cease to reproduce (so that the birth rate is β = 0) and the death
rate δ (deaths per week per fish) is thereafter proportional to 1/

√
P . If there were initially

900 fish in the lake and 441 were left after 6 weeks, how long did it take all the fish in the
lake to die?

Solution: We want to solve the differential equation

dP

dt
= (β − δ)P,

with β = 0 and δ = C/
√

P , C > 0 constant. This gives the equation

P ′ = −C
√

P
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which is separable. We get
P ′
√

P
= −C

and integrating both sides with respect to t gives∫
P ′(t)√
P (t)

dt =
∫

1√
P

dP = 2
√

P = −Ct + D.

Thus,
√

P (t) = (D − Ct)/2. Using the initial condition P (0) = 900 we get

30 =
√

900 =
√

P (0) = (D − C · 0)/2 = D/2,

and therefore D = 60. Using the initial condition P (6) = 441 we get

21 =
√

441 =
√

P (6) = (60− 6C)/2

and therefore C = 3. We have
√

P (t) = (60− 3t)/2 and therefore

P (t) =
(60− 3t)2

4
.

It remains to find t such that P (t) = 0. We get

0 = P (t) =
(60− 3t)2

4
⇐⇒ 0 = 60− 3t,

i.e., t = 20. Thus, it took 20 weeks for all the fish to die. �

3. Find all solutions of the differential equation y′′ − 4y′ + 9y = xex.

Solution: We find the complementary functions by first observing that the characteristic
polynomial of the equation is

r2 − 4r + 9 = (r − 2)2 − 22 + 9 = (r − 2)2 + 5

and which has complex roots r = 2± i
√

5. Thus, all complementary functions are given by

yc(x) = e2x
(
c1 cos

(√
5 x
)

+ c2 sin
(√

5 x
))

, c1, c2 ∈ R.

In order to find a particular solution, we first observe that the function f(x) = xex and all of
its derivatives can be described as linear combinations of the linearly independent functions
ex and xex. Indeed, f (n)(x) = nex + xex. Since the functions ex and xex are not among the
complementary functions it is enough to determine the coefficients a, b ∈ R such that

yp(x) = (a + bx)ex

is a particular solution, see Rule 1 of the method of underdetermined coefficients. We get

y′p(x) = bex + (a + bx)ex = bex + yp(x) and y′′p(x) = bex + y′p(x) = 2bex + yp(x).

Substituting yp for y in the original equation gives

y′′p − 4y′p + 9yp = (2bex + yp)− 4(bex + yp) + 9yp = 6yp − 2bex = (6a− 2b)ex + 6bxex
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which is equal to xex if and only if a = 1/18 and b = 1/6. We conclude that any solution of
the original equation is of the form

y(x) =
1
18

(1 + 3x)ex + e2x
(
c1 cos

(√
5 x
)

+ c2 sin
(√

5 x
))

, c1, c2 ∈ R.

�

4. Let y1 and y2 denote two linearly independent solutions of the differential equation

y′′ + p(x)y′ + q(x)y = 0,

where p and q are continuous functions on an open (non-empty) interval I containing the
point a. Suppose that Y is a third solution of the equation. This means that there are unique
numbers c1, c2 ∈ R for which

Y (x) = c1y1(x) + c2y2(x), x ∈ I.

Express the values of the constants c1 and c2 in terms of the values of the functions y1, y2,
and Y (and their derivatives) at the point a.

Solution: It is necessary that we find constants c1, c2 ∈ R such that

Y (a) = c1y1(a) + c2y2(a) and Y ′(a) = c1y
′
1(a) + c2y

′
2(a),

i.e., we want to solve the linear equation(
y1(a) y2(a)
y′1(a) y′2(a)

)(
c1

c2

)
=
(

Y (a)
Y ′(a)

)
.

Since y1 and y2 are linearly independent, we know that the Wronskian of y1 and y2 at the
point a is non-zero. This means the (2× 2)-matrix above is invertible. Indeed, we get(

y1(a) y2(a)
y′1(a) y′2(a)

)−1

=
1

y1(a)y′2(a)− y′1(a)y2(a)

(
y′2(a) −y2(a)
−y′1(a) y1(a)

)
We get (

c1

c2

)
=

1
y1(a)y′2(a)− y′1(a)y2(a)

(
y′2(a) −y2(a)
−y′1(a) y1(a)

)(
Y (a)
Y ′(a)

)
.

Carrying out the necessary products above, one gets

c1 =
y′2(a)Y (a)− y2(a)Y ′(a)
y1(a)y′2(a)− y′1(a)y2(a)

and c2 =
y1(a)Y ′(a)− y′1(a)Y (a)
y1(a)y′2(a)− y′1(a)y2(a)

. (1)

Using these values of c1 and c2 we get that the two functions Y (x) and c1y1(x) + c2y2(x)
are solutions of the same differential equation and satisfy the same initial value conditions.
According to the theorem for existence and uniqueness of solutions of linear differential equa-
tions with initial values (Theorem 2 on page 104 in Edwards & Penney) there is a unique such
function. Hence, the functions Y (x) and c1y1(x) + c2yy(x) have to agree on the interval I.
This proves that the constants c1 and c2 calculated in (1) are such that

Y (x) = c1y1(x) + c2y2(x), x ∈ I.
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5. Verify that if c is a constant, then the function defined by

y(x) =


1 if x ≤ c,

cos(x− c) if c < x < c + π,

−1 if x ≥ c + π

satisfies the differential equation y′ = −
√

1− y2 for all x. Then determine (in terms of
a and b) how many different solutions the initial value problem y′ = −

√
1− y2, y(a) = b has.

Solution: It is clear that the function y is differentiable on the open set R \ {c, c + π}. It
needs to be verified that y is differentiable at the points c and c + π, i.e., we need to verify
that the limits defining y′(c) and y′(c + π) exist. These limits are given by

y′(c) = lim
h→0

y(c + h)− y(c)
h

and y′(c + π) = lim
h→0

y(c + π + h)− y(c + π)
h

.

Let us concentrate on the first limit. Observe that, since 0 < cos(h) < 1 for positive h close
to zero, we get

cos(h)− 1
h

≤ y(c + h)− y(c)
h

≤ 0

for h close to zero. Observe that

lim
h→0

cos(h)− 1
h

= lim
h→0

cos(0 + h)− cos(0)
h

=
(

d

dt
cos t

)
(0) = − sin(0) = 0.

This gives

0 = lim
h→0

cos(h)− 1
h

≤ lim
h→0

y(c + h)− y(c)
h

≤ 0,

which proves that y′(c) exists and y′(c) = 0. Similarly it is proved that y′(c + π) = 0. From
this it follows that

y′(x) =


0 if x ≤ c,

− sin(x− c) if c < x < c + π,

0 if x ≥ c.

Let us now confirm that the function y satisfies the differential equation in question for any
real number c. We get

−
√

1− y2(x) = −
√

1− (±1)2 = 0 = y(x), x ≤ c or x ≥ c,

and for c < x < c + π we get

−
√

1− y2(x) = −
√

1− cos2(x− c) = −
√

sin2(x− c) = −
∣∣sin2(x− c)

∣∣
Observe that 0 ≤ sin(x− c) ≤ 1 for c < x < c + π. Hence, for such x we have |sin(x− c)| =
sin(x− c) and

−
√

1− y2(x) =


0 if x ≤ c,

− sin(x− c) if c < x < c + π,

0 if x ≥ c.
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Thus it is proved that y′(x) = −
√

1− y2(x) for all x ∈ R.
Next, we consider initial value conditions y(a) = b, for a, b ∈ R. Since −1 ≤ y(x) ≤ 1 for

all x ∈ R, the initial value problem is unsolvable if |b| > 1.
Suppose that b = 1. Then, by the definition of the function y, y(a) = b for all c such

that a ≤ c. This means that we get infinitely many solutions. Similarly, if b = −1 we have
that y(a) = b for all c with c ≤ a− π. Thus, for |b| = 1 we find infinitely many solutions.

Finally, suppose that |b| < 1. There is a unique α ∈ R with 0 < α < π and cos(α) = b.
By the definition of y we get that y(a) = b if c is such that

a− c = α + 2πn and c < a < c + π, n ∈ Z.

These two conditions imply that c < a = c + α + 2πn < c + π is satisfied if and only if n = 0.
Thus, for c = a− α the function y satisfies y(a) = b and c < a < c + π. This shows that for
|b| < 1 there is a unique solution satisfying y(a) = b. �

6. Suppose that the mass in a mass–spring–dashpot system with m = 10, c = 9 and k = 2 is
set in motion with x(0) = 0 and x′(0) = 5 (see Figure 2.4.1 on page 135 in Edwards & Penney).
Find how far the mass moves to the right before starting back toward the origin.

Solution: We want to find the unique solution satisfying

10x′′ + 9x′ + 2x = 0, x(0) = 0, x′(0) = 5.

Note that we might just as well consider the equation x′′ + 9x′/10 + 2x/10 = 0. We start
by finding the complementary functions yc of this equation. The characteristic polynomial
r2 + 9r/10 + 2/10 can be written as

r2 +
9
10

r +
2
10

=
(

r +
9
20

)2

−
(

9
20

)2

+
2
10

=
(

r +
9
20

)2

− 1
400

.

Thus its roots are given by

r = − 9
20
± 1

20
and the roots are r1 = −2/5 and r2 = −1/2. This gives a general solution

x(t) = Ae−2t/5 + Be−t/2.

Using the initial values we get

x(0) = A + B = 0 and x′(0) = −2A/5−B/2 = 5

which implies A = −B = 50. The solution we seek is thus x(t) = 50(e−2t/5 − e−t/2).
In order to find the maximum value of x we seek the smallest positive t for which the

function x attains a maximum. For this reason we study the equation x′(t) = 0 and get

0 = x′(t) = 50
(
−2

5
e−2t/5 +

1
2
e−t/2

)
=⇒ e−2t/5 =

5
4
e−t/2.

Now, multiplying this equation by et/2 we get

et/2e−2t/5 = et/10 =
5
4

=⇒ t

10
= ln

(
5
4

)
,
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i.e., t = 10 ln(5/4). One can confirm that this is a maximum of x by checking that x′′(t) < 0
for this value of t. Moreover, observe that this is the only positive t for which the derivative
is zero.

To find the position we calculate the value of x at time t = 10 ln(5/4):

x
(
10 ln(5/4)

)
= 50

(
e−4 ln(5/4) − e−5 ln(5/4)

)
= 50

((
eln(4/5)

)4
−
(
eln(4/5)

)5
)

= 50

((
4
5

)4

−
(

4
5

)5
)

= 2 · 52

(
44 · 5
55

− 45

55

)
=

29

53
=

212

23 · 53
=

4096
1000

= 4.096.

Thus, the box moves 4.096 to the right of the equilibrium before turning back.

7. Let p, q and r be continuous functions on some open (non-empty) interval I. Prove that
the equation

y(3) + p(x)y′′ + q(x)y′ + r(x)y = 0

has three solutions on the interval I which are linearly independent.

Solution: According to the theorem for existence and uniqueness of solutions to linear
differential equations (Theorem 2 on page 114 in Edwards & Penney), there exists three
solutions y1, y2, and y3 satisfying

y1(a) = y′2(a) = y′′3(a) = 1

and
y′1(a) = y′′1(a) = y2(a) = y′′2(a) = y3(a) = y′3(a) = 0.

Evaluating the Wronskian W = W (y1, y2, y3) at the point a we get

W (a) = det

y1(a) y2(a) y3(a)
y′1(a) y′2(a) y′3(a)
y′′1(a) y′′2(a) y′′3(a)

 = det

1 0 0
0 1 0
0 0 1

 = 1 6= 0,

which proves (according to Theorem 3 on page 119 in Edwards & Penney) that the three
solutions y1, y2, and y3 are linearly independent. �
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