MAT-INF1310, Spring 2009
Mandatory Assignment 1
Deadline: March 6, 14:30.

This document contains guidelines for how to solve the problems posed in the first mandatory
assignment. The solutions below might lack arguments needed in a complete solution.

1. Find a solution of the differential equation

d
& _ 2zy + 33"
dx

which satisfies y(In2) = 0.
Solution: We want to solve the differential equation
y — 2xy = 323"

For this purpose we use an integrating factor T given by

T(z) = exp ( / (—2x)da;> — e

Multiplying both sides of the equation by the integrating factor T gives

d
— (e_x2y> = 6_123/ — 2x6_"”2y = 323.
dx
Next, we integrate both sides in this equality with respect to x and get

3
e*"’“gy =zt 4.
4
This gives us a general solution y(z) = (32*/4 + C’)e”ﬁ2 of the equation 3’ — 2zy = 3z3e?”.
In order to have y(In2) = 0, it is required that C' = —3(In2)*/4. Thus, the solution of the
initial value problem is

(z* — (In 2)4)612.

=~

y(r) =

O

2. Suppose that the fish population P(¢) in a lake is attacked by a disease at time ¢ = 0,
with the result that the fish cease to reproduce (so that the birth rate is § = 0) and the death
rate § (deaths per week per fish) is thereafter proportional to 1/y/P. If there were initially

900 fish in the lake and 441 were left after 6 weeks, how long did it take all the fish in the
lake to die?

Solution: We want to solve the differential equation

dP
E:(ﬁ_é)Pa

with =0 and 0 =C/ VP, C > 0 constant. This gives the equation
P =—-CVP



which is separable. We get
Pl

VP

and integrating both sides with respect to ¢ gives

-—C

—dP—2\F_—Ct+D
75

Thus, +/P(t) = (D — Ct)/2. Using the initial condition P(0) = 900 we get
30 = V900 = /P(0) = (D — C-0)/2 = D/2,
and therefore D = 60. Using the initial condition P(6) = 441 we get
21 = V441 = \/P(6) = (60 — 6C)/2

and therefore C' = 3. We have /P(t) = (60 — 3t)/2 and therefore

(60 — 3t)?

P(t) =

It remains to find ¢ such that P(t) = 0. We get

(60 — 3t)?
4

i.e., t = 20. Thus, it took 20 weeks for all the fish to die. O

0=P(t) = 0= 60— 3t,

3. Find all solutions of the differential equation y” — 4y’ + 9y = xe”.

Solution: We find the complementary functions by first observing that the characteristic
polynomial of the equation is

r?—dr+9=(r—22-224+9=(r—-2)>+5
and which has complex roots r = 2 + iv/5. Thus, all complementary functions are given by

Ye(x) = 2" <c1 cos(\/gx) + co sin(\/ga:))7 c1,c0 € R.

In order to find a particular solution, we first observe that the function f(z) = xe® and all of
its derivatives can be described as linear combinations of the linearly independent functions
e® and ze®. Indeed, f(™(z) = ne® + xze®. Since the functions e* and xe® are not among the
complementary functions it is enough to determine the coefficients a,b € R such that

ypla) = (a + ba)e”

is a particular solution, see Rule 1 of the method of underdetermined coefficients. We get
Yp(x) = be® + (a + bx)e” = be” 4 y,(z) and Yy (x) = be” + y,(x) = 2be” + yp(z).

Substituting ¥, for y in the original equation gives

Yp — 4y, + 9yp = (20" + yp) — 4(be” + yp) + yp = 6y, — 2be” = (6a — 2b)e” + Gbxe”



which is equal to ze® if and only if @ = 1/18 and b = 1/6. We conclude that any solution of
the original equation is of the form

1
y(z) = 1—8(1 + 3z)e” 4 e** (01 cos(\/5$) + ¢ sin(ﬁm)), c1,c2 € R.

4. Let y; and yo denote two linearly independent solutions of the differential equation

y" + p(x)y +q(z)y =0,

where p and ¢ are continuous functions on an open (non-empty) interval I containing the
point a. Suppose that Y is a third solution of the equation. This means that there are unique
numbers ¢, co € R for which

Y(z) = ayi(x) + cay2(x), xz el

Express the values of the constants ¢; and ¢y in terms of the values of the functions y1, o,
and Y (and their derivatives) at the point a.

Solution: It is necessary that we find constants c1,co € R such that
Y(a) = ciy1(a) + caya(a) and Y'(a) = a1/ (a) + cavb(a),

i.e., we want to solve the linear equation

(3 3D - ¢
vila) ws(a)) \ca Y'(a)

Since y; and yo are linearly independent, we know that the Wronskian of y; and y2 at the
point a is non-zero. This means the (2 x 2)-matrix above is invertible. Indeed, we get

(yl(a) y2(a)>1 _ 1 < yh(a) —y2<a>>

vi(a) yya)) ; -y1(a)  yi(a)

y1(a)ys(a) — yi(a)yz(a)
We get

() = s @ e i) ()

Carrying out the necessary products above, one gets

ya(@)Y (a) — y2(a)Y"(a)

— Y y1(a)Y'(a) — 1 (a)Y (a)
y1(a)ys(a) — i (a)yz(a)

yi(a)yz(a) — yi(a)yz(a)

c1 = and coy = (1)
Using these values of ¢; and ¢y we get that the two functions Y (x) and ciyi(z) + coya(z)
are solutions of the same differential equation and satisfy the same initial value conditions.
According to the theorem for existence and uniqueness of solutions of linear differential equa-
tions with initial values (Theorem 2 on page 104 in Edwards & Penney) there is a unique such
function. Hence, the functions Y'(x) and ci1y1(x) + cayy(x) have to agree on the interval I.

This proves that the constants ¢; and ¢z calculated in (1) are such that

Y(z) = ciyi(x) + caya(x), x el



5. Verify that if ¢ is a constant, then the function defined by

1 if x <e,
y(x) =< cos(zr —c) ifc<z<c+m,
-1 frx>c+nw
satisfies the differential equation y' = —/1 —y?2 for all . Then determine (in terms of
a and b) how many different solutions the initial value problem ¢y’ = —y/1 — 2, y(a) = b has.

Solution: It is clear that the function y is differentiable on the open set R\ {¢,c + w}. It
needs to be verified that y is differentiable at the points ¢ and ¢ + 7, i.e., we need to verify
that the limits defining 3/(c) and y/(c 4+ 7) exist. These limits are given by

4/ (¢) = lim y(e+h) —y(e)

yle+m+h) —yle+ )
h—0 h '

h

d ! = li
an y(c+m) lim

Let us concentrate on the first limit. Observe that, since 0 < cos(h) < 1 for positive h close
to zero, we get
cos(h) — 1 < y(c+h) —
h - h

y(c) <0

for h close to zero. Observe that

cos(h) =1 _ lim cos(0 + h) —cos(0) _ ( d

lim — cos t) (0) = —sin(0) = 0.

h—0 h h—0 dt
This gives
0= Jim S =1 gy yleth) —ylo)
h—0 h h—0 h

which proves that y/(c) exists and y'(¢) = 0. Similarly it is proved that y'(c¢ + 7) = 0. From
this it follows that

0 if v <e,
y(z) =< —sin(x —c) ifc<z<cHm,
0 if x> c.

Let us now confirm that the function y satisfies the differential equation in question for any
real number c. We get

—V1—9y?(z) =—/1—-(£1)2=0=y(x), r<c or z>c
and for ¢ < x < c+ 7w we get

—V/1—12(z) = —\/1 —cos?(z — ¢) = —/sin*(z — ¢) = — [sin*(z — ¢)|

Observe that 0 < sin(x — ¢) < 1 for ¢ < < ¢+ 7. Hence, for such x we have [sin(x — ¢)| =
sin(z — ¢) and

0 if x <e,
- 1—y2(x): —sin(x—c¢) ife<z<c+m,
0 if x> c.



Thus it is proved that y/(z) = —y/1 — y?(x) for all z € R.

Next, we consider initial value conditions y(a) = b, for a,b € R. Since —1 < y(x) <1 for
all x € R, the initial value problem is unsolvable if |b| > 1.

Suppose that b = 1. Then, by the definition of the function y, y(a) = b for all ¢ such
that ¢ < ¢. This means that we get infinitely many solutions. Similarly, if b = —1 we have
that y(a) = b for all ¢ with ¢ < a — . Thus, for |b| =1 we find infinitely many solutions.

Finally, suppose that |b| < 1. There is a unique o € R with 0 < o < 7 and cos(a) = b.
By the definition of y we get that y(a) = b if ¢ is such that

a—c=a+2mn and c<a<cH+m, n € 7.

These two conditions imply that ¢ < a = ¢+ a + 2mn < ¢+ 7 is satisfied if and only if n = 0.
Thus, for ¢ = a — « the function y satisfies y(a) = b and ¢ < a < ¢+ 7. This shows that for
|b| < 1 there is a unique solution satisfying y(a) = b. O

6. Suppose that the mass in a mass—spring—dashpot system with m = 10, c=9 and k = 2 is
set in motion with 2(0) = 0 and 2/(0) = 5 (see Figure 2.4.1 on page 135 in Edwards & Penney).
Find how far the mass moves to the right before starting back toward the origin.

Solution: We want to find the unique solution satisfying
102" + 92’ + 22 =0, z(0) =0, 2'(0) = 5.

Note that we might just as well consider the equation x” + 92//10 4+ 22:/10 = 0. We start
by finding the complementary functions y. of this equation. The characteristic polynomial
72 4+ 9r/10 4 2/10 can be written as

2902 <r+9>2_ (9) 2 _ <r+9>2_1.
10 10 20 20 10 20 400
Thus its roots are given by
LA
20 20
and the roots are r; = —2/5 and 79 = —1/2. This gives a general solution

T =

z(t) = Ae™ /% 4 Be Y2,
Using the initial values we get
z(0)=A+B=0 and 2'(0) = —2A/5—-B/2=5

which implies A = —B = 50. The solution we seck is thus z(t) = 50(e~2/5 — ¢=1/?),
In order to find the maximum value of x we seek the smallest positive ¢ for which the
function z attains a maximum. For this reason we study the equation z/(¢t) = 0 and get

0=2a'(t) = 50 <—§e—2t/5 + ;e—m) — sl

Now, multiplying this equation by e*/? we get

6t/26_2t/5 = et/lo = Z — i - 111 <5> )



i.e., t =101In(5/4). One can confirm that this is a maximum of x by checking that x”(t) < 0
for this value of t. Moreover, observe that this is the only positive ¢ for which the derivative
is zero.

To find the position we calculate the value of = at time ¢ = 101n(5/4):

2(10In(5/4)) = 50 (e—4ln(5/4> - e—5ln<5/4>) — 50 ((eln(4/5)>4 _ (eln(4/s>)5>

AN 74\° 44.5 45 29 212 4096
=50( (=) = (2 —=92.52 — = | == = —F"— = —— =4.096.
((5) (5) > < 55 55> 53 23.53 1000

Thus, the box moves 4.096 to the right of the equilibrium before turning back.

7. Let p, ¢ and r be continuous functions on some open (non-empty) interval I. Prove that
the equation

v + p(@)y” + q(2)y +r(z)y =0
has three solutions on the interval I which are linearly independent.

Solution: According to the theorem for existence and uniqueness of solutions to linear
differential equations (Theorem 2 on page 114 in Edwards & Penney), there exists three
solutions y1, y2, and ys satisfying

yi1(a) = yy(a) = y5(a) =1
and
yi(a) = yi(a) = y2(a) = y5(a) = ys(a) = y3(a) = 0.
Evaluating the Wronskian W = W (y1,y2,y3) at the point a we get
yi(a) wa(a) ys(a) 100
W(a) =det [ yi(a) vh(a) yh(a) | =det [0 1 0] =10,
b 0 0 1

yi(a) yy(a) wy5(a)

which proves (according to Theorem 3 on page 119 in Edwards & Penney) that the three
solutions y1, y2, and y3 are linearly independent. O



