
Fourier theory and wavelet analysis

Øyvind Ryan and Knut Mørken

January 11, 2013

Contents

I Fourier analysis and applications to sound process-
ing 7

1 Sound and Fourier series 8

1.1 Loudness: Sound pressure and decibels 9
1.2 The pitch of a sound . 12
1.3 Fourier series: Basic concepts . 16
1.4 Examples of Fourier series . 22

1.4.1 Fourier series for symmetric and antisymmetric functions 26
1.5 Complex Fourier series . 27
1.6 Rate of convergence for Fourier series 33
1.7 Some properties of Fourier series 38
1.8 Operations on sound: filters . 41
1.9 The MP3 standard . 43
1.10 Summary . 45

2 Digital sound and Discrete Fourier analysis 46

2.1 Digital sound . 46
2.2 Simple operations on digital sound 48

2.2.1 Playing a sound . 48
2.3 Discrete Fourier analysis: Basic concepts 55
2.4 The Discrete Fourier Transform 56
2.5 Connection between the DFT and Fourier series 62
2.6 Using the DFT to adjust frequencies in sound 66
2.7 The DFT and interpolation . 69
2.8 Reconstruction of a function from its samples. The sampling

theorem. 70
2.9 The Fast Fourier Transform (FFT) 73

2.9.1 The Inverse Fast Fourier Transform (IFFT) 77
2.9.2 Reduction in the number of multiplications with the FFT 78
2.9.3 Applications of the FFT 79

2.10 Summary . 81

1

3 Operations on digital sound: digital filters 82

3.1 Matrix representations of filters 82
3.2 Formal definition of filters and the vector frequency response . . 86
3.3 The continuous frequency response and properties 93

3.3.1 Windowing operations . 97
3.4 Assembling the filter matrix and compact notation 99
3.5 Some examples of filters . 103
3.6 Time-invariance of filters . 119
3.7 More general filters . 120
3.8 Implementation of filters . 123

3.8.1 Implementation of filters using the DFT 123
3.8.2 Factoring a filter into several filters 123

3.9 Summary . 124

4 Symmetric filters and the DCT 126

4.1 Symmetric filters and symmetric vectors 126
4.1.1 Implementations of symmetric filters 132

4.2 Construction of the DCT . 134
4.3 Use of DCT in lossy compression of sound 141
4.4 Efficient implementations of the DCT 143

4.4.1 Efficient implementations of the IDCT 145
4.4.2 Reduction in the number of multiplications with the DCT 146
4.4.3 *An efficient joint implementation of the DCT and the FFT147

4.5 Summary . 152

II Wavelets and applications to image processing 153

5 Motivation for wavelets 154

5.1 Why wavelets? . 154
5.2 Resolution spaces . 156

5.2.1 Function approximation property 159
5.2.2 Detail spaces and wavelets 160

5.3 Higher order resolution spaces . 169
5.4 Multiresolution analysis: A generalization 176
5.5 Summary . 182

6 Wavelets constructed from piecewise linear functions 183

6.1 A first construction of a wavelet for piecewise constant functions 183
6.1.1 Detail spaces and wavelets 187

6.2 Multiresolution analysis: Another generalization 191
6.3 Alternative wavelets for piecewise linear functions 195
6.4 Summary . 201

2

7 Wavelets and filters 203

7.1 The filters corresponding to a wavelet transformation 203
7.2 Perfect reconstruction systems 211
7.3 Wavelets with symmetric filters 212
7.4 Filter-based algorithm for the DWT and the IDWT 214
7.5 Summary . 220

8 Constructing interesting wavelets 222

8.1 Characterization of perfect reconstruction systems of MRA matrices222
8.2 Construction of useful wavelets: zeros at π in λH0 and λG0 . . . 226
8.3 Characterization of wavelets w.r.t. number of vanishing moments 229
8.4 *The proof of Bezouts theorem 234
8.5 A design strategy suitable for lossless compression 235
8.6 A design strategy suitable for lossy compression 238
8.7 Orthonormal wavelets . 241
8.8 Summary . 242

9 Lifting 245

9.1 Motivation . 245
9.2 Properties of polyphase components 248
9.3 The lifting factorization . 248
9.4 Complexity reduction due to lifting 255
9.5 Summary . 260

10 Digital images 261

10.1 What is an image? . 261
10.1.1 Light . 261
10.1.2 Digital output media . 262
10.1.3 Digital input media . 263
10.1.4 Definition of digital image 263
10.1.5 Images as surfaces . 267

10.2 Operations on images . 268
10.2.1 Images and MATLAB . 268
10.2.2 Comparing the first derivatives 281
10.2.3 Second-order derivatives 281

10.3 Adaptations to image processing 284
10.3.1 Lossless coding . 284
10.3.2 Quantization . 285
10.3.3 Preprocessing . 285
10.3.4 Tiles, blocks, and error resilience 285
10.3.5 Metadata . 285

10.4 Summary . 286

3

11 Definition and properties of tensor products 287

11.1 The tensor product of vectors . 288
11.2 Change of bases in tensor products 296
11.3 Summary . 301

12 Tensor products in a wavelet setting 303

12.1 Adopting the tensor product terminology to wavelets 305
12.2 An application to the FBI standard for compression of fingerprint

images . 324
12.3 Summary . 326
Mathematics index . 330
Index for MATLAB commands . 332

4

Preface

These notes deal with the topics Fourier analysis, signal processing, and wavelet
theory, and applications related to these. A central idea in the notes is to explain
the connections

theory – numerical methods – applications

In other words, we want to explain the theoretical foundations for the se-
lected topics, but also to go from there to numerical methods and, and finally
motivate these by their applications in diverse fields.

When it comes to the theoretical foundations, the common denominator be-
tween the presented topics is first of all linear algebra. We build on a basic
background in linear algebra, and state and prove several results in linear al-
gebra. Together with a book from an elementary course in linear algebra, the
notes should be self-contained as it depends on only a minimum of source pre-
requisites. Recommended sources in this respect are given. In this respect the
notes fulfill a major gap when compared to much existing literature, much of
which are not self-contained. Only theoretical parts which are needed for the
applications we present are included.

When it comes to the applications, they have been carefully chosen applica-
tions of linear algebra, like compression of sound and images. The applications
explain how the presented theory can be adapted in order for it to be used in
practice. This also includes interfaces towards modern programming languages,
and how the applications can use modern computer architectures efficiently.
These notes go longer than existing textbooks in fulfilling and combining the
three purposes mentioned above. Many books on linear algebra sneak in words
like “applied” or “applications” in their title. The main contents in most of these
books may still be theory, and particular applications where the presented theory
is used are perhaps only mentioned superficially, without digging deep enough to
explain how these applications use the presented theory. For these notes appli-
cations is meant in a wider sense: we also unveil how we can turn the theory into
practical implementations of the applications. By “Practical implementation”
we do not mean a “full implementation”, which typically involves many other
components, unrelated or only weakly related to the theory we concentrate on.

One goal of these notes is to make the reader, in addition to understanding
the theory, know enough about how the theory so that he can be operational

5

enough to implement or reconstruct parts of the applications he learns about.
Since many textbooks do not present the theory in such a way that this is
possible, some further developmentments in the theory had to be made in order
to meet this. These developments are not seen in new results, but rather in
simplifications of existing results so that they are presentable in our setting.
International standards which are presented, and attempted to make the reader
operational on are the JPEG- and JPEG2000-standards for images, and the
MP3-standard for compression of sound.

The notes are split into two parts, one on Fourier analysis, and one on
wavelets. They have strong connections with the field of signal processing. Al-
though these notes have many applications to sound and images in common
with signal processing textbooks, they also differ from such textbooks in other
respects. First of all, these notes are expressed in a language which is compati-
ble with linear algebra textbooks. Such compatibility is not always the case in
signal processing textbooks, which is unfortunate since the language of linear
algebra is very powerful and natural to use. Also, signal processing literature
requires the reader to be familiar with signal processing nomenclature. This
requirement has been minimized in these notes by stating things in terms of
linear algebra whenever possible. Also, we include a translation guide, in order
to make a student of signal processing find his way in linear algebra concepts.

Notation
We will follow linear algebra notation as you know it from classical linear algebra
textbooks. In particular, vectors will be in boldface (x, y, etc.), while matrices
will be in uppercase (A, B, etc.). The zero vector, or the zero matrix, is denoted
by 0. All vectors stated will be assumed to be column vectors. A row vector
will always be written as xT , where x is a (column) vector.

Acknowledgment
The notes were written for the course MAT-INF2360, Applications of Linear
Algebra, at UiO. The authors would like to thank each other for establishing
the notes. The authors would also like to thank Andreas Våvang Solbrå for his
valuable contributions to the notes.

Knut Mørken, and Øyvind Ryan
Oslo, January 2013.

6

Part I

Fourier analysis and

applications to sound

processing

7

Chapter 1

Sound and Fourier series

A major part of the information we receive and perceive every day is in the
form of audio. Most sounds are transferred directly from the source to our ears,
like when we have a face to face conversation with someone or listen to the
sounds in a forest or a street. However, a considerable part of the sounds are
generated by loudspeakers in various kinds of audio machines like cell phones,
digital audio players, home cinemas, radios, television sets and so on. The
sounds produced by these machines are either generated from information stored
inside, or electromagnetic waves are picked up by an antenna, processed, and
then converted to sound. It is this kind of sound we are going to study in
this chapter. The sound that is stored inside the machines or picked up by the
antennas is usually represented as digital sound. This has certain limitations,
but at the same time makes it very easy to manipulate and process the sound
on a computer.

What we perceive as sound corresponds to the physical phenomenon of slight
variations in air pressure near our ears. Larger variations mean louder sounds,
while faster variations correspond to sounds with a higher pitch. The air pres-
sure varies continuously with time, but at a given point in time it has a precise
value. This means that sound can be considered to be a mathematical function.

Observation 1.1. A sound can be represented by a mathematical function,
with time as the free variable. When a function represents a sound, it is often
referred to as a continuous sound.

In the following we will briefly discuss the basic properties of sound: first the
significance of the size of the variations, and then how many variations there
are per second, the frequency of the sound. We also consider the important fact
that any reasonable sound may be considered to be built from very simple basis
sounds. Since a sound may be viewed as a function, the mathematical equivalent
of this is that any decent function may be constructed from very simple basis
functions. Fourier-analysis is the theoretical study of this, and in the last part
of this chapter we establish the framework for this study, and analyze this on

8

0 0.01 0.02 0.03 0.04
1.0132

1.0132

1.0132

1.0132

1.0133

1.0133

1.0133
x 10

5

(a) A sound shown in terms of air pressure
0 0.002 0.004 0.006 0.008 0.01

−1

−0.5

0

0.5

1

(b) A sound shown in terms of the differ-
ence from the ambient air pressure

Figure 1.1: Two examples of audio signals.

some examples for sound.

1.1 Loudness: Sound pressure and decibels
An example of a simple sound is shown in Figure 1.1(a) where the oscillations
in air pressure are plotted agains time. We observe that the initial air pressure
has the value 101 325 (we will shortly return to what unit is used here), and
then the pressure starts to vary more and more until it oscillates regularly
between the values 101 323 and 101 327. In the area where the air pressure
is constant, no sound will be heard, but as the variations increase in size, the
sound becomes louder and louder until about time t = 0.6 where the size of
the oscillations becomes constant. The following summarises some basic facts
about air pressure.

Fact 1.2 (Air pressure). Air pressure is measured by the SI-unit Pa (Pascal)
which is equivalent to N/m2 (force / area). In other words, 1 Pa corresponds
to the force exerted on an area of 1 m2 by the air column above this area. The
normal air pressure at sea level is 101 325 Pa.

Fact 1.2 explains the values on the vertical axis in Figure 1.1(a): The sound
was recorded at the normal air pressure of 101 325 Pa. Once the sound started,
the pressure started to vary both below and above this value, and after a short
transient phase the pressure varied steadily between 101 324 Pa and 101 326 Pa,
which corresponds to variations of size 1 Pa about the fixed value. Everyday
sounds typically correspond to variations in air pressure of about 0.00002–2 Pa,
while a jet engine may cause variations as large as 200 Pa. Short exposure
to variations of about 20 Pa may in fact lead to hearing damage. The volcanic
eruption at Krakatoa, Indonesia, in 1883, produced a sound wave with variations
as large as almost 100 000 Pa, and the explosion could be heard 5000 km away.

9

When discussing sound, one is usually only interested in the variations in
air pressure, so the ambient air pressure is subtracted from the measurement.
This corresponds to subtracting 101 325 from the values on the vertical axis in
Figure 1.1(a). In Figure 1.1(b) the subtraction has been performed for another
sound, and we see that the sound has a slow, cos-like, variation in air pressure,
with some smaller and faster variations imposed on this. This combination
of several kinds of systematic oscillations in air pressure is typical for general
sounds. The size of the oscillations is directly related to the loudness of the
sound. We have seen that for audible sounds the variations may range from
0.00002 Pa all the way up to 100 000 Pa. This is such a wide range that it is
common to measure the loudness of a sound on a logarithmic scale. Often air
pressure is normalized so that it lies between −1 and 1: The value 0 then repre-
sents the ambient air pressure, while −1 and 1 represent the lowest and highest
representable air pressure, respectively. The following fact box summarises the
previous discussion of what a sound is, and introduces the logarithmic decibel
scale.

Fact 1.3 (Sound pressure and decibels). The physical origin of sound is vari-
ations in air pressure near the ear. The sound pressure of a sound is obtained
by subtracting the average air pressure over a suitable time interval from the
measured air pressure within the time interval. A square of this difference
is then averaged over time, and the sound pressure is the square root of this
average.

It is common to relate a given sound pressure to the smallest sound pressure
that can be perceived, as a level on a decibel scale,

Lp = 10 log10

�
p2

p2ref

�
= 20 log10

�
p

pref

�
.

Here p is the measured sound pressure while pref is the sound pressure of a
just perceivable sound, usually considered to be 0.00002 Pa.

The square of the sound pressure appears in the definition of Lp since this
represents the power of the sound which is relevant for what we perceive as
loudness.

The sounds in Figure 1.1 are synthetic in that they were constructed from
mathematical formulas (see Exercises 2.2.1 and 2.2.2). The sounds in Figure 1.2
on the other hand show the variation in air pressure when there is no math-
ematical formula involved, such as is the case for a song. In (a) there are so
many oscillations that it is impossible to see the details, but if we zoom in as
in (c) we can see that there is a continuous function behind all the ink. It is
important to realise that in reality the air pressure varies more than this, even
over the short time period in (c). However, the measuring equipment was not
able to pick up those variations, and it is also doubtful whether we would be
able to perceive such rapid variations.

10

0.1 0.2 0.3 0.4 0.5

�0.2

�0.1

0.0

0.1

0.2

0.3

(a) 0.5 seconds of the song

0.005 0.010 0.015

�0.2

�0.1

0.0

0.1

0.2

(b) the first 0.015 seconds

0.0005 0.0010 0.0015

�0.2

�0.1

0.0

0.1

(c) the first 0.002 seconds

Figure 1.2: Variations in air pressure during parts of a song.

11

Exercises for Section 1.1
1. Compute the loudness of the Krakatoa explosion on the decibel scale, assum-
ing that the variation in air pressure peaked at 100 000 Pa.

1.2 The pitch of a sound
Besides the size of the variations in air pressure, a sound has another impor-
tant characteristic, namely the frequency (speed) of the variations. For most
sounds the frequency of the variations varies with time, but if we are to perceive
variations in air pressure as sound, they must fall within a certain range.

Fact 1.4. For a human with good hearing to perceive variations in air pressure
as sound, the number of variations per second must be in the range 20–20 000.

To make these concepts more precise, we first recall what it means for a
function to be periodic.

Definition 1.5. A real function f is said to be periodic with period τ if

f(t+ τ) = f(t)

for all real numbers t.

Note that all the values of a periodic function f with period τ are known if
f(t) is known for all t in the interval [0, τ). The prototypes of periodic functions
are the trigonometric ones, and particularly sin t and cos t are of interest to us.
Since sin(t + 2π) = sin t, we see that the period of sin t is 2π and the same is
true for cos t.

There is a simple way to change the period of a periodic function, namely
by multiplying the argument by a constant.

Observation 1.6 (Frequency). If ν is an integer, the function f(t) =
sin(2πνt) is periodic with period τ = 1/ν. When t varies in the interval
[0, 1], this function covers a total of ν periods. This is expressed by saying
that f has frequency ν.

Figure 1.3 illustrates observation 1.6. The function in (a) is the plain sin t
which covers one period when t varies in the interval [0, 2π]. By multiplying the
argument by 2π, the period is squeezed into the interval [0, 1] so the function
sin(2πt) has frequency ν = 1. Then, by also multiplying the argument by 2,
we push two whole periods into the interval [0, 1], so the function sin(2π2t) has
frequency ν = 2. In (d) the argument has been multiplied by 5 — hence the
frequency is 5 and there are five whole periods in the interval [0, 1]. Note that
any function on the form sin(2πνt+ a) has frequency ν, regardless of the value
of a.

12

0 2 4 6
−1

−0.5

0

0.5

1

(a) sin t

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(b) sin(2πt)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(c) sin(2π2t)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(d) sin(2π5t)

Figure 1.3: Versions of sin with different frequencies.

13

Since sound can be modelled by functions, it is reasonable to say that a
sound with frequency ν is a trigonometric function with frequency ν.

Definition 1.7. The function sin(2πνt) represents what we will call a pure
tone with frequency ν. Frequency is measured in Hz (Herz) which is the same
as s−1 (the time t is measured in seconds).

A pure tone with frequency 440 Hz sounds like this, and a pure tone with
frequency 1500 Hz sounds like this. In Section 2.1 we will explain how we
generated these sounds so that they could be played on a computer.

Any sound may be considered to be a function. In the next section we will
explain why any reasonable function may be written as a sum of simple sin- and
cos- functions with integer frequencies. When this is translated into properties
of sound, we obtain an important principle.

Observation 1.8 (Decomposition of sound into pure tones). Any sound f is
a sum of pure tones at different frequencies. The amount of each frequency re-
quired to form f is the frequency content of f . Any sound can be reconstructed
from its frequency content.

The most basic consequence of observation 1.8 is that it gives us an under-
standing of how any sound can be built from the simple building blocks of pure
tones. This also means that we can store a sound f by storing its frequency
content, as an alternative to storing f itself. This also gives us a possibility
for lossy compression of digital sound: It turns out that, in a typical audio sig-
nal, most information is found in the lower frequencies, and some frequencies
will be almost completely absent. This can be exploited for compression if we
change the frequencies with small contribution a little bit and set them to 0, and
then store the signal by only storing the nonzero part of the frequency content.
When the sound is to be played back, we first convert the adjusted values to
the adjusted frequency content back to a normal function representation with
an inverse mapping.

Fact 1.9 (Basic idea behind audio compression). Suppose an audio signal f
is given. To compress f , perform the following steps:

1. Rewrite the signal f in a new format where frequency information be-
comes accessible.

2. Remove those frequencies that only contribute marginally to human per-
ception of the sound.

3. Store the resulting sound by coding the adjusted frequency content with
some lossless coding method.

14

This lossy compression strategy is essentially what is used in practice by
commercial audio formats. The difference is that commercial software does
everything in a more sophisticated way and thereby gets better compression
rates. We will return to this in later chapters.

We will see later that Observation 1.8 also is the basis for many operations
on sound. The same observation also makes it possible to explain more precisely
what it means that we only perceive sounds with a frequency in the range 20–
20000 Hz:

Fact 1.10. Humans can only perceive variations in air pressure as sound if
the Fourier series of the sound signal contains at least one sufficiently large
term with frequency in the range 20–20 000 Hz.

With appropriate software it is easy to generate a sound from a mathematical
function; we can ’play’ the function. If we play a function like sin(2π440t),
we hear a pleasant sound with a very distinct pitch, as expected. There are,
however, many other ways in which a function can oscillate regularly. The
function in Figure 1.1(b) for example, definitely oscillates 2 times every second,
but it does not have frequency 2 Hz since it is not a pure tone. This sound is also
not that pleasant to listen to. We will consider two more important examples
of this, which are very different from smooth, trigonometric functions.

Example 1.11. We define the square wave of period T as the function which
repeats with period T , and is 1 on the first half of each period, and −1 on the
second half. This means that we can define it as the function

fs(t) =

�
1, if 0 ≤ t < T/2;

−1, if T/2 ≤ t < T .
(1.1)

In Figure 1.4(a) we have plotted the square wave when T = 1/440. This period
is chosen so that it corresponds to the pure tone we already have listened to,
and you can listen to this square wave here. In Exercise 2.1.4 you will learn how
to generate this sound. We hear a sound with the same pitch as sin(2π440t),
but note that the square wave is less pleasant to listen to: There seems to be
some sharp corners in the sound, translating into a rather shrieking, piercing
sound. We will later explain this by the fact that the square wave can be viewed
as a sum of many frequencies, and that all the different frequencies pollute the
sound so that it is not pleasant to listen to.

♣

Example 1.12. We define the triangle wave of period T as the function which
repeats with period T , and increases linearly from −1 to 1 on the first half of
each period, and decreases linearly from 1 to −1 on the second half of each
period. This means that we can define it as the function

ft(t) =

�
4t/T − 1, if 0 ≤ t < T/2;

3− 4t/T, if T/2 ≤ t < T .
(1.2)

15

0 0.002 0.004 0.006 0.008 0.01

−1

−0.5

0

0.5

1

(a) The first five periods of the square wave
0 0.002 0.004 0.006 0.008 0.01

−1

−0.5

0

0.5

1

(b) The first five periods of the triangle wave

Figure 1.4: The square wave and the triangle wave, two functions with regular
oscillations, but which are not simple, trigonometric functions.

In Figure 1.4(b) we have plotted the triangle wave when T = 1/440. Again,
this same choice of period gives us an audible sound, and you can listen to the
triangle wave here. Again you will note that the triangle wave has the same pitch
as sin(2π440t), and is less pleasant to listen to than this pure tone. However,
one can argue that it is somewhat more pleasant to listen to than a square wave.
This will also be explained in terms of pollution with other frequencies later. ♣

In Section 1.3 we will begin to peek behind the curtains as to why these
waves sound so different, even though we recognize them as having the exact
same pitch.

Exercises for Section 1.2
1. Consider a sum of two pure tones, f(t) = A1 sin 2(πν1t)+A2 sin 2(πν2t). For
which values of A1, A2, ν1, ν2 is f periodic? What is the period of f when it is
periodic?

1.3 Fourier series: Basic concepts
In Section 1.2 we identified audio signals with functions and discussed infor-
mally the idea of decomposing a sound into basis sounds (pure sounds) to make
its frequency content available. In this chapter we will make this kind of de-
composition more precise by discussing how a given function can be expressed
in terms of the basic trigonometric functions. This is similar to Taylor series
where functions are approximated by combinations of polynomials. But it is
also different from Taylor series because we use trigonometric series rather than
power series, and the approximations are computed in a very different way. The
theory of approximation of functions with trigonometric functions is generally

16

refered to as Fourier analysis. This is a central tool in practical fields like image-
and signal processing, but it is also an important field of research within pure
mathematics.

In the start of this chapter we had no constraints on the function f . Although
Fourier analysis can be performed for very general functions, it turns out that it
takes its simplest form when we assume that the function is periodic. Periodic
functions are fully known when we know their values on a period [0, T]. In this
case we will see that we can carry out the Fourier analysis in finite dimensional
vector spaces of functions. This makes linear algebra a very useful tool in Fourier
analysis: Many of the tools from your linear algebra course will be useful, in a
situation that at first may seem far from matrices and vectors.

The basic idea of Fourier series is to approximate a given function by a
combination of simple cos and sin functions. This means that we have to address
at least three questions:

1. How general do we allow the given function to be?

2. What exactly are the combinations of cos and sin that we use for the
approximations?

3. How do we determine the approximation?

Each of these questions will be answered in this section. Since we restrict to
periodic functions, we will without much loss of generality assume that the
functions are defined on [0, T], where T is some positive number. Mostly we
will also assume that f is continuous, but the theory can also be extended
to functions which are only Riemann-integrable, and more precisely, to square
integrable functions.

Definition 1.13 (Continuous and square-integrable functions). The set of
continuous, real functions defined on an interval [0, T] is denoted C[0, T].

A real function f defined on [0, T] is said to be square integrable if f2 is
Riemann-integrable, i.e., if the Riemann integral of f2 on [0, T] exists,

�
T

0
f(t)2 dt < ∞.

The set of all square integrable functions on [0, T] is denoted L2[0, T].

The sets of continuous and square-integrable functions can be equippped
with an inner-product, a generalisation of the so-called dot-product for vectors.

Theorem 1.14. Both L2[0, T] and C[0, T] are vector spaces. Moreover, if the
two functions f and g lie in L2[0, T] (or in C[0, T]), then the product fg is also

17

in L2[0, T] (or in C[0, T]). Moreover, both spaces are inner product spaces1,
with inner product2 defined by

�f, g� = 1

T

�
T

0
f(t)g(t) dt, (1.3)

and associated norm

�f� =

�
1

T

�
T

0
f(t)2dt. (1.4)

The mysterious factor 1/T is included so that the constant function f(t) = 1
has norm 1, i.e., its role is as a normalizing factor.

Definition 1.13 and Theorem 1.14 answer the first question above, namely
how general we allow our functions to be. Theorem 1.14 also gives an indication
of how we are going to determine approximations—we are going to use inner
products. We recall from linear algebra that the projection of a function f onto
a subspace W with respect to an inner product �·, ·� is the function g ∈ W which
minimizes �f − g�, also called the error in the approximation3. This projection
is therefore also called a best approximation of f from W and is characterised
by the fact that the function f − g, also called the error function, should be
orthogonal to the subspace W , i.e. we should have

�f − g, h� = 0, for all h ∈ W .

More precisely, if φ = {φi}mi=1 is an orthogonal basis for W , then the best
approximation g is given by

g =
m�

i=1

�f, φi�
�φi, φi�

φi. (1.5)

The error �f − g� is often referred to as the least square error.
We have now answered the second of our primary questions. What is left

is a description of the subspace W of trigonometric functions. This space is
spanned by the pure tones we discussed in Section 1.2.

Definition 1.15 (Fourier series). Let VN,T be the subspace of C[0, T] spanned
by the set of functions given by

DN,T = {1, cos(2πt/T), cos(2π2t/T), · · · , cos(2πNt/T),

sin(2πt/T), sin(2π2t/T), · · · , sin(2πNt/T)}. (1.6)

The space VN,T is called the N ’th order Fourier space. The Nth-order Fourier
series approximation of f , denoted fN , is defined as the best approximation
of f from VN,T with respect to the inner product defined by (1.3).

3See Section 6.3 in [8] for a review of projections and least squares approximations.

18

The space VN,T can be thought of as the space spanned by the pure tones
of frequencies 1/T , 2/T , . . . , N/T , and the Fourier series can be thought of as
linear combination of all these pure tones. From our discussion in Section 1.2,
we should expect that if N is sufficiently large, VN,T can be used to approximate
most sounds in real life. The approximation fN of a sound f from a space VN,T

can also serve as a compressed version if many of the coefficients can be set to
0 without the error becoming too big.

Note that all the functions in the set DN,T are periodic with period T , but
most have an even shorter period. More precisely, cos(2πnt/T) has period T/n,
and frequency n/T . In general, the term fundamental frequency is used to denote
the lowest frequency of a given periodic function.

Definition 1.15 characterises the Fourier series. The next lemma gives precise
expressions for the coefficients.

Theorem 1.16. The set DN,T is an orthogonal basis for VN,T . In particular,
the dimension of VN,T is 2N + 1, and if f is a function in L2[0, T], we denote
by a0, . . . , aN and b1, . . . , bN the coordinates of fN in the basis DN,T , i.e.

fN (t) = a0 +
N�

n=1

(an cos(2πnt/T) + bn sin(2πnt/T)) . (1.7)

The a0, . . . , aN and b1, . . . , bN are called the (real) Fourier coefficients of f ,
and they are given by

a0 = �f, 1� = 1

T

�
T

0
f(t) dt, (1.8)

an = 2
�
f, cos(2πnt/T)

�
=

2

T

�
T

0
f(t) cos(2πnt/T) dt for n ≥ 1, (1.9)

bn = 2�f, sin(2πnt/T)� = 2

T

�
T

0
f(t) sin(2πnt/T) dt for n ≥ 1. (1.10)

Proof. To prove orthogonality, assume first that m �= n. We compute the inner
product

�cos(2πmt/T), cos(2πnt/T)�

=
1

T

�
T

0
cos(2πmt/T) cos(2πnt/T)dt

=
1

2T

�
T

0
(cos(2πmt/T + 2πnt/T) + cos(2πmt/T − 2πnt/T))

=
1

2T

�
T

2π(m+ n)
sin(2π(m+ n)t/T) +

T

2π(m− n)
sin(2π(m− n)t/T)

�T

0

= 0.

19

Here we have added the two identities cos(x ± y) = cosx cos y ∓ sinx sin y
together to obtain an expression for cos(2πmt/T) cos(2πnt/T)dt in terms of
cos(2πmt/T +2πnt/T) and cos(2πmt/T −2πnt/T). By testing all other combi-
nations of sin and cos also, we obtain the orthogonality of all functions in DN,T

in the same way.
We find the expressions for the Fourier coefficients from the general for-

mula (1.5). We first need to compute the following inner products of the basis
functions,

�cos(2πmt/T), cos(2πmt/T)� = 1

2

�sin(2πmt/T), sin(2πmt/T)� = 1

2
�1, 1� = 1,

which are easily derived in the same way as above. The orthogonal decomposi-
tion theorem (1.5) now gives

fN (t) =
�f, 1�
�1, 1�1 + +

N�

n=1

�f, cos(2πnt/T)�
�cos(2πnt/T), cos(2πnt/T)� cos(2πnt/T)

+
N�

n=1

�f, sin(2πnt/T)�
�sin(2πnt/T), sin(2πnt/T)� sin(2πnt/T)

=
1
T

�
T

0 f(t)dt

1
+

N�

n=1

1
T

�
T

0 f(t) cos(2πnt/T)dt
1
2

cos(2πnt/T)

+
N�

n=1

1
T

�
T

0 f(t) sin(2πnt/T)dt
1
2

sin(2πnt/T)

=
1

T

�
T

0
f(t)dt+

N�

n=1

�
2

T

�
T

0
f(t) cos(2πnt/T)dt

�
cos(2πnt/T)

+
N�

n=1

�
2

T

�
T

0
f(t) sin(2πnt/T)dt

�
sin(2πnt/T).

The relations (1.8)- (1.10) now follow by comparison with (1.7).

Since f is a function in time, and the an, bn represent contributions from
different frequencies, the Fourier series can be thought of as a change of coordi-
nates, from what we vaguely can call the time domain, to what we can call the
frequency domain (or Fourier domain). We will call the basis DN,T the N ’th
order Fourier basis for VN,T . We note that DN,T is not an orthonormal basis;
it is only orthogonal.

In the signal processing literature, Equation (1.7) is known as the synthesis
equation, since the original function f is synthesized as a sum of trigonometric
functions. Similarly, equations (1.8)- (1.10) are called analysis equations.

20

0 0.2 0.4 0.6 0.8 1
0.975

0.98

0.985

0.99

0.995

1

1.005

(a) The function and its Fourier series
0 0.5 1 1.5 2

0.975

0.98

0.985

0.99

0.995

1

1.005

(b) The Fourier series on a larger interval

Figure 1.5: The cubic polynomial f(x) = − 1
3x

3 + 1
2x

2 − 3
16x+1 on the interval

[0, 1], together with its Fourier series approximation from V9,1.

A major topic in harmonic analysis is to state conditions on f which guaran-
tees the convergence of its Fourier series. We will not discuss this in detail here,
since it turns out that, by choosing N large enough, any reasonable periodic
function can be approximated arbitrarily well by its Nth-order Fourier series
approximation. More precisely, we have the following result for the convergence
of the Fourier series, stated without proof.

Theorem 1.17 (Convergence of Fourier series). Suppose that f is periodic
with period T , and that

1. f has a finite set of discontinuities in each period.

2. f contains a finite set of maxima and minima in each period.

3.
�
T

0 |f(t)|dt < ∞.

Then we have that limN→∞ fN (t) = f(t) for all t, except at those points t
where f is not continuous.

The conditions in Theorem 1.17 are called the Dirichlet conditions for the
convergence of the Fourier series. They are just one example of conditions that
ensure the convergence of the Fourier series. There also exist much more general
conditions that secure convergence. These can require deep mathematical theory
in order to prove, depending on the generality.

An illustration of Theorem 1.17 is shown in Figure 1.5 where the cubic
polynomial f(x) = − 1

3x
3 + 1

2x
2 − 3

16x + 1 is approximated by a 9th order
Fourier series. The trigonometric approximation is periodic with period 1 so
the approximation becomes poor at the ends of the interval since the cubic
polynomial is not periodic. The approximation is plotted on a larger interval in
Figure 1.5(b), where its periodicity is clearly visible.

21

Exercises for Section 1.3
1. Find a function f which is Riemann-integrable on [0, T], and so that

�
T

0 f(t)2dt
is infinite.

2. Given the two Fourier spaces VN1,T1 , VN2,T2 . Find necessary and sufficient
conditions in order for VN1,T1 ⊂ VN2,T2 .

1.4 Examples of Fourier series
Let us compute the Fourier series of some interesting functions.

Example 1.18. Let us compute the Fourier coefficients of the square wave, as
defined by Equation (1.1) in Example 1.11. If we first use Equation (1.8) we
obtain

a0 =
1

T

�
T

0
fs(t)dt =

1

T

�
T/2

0
dt− 1

T

�
T

T/2
dt = 0.

Using Equation (1.9) we get

an =
2

T

�
T

0
fs(t) cos(2πnt/T)dt

=
2

T

�
T/2

0
cos(2πnt/T)dt− 2

T

�
T

T/2
cos(2πnt/T)dt

=
2

T

�
T

2πn
sin(2πnt/T)

�T/2

0

− 2

T

�
T

2πn
sin(2πnt/T)

�T

T/2

=
2

T

T

2πn
((sin(nπ)− sin 0)− (sin(2nπ)− sin(nπ)) = 0.

Finally, using Equation (1.10) we obtain

bn =
2

T

�
T

0
fs(t) sin(2πnt/T)dt

=
2

T

�
T/2

0
sin(2πnt/T)dt− 2

T

�
T

T/2
sin(2πnt/T)dt

=
2

T

�
− T

2πn
cos(2πnt/T)

�T/2

0

+
2

T

�
T

2πn
cos(2πnt/T)

�T

T/2

=
2

T

T

2πn
((− cos(nπ) + cos 0) + (cos(2nπ)− cos(nπ)))

=
2(1− cos(nπ)

nπ

=

�
0, if n is even;
4/(nπ), if n is odd.

22

0 0.5 1 1.5 2

x 10
−3

−1

−0.5

0

0.5

1

(a) The Fourier series for N = 20

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(b) Values of the first 100 Fourier coefficients
bn

Figure 1.6: The Fourier series of the square wave of Example 1.18

In other words, only the bn-coefficients with n odd in the Fourier series are
nonzero. The Fourier series of the square wave is thus

4

π
sin(2πt/T)+

4

3π
sin(2π3t/T)+

4

5π
sin(2π5t/T)+

4

7π
sin(2π7t/T)+· · · . (1.11)

With N = 20, there are 10 trigonometric terms in this sum. The corresponding
Fourier series can be plotted on the same interval with the following code.

t=0:(1/fs):3;

y=zeros(1,length(t));

for n=1:2:19

y = y + (4/(n*pi))*sin(2*pi*n*t/T);

end

plot(t,y)

In Figure 1.6(a) we have plotted the Fourier series of the square wave when
T = 1/440, and when N = 20. In Figure 1.6(b) we have also plotted the values
of the first 100 Fourier coefficients bn, to see that they actually converge to zero.
This is clearly necessary in order for the Fourier series to converge.

Even though f oscillates regularly between −1 and 1 with period T , the
discontinuities mean that it is far from the simple sin(2πt/T) which corresponds
to a pure tone of frequency 1/T . From Figure 1.6(b) we see that the dominant
coefficient in the Fourier series is b1, which tells us how much there is of the pure
tone sin(2πt/T) in the square wave. This is not surprising since the square wave
oscillates T times every second as well, but the additional nonzero coefficients
pollute the pure sound. As we include more and more of these coefficients, we
gradually approach the square wave, as shown for N = 20.

There is a connection between how fast the Fourier coefficients go to zero, and
how we perceive the sound. A pure sine sound has only one nonzero coefficient,

23

while the square wave Fourier coefficients decrease as 1/n, making the sound
less pleasant. This explains what we heard when we listened to the sound in
Example 1.11. Also, it explains why we heard the same pitch as the pure tone,
since the first frequency in the Fourier series has the same frequency as the pure
tone we listened to, and since this had the highest value.

Let us listen to the Fourier series approximations of the square wave. For
N = 1 and with T = 1/440 as above, it sounds like this. This sounds exactly
like the pure sound with frequency 440Hz, as noted above. For N = 5 the
Fourier series approximation sounds like this, and for N = 9 it sounds like this.
Indeed, these sounds are more like the square wave itself, and as we increase
N we can hear how the introduction of more frequencies gradually pollutes the
sound more and more. In Exercise 2.1.5 you will be asked to write a program
which verifies this. ♣
Example 1.19. Let us also compute the Fourier coefficients of the triangle
wave, as defined by Equation (1.2) in Example 1.12. We now have

a0 =
1

T

�
T/2

0

4

T

�
t− T

4

�
dt+

1

T

�
T

T/2

4

T

�
3T

4
− t

�
dt.

Instead of computing this directly, it is quicker to see geometrically that the
graph of ft has as much area above as below the x-axis, so that this integral
must be zero. Similarly, since ft is symmetric about the midpoint T/2, and
sin(2πnt/T) is antisymmetric about T/2, we have that ft(t) sin(2πnt/T) also is
antisymmetric about T/2, so that

�
T/2

0
ft(t) sin(2πnt/T)dt = −

�
T

T/2
ft(t) sin(2πnt/T)dt.

This means that, for n ≥ 1,

bn =
2

T

�
T/2

0
ft(t) sin(2πnt/T)dt+

2

T

�
T

T/2
ft(t) sin(2πnt/T)dt = 0.

For the final coefficients, since both f and cos(2πnt/T) are symmetric about
T/2, we get for n ≥ 1,

an =
2

T

�
T/2

0
ft(t) cos(2πnt/T)dt+

2

T

�
T

T/2
ft(t) cos(2πnt/T)dt

=
4

T

�
T/2

0
ft(t) cos(2πnt/T)dt =

4

T

�
T/2

0

4

T

�
t− T

4

�
cos(2πnt/T)dt

=
16

T 2

�
T/2

0
t cos(2πnt/T)dt− 4

T

�
T/2

0
cos(2πnt/T)dt

=
4

n2π2
(cos(nπ)− 1)

=

�
0, if n is even;
−8/(n2π2), if n is odd.

24

0 0.5 1 1.5 2

x 10
−3

−1

−0.5

0

0.5

1

(a) The Fourier series for N = 20

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(b) Values of the first 100 Fourier coefficients
an

Figure 1.7: The Fourier series of the triangle wave of Example 1.19

where we have dropped the final tedious calculations (use integration by parts).
From this it is clear that the Fourier series of the triangle wave is

− 8

π2
cos(2πt/T)− 8

32π2
cos(2π3t/T)− 8

52π2
cos(2π5t/T)− 8

72π2
cos(2π7t/T)+· · · .

(1.12)
In Figure 1.7 we have repeated the plots used for the square wave, for the
triangle wave. As before, we have used T = 1/440. The figure clearly shows
that the Fourier series coefficients decay much faster.

Let us also listen to different Fourier series approximations of the triangle
wave. For N = 1 and with T = 1/440 as above, it sounds like this. Again,
this sounds exactly like the pure sound with frequency 440Hz. For N = 5 the
Fourier series approximation sounds like this, and for N = 9 it sounds like this.
Again these sounds are more like the triangle wave itself, and as we increase
N we can hear that the introduction of more frequencies pollutes the sound.
However, since the triangle wave Fourier coefficients decrease as 1/n2 instead of
1/n as for the square wave, the sound is, although unpleasant due to pollution
by many frequencies, not as unpleasant as the square wave. Also, it converges
faster to the triangle wave itself, as also can be heard. In Exercise 2.1.5 you will
be asked to write a program which verifies this. ♣

There is an important lesson to be learnt from the previous examples: Even
if the signal is nice and periodic, it may not have a nice representation in terms
of trigonometric functions. Thus, trigonometric functions may not be the best
bases to use for expressing other functions. Unfortunately, many more such
cases can be found, as the next example shows.

Example 1.20. Let us consider a periodic function which is 1 on [0, T0], but 0
is on [T0, T]. This is a signal with short duration when T0 is small compared to

25

T . We compute that y0 = T0/T , and

an =
2

T

�
T0

0
cos(2πnt/T)dt =

1

πn
[sin(2πnt/T)]T0

0 =
sin(2πnT0/T)

πn

for n ≥ 1. Similar computations hold for bn. We see that |an| is of the order
1/(πn), and that infinitely many n contribute, This function may be thought
of as a simple building block, corresponding to a small time segment. However,
we see that it is not a simple building block in terms of trigonometric functions.
This time segment building block may be useful for restricting a function to
smaller time segments, and later on we will see that it still can be useful. ♣

1.4.1 Fourier series for symmetric and antisymmetric func-
tions

In Example 1.18 we saw that the Fourier coefficients bn vanished, resulting in a
sine-series for the Fourier series of the square wave. Similarly, in Example 1.19
we saw that an vanished, resulting in a cosine-series for the triangle wave. This
is not a coincident, and is captured by the following result, since the square
wave was defined so that it was antisymmetric about 0, and the triangle wave
so that it was symmetric about 0.

Theorem 1.21 (Symmetry and antisymmetry). If f is antisymmetric about 0
(that is, if f(−t) = −f(t) for all t), then an = 0, so the Fourier series is actually
a sine-series. If f is symmetric about 0 (which means that f(−t) = f(t) for
all t), then bn = 0, so the Fourier series is actually a cosine-series.

Proof. Note first that we can write

an =
2

T

�
T/2

−T/2
f(t) cos(2πnt/T)dt bn =

2

T

�
T/2

−T/2
f(t) sin(2πnt/T)dt,

i.e. we can change the integration bounds from [0, T] to [−T/2, T/2]. This
follows from the fact that all f(t), cos(2πnt/T) and sin(2πnt/T) are periodic
with period T .

Suppose first that f is symmetric. We obtain

bn =
2

T

�
T/2

−T/2
f(t) sin(2πnt/T)dt

=
2

T

� 0

−T/2
f(t) sin(2πnt/T)dt+

2

T

�
T/2

0
f(t) sin(2πnt/T)dt

=
2

T

� 0

−T/2
f(t) sin(2πnt/T)dt− 2

T

� −T/2

0
f(−t) sin(−2πnt/T)dt

=
2

T

� 0

−T/2
f(t) sin(2πnt/T)dt− 2

T

� 0

−T/2
f(t) sin(2πnt/T)dt = 0.

26

where we have made the substitution u = −t, and used that sin is antisymmetric.
The case when f is antisymmetric can be proved in the same way, and is left as
an exercise.

In fact, the connection between symmetric and antisymmetric functions, and
sine- and cosine series can be made even stronger by observing the following:

1. Any cosine series a0 +
�

N

n=1 an cos(2πnt/T) is a symmetric function.

2. Any sine series
�

N

n=1 bn sin(2πnt/T) is an antisymmetric function.

3. Any periodic function can be written as a sum of a symmetric- and an
antisymmetric function by writing

f(t) =
f(t) + f(−t)

2
+

f(t)− f(−t)

2
. (1.13)

4. If fN (t) = a0 +
�

N

n=1(an cos(2πnt/T) + bn sin(2πnt/T)), then

fN (t) + fN (−t)

2
= a0 +

N�

n=1

an cos(2πnt/T)

fN (t)− fN (−t)

2
=

N�

n=1

bn sin(2πnt/T).

Exercises for Section 1.4
1. Prove the second part of Theorem 1.21, i.e. show that if f is antisymmetric
about 0 (i.e. f(−t) = −f(t) for all t), then an = 0, i.e. the Fourier series is
actually a sine-series.

2. Find the Fourier series coefficients of the periodic functions with period T
defined by being f(t) = t, f(t) = t2, and f(t) = t3, on [0, T].

3. Write down difference equations for finding the Fourier coefficients of f(t) =
tk+1 from those of f(t) = tk, and write a program which uses this recursion.
Use the program to verify what you computed in Exercise 2.

4. Use the previous exercise to find the Fourier series for f(x) = − 1
3x

3 + 1
2x

2 −
3
16x+1 on the interval [0, 1]. Plot the 9th order Fourier series for this function.
You should obtain the plots from Figure 1.5.

1.5 Complex Fourier series
In Section 1.3 we saw how a function can be expanded in a series of sines and
cosines. These functions are related to the complex exponential function via
Eulers formula

eix = cosx+ i sinx

27

where i is the imaginary unit with the property that i2 = −1. Because the
algebraic properties of the exponential function are much simpler than those
of cos and sin, it is often an advantage to work with complex numbers, even
though the given setting is real numbers. This is definitely the case in Fourier
analysis. More precisely, we will make the substitutions

cos(2πnt/T) =
1

2

�
e2πint/T + e−2πint/T

�
(1.14)

sin(2πnt/T) =
1

2i

�
e2πint/T − e−2πint/T

�
(1.15)

in Definition 1.15. From these identities it is clear that the set of complex
exponential functions e2πint/T also is a basis of periodic functions (with the
same period) for VN,T . We may therefore reformulate Definition 1.15 as follows:

Definition 1.22 (Complex Fourier basis). We define the set of functions

FN,T = {e−2πiNt/T , e−2πi(N−1)t/T , · · · , e−2πit/T , (1.16)

1, e2πit/T , · · · , e2πi(N−1)t/T , e2πiNt/T }, (1.17)

and call this the order N complex Fourier basis for VN,T .

The function e2πint/T is also called a pure tone with frequency n/T , just
as sines and cosines are. We would like to show that these functions also are
orthogonal. To show this, we need to say more on the inner product we have
defined by Equation (1.3). A weakness with this definition is that we have
assumed real functions f and g, so that this can not be used for the complex
exponential functions e2πint/T . For general complex functions we will extend
the definition of the inner product as follows:

�f, g� = 1

T

�
T

0
fḡ dt. (1.18)

The associated norm now becomes

�f� =

�
1

T

�
T

0
|f(t)|2dt. (1.19)

The motivation behind Equation 1.18, where we have conjugated the second
function, lies in the definition of an inner product for vector spaces over complex
numbers. From before we are used to vector spaces over real numbers, but vector
spaces over complex numbers are defined through the same set of axioms as for
real vector spaces, only replacing real numbers with complex numbers. For
complex vector spaces, the axioms defining an inner product are the same as
for real vector spaces, except for that the axiom

�f, g� = �g, f� (1.20)

28

is replaced with the axiom
�f, g� = �g, f�, (1.21)

i.e. a conjugation occurs when we switch the order of the functions. This new
axiom can be used to prove the property �f, cg� = c̄�f, g�, which is a somewhat
different property from what we know for real inner product spaces. This follows
by writing

�f, cg� = �cg, f� = c�g, f� = c̄�g, f� = c̄�f, g�.

Clearly the inner product given by (1.18) satisfies Axiom (1.21). With this
definition it is quite easy to see that the functions e2πint/T are orthonormal.
Using the orthogonal decomposition theorem we can therefore write

fN (t) =
N�

n=−N

�f, e2πint/T �
�e2πint/T , e2πint/T �

e2πint/T =
N�

n=−N

�f, e2πint/T �e2πint/T

=
N�

n=−N

�
1

T

�
T

0
f(t)e−2πint/T dt

�
e2πint/T .

We summarize this in the following theorem, which is a version of Theorem 1.16
which uses the complex Fourier basis:

Theorem 1.23. We denote by y−N , . . . , y0, . . . , yN the coordinates of fN in
the basis FN,T , i.e.

fN (t) =
N�

n=−N

yne
2πint/T . (1.22)

The yn are called the complex Fourier coefficients of f , and they are given by.

yn = �f, e2πint/T � = 1

T

�
T

0
f(t)e−2πint/T dt. (1.23)

Let us consider some examples where we compute complex Fourier series.

Example 1.24. Let us consider the pure sound f(t) = e2πit/T2 with period T2,
but let us consider it only on the interval [0, T] instead, where T < T2. Note
that this f is not periodic, since we only consider the part [0, T] of the period
[0, T2]. The Fourier coefficients are

yn =
1

T

�
T

0
e2πit/T2e−2πint/T dt =

1

2πiT (1/T2 − n/T)

�
e2πit(1/T2−n/T)

�T
0

=
1

2πi(T/T2 − n)

�
e2πiT/T2 − 1

�
.

Here it is only the term 1/(T/T2−n) which depends on n, so that yn can only be
large when n is close T/T2. In Figure 1.8 we have plotted |yn| for two different

29

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

n

|y
n
|

(a) T/T2 = 0.5

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

n

|y
n
|

(b) T/T2 = 0.9

Figure 1.8: Plot of |yn| when f(t) = e2πit/T2 , and T2 > T

combinations of T, T2. In both examples it is seen that many Fourier coefficients
contribute, but this is more visible when T/T2 = 0.5. When T/T2 = 0.9, most
conribution is seen to be in the y1-coefficient. This sounds reasonable, since f
then is closest to the pure tone f(t) = e2πit/T of frequency 1/T (which in turn
has y1 = 1 and all other yn = 0). ♣

Apart from computing complex Fourier series, there is an important lesson
to be learnt from the previous example: In order for a periodic function to be
approximated by other periodic functions, their period must somehow match.
Let us consider another example as well.

Example 1.25. What often is the case is that a sound changes in content over
time. Assume that it is equal to a pure tone of frequency n1/T on [0, T/2), and
equal to a pure tone of frequency n2/T on [T/2, T), i.e.

f(t) =

�
e2πin1t/T on [0, T2]

e2πin2t/T on[T2, T)
.

When n �= n1, n2 we have that

yn =
1

T

��
T/2

0
e2πin1t/T e−2πint/T dt+

�
T

T/2
e2πin2t/T e−2πint/T dt

�

=
1

T

��
T

2πi(n1 − n)
e2πi(n1−n)t/T

�T/2

0

+

�
T

2πi(n2 − n)
e2πi(n2−n)t/T

�T

T/2

�

=
eπi(n1−n) − 1

2πi(n1 − n)
+

1− eπi(n2−n)

2πi(n2 − n)
.

30

0 10 20 30
0

0.2

0.4

0.6

0.8

1

n

|y
n
|

(a) n1 = 10, n2 = 12

0 10 20 30
0

0.2

0.4

0.6

0.8

1

n

|y
n
|

(b) n1 = 2, n2 = 20

Figure 1.9: Plot of |yn| when we have two different pure tones at the different
parts of a period.

Let us restrict to the case when n1 and n2 are both even. We see that

yn =






1
2 + 1

πi(n2−n1)
n = n1, n2

0 n even , n �= n1, n2
n1−n2

πi(n1−n)(n2−n) n odd

Here we have computed the cases n = n1 and n = n2 as above. In Figure 1.9
we have plotted |yn| for two different combinations of n1, n2. We see from the
figure that, when n1, n2 are close, the Fourier coefficients are close to those of
a pure tone with n ≈ n1, n2, but that also other frequencies contribute. When
n1, n2 are further apart, we see that the Fourier coefficients are like the sum of
the two base frequencies, but that other frequencies contribute also here. ♣

There is an important lesson to be learnt from this as well: We should
be aware of changes in a sound over time, and it may not be smart to use
a frequency representation over a large interval when we know that there are
simpler frequency representations on the smaller intervals.

If we reorder the real and complex Fourier bases so that the two functions
{cos(2πnt/T), sin(2πnt/T)} and {e2πint/T , e−2πint/T } have the same index in
the bases, equations (1.14)-(1.15) give us that the change of coordinates matrix4

from DN,T to FN,T , denoted PFN,T←DN,T
, is represented by repeating the matrix

1

2

�
1 1/i

1 −1/i

�

along the diagonal (with an additional 1 for the constant function 1). In other
words, since an, bn are coefficients relative to the real basis and yn, y−n the

4See Section 4.7 in [8], to review the mathematics behind change of coordinates.

31

corresponding coefficients relative to the complex basis, we have for n > 0,
�

yn
y−n

�
=

1

2

�
1 1/i

1 −1/i

��
an
bn

�
.

This can be summarized by the following theorem:

Theorem 1.26 (Change of coefficients between real and complex Fourier
bases). The complex Fourier coefficients yn and the real Fourier coefficients
an, bn of a function f are related by

y0 = a0,

yn =
1

2
(an − ibn),

y−n =
1

2
(an + ibn),

for n = 1, . . . , N .

Combining with Theorem 1.21, Theorem 1.26 can help us state properties
of complex Fourier coefficients for symmetric- and antisymmetric functions. We
look into this in Exercise 7.

Due to the somewhat nicer formulas for the complex Fourier coefficients
when compared to the real Fourier coefficients, we will write most Fourier series
in complex form in the following.

Exercises for Section 1.5
1. Show that the complex functions e2πint/T are orthonormal.

2. Repeat Exercise 1.3.2, computing the complex Fourier series instead of the
real Fourier series.

3. In this exercise we will find a connection with certain Fourier series and the
rows in Pascal’s triangle.

a. Show that both cosn t and sinn t are in VN,T ,

b. Write down the N ’th order complex Fourier series for f1(t) = cos t,
f2(t) = cos2 t, og f3(t) = cos3 t.

32

c. In b. you should be able to see a connection between the Fourier
coefficients and the three first rows in Pascal’s triangle. Formulate and
prove a general relationship between row n in Pascal’s triangle and the
Fourier coefficients of fn(t) = cosn t.

4. Compute the complex Fourier coefficients of the square wave using Equa-
tion 1.23, i.e. repeat the calculations from Example 1.18 for the complex case.
Use Theorem 1.26 to verify your result.

5. Repeat Exercise 4 for the triangle wave.

6. Use Equation (1.23) to compute the complex Fourier coefficients of the pe-
riodic functions with period T defined by, respectively, f(t) = t, f(t) = t2,
and f(t) = t3, on [0, T]. Use Theorem 1.26 to verify your calculations from
Exercise 1.4.2.

7. In this exercise we will prove a version of Theorem 1.21 for complex Fourier
coefficients.

a. If f is symmetric about 0, show that yn is real, and that y−n = yn.

b. If f is antisymmetric about 0, show that the yn are purely imaginary,
y0 = 0, and that y−n = −yn.

c. Show that
�

N

n=−N
yne2πint/T is symmetric when y−n = yn for all n,

and rewrite it as a cosine-series.

d. Show that
�

N

n=−N
yne2πint/T is antisymmetric when y0 = 0 and

y−n = −yn for all n, and rewrite it as a sine-series.

1.6 Rate of convergence for Fourier series
We have earlier mentioned criteria which guarantee that the Fourier series con-
verges. Another important topic is the rate of convergence, given that it actually
converges. If the series converges quickly, we may only need a few terms in the
Fourier series to obtain a reasonable approximation. We have already seen ex-
amples which illustrate different convergence rates: The square wave seemed to
have very slow convergence rate near the discontinuities, while the triangle wave
did not seem to have the same problem.

Before discussing results concerning convergence rates we consider a simple
lemma which will turn out to be useful.

33

Lemma 1.27. Assume that f is differentiable. Then (fN)�(t) = (f �)N (t). In
other words, the derivative of the Fourier series equals the Fourier series of the
derivative.

Proof. We first compute

�f, e2πint/T � = 1

T

�
T

0
f(t)e−2πint/T dt

=
1

T

��
− T

2πin
f(t)e−2πint/T

�T

0

+
T

2πin

�
T

0
f �(t)e−2πint/T dt

�

=
T

2πin

1

T

�
T

0
f �(t)e−2πint/T dt =

T

2πin
�f �, e2πint/T �.

where we used integration by parts, and that − T

2πinf(t)e
−2πint/T are periodic

with period T . It follows that �f, e2πint/T � = T

2πin �f
�, e2πint/T �. From this we

get that

(fN)�(t) =

�
N�

n=−N

�f, e2πint/T �e2πint/T
��

=
2πin

T

N�

n=−N

�f, e2πint/T �e2πint/T

=
N�

n=−N

�f �, e2πint/T �e2πint/T = (f �)N (t).

where we substituted the connection between the inner products we just found.

Example 1.28. The connection between the Fourier series of the function and
its derivative can be used to simplify the computation of Fourier series for new
functions. Let us see how we can use this to compute the Fourier series of
the triangle wave, which was quite a tedious job in Example 1.19. However,
the relationship f �

t
(t) = 4

T
fs(t) is straightforward to see from the plots of the

square wave fs and the triangle wave ft. From this relationship and from
Equation (1.11) for the Fourier series of the square wave it follows that

((ft)
�)N (t) =

4

T

�
4

π
sin(2πt/T) +

4

3π
sin(2π3t/T) +

4

5π
sin(2π5t/T) + · · ·

�
.

If we integrate this we obtain

(ft)N (t) = − 8

π2

�
cos(2πt/T) +

1

32
cos(2π3t/T) +

1

52
cos(2π5t/T) + · · ·

�
+ C.

What remains is to find the integration constant C. This is simplest found if
we set t = T/4, since then all cosine terms are 0. Clearly then C = 0, and
we arrive at the same expression as in Equation (1.12) for the Fourier series of

34

the triangle wave. This approach clearly had less computations involved. There
is a minor point here which we have not addressed: the triangle wave is not
differentiable at two points, as required by Lemma 1.27. It is, however, not too
difficult to see that this result still holds in cases where we have a finite number
of nondifferentiable points only. ♣

We get the following corollary to Lemma 1.27:

Corollary 1.29. If the complex Fourier coefficients of f are yn and f is
differentiable, then the Fourier coefficients of f �(t) are 2πin

T
yn.

If we turn this around, we note that the Fourier coefficients of f(t) are
T/(2πin) times those of f �(t). If f is s times differentiable, we can repeat this
argument to show that the Fourier coefficients of f(t) are

�
T/(2πin)

�s times
those of f (s)(t). In other words, the Fourier coefficients of a function which is
many times differentiable decay to zero very fast.

Observation 1.30. The Fourier series converges quickly when the function
is many times differentiable.

An illustration is found in examples 1.18 and 1.19, where we saw that the
Fourier series coefficients for the triangle wave converged more quickly to zero
than those of the square wave. This is explained by the fact that the square
wave is discontinuous, while the triangle wave is continuous with a discontinuous
first derivative. Also, the functions considered in examples 1.24 and 1.25 are
not continuous, which partially explain why we there saw contributions from
many frequencies.

The requirement of continuity in order to obtain quickly converging Fourier
series may seem like a small problem. However, often the function is not defined
on the whole real line: it is often only defined on the interval [0, T). If we
extend this to a periodic function on the whole real line, by repeating one
period as shown in Figure 1.10(a), there is no reason why the new function
should be continuous at the boundaries 0, T, 2T etc., even though the function
we started with may be continuous on [0, T). This would require that f(0) =
limt→T f(t). If this does not hold, the function may not be well approximated
with trigonometric functions, due to a slowly convergence Fourier series. We
can therefore ask ourselves the following question:

Idea 1.31. Assume that f is continuous on [0, T). Can we construct another
periodic function which agrees with f on [0, T], and which is both continuous
and periodic (maybe with period different from T)?

If this is possible the Fourier series of the new function could produce better
approximations for f . It turns out that the following extension strategy does
the job:

35

0 2 4 6
0

0.5

1

1.5

2

(a) Perodic extension of f
0 2 4 6

0

0.5

1

1.5

2

(b) Symmetric extension of f

Figure 1.10: Two different extensions of f to a periodic function on the whole
real line

Definition 1.32 (Symmetric extension of a function). Let f be a function
defined on [0, T]. By the symmetric extension of f , denoted f̆ , we mean the
function defined on [0, 2T] by

f̆(t) =

�
f(t), if 0 ≤ t ≤ T ;

f(2T − t), if T < t ≤ 2T .

Clearly the following holds:

Theorem 1.33. If f is continuous on [0, T], then f̆ is continuous on [0, 2T],
and f̆(0) = f̆(2T). If we extend f̆ to a periodic function on the whole real line
(which we also will denote by f̆), this function is continuous, agrees with f on
[0, T), and is a symmetric function.

This also means that the Fourier series of f̆ is a cosine series, so that it is
determined by the cosine-coefficients an. The symmetric extension of f is shown
in Figure 1.10(b). f̆ is symmetric since, for 0 ≤ t ≤ T ,

f̆(−t) = f̆(2T − t) = f(2T − (2T − t)) = f(t) = f̆(t).

In summary, we now have two possibilities for approximating a function f de-
fined only on [0, T), where the latter addresses a shortcoming of the first:

1. By the Fourier series of f

2. By the Fourier series of f̆ restricted to [0, T) (which actually is a cosine-
series)

36

Example 1.34. Let f be the function with period T defined by f(t) = 2t/T −1
for 0 ≤ t < T . In each period the function increases linearly from −1 to
1. Because f is discontinuous at the boundaries, we would except the Fourier
series to converge slowly. Since the function is antisymmetric, the coefficients
an are zero, and we compute bn as

bn =
2

T

�
T

0

2

T

�
t− T

2

�
sin(2πnt/T)dt =

4

T 2

�
T

0

�
t− T

2

�
sin(2πnt/T)dt

=
4

T 2

�
T

0
t sin(2πnt/T)dt− 2

T

�
T

0
sin(2πnt/T)dt

= − 2

πn
,

so that the Fourier series is

− 2

π
sin(2πt/T)− 2

2π
sin(2π2t/T)− 2

3π
sin(2π3t/T)− 2

4π
sin(2π4t/T)− · · · ,

which indeed converges slowly to 0. Let us now instead consider the symmetric
extension of f . Clearly this is the triangle wave with period 2T , and the Fourier
series of this was

− 8

π2
cos(2πt/(2T))− 8

32π2
cos(2π3t/(2T))− 8

52π2
cos(2π5t/(2T))

− 8

72π2
cos(2π7t/(2T)) + · · · .

Comparing the two series, we see that the coefficient at frequency n/T in the
first series has value −2/(nπ), while in the second series it has value

− 8

(2n)2π2
= − 2

n2π2
.

The second series clearly converges faster than the first.
If we use T = 1/880, the symmetric extension will be the triangle wave of

Example 1.19. Its Fourier series for N = 10 is shown in Figure 1.7(b) and the
Fourier series for N = 20 is shown in Figure 1.11. The value N = 10 is used
since this corresponds to the same frequencies as the previous figure for N = 20.
It is clear from the plot that the Fourier series for f itself is not a very good
approximation. However, we cannot differentiate between the Fourier series and
the function itself for the triangle wave. ♣

Exercises for Section 1.6
1. Show that the complex Fourier coefficients yn of f , and the cosine-coefficients
an of f̆ are related by a2n = yn + y−n. This result is not enough to obtain the
entire Fourier series of f̆ , but at least it gives us half of it.

37

0 0.002 0.004 0.006 0.008 0.01

−1

−0.5

0

0.5

1

Figure 1.11: The Fourier series for N = 10 for the function in Example 1.34

1.7 Some properties of Fourier series
We continue by establishing some important properties of Fourier series, in
particular the Fourier coefficients for some important functions. In these lists,
we will use the notation f → yn to indicate that yn is the n’th Fourier coefficient
of f(t).

Theorem 1.35 (Fourier series pairs). The functions 1, e2πint/T , and χ−a,a

have the Fourier coefficients

1 → e0 = (1, 0, 0, 0 . . . ,)

e2πint/T → en = (0, 0, . . . , 1, 0, 0, . . .)

χ−a,a → sin(2πna/T)

πn
.

The 1 in en is at position n and the function χ−a,a is the characteristic function
of the interval [−a, a], defined by

χ−a,a(t) =

�
1, if t ∈ [−a, a];

0, otherwise.

The first two pairs are easily verified, so the proofs are omitted. The case
for χ−a,a is very similar to the square wave, but easier to prove, and therefore
also omitted.

Theorem 1.36 (Fourier series properties). The mapping f → yn is linear: if
f → xn, g → yn, then

af + bg → axn + byn

38

For all n. Moreover, if f is real and periodic with period T , the following
properties hold:

1. yn = y−n for all n.

2. If g(t) = f(−t) and f → yn, then g → yn. In particular,

(a) if f(t) = f(−t) (i.e. f is symmetric), then all yn are real, so that
bn are zero and the Fourier series is a cosine series.

(b) if f(t) = −f(−t) (i.e. f is antisymmetric), then all yn are purely
imaginary, so that the an are zero and the Fourier series is a sine
series.

3. If g(t) = f(t − d) (i.e. g is the function f delayed by d) and f → yn,
then g → e−2πind/T yn.

4. If g(t) = e2πidt/T f(t) with d an integer, and f → yn, then g → yn−d.

5. Let d be a number. If f → yn, then f(d + t) = f(d − t) for all t if and
only if the argument of yn is −2πnd/T for all n.

The last property looks a bit mysterious. We will not have use for this
property before the next chapter.

Proof. The proof of linearity is left to the reader. Property 1 follows immediately
by writing

yn =
1

T

�
T

0
f(t)e−2πint/T dt =

1

T

�
T

0
f(t)e2πint/T dt

=
1

T

�
T

0
f(t)e−2πi(−n)t/T dt = y−n.

Also, if g(t) = f(−t), we have that

1

T

�
T

0
g(t)e−2πint/T dt =

1

T

�
T

0
f(−t)e−2πint/T dt = − 1

T

� −T

0
f(t)e2πint/T dt

=
1

T

�
T

0
f(t)e2πint/T dt = yn.

Property 2 follows from this, since the remaining statements here were estab-
lished in Theorems 1.21, 1.26, and Exercise 1.5.7. To prove property 3, we

39

observe that the Fourier coefficients of g(t) = f(t− d) are

1

T

�
T

0
g(t)e−2πint/T dt =

1

T

�
T

0
f(t− d)e−2πint/T dt

=
1

T

�
T

0
f(t)e−2πin(t+d)/T dt

= e−2πind/T 1

T

�
T

0
f(t)e−2πint/T dt = e−2πind/T yn.

For property 4 we observe that the Fourier coefficients of g(t) = e2πidt/T f(t) are

1

T

�
T

0
g(t)e−2πint/T dt =

1

T

�
T

0
e2πidt/T f(t)e−2πint/T dt

=
1

T

�
T

0
f(t)e−2πi(n−d)t/T dt = yn−d.

If f(d + t) = f(d − t) for all t, we define the function g(t) = f(t + d) which is
symmetric about 0, so that it has real Fourier coefficients. But then the Fourier
coefficients of f(t) = g(t− d) are e−2πind/T times the (real) Fourier coefficients
of g by property 3. It follows that yn, the Fourier coefficients of f , has argument
−2πnd/T . The proof in the other direction follows by noting that any function
where the Fourier coefficients are real must be symmetric about 0, once the
Fourier series is known to converge. This proves property 5.

From this theorem we see that there exist several cases of duality between
the function and its Fourier series:

1. Delaying a function corresponds to multiplying the Fourier coefficients
with a complex exponential. Vice versa, multiplying a function with a
complex exponential corresponds to delaying the Fourier coefficients.

2. Symmetry/antisymmetry for a function corresponds to the Fourier coef-
ficients being real/purely imaginary. Vice versa, a function which is real
has Fourier coefficients which are conjugate symmetric.

Actually, these dualities would have become even stronger if we had considered
Fourier series of complex functions instead of real functions. We will not go into
this.

Exercises for Section 1.7
1. Define the function f with period T on [−T/2, T/2] by

f(t) =

�
1, if −T/4 ≤ t < T/4;

−1, if |T/4| ≤ t < |T/2|.

f is just the square wave, shifted with T/4. Compute the Fourier coefficients of
f directly, and use Property 3 in Theorem 1.36 to verify your result.

40

2. Find a function f which has the complex Fourier series

�

n odd

4

π(n+ 4)
e2πint/T .

Hint: Attempt to use one of the properties in Theorem 1.36 on the Fourier series
of the square wave.

1.8 Operations on sound: filters
It is easy to see how we can use Fourier coefficients to analyse or improve sound:
Noise in a sound often corresponds to the presence of some high frequencies with
large coefficients, and by removing these, we remove the noise. For example,
we could set all the coefficients except the first one to zero. This would change
the unpleasant square wave to the pure tone sin(2π440t), which we started our
experiments with. Doing so is an example of an important operation on sound
called filtering:

Definition 1.37 (Analog filters). An operation on sound is called an analog
filter if it preserves the different frequencies in the sound. In other words, s is
an analog filter if, for any sound f1 =

�
f
c(f)e2πift, the output of s(f1) of s

can be written

s(f1) = s




�

f

c(f)e2πift



 =
�

f

c(f)λs(f)e
2πift,

where λs(f) is a function describing how s treats the different frequencies.
λs(f) uniquely determines s, and is also called the frequency response of s.

The following is clear:

Theorem 1.38. The following hold for an analog filter s:

1. When f1 is periodic with period T , f2 = s(f1) is also periodic with
period T .

2. When f2 = s(f1) we have that (f2)N = s((f1)N), i.e. s maps the N ’th
order Fourier series to oneanother.

3. Any pure tone is an eigenvector of s.

Example 1.39. To see how an analog filter may look, consider the operation
which sends the function f1(t) to the function f2(t) =

�∞
−∞ g(s)f1(t − s)ds.

Clearly the integral may not exist, but if we assume that g is nonzero only

41

on [a, b] the integral becomes
�
b

a
g(s)f1(t − s)ds, which exists if f1 and g are

bounded. We compute

s(e2πift) =

�
b

a

g(s)e2πif(t−s)ds =

�
b

a

g(s)e−2πifsdse2πift = λs(f)e
2πift,

where λs(f) =
�
b

a
g(s)e−2πifsds. Since s also is linear, this shows that s is a

filter, and we have also expressed its frequency response as an integral. Since
the function g is arbitrary, this strategy leads to a wide class of analog filters.
We may ask the question of whether the general analog filter always has this
form. We will not go further into this, although one can find partially affirmative
answers to this question. ♣

We also need to say something about the connection between filters and
symmetric functions. We saw that the symmetric extension of a function took
the form of a cosine-series, and that this converged faster to the symmetric
extension than the Fourier series did to the function. If a filter preserves cosine-
series it will also preserve symmetric extensions, and therefore also map fast-
converging Fourier series to fast-converging Fourier series. The following result
will be useful in this respect:

Theorem 1.40. If the frequency response of a filter satisfies λs(f) = λs(−f)
for all frequencies f , then the filter preserves cosine series and sine series.

Proof. We have that

s(cos(2πnt/T)) = s

�
1

2
(e2πint/T + e−2πint/T)

�

=
1

2
λs(n/T)e

2πint/T +
1

2
λs(−n/T)e−2πint/T

= λs(n/T)

�
1

2
(e2πint/T + e−2πint/T)

�
= λs(n/T) cos(2πnt/T).

This means that s preserves cosine-series. A similar computation holds for sine-
series holds as well.

An analog filter where λs(f) = λs(−f) is also called a symmetric filter. As
an example, consider the analog filter s(f1) =

�
a

−a
g(s)f1(t − s)ds where g is

symmetric around 0 and supported on [−a, a]. s is a symmetric filter since

λs(f) =

�
a

−a

g(s)e−2πifsds =

�
a

−a

g(s)e2πifsds = λs(−f).

Filters are much used in practice, but the way we have defined them here makes
them not very useful for computation. We will handle the problem of making
filters suitable for computation in Chapter 3.

42

1.9 The MP3 standard
Digital audio first became commonly available when the CD was introduced in
the early 1980s. As the storage capacity and processing speeds of computers
increased, it became possible to transfer audio files to computers and both play
and manipulate the data, in ways such as in the previous section. However,
audio was represented by a large amount of data and an obvious challenge was
how to reduce the storage requirements. Lossless coding techniques like Huffman
and Lempel-Ziv coding were known and with these kinds of techniques the file
size could be reduced to about half of that required by the CD format. However,
by allowing the data to be altered a little bit it turned out that it was possible
to reduce the file size down to about ten percent of the CD format, without
much loss in quality. The MP3 audio format takes advantage of this.

MP3, or more precisely MPEG-1 Audio Layer 3, is part of an audio-visual
standard called MPEG. MPEG has evolved over the years, from MPEG-1 to
MPEG-2, and then to MPEG-4. The data on a DVD disc can be stored with
either MPEG-1 or MPEG-2, while the data on a bluray-disc can be stored with
either MPEG-2 or MPEG-4. MP3 was developed by Philips, CCETT (Centre
commun d’études de télévision et télécommunications), IRT (Institut für Rund-
funktechnik) and Fraunhofer Society, and became an international standard in
1991. Virtually all audio software and music players support this format. MP3 is
just a sound format. It leaves a substantial amount of freedom in the encoder,
so that different encoders can exploit properties of sound in various ways, in
order to alter the sound in removing inaudible components therein. As a conse-
quence there are many different MP3 encoders available, of varying quality. In
particular, an encoder which works well for higher bit rates (high quality sound)
may not work so well for lower bit rates.

With MP3, the sound is split into frequency bands, each band corresponding
to a particular frequency range. In the simplest model, 32 frequency bands are
used. A frequency analysis of the sound, based on what is called a psycho-
acoustic model, is the basis for further transformation of these bands. The
psycho-acoustic model computes the significance of each band for the human
perception of the sound. When we hear a sound, there is a mechanical stimula-
tion of the ear drum, and the amount of stimulus is directly related to the size
of the sample values of the digital sound. The movement of the ear drum is then
converted to electric impulses that travel to the brain where they are perceived
as sound. The perception process uses a transformation of the sound so that a
steady oscillation in air pressure is perceived as a sound with a fixed frequency.
In this process certain kinds of perturbations of the sound are hardly noticed
by the brain, and this is exploited in lossy audio compression.

More precisely, when the psycho-acoustic model is applied to the frequency
content resulting from our frequency analysis, scale factors and masking thresh-
olds are assigned for each band. The computed masking thresholds have to do
with a phenomenon called masking. A simple example of this is that a loud
sound will make a simultaneous low sound inaudible. For compression this
means that if certain frequencies of a signal are very prominent, most of the

43

other frequencies can be removed, even when they are quite large. If the sounds
are below the masking threshold, it is simply ommited by the encoder, since the
model says that the sound should be inaudible.

Masking effects are just one example of what is called psycho-acoustic ef-
fects, and all such effects can be taken into account in a psycho-acoustic model.
Another obvious such effect regards computing the scale factors: the human au-
ditory system can only perceive frequencies in the range 20 Hz – 20 000 Hz. An
obvious way to do compression is therefore to remove frequencies outside this
range, although there are indications that these frequencies may influence the
listening experience inaudibly. The computed scaling factors tell the encoder
about the precision to be used for each frequency band: If the model decides
that one band is very important for our perception of the sound, it assigns a
big scale factor to it, so that more effort is put into encoding it by the encoder
(i.e. it uses more bits to encode this band).

Using appropriate scale factors and masking thresholds provide compression,
since bits used to encode the sound are spent on parts important for our percep-
tion. Developing a useful psycho-acoustic model requires detailed knowledge of
human perception of sound. Different MP3 encoders use different such models,
so they may produce very different results, worse or better.

The information remaining after frequency analysis and using a psycho-
acoustic model is coded efficiently with (a variant of) Huffman coding. MP3
supports bit rates from 32 to 320 kb/s and the sampling rates 32, 44.1, and 48
kHz. The format also supports variable bit rates (the bit rate varies in different
parts of the file). An MP3 encoder also stores metadata about the sound, such
as the title of the audio piece, album and artist name and other relevant data.

MP3 too has evolved in the same way as MPEG, from MP1 to MP2, and to
MP3, each one more sophisticated than the other, providing better compression.
MP3 is not the latest development of audio coding in the MPEG family: AAC
(Advanced Audio Coding) is presented as the successor of MP3 by its principal
developer, Fraunhofer Society, and can achieve better quality than MP3 at the
same bit rate, particularly for bit rates below 192 kb/s. AAC became well
known in April 2003 when Apple introduced this format (at 128 kb/s) as the
standard format for their iTunes Music Store and iPod music players. AAC is
also supported by many other music players, including the most popular mobile
phones.

The technologies behind AAC and MP3 are very similar. AAC supports
more sample rates (from 8 kHz to 96 kHz) and up to 48 channels. AAC uses the
same transformation as MP3, but AAC processes 1 024 samples at a time. AAC
also uses much more sophisticated processing of frequencies above 16 kHz and
has a number of other enhancements over MP3. AAC, as MP3, uses Huffman
coding for efficient coding of the transformed values. Tests seem quite conclusive
that AAC is better than MP3 for low bit rates (typically below 192 kb/s), but
for higher rates it is not so easy to differentiate between the two formats. As
for MP3 (and the other formats mentioned here), the quality of an AAC file
depends crucially on the quality of the encoding program.

There are a number of variants of AAC, in particular AAC Low Delay (AAC-

44

LD). This format was designed for use in two-way communication over a net-
work, for example the internet. For this kind of application, the encoding (and
decoding) must be fast to avoid delays (a delay of at most 20 ms can be toler-
ated).

1.10 Summary
We discussed the basic question of what is sound is, and concluded that sound
could be modeled as a sum of frequency components. If the function was periodic
we could define its Fourier series, which can be thought of as an approximation
scheme for periodic functions using finite-dimensional spaces of trigonometric
functions. We established the basic properties of Fourier series, and some duality
relationships between the function and its Fourier series. We have also computed
the Fourier series of the square wave and the triangle wave, and we saw that we
could speed up the convergence of the Fourier series by instead considering the
symmetric extension of the function.

We also discussed the MP3 standard for compression of sound, and its rela-
tion to a psychoacoutic model which describes how the human auditory system
perceives sound. There exist a wide variety of documents on this standard.
In [9], an overview is given, which, although written in a signal processing
friendly language and representing most relevant theory such as for the psy-
choacoutic model, does not dig into all the details.

45

Chapter 2

Digital sound and Discrete

Fourier analysis

In Chapter 1 we saw how a periodic function can be decomposed into a linear
combination of sines and cosines, or equivalently, a linear combination of com-
plex exponential functions. This kind of decomposition is, however, not very
convenient from a computational point of view. First of all, the coefficients are
given by integrals that in most cases cannot be evaluated exactly, so some kind
of numerical integration technique needs to be applied. Secondly, functions are
defined for all time instances. On computers and various kinds of media players,
however, the sound is digital, meaning that it is represented by a large number
of function values, and not by a function defined for all time instances.

In this chapter our starting point is simply a vector which represents the
sound values (rather than the function f(t)), and as before we would like to
decompose this in terms of linear combinations of vectors built from complex
exponentials. As before it turns out that this is simplest when we assume that
the values in the vector repeat periodically. Then a vector of finite dimension
can be used to represent all sound values, and operations and the computation
of (discrete) Fourier series simply amounts to multiplying the vector by a ma-
trix, and there are efficient algorithms for doing this. It turns out that these
algorithms can also be used for computing good approximations to the Fourier
series in Chapter 1.

2.1 Digital sound
We start by defining what a digital sound is and by establishing some notation
and terminology.

Definition 2.1 (Digital sound). A digital sound is a sequence x = {xi}N−1
i=0

that corresponds to measurements of the air pressure of a sound f , recorded

46

at a fixed rate of fs (the sampling frequency or sampling rate) measurements
per second, i.e.,

xk = f(k/fs), for k = 0, 1; . . . , N.

The measurements are often referred to as samples. The time between suc-
cessive measurements is called the sampling period and is usually denoted Ts.
The length of the vector is usually assumed to be N , and it is indexed from 0
to N − 1. If the sound is in stereo there will be two arrays x1 and x2, one for
each channel. Measuring the sound is also referred to as sampling the sound,
or analog to digital (AD) conversion.

Note that this indexing convention for vectors is not standard in mathemat-
ics. Note also that Matlab indexes vectors from 1, so algorithms given here
must be adjusted accordingly.

In most cases, a digital sound is sampled from an analog (continuous) audio
signal. This is usually done with a technique called Pulse Code Modulation
(PCM). The audio signal is sampled at regular intervals and the sampled val-
ues stored in a suitable number format. Both the sampling frequency, and the
accuracy and number format used for storing the samples, may vary for differ-
ent kinds of audio, and both influence the quality of the resulting sound. For
simplicity the quality is often measured by the number of bits per second, i.e.,
the product of the sampling rate and the number of bits (binary digits) used to
store each sample. This is also referred to as the bit rate. For the computer to
be able to play a digital sound, samples must be stored in a file or in memory
on a computer. To do this efficiently, digital sound formats are used. A couple
of them are described in the examples below.

Example 2.2. In the classical CD-format the audio signal is sampled 44 100
times per second and the samples stored as 16-bit integers. This works well for
music with a reasonably uniform dynamic range, but is problematic when the
range varies. Suppose for example that a piece of music has a very loud passage.
In this passage the samples will typically make use of almost the full range of
integer values, from −215 − 1 to 215. When the music enters a more quiet
passage the sample values will necessarily become much smaller and perhaps
only vary in the range −1000 to 1000, say. Since 210 = 1024 this means that
in the quiet passage the music would only be represented with 10-bit samples.
This problem can be avoided by using a floating-point format instead, but very
few audio formats appear to do this.

The bit rate for CD-quality stereo sound is 44100 × 2 × 16 bits/s = 1411.2
kb/s. This quality measure is particularly popular for lossy audio formats where
the uncompressed audio usually is the same (CD-quality). However, it should
be remembered that even two audio files in the same file format and with the
same bit rate may be of very different quality because the encoding programs
may be of different quality. ♣

Example 2.3. For telephony it is common to sample the sound 8000 times per
second and represent each sample value as a 13-bit integer. These integers are

47

then converted to a kind of 8-bit floating-point format with a 4-bit significand.
Telephony therefore generates a bit rate of 64 000 bits per second, i.e. 64 kb/s.
♣

Newer formats with higher quality are available. Music is distributed in vari-
ous formats on DVDs (DVD-video, DVD-audio, Super Audio CD) with sampling
rates up to 192 000 and up to 24 bits per sample. These formats also support
surround sound (up to seven channels in contrast to the two stereo channels on
a CD). In the following we will assume all sound to be digital. Later we will
return to how we reconstruct audible sound from digital sound.

2.2 Simple operations on digital sound
Simple operations and computations with digital sound can be done in any
programming environment. Let us take a look at how these. From Definition 2.1,
digital sound is just an array of sample values x = (xi)

N−1
i=0 , together with the

sample rate fs. Performing operations on the sound therefore amounts to doing
the appropriate computations with the sample values and the sample rate. The
most basic operation we can perform on a sound is simply playing it.

2.2.1 Playing a sound
You may already have listened to pure tones, square waves and triangle waves
in the last section. The corresponding sound files were generated in a way we
will describe shortly, placed in a directory available on the internet, and linked
to from these notes. A program on your computer was able to play these files
when you clicked on them. Let us take a closer look at the different steps here.
You will need these steps in Exercise 3, where you will be asked to implement
a Matlab-function which plays a pure sound with a given frequency on your
computer.

First we need to know how we can obtain the samples of a pure tone. The
following code does this for a pure tone with frequency f , over a period of 3
seconds, and with sampling rate fs.

t=0:(1/fs):3;

sd=sin(2*pi*f*t);

Matlab code will be displayed in this way throughout these notes. In order to
listen to these sound samples, we need to take a look at the functions built into
Matlab for playing sound. We have the two functions

playblocking(playerobj)

playblocking(playerobj,[start stop])

These simply play the audio segment encapsulated by the object playerobj.
playblocking means that the method playing the sound will block until it has
finished playing. We will have use for this functionality later on, since we may

48

play sounds in successive order. With the first function the entire audio segment
is played. With the second function the playback starts at sample start, and
ends at sample stop. These functions are just software interfaces to the sound
card in your computer. It basically sends the array of sound samples and sample
rate to the sound card, which uses some method for reconstructing the sound
to an analog sound signal. This analog signal is then sent to the loudspeakers
and we hear the sound.

Fact 2.4. The basic command in a programming environment that handles
sound takes as input an array of sound samples x and a sample rate s, and
plays the corresponding sound through the computer’s loudspeakers.

The mysterious playerobj object above can be obtained from the sound
samples (represented by a vector S) and the sampling rate (fs) by the function:

playerobj=audioplayer(S,fs)

The sound samples can have different data types. We will always assume that
they are of type double. Matlab requires that they have values between −1 and
1 (i.e. these represent the range of numbers which can be played through the
sound card of the computer). Also, S can actually be a matrix: Each column in
the matrix represents a sound channel. Sounds we generate on our own from a
mathematical function (as for the pure tone above) will typically have only one
channel, so that S has only one column. If S originates from a stereo sound file,
it will have two columns.

You can create S on your own, and set the sampling rate to whatever value
you like. However, we can also fill in the sound samples from a sound file. To
do this from a file in the wav-format named filename, simply write

[S,fs]=wavread(filename)

The wav-format format was developed by Microsoft and IBM, and is one of
the most common file formats for CD-quality audio. It uses a 32-bit integer to
specify the file size at the beginning of the file, which means that a WAV-file
cannot be larger than 4 GB. In addition to filling in the sound samples in the
vector S, this function also returns the sampling rate fs used in the file. The
function

wavwrite(S,fs,filename)

can similarly be used to write the data stored in the vector S to the wav-file
by the name filename. In the following we will both fill in the vector S on
our own by using values from mathematical functions, as well as from a file.
As an example of the first, we can listen to and write to a file the pure tone
of frequency 440Hz, which we listened to in Section 1.2, with the help of the
following code:

antsec=3;

49

fs=40000;

t=linspace(0,antsec,fs*antsec);

S=sin(2*pi*440*t);

playerobj=audioplayer(S,fs);

playblocking(playerobj);

wavwrite(S,fs,’puretone440.wav’);

The code creates a pure tone which lasts for three seconds (if you want the
tone to last longer, you can change the value of the variable antsec). We also
tell the computer that there are 40000 samples per second. This value is not
coincidental, and we will return to this. In fact, the sound file for the pure tone
embedded into this document was created in this way! In the same way we can
listen to the square wave with the help of the following code:

antsec=3;

fs=44100;

samplesperperiod=round(fs/440);

oneperiod=[ones(1,round(samplesperperiod/2)) ...

-ones(1,round(samplesperperiod/2))];

allsamples=zeros(1,antsec*440*length(oneperiod));

for k=1:(antsec*440)

allsamples(((k-1)*length(oneperiod)+1):k*length(oneperiod))=oneperiod;

end

playerobj=audioplayer(allsamples,fs);

playblocking(playerobj);

The code creates 440 copies of the square wave per second by first computing
the number of samples needed for one period when it is known that we should
have a total of 40000 samples per second, and then constructing the samples
needed for one period. In the same fashion we can listen to the triangle wave
simply by replacing the code for generating the samples for one period with the
following:

oneperiod=[linspace(-1,1,round(samplesperperiod/2)) ...

linspace(1,-1,round(samplesperperiod/2))];

Instead of using the formula for the triangle wave, directly, we have used the
function linspace.

As an example of how to fill in the sound samples from a file, the code

[S fs] = wavread(’castanets.wav’);

reads the file castanets.wav, and stores the sound samples in the matrix S. In
this case there are two sound channels, so there are two columns in S. To work
with sound from only one channel, we extract the second channel as follows:

x=S(:,2);

50

wavread returns sound samples with floating point precision. If we have made
any changes to the sound samples, we need to secure that they are between −1
and 1 before we play them. If the sound samples are stored in x, this can be
achieved as follows:

x = x / max(abs(x));

x can now be played just as the signals we constructed from mathematical
formulas above.

It may be that some other environment than Matlab gives you the play

functionality on your computer. Even if no environment on your computer
supports such play-functionality at all, you may still be able to play the result
of your computations if there is support for saving the sound in some standard
format like mp3. The resulting file can then be played by the standard audio
player on your computer.

Example 2.5 (Changing the sample rate). We can easily play back a sound
with a different sample rate than the standard one. If we in the code above
instead wrote fs=80000, the sound card will assume that the time distance
between neighbouring samples is half the time distance in the original. The
result is that the sound takes half as long, and the frequency of all tones is
doubled. For voices the result is a characteristic Donald Duck-like sound.

Conversely, the sound can be played with half the sample rate by setting
fs=20000. Then the length of the sound is doubled and all frequencies are
halved. This results in low pitch, roaring voices.

Fact 2.6. A digital sound can be played back with a double or half sample
rate by replacing

playerobj=audioplayer(S,fs);

with

playerobj=audioplayer(S,2*fs);

and

playerobj=audioplayer(S,fs/2);

respectively.

The sample file castanets.wav played at double sampling rate sounds like this,
while it sounds like this when it is played with half the sampling rate. ♣

Example 2.7 (Playing the sound backwards). At times a popular game has
been to play music backwards to try and find secret messages. In the old days
of analog music on vinyl this was not so easy, but with digital sound it is quite
simple; we just need to reverse the samples. To do this we just loop through
the array and put the last samples first.

51

Fact 2.8. Let x = (xi)
N−1
i=0 be the samples of a digital sound. Then the

samples y = (yi)
N−1
i=0 of the reverse sound are given by

yi = xN−i−1, for i = 0, 1, . . . N − 1.

When we reverse the sound samples with Matlab, we have to reverse the ele-
ments in both sound channels. This can be performed as follows

sz=size(S,1);

newS=[S(sz:(-1):1,1) S(sz:(-1):1,2)];

Performing this on our sample file you generate a sound which sounds like this.
♣
Example 2.9 (Adding noise). To remove noise from recorded sound can be
very challenging, but adding noise is simple. There are many kinds of noise,
but one kind is easily obtained by adding random numbers to the samples of a
sound.

Fact 2.10. Let x be the samples of a digital sound of length N . A new
sound y with noise added can be obtained by adding a random number to
each sample,

y=x+c*(2*rand(1,N)-1);

where rand is a Matlab function that returns random numbers in the interval
[0, 1], and c is a constant (usually smaller than 1) that dampens the noise.
The effect of writing (2*rand(1,N)-1) is that random numbers between −1
and 1 are returned instead of random numbers between 0 and 1.

Adding noise in this way will produce a general hissing noise similar to the noise
you hear on the radio when the reception is bad. As before you should add noise
to both channels. Note alse that the sound samples may be outside [−1, 1] after
adding noise, so that you should scale the samples before writing them to file.
The factor c is important, if it is too large, the noise will simply drown the
signal y: castanets.wav with noise added with c = 0.4 sounds like this, while
with c = 0.1 it sounds like this. ♣

In addition to the operations listed above, the most important operations
on digital sound are digital filters. These are given a separate treatment in
Chapter 3.

Exercises for Section 2.2
1. Define the following sound signal

f(t) =






0 0 ≤ t ≤ 4/440
2 440t−4

8 sin(2π440t) 4/440 ≤ t ≤ 12/440
2 sin(2π440t) 12/440 ≤ t ≤ 20/440

52

This corresponds to the sound plotted in Figure 1.1(a), where the sound is
unaudible in the beginning, and increases linearly in loudness over time with a
given frequency until maximum loudness is avchieved. Write a Matlab program
which generates this sound, and listen to it.

2. Find two constant a and b so that the function f(t) = a sin(2π440t) +
b sin(2π4400t) resembles the plot from Figure 1.1(b) as closely as possible. Gen-
erate the samples of this sound, and listen to it with Matlab.

3. Let us write some code so that we can experiment with different pure sounds

a. Write a function

function playpuresound(f)

which generates the samples over a period of 3 seconds for a pure tone
with frequency f , with sampling frequency fs = 2.5f (we will explain
this value later).

b. Use the function playpuresound to listen to pure sounds of frequency
440Hz and 1500Hz, and verify that they are the same as the sounds you
already have listened to in this section.

c. How high frequencies are you able to hear with the function playpuresound?
How low frequencies are you able to hear?

4. Write functions

function playsquare(T)

function playtriangle(T)

which plays the square wave of Example 1.11 and the triangle wave of Exam-
ple 1.12, respectively, where T is given by the parameter. In your code, let
the samples of the waves be taken at a frequency of 40000 samples per second.
Verify that you generate the same sounds as you played in these examples when
you set T = 1

440 .

5. Let us write programs so that we can listen to the Fourier approximations
of the square wave and the triangle wave.

a. Write functions

function playsquaretrunk(T,N)

function playtriangletrunk(T,N)

53

which plays the order N Fourier approximation of the square wave and
the triangle wave, respectively, for three seconds. Verify that you can
generate the sounds you played in examples 1.18 and 1.19.

b. For these Fourier approximations, how high must you choose N for
them to be indistuingishable from the square/triangle waves themselves?
Also describe how the characteristics of the sound changes when n in-
creases.

6. In this exercise we will experiment as in the first examples of this section.

a. Write a function

function playdifferentfs()

which plays the sound samples of castanets.wav with the same sample
rate as the original file, then with twice the sample rate, and then half
the sample rate. You should start with reading the file into a matrix (as
explained in this section). Are the sounds the same as those you heard
in Example 2.5?

b. Write a function

function playreverse()

which plays the sound samples of castanets.wav backwards. Is the
sound the same as the one you heard in Example 2.7?

c. Write the new sound samples from b. to a new wav-file, as described
above, and listen to it with your favourite mediaplayer.

7. In this exercise, we will experiment with adding noise to a signal.

a. Write a function

function playnoise(c)

which plays the sound samples of castanets.wav with noise added for
the damping constant c as described above. Your code should add noise
to both channels of the sound, and scale the sound samples so that they
are between −1 and 1.

54

b. With your program, generate the two sounds played in Example 2.9,
and verify that they are the same as those you heard.

c. Listen to the sound samples with noise added for different values of c.
For which range of c is the noise audible?

2.3 Discrete Fourier analysis: Basic concepts
In this section we will parallel the developments we did for Fourier series, assum-
ing instead that vectors (rather than functions) are involved. As with Fourier
series we will assume that the vector is periodic. This means that we can repre-
sent it with the samples from only the first period. In the following we will only
work with these samples, but we will remined ourselves from time to time that
the samples actually come from a periodic vector. At the outset our vectors
will have real components, but since we use complex exponentials we must be
able to work with complex vectors also. We therefore first need to define the
standard inner product and norm for complex vectors.

Definition 2.11. For complex vectors of length N the Euclidean inner prod-
uct is given by

�x,y� =
N−1�

k=0

xkyk. (2.1)

The associated norm is

�x� =

����
N−1�

k=0

|xk|2. (2.2)

In the previous chapter we saw that, using a Fourier series, a function with
period T could be approximated by linear combinations of the functions (the
pure tones) {e2πint/T }N

n=0. This can be generalised to vectors (digital sounds),
but then the pure tones must of course also be vectors.

Definition 2.12 (Discrete Fourier analysis). In Discrete Fourier analysis, a
vector x = (x0, . . . , xN−1) is represented as a linear combination of the N
vectors

φ
n
=

1√
N

�
1, e2πin/N , e2πi2n/N , . . . , e2πikn/N , . . . , e2πin(N−1)/N

�
.

These vectors are called the normalised complex exponentials, or the pure
digital tones of order N . The whole collection FN = {φ

n
}N−1
n=0 is called the

N -point Fourier basis.

55

The following lemma shows that the vectors in the Fourier basis are or-
thonormal, so they do indeed form a basis.

Lemma 2.13. The normalised complex exponentials {φn}N−1
n=0 of order N

form an orthonormal basis in RN .

Proof. Let n1 and n2 be two distinct integers in the range [0, N − 1]. The inner
product of φ

n1
and φ

n2
is then given by

�φ
n1
,φ

n2
� = 1

N
�e2πin1k/N , e2πin2k/N �

=
1

N

N−1�

k=0

e2πin1k/Ne−2πin2k/N

=
1

N

N−1�

k=0

e2πi(n1−n2)k/N

=
1

N

1− e2πi(n1−n2)

1− e2πi(n1−n2)/N

= 0.

In particular, this orthogonality means that the the complex exponentials form
a basis. Clearly also �φ

n
,φ

n
� = 1, so that the N -point Fourier basis is in fact

an orthonormal basis.

Note that the normalising factor 1√
N

was not present for pure tones in the
previous chapter. Also, the normalising factor 1

T
from the last chapter is not

part of the definition of the inner product in this chapter. These are small
differences which have to do with slightly different notation for functions and
vectors, and which will not cause confusion in what follows.

2.4 The Discrete Fourier Transform
The focus in Discrete Fourier analysis is to change coordinates from the stan-
dard basis to the Fourier basis, performing some operations on this “Fourier
representation”, and then change coordinates back to the standard basis. Such
operations are of crucial importance, and in this section we study some of their
basic properties. We start with the following definition.

Definition 2.14 (Discrete Fourier Transform). The change of coordinates
from the standard basis of RN to the Fourier basis FN is called the discrete
Fourier transform (or DFT). The N×N matrix FN that represents this change
of basis is called the (N -point) Fourier matrix. If x is a vector in RN , its
coordinates y = (y0, y1, . . . , yN−1) relative to the Fourier basis are called the
DFT coefficients of x (in other words y = FNx). The DFT of x is sometimes
written as x̂.

56

We will normally write x for the given vector in RN , and y for the DFT of
this vector. In applied fields, the Fourier basis vectors are also called synthesis
vectors, since they can be used used to “synthesize” the vector x, with weights
provided by the DFT coefficients y = (yn)

N−1
n=0 . To be more precise, we have

that the change of coordinates performed by the DFT can be written as

x = y0φ0 + y1φ1 + · · ·+ yN−1φN−1 =
�
φ0 φ1 · · · φ

N−1

�
y = F−1

N
y, (2.3)

where we have used the inverse of the defining relation y = FNx, and that the
φ

n
are the columns in F−1

N
(this follows from the fact that F−1

N
is the change

of coordinates matrix from the Fourier basis to the standard basis, and the
Fourier basis vectors are clearly the columns in this matrix). Equation (2.3) is
also called the synthesis equation.

Example 2.15. Let x be the vector of length N defined by xk = cos(2π5k/N),
and y the vector of length N defined by yk = sin(2π7k/N). Let us see how
we can compute FN (2x+ 3y). By the definition of the DFT as a change of
coordinates, FN (φn) = en. We therefore get

FN (2x+ 3y) = FN (2 cos(2π5 · /N) + 3 sin(2π7 · /N))

= FN (2
1

2
(e2πi5·/N + e−2πi5·/N) + 3

1

2i
(e2πi7·/N − e−2πi7·/N))

= FN (
√
Nφ5 +

√
NφN−5 −

3i

2

√
N(φ7 − φN−7))

=
√
N(FN (φ5) + FN (φN−5)−

3i

2
FNφ7 +

3i

2
FNφN−7)

=
√
Ne5 +

√
NeN−5 −

3i

2

√
Ne7 +

3i

2

√
NeN−7.

♣

Let us also find the matrix FN itself. From Lemma 2.13 we know that
the columns of F−1

N
are orthonormal. If the matrix was real, it would have

been called orthogonal, and the inverse matrix could have been obtained by
transposing. F−1

N
is complex, however, and it is easy to see that the conjugation

present in the definition of the inner product (2.1), implies that the inverse of
FN can be obtained if we also conjugate, in addition to transpose, i.e. (FN)−1 =
(FN)T . We call (A)T the conjugate transpose of A, and write AH for it. We thus
have that (FN)−1 = (FN)H . Matrices which fulfill this are called unitary, which
thus is the parallel to orthogonal matrices in the world of complex matrices.

Theorem 2.16. The Fourier matrix FN is the unitary N × N -matrix with
entries given by

(FN)nk =
1√
N

e−2πink/N ,

for 0 ≤ n, k ≤ N − 1.

57

Note that in the signal processing literature, it is not common to include
the normalizing factor 1/

√
N in the definition of the DFT. From our more

mathematical point of view this is useful since it makes the Fourier matrix
unitary.

Let us now consider the change of coordinate from the Fourier basis back to
the standard basis. This operation is also very common, so it also deserves its
own definition.

Definition 2.17 (IDFT). If y ∈ RN the vector x = (FN)Hy is referred to as
the inverse discrete Fourier transform or (IDFT) of y.

That y is the DFT of x and x is the IDFT of y can also be expressed in
component form

xk =
1√
N

N−1�

n=0

yne
2πink/N , (2.4)

yn =
1√
N

N−1�

k=0

xke
−2πink/N . (2.5)

In applied fields such as signal processing, it is more common to state the
DFT and IDFT in these component forms, rather than in the matrix forms
x = (FN)Hy and y = FNy.

Let us now see how these formulas work out in practice by considering some
examples.

Example 2.18 (DFT on a square wave). Let us attempt to apply the DFT to
a signal x which is 1 on indices close to 0, and 0 elsewhere. Assume that

x−L = . . . = x−1 = x0 = x1 = . . . = xL = 1,

while all other values are 0. This is similar to a square wave, with some mod-
ifications: First of all we assume symmetry around 0, while the square wave
of Example 1.11 assumes antisymmetry around 0. Secondly the values of the
square wave are now 0 and 1, contrary to −1 and 1 before. Finally, we have a
different proportion of where the two values are assumed. Nevertheless, we will
also refer to the current digital sound as a square wave.

Since indices with the DFT are between 0 an N−1, and since x is assumed to
have period N , the indices [−L,L] where our signal is 1 translates to the indices
[0, L] and [N − L,N − 1] (i.e., it is 1 on the first and last parts of the vector).
Elsewhere our signal is zero. Since

�
N−1
k=N−L

e−2πink/N =
�−1

k=−L
e−2πink/N

58

(since e−2πink/N is periodic with period N), the DFT of x is

yn =
1√
N

L�

k=0

e−2πink/N +
1√
N

N−1�

k=N−L

e−2πink/N

=
1√
N

L�

k=0

e−2πink/N +
1√
N

−1�

k=−L

e−2πink/N

=
1√
N

L�

k=−L

e−2πink/N

=
1√
N

e2πinL/N
1− e−2πin(2L+1)/N

1− e−2πin/N

=
1√
N

e2πinL/Ne−πin(2L+1)/Neπin/N
eπin(2L+1)/N − e−πin(2L+1)/N

eπin/N − e−πin/N

=
1√
N

sin(πn(2L+ 1)/N)

sin(πn/N)
.

This computation does in fact also give us the IDFT of the same vector, since
the IDFT just requires a change of sign in all the exponents. From this example
we see that, in order to represent x in terms of frequency components, all
components are actually needed. The situation would have been easier if only
a few frequencies were needed. ♣

Example 2.19. In most cases it is difficult to compute a DFT by hand, due
to the entries e−2πink/N in the matrices, which typically can not be represented
exactly. The DFT is therefore usually calculated on a computer only. However,
in the case N = 4 the calculations are quite simple. In this case the Fourier
matrix takes the form

F4 =
1

2





1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i



 .

We now can compute the DFT of a vector like (1, 2, 3, 4)T simply as

F4





1
2
3
4



 =
1

2





1 + 2 + 3 + 4
1− 2i− 3 + 4i
1− 2 + 3− 4
1 + 2i− 3− 4i



 =





5
−1 + i
−1

−1− i



 .

♣

Example 2.20 (Direct implementation of the DFT). Matlab supports complex
arithmetic, so the DFT can be implemented very simply and directly by the code

59

function y=DFTImpl(x)

N=length(x);

FN=zeros(N);

for n=1:N

FN(n,:)=exp(-2*pi*1i*(n-1)*(0:(N-1))/N)/sqrt(N);

end

y=FN*x;

Note that n has been replaced by n − 1 in this code since n runs from 1 to N
(array indices must start at 1 in Matlab).

A direct implementation of the IDFT, which we could call IDFTImpl can be
done similarly. Multiplying a full N × N matrix by a vector requires roughly
N2 arithmetic operations. The DFT algorithm above will therefore take a long
time when N becomes moderately large, particularly in Matlab. It turns out
that a much more efficient algorithm exists for computing the DFT, which we
will study at the end of this chapter. Matlab also has a built-in implementation
of the DFT which uses such an efficient algorithm. ♣

The DFT has properties which are very similar to those of Fourier series, as
they were listed in Theorem 1.36. The following theorem sums this up:

Theorem 2.21 (DFT properties). Let x be a real vector of length N . The
DFT has the following properties:

1. (�x)
N−n

= (�x)
n

for 0 ≤ n ≤ N − 1.

2. If z is the vector with the components of x reversed so that zk = xN−k

for 0 ≤ k ≤ N − 1, then �z = �x. In particular,

(a) if xk = xN−k for all n (so x is symmetric), then �x is a real vector.
(b) if xk = −xN−k for all k (so x is antisymmetric), then �x is a purely

imaginary vector.

3. If d is an integer and z is the vector with components zk = xk−d (the
vector x with its elements delayed by d), then (�z)

n
= e−2πidn/N (�x)

n
.

4. If d is an integer and z is the vector with components zk = e2πidk/Nxk,
then (�z)

n
= (�x)

n−d
.

Proof. The methods used in the proof are very similar to those used in the proof

60

of Theorem 1.36. From the definition of the DFT we have

(�x)
N−n

=
1√
N

N−1�

k=0

e−2πik(N−n)/Nxk =
1√
N

N−1�

k=0

e2πikn/Nxk

=
1√
N

N−1�

k=0

e−2πikn/Nxk = (�x)
n

which proves property 1. To prove property 2, we write

(�z)
n
=

1√
N

N−1�

k=0

zke
−2πikn/N =

1√
N

N−1�

k=0

xN−ke
−2πikn/N

=
1√
N

N�

u=1

xue
−2πi(N−u)n/N =

1√
N

N−1�

u=0

xue
2πiun/N

=
1√
N

N−1�

u=0

xue−2πiun/N = (�x)
n
.

If x is symmetric it follows that z = x, so that (�x)
n
= (�x)

n
. Therefore x must

be real. The case of antisymmetry follows similarly.
To prove property 3 we observe that

(�z)
n
=

1√
N

N−1�

k=0

xk−de
−2πikn/N =

1√
N

N−1�

k=0

xke
−2πi(k+d)n/N

= e−2πidn/N 1√
N

N−1�

k=0

xke
−2πikn/N = e−2πidn/N (�x)

n
.

For the proof of property 4 we note that the DFT of z is

(�z)
n
=

1√
N

N−1�

k=0

e2πidk/Nxne
−2πikn/N =

1√
N

N−1�

k=0

xne
−2πi(n−d)k/N = (�x)

n−d
.

This completes the proof.

For real sequences, Property 1 says that we need to store only about one half
of the DFT coefficients, since the remaining coefficients can be obtained by con-
jugation. In particular, when N is even, we only need to store y0, y1, . . . , yN/2,
since the other coefficients can be obtained by conjugating these. The theo-
rem generalizes the properties from Theorem 1.36, except for the last property
where the signal had a point of symmetry. We will delay the generalization of
this property to later.

61

Exercises for Section 2.4
1. Compute the 4 point DFT of the vector (2, 3, 4, 5)T .

2. As in Example 2.19, state the exact cartesian form of the Fourier matrix for
the cases N = 6, N = 8, and N = 12.

3. We have a real vector x with length N , and define the vector z by delaying
all elements in x with 5 cyclically, i.e. z5 = x0, z6 = x1,. . . ,zN = xN−5, and
z0 = xN−4,. . . ,z4 = xN−1. If |(FNx)n| = 2, what is then |(FNz)n|? Justify the
answer.

4. (Exam UIO V2012) Given a real vector x of length 8 where (F8(x))2 = 2− i,
what is (F8(x))6?

5. Let x be the vector with entries xk = ck. Show that the DFT of x is given
by the vector with components

yn =
1√
N

1− cN

1− ce−2πin/N

for n = 0, . . . , N − 1.

6. If x is complex, Write the DFT in terms of the DFT on real sequences. Hint:
Split into real and imaginary parts, and use linearity of the DFT.

7. As in Example 2.20, write a function

function x=IDFTImpl(y)

which computes the IDFT.

8. Let x1,x2 be real vectors, and set x = x1 + ix2. Use Theorem 2.21 to show
that

(FN (x1))k =
1

2

�
(FN (x))k + (FN (x))N−k

�

(FN (x2))k =
1

2i

�
(FN (x))k − (FN (x))N−k

�

This shows that, sometimes, one DFT can be used to compute two different
DFT’s.

2.5 Connection between the DFT and Fourier se-
ries

So far we have focused on the DFT as a tool to rewrite a vector in terms of the
Fourier basis vectors. In practice, the given vector x will often be sampled from
some real data given by a function f(t). We may then compare the frequency
content of the vector x and the frequency content of f , and ask how these are

62

related: What is the relationship between the Fourier coefficients of f and the
DFT-coefficients of x?

In order to study this, assume for simplicity that f lies in a Fourier space
VM,T for some M . This means that f equals its Fourier approximation fM ,

f(t) = fM (t) =
M�

n=−M

zne
2πint/T , (2.6)

where

zn =
1

T

�
T

0
f(t)e−2πint/T dt.

We here have changed our notation for the Fourier coefficients form zn to yn, in
order not to confuse them with the DFT coefficients. We recall that in order to
represent the frequency n/T fully, we need the corresponding exponentials with
both positive and negative arguments, i.e., both e2πint/T and e−2πint/T .

Fact 2.22. Suppose f is given by its Fourier series (2.6). Then the total
frequency content for the frequency n/T is given by the two coefficients zn
and z−n.

The following connection between the Fourier coefficients of f and the DFT
of the samples of f also states how the DFT can be used to compute a Fourier
series.

Proposition 2.23 (Relation between Fourier coefficients and DFT coeffi-
cients). Let

f(t) =
M�

n=−M

zne
2πint/T ,

be a function in VM,T , and let N = 2M + 1. Suppose that x are N uniform
samples from f over one period, i.e.

xk = f(kT/N), for k = 0, 1, . . . , N − 1.

and let y be the DFT of x. Then z = (yM+1, . . . , y2M , y0, . . . , yM)/
√
N . In

particular, the total contribution to f from frequency n/T , where n is an
integer in the range 0 ≤ n ≤ M , is given by yn and yN−n.

Proof. The vector x can be expressed in terms of its DFT y as

xk =
1√
N

N−1�

n=0

yne
2πink/N . (2.7)

63

If we evaluate f at the sample points we have

f(kT/N) =
M�

n=−M

zne
2πink/N , (2.8)

and a comparison now gives
M�

n=−M

zne
2πink/N =

1√
N

N−1�

n=0

yne
2πink/N for k = 0, 1, . . . , N − 1.

Exploiting the fact that both y and the complex exponentials are periodic with
period N , we can rewrite this as

M�

n=−M

zne
2πink/N =

1√
N

−1�

n=−M

yn+2M+1e
2πink/N +

1√
N

M�

n=0

yne
2πink/N .

This system of N equations can be written on the form

Gz = G(yM+1, . . . , y2M , y0, . . . , yM)/
√
N,

where G is the N × N -matrix with entries 1√
N
e2πink/N , −M ≤ n < M . It is

straightforward to show that the matrix G is invertible (we can argue in the
same way as we did when we showed that the Fourier basis was orthonormal),
so that z = (yM+1, . . . , y2M , y0, . . . , yM)/

√
N . This proves the result.

The proof above bases itself on taking N = 2M + 1 samples. However, if
we take more samples (including the old samples), say N = 2K + 1 samples
with K > M , it is clear that we will get the Fourier coefficients in VK,T (since
VM,T ⊂ VK,T), where the new coefficients are 0.

In section 1.6 we mentioned the role of the Fourier series approximation fN
as a best approximation to f . We usually can’t compute fN exactly, however,
since this requires us to compute the Fourier integrals. What we instead could
do is to take the samples x. If N is high, fN is a good approximation to f ,
so that x is a good approximation to the samples of fN . By continuity of the
DFT it follows that, with y = FNx, (yM+1, . . . , y2M , y0, . . . , yM)/

√
N is a good

approximation to the Fourier coefficients z, so that f̃(t) =
�

N−1
n=0 yne2πint/T is

a good approximation to fN , and therefore also to f . We have illustrated this in
Figure 2.1. The new function f̃ has the same values as f in the sample points,
but note that it may not be equal to fN . The interpolating function f̃ is thus
another kind of approximation to f , and very useful, since it can be computed
without evaluating the Fourier integrals, contrary to the Fourier series:

Idea 2.24. The function f̃ resulting from sampling, taking the DFT, and
reconstructing, as shown in Figure 2.1, also gives an approximation to f . f̃ is
a worse approximation to f than fN (since we already know that fN is a best
approximation), but it is much more useful since it avoids evaluation of the
Fourier integrals.

64

f ��

s

��

f̃

x
FN �� Y

r

��

Figure 2.1: How we can interpolate f from VM,T with help of the DFT. The
vertical arrows represent sampling (s) and reconstruction (r), reconstruction
means that we compute

�
n
yne2πint/T for values of t.

0 10 20 30 40
0

0.5

1

1.5

2

(a) Perodic extension of x
0 10 20 30 40

0

0.5

1

1.5

2

(b) Symmetric extension of x

Figure 2.2: The two different extensions of x to a periodic vector.

In Section 1.6 we also mentioned that a function often is defined on an
interval [0, T), not as a periodic function on the whole real line. The same
is the case for digital sound. The extension strategies for a vector parallel
those for functions from Figure 1.10, and are shown in Figure 2.2. The vector
simply consists of 8 samples from the function from Figure 1.10. The symmetric
extension has the original vector x as its first half, and a copy of x in reverse
order as its second half:

Definition 2.25 (Symmetric extension of a vector). By the symmetric exten-
sion of x ∈ RN , we mean the symmetric vector x̆ ∈ R2N defined by

x̆k =

�
xk 0 ≤ k < N

x2N−1−k N ≤ k < 2N − 1
(2.9)

This is not the only way to construct a symmetric extension, as we will
return to later.

Another approximation strategy could be to first form the symmetric exten-
sion f̆ , and then ˜̆f through sampling, the DFT, and reconstruction, as above.

65

f ��? ��

��

f̃

f̆

s

��

˜̆f

��

x
F2N �� Y

r

��

Figure 2.3: How we alternatively can approximate a function using the sym-
metric extension f̆ instead.

Since f̆N is a better approximation to f on [0, T] than fN (as previously ar-
gued), the sample points x of f̆ are even closer to the sample points of f̆N .
Again, by continuity of FN , the DFT y of x gives an even better approximation�

n
yne2πint/T to f̆N (t) =

�
n
zne2πint/T . Then

�
n
yne2πint/T is also a better

approximation to f̆ (and thus f) than what we have obtained before, since f̆N
is a better approximation to f̆ than fN is to f . We have illustrated the new
approximation scheme in Figure 2.3, where the old strategy from Figure 2.1
also is shown in the lower two lines. One may believe that there also exists an
operation similar to the DFT for this scheme, indicated with a ? in the figure.
This operation could hopefully be made N -dimensional: Although we take 2N
samples from f̆ , the last part is equal to the first part, so that N dimensions are
in play. If we succeed in finding such an operation, it would be even more impor-
tant than the DFT for approximation of functions. We will return to how this
operation can be constructed in Chapter 4. We already now can use the DFT
to describe such an operation (since we only need to look at the cosine-series),
but we would also ensure that the operation is orthogonal.

2.6 Using the DFT to adjust frequencies in sound
Before we continue we need a remark on what we should interpret as high and
low frequency contributions, when we have applied a DFT. The low “frequency
contribution” in f is the contribution from

e−2πiLt/T , . . . , e−2πit/T , 1, e2πit/T , . . . , e2πiLt/T

in f , i.e.
�

L

n=−L
zne2πint/T . This means that low frequencies correspond to

indices n so that −L ≤ n ≤ L. However, since DFT coefficients have indices
between 0 and N − 1, low frequencies correspond to indices n in [0, L] ∪ [N −
L,N − 1]. If we make the same argument for high frequencies, we see that they
correspond to DFT indices near N/2:

66

Observation 2.26 (DFT indices for high and low frequencies). When y is
the DFT of x, the low frequencies in x correspond to the indices in y near 0
and N . The high frequencies in x correspond to the indices in y near N/2.

We will use this observation in the following example, when we use the DFT
to distinguish between high and low frequencies in a sound.

Example 2.27 (Using the DFT to adjust frequencies in sound). Since the DFT
coefficients represent the contribution in a sound at given frequencies, we can
listen to the different frequencies of a sound by adjusting the DFT coefficients.
Let us first see how we can listen to the lower frequencies only. As explained,
these correspond to DFT-indices n in [0, L]∪[N−L,N−1]. In Matlab these have
indices from 1 to L+ 1, and from N − L+ 1 to N . The remaining frequencies,
i.e. the higher frequencies which we want to eliminate, thus have Matlab-indices
between L + 2 and N − L. We can now perform a DFT, eliminate these high
frequencies, and perform an inverse DFT, to recover the sound signal where these
frequencies have been eliminated. With the help of the DFT implementation
from Example 2.20, all this can be achieved with the following code:

y=DFTImpl(x);

y((L+2):(N-L))=zeros(N-(2*L+1),1);

newx=IDFTImpl(y);

To test this in practice, we also need to obtain the actual sound samples. If
we use our sample file castanets.wav, you will see that the code runs very
slowly. In fact it seems to never complete. The reason is that DFTImpl attempts
to construct a matrix FN with as many rows and columns as there are sound
samples in the file, and there are just too many samples, so that FN grows too
big, and matrix multiplication with it gets too time-consuming. We will shortly
see much better strategies for applying the DFT to a sound file, but for now we
will simply attempt instead to split the sound file into smaller blocks, each of size
N = 32, and perform the code above on each block. This is less time-consuming,
since big matrices are avoided. You will be spared the details for actually
splitting the sound file into blocks: you can find the function playDFTlower(L)

which performs this splitting, sets the relevant frequency components to 0, and
plays the resulting sound samples. If you try this for L = 7 (i.e. we keep
only 15 of the DFT coefficients) the result sounds like this. You can hear the
disturbance in the sound, but we have not lost that much even if more than half
the DFT coefficients are dropped. If we instead try L = 3 the result will sound
like this. The quality is much poorer now. However we can still recognize the
song, and this suggests that most of the frequency information is contained in
the lower frequencies.

Similarly we can listen to high frequencies by including only DFT coefficients
with index close to N

2 . The function playDFThigher(L) sets all DFT coefficients
to zero, except for those with indices N

2 − L, . . . , N

2 , . . . ,
N

2 + L. Let us verify
that there is less information in the higher frequencies by trying the same values

67

for L as above for this function. For L = 7 (i.e. we keep only the middle 15
DFT coefficients) the result sounds like this, for L = 3 the result sounds like
this. Both sounds are quite unrecognizable, confirming that most information
is contained in the lower frequencies. ♣

Note that there may be a problem in the previous example: when we restrict
to the values in a given block, we actually look at a different signal. The new
signal repeats the values in the block in periods, while the old signal consists of
one much bigger block. What are the differences in the frequency representations
of the two signals?

Assume that the entire sound has length M . The frequency representation
of this is computed as an M -point DFT (the signal is actually repeated with
period M), and we write the sound samples as a sum of frequencies: xk =�

M−1
n=0 yne2πikn/M . Let us consider the effect of restricting to a block for each

of the contributing pure tones 1√
N
e2πikn0/M , 0 ≤ n0 ≤ M − 1 (where we have

scaled with 1√
N

). When we restrict this to a block of size N , we get the signal
{e2πikn0/M}N−1

k=0 . Depending on n0, this may not be a Fourier basis vector! Its
N -point DFT gives us its frequency representation, and the absolute value of
this is

|yn| =

�����
1

N

N−1�

k=0

e2πikn0/Me−2πikn/N

����� =

�����
1

N

N−1�

k=0

e2πik(n0/M−n/N)

�����

=

����
1

N

1− e2πiN(n0/M−n/N)

1− e2πi(n0/M−n/N)

���� =
1

N

����
sin(πN(n0/M − n/N))

sin(π(n0/M − n/N))

���� . (2.10)

If n0 = M/N , this gives yn0 = 1, and yn = 0 when n �= n0. Thus, splitting
the signal into blocks gives another pure tone when n0 = M/N . When n0 is
different from M/N the situation is different. Let us set M = 1000, n0 = 1,
and experiment with different values of N . Figure 2.4 shows the yn values for
different values of N . We see that the frequency representation is now very
different, and that many frequencies contribute. The explanation is that the
pure tone is not a pure tone when N = 64 and N = 256, since at this scale
such frequencies are too high to be represented exactly. The closest pure tone
in frequency is n = 0, and we see that this has the biggest contribution, but
other frequencies also contribute. The other frequencies contribute much more
when N = 256, as can be seen from the peak in the closest frequency n = 0. In
conclusion, when we split into blocks, the frequency representation may change
in an undesirable way. This is a common problem in signal processing theory,
that one in practice needs to restrict to smaller segments of samples, but that
this restriction may have undesired effects.

Another problem when we restrict to a shorter periodic signal is that we
may obtain discontinuities at the boundaries between the new periods, even if
there were no discontinuities in the original signal. And, as we know from the
square wave, discontinuities introduce undesired frequencies. We have already
mentioned that symmetric extensions may be used to remedy this.

68

0 20 40 60
−0.2

0

0.2

0.4

0.6

0.8

1

(a) N=64
0 50 100 150 200 250

−0.2

0

0.2

0.4

0.6

0.8

1

(b) N=256

Figure 2.4: The frequency representation obtained when restricting to a block
of size N of the signal.

There are two other interesting facets to Theorem 2.23, besides connecting
the DFT and the Fourier series. These are covered in the two next sections.

2.7 The DFT and interpolation
Theorem 2.23 enables us to find (unique) trigonometric functions which interpo-
late (pass through) a set of data points. We have in elementary calculus courses
seen how to determine a polynomial of degree N − 1 that interpolates a set of
N data points — such polynomials are called interpolating polynomials. The
following result tells how we can find an interpolating trigonometric function
using the DFT.

Corollary 2.28 (Interpolation with the Fourier basis). Let f be a function
defined on the interval [0, T], and let x be the sampled sequence given by

xk = f(kT/N) for k = 0, 1, . . . , N − 1.

There is exactly one linear combination g(t) on the form

g(t) =
1√
N

N−1�

n=0

yne
2πint/T

which satisfies the conditions

g(kT/N) = f(kT/N), k = 0, 1, . . . , N − 1

and its coefficients are determined by the DFT y of x.

69

0.2 0.4 0.6 0.8 1.0

�1.0

�0.5

0.5

1.0

(a)

0.2 0.4 0.6 0.8 1.0

�1.0

�0.5

0.5

1.0

(b)

Figure 2.5: An example of sampling. Figure (a) shows how the samples are
picked from an underlying continuous time function. Figure (b) shows what the
samples look like on their own.

The proof for this follows by inserting t = 0, t = T/N , t = 2T/N , . . . ,
t = (N − 1)T/N in the equation f(t) = 1√

N

�
N−1
n=0 yne2πint/T to arrive at the

equations

f(kT/N) =
1√
N

N−1�

n=0

yne
2πink/N 0 ≤ k ≤ N − 1.

This gives us an equation system for finding the yn with the invertible Fourier
matrix as coefficient matrix, and the result follows.

2.8 Reconstruction of a function from its sam-
ples. The sampling theorem.

The second interesting facet to Theorem 2.23 has to do with when exact recon-
struction of a function from its samples is possible. An example of sampling a
function is illustrated in Figure 2.5. From Figure 2.5(b) it is clear that some
information is lost when we discard everything but the sample values. There
may however be an exception to this, if we assume that the function satisfies
some property. Assume for instance that f is equal to a finite Fourier series.
This means that f can be written on the form (2.6), so that the highest fre-
quency in the signal is bounded by M/T . Our analysis prior to Theorem 2.23
states that all such functions can be reconstructed exactly from their samples,
as long as the number of samples is N ≥ 2M + 1, taken uniformly over a pe-
riod. Moreover, the DFT is central in the reconstruction formula. Dividing by
T we get N

T
≥ 2M+1

T
, which states that the sampling frequency (fs = N/T is

the number of samples per second) should be bigger than two times the highest
frequency (M/T). In Figure 2.6 we try to get some intuition on this by consid-
ering some pure tones. In (a) we consider one period of sin 2πt, and see that we
need at least two sample points in [0, 1]: one point would clearly be too little.

70

0.2 0.4 0.6 0.8 1.0

�1.0

�0.5

0.5

1.0

(a)

0.2 0.4 0.6 0.8 1.0

�1.0

�0.5

0.5

1.0

(b)

Figure 2.6: Sampling the function sin 2πt with two points, and the function
sin 2π4t with eight points.

This translates directly into having at least eight sample points in (b) where
the function is sin 2π4t, which has four periods in the interval [0, 1].

Let us restate the reconstruction of f , so that it only uses the samples. The
reconstruction formula was

f(t) =
1√
N

M�

n=−M

zne
2πint/T ,

where the zn can be found from the equations

f(kTs) =
1√
N

M�

n=−M

zne
2πink/N −M ≤ k ≤ M,

where we have substituted N = T/Ts (deduced from T = NTs with Ts being
the sampling period). From this equation we see that

zn =
1√
N

M�

k=−M

f(kTs)e
−2πink/N ,

and inserting this in the reconstruction formula we get

f(t) =
1

N

M�

n=−M

M�

k=−M

f(kTs)e
−2πink/Ne2πint/T

=
M�

k=−M

1

N

�
M�

n=−M

f(kTs)e
2πin(t/T−k/N)

�

=
M�

k=−M

1

N
e−2πiM(t/T−k/N) 1− e2πiN(t/T−k/N)

1− e2πi(t/T−k/N)
f(kTs)

=
M�

k=−M

1

N

sin(π(t− kTs)/Ts)

sin(π(t− kTs)/T)
f(kTs)

71

Let us summarize our findings as follows:

Theorem 2.29 (Sampling theorem and the ideal interpolation formula for
periodic functions). Let f be a periodic function with period T , and assume
that f has no frequencies higher than νHz. Then f can be reconstructed
exactly from its samples f(−MTs), . . . , f(MTs) (where Ts is the sampling
period, N = T

Ts

is the number of samples per period, and M = 2N + 1) when
the sampling rate fs =

1
Ts

is bigger than 2ν. Moreover, the reconstruction can
be performed through the formula

f(t) =
M�

k=−M

f(kTs)
1

N

sin(π(t− kTs)/Ts)

sin(π(t− kTs)/T)
. (2.11)

Formula (2.12) is also called the ideal interpolation formula for periodic
functions. Such formulas, where one reconstructs a function based on a weighted
sum of the sample values, are more generally called interpolation formulas. The
function 1

N

sin(π(t−kTs)/Ts)
sin(π(t−kTs)/T) is also called an interpolation kernel. Note that f

itself may not be equal to a finite Fourier series, and reconstruction is in general
not possible then. The ideal interpolation formula can in such cases still be
used, but the result we obtain may be different from f(t).

It turns out that the interpolation formula above can be rewritten without
the dependence on T and N , i.e. so that the interpolation formula is valid for
all numbers of samples. This formula is what is usually listed in the literature:

Theorem 2.30 (Sampling theorem and the ideal interpolation formula for
periodic functions, general version). Assume that f is periodic with period
T , and has no frequencies higher than νHz. Then f can be reconstructed
exactly from its samples . . . , f(−2Ts), f(−Ts), f(0), f(Ts), f(2Ts), . . . when T
is a multiple of Ts, and when the sampling rate is bigger than 2ν. Moreover,
the reconstruction can be performed through the formula

f(t) =
M�

k=−M

f(kTs)
sin(π(t− kTs)/Ts)

π(t− kTs)/Ts

. (2.12)

Proof. Note first that f can also be viewed as a function with period sT for any
integer s > 1. Writing sT for T , and sN for N in the previous interpolation

72

formula, we get

f(t) =
sM�

k=−sM

f(kTs)
1

sN

sin(π(t− kTs)/Ts)

sin(π(t− kTs)/(sT))

=
rM�

k=−rM

f(kTs)
1

sN

sin(π(t− kTs)/Ts)

sin(π(t− kTs)/(sT))

+
�

rM<|k|≤sM

f(kTs)
1

sN

sin(π(t− kTs)/Ts)

sin(π(t− kTs)/(sT))
,

where we have split the summation further (r is a number smaller than s). Note
that lims→∞ sN sin(π(t − kTs)/(sT)) = π(t − kTs)/Ts. Thus if we let s → ∞
while keeping r fixed, the first sum above converges to

rM�

k=−rM

f(kTs)
sin(π(t− kTs)/Ts)

π(t− kTs)/Ts

.

The second sum can be written as
M�

k=−M

f(kTs)
�

r<|u|≤s

1

sN

sin(π(t− (k + uM)Ts)/Ts)

sin(π(t− (k + uM)Ts)/(sT))
.

The numerator here turns the inner sum into an alternating series, and the
denominator is increasing when r is chosen big enough at the start. This means
that the sum converges, and is bounded by the first term

1

sN sin(π(t− (k + rM)Ts)/(sT))

≤ 2

sNπ(t− (k + rM)Ts)/(sT)
=

2Ts

π(t− (k + rM)Ts)
.

For a given t, this can be made a small as we like, if we choose r big enough.

In the literature one actually shows that this formula is valid also for func-
tions which are not periodic.

2.9 The Fast Fourier Transform (FFT)
The main application of the DFT is as a tool to compute frequency informa-
tion in large datasets. It is therefore important that these operations can be
performed by efficient algorithms. Straightforward implementation from the
definition is not efficient if the data sets are large. However, it turns out that
the underlying matrices may be factored in a way that leads to much more ef-
ficient algorithms, and this is the topic of the present section, where we discuss
the most widely used implementation of the DFT, usually referred to as the Fast

73

Fourier Transform (FFT). For simplicity, we will assume that N , the length of
the vector that is to be transformed by the DFT, is a power of 2. In this case
it is relatively easy to simplify the DFT algorithm via a factorisation of the
Fourier matrix. The foundation is provided by a simple reordering of the DFT.

Theorem 2.31 (FFT algorithm). Let y = FNx be the N -point DFT of x
with N an even number. For any integer n in the interval [0, N/2 − 1] the
DFT y of x is then given by

yn =
1√
2

�
(FN/2x

(e))n + e−2πin/N (FN/2x
(o))n

�
, (2.13)

yN/2+n =
1√
2

�
(FN/2x

(e))n − e−2πin/N (FN/2x
(o))n

�
, (2.14)

where x(e),x(o) are the sequences of length N/2 consisting of the even and
odd samples of x, respectively. In other words,

(x(e))k = x2k for 0 ≤ k ≤ N/2− 1,

(x(o))k = x2k+1 for 0 ≤ k ≤ N/2− 1.

Put differently, the formulas (2.13)–(2.14) reduces the computation of an
N -point DFT to two N/2-point DFT’s. It turns out that this can speed up
computations considerably, but let us first check that these formulas are correct.

Proof. Suppose first that 0 ≤ n ≤ N/2 − 1. We start by splitting the sum in
the expression for the DFT into even and odd indices,

yn =
1√
N

N−1�

k=0

xke
−2πink/N

=
1√
N

N/2−1�

k=0

x2ke
−2πin2k/N +

1√
N

N/2−1�

k=0

x2k+1e
−2πin(2k+1)/N

=
1√
2

1�
N/2

N/2−1�

k=0

x2ke
−2πink/(N/2)

+ e−2πin/N 1√
2

1�
N/2

N/2−1�

k=0

x2k+1e
−2πink/(N/2)

=
1√
2

�
FN/2x

(e)
�

n

+
1√
2
e−2πin/N

�
FN/2x

(o)
�

n

,

where we have substituted x(e) and x(o) as in the text of the theorem, and
recognized the N/2-point DFT in two places. For the second half of the DFT

74

coefficients, i.e. {yN/2+n}0≤n≤N/2−1, we similarly have

yN/2+n =
1√
N

N−1�

k=0

xke
−2πi(N/2+n)k/N =

1√
N

N−1�

k=0

xke
−πike−2πink/N

=
1√
N

N/2−1�

k=0

x2ke
−2πin2k/N − 1√

N

N/2−1�

k=0

x2k+1e
−2πin(2k+1)/N

=
1√
2

1�
N/2

N/2−1�

k=0

x2ke
−2πink/(N/2)

− e−2πin/N 1√
2

1�
N/2

N/2−1�

k=0

x2k+1e
−2πink/(N/2)

=
1√
2

�
FN/2x

(e)
�

n

− 1√
2
e−2πin/N

�
FN/2x

(o)
�

n

.

This concludes the proof.

It turns out that Theorem 2.31 can be interpreted as a matrix factorization.
For this we need to define the concept of a block matrix.

Definition 2.32. Let m0, . . . , mr−1 and n0, . . . , ns−1 be integers, and let
A(i,j) be an mi × nj-matrix for i = 0, . . . , r − 1 and j = 0, . . . , s − 1. The
notation

A =





A(0,0) A(0,1) · · · A(0,s−1)

A(1,0) A(1,1) · · · A(1,s−1)

...
...

...
...

A(r−1,0) A(r−1,1) · · · A(r−1,s−1)





denotes the (m0 + m1 + . . . + mr−1) × (n0 + n1 + . . . + ns−1)-matrix where
the matrix entries occur as in the A(i,j) matrices, in the way they are ordered,
and with solid lines indicating borders between the blocks. When A is written
in this way it is referred to as a block matrix.

We will express the Fourier matrix in factored form involving block matrices.
The following observation is just a formal way to split a vector into its even and
odd components.

Observation 2.33. Define the permutation matrix PN by

(PN)i,2i = 1,

(PN)i,2i−N+1 = 1,

(PN)i,j = 0,

for 0 ≤ i ≤ N/2− 1;
for N/2 ≤ i < N ;
for all other i and j;

and let x be a column vector. The mapping x → Px permutes the components

75

of x so that the even components are placed first and the odd components last,

PNx =

�
x(e)

x(o)

�
,

with x(e), x(o) defined as in Theorem 2.31.

Let DN/2 be the (N/2) × (N/2)-diagonal matrix with entries (DN/2)n,n =

e−2πin/N for n = 0, 1, . . . , N/2 − 1. It is clear from Equation (2.13) that the
first half of y is then given by obtained as

1√
2

�
FN/2 DN/2FN/2

�
PNx,

and from Equation (2.14) that the second half of y can be obtained as

1√
2

�
FN/2 −DN/2FN/2

�
PNx.

From these two formulas we can derive the promised factorisation of the Fourier
matrix.

Theorem 2.34 (DFT matrix factorization). The Fourier matrix may be fac-
tored as

FN =
1√
2

�
FN/2 DN/2FN/2

FN/2 −DN/2FN/2

�
PN . (2.15)

This factorization in terms of block matrices is commonly referred to as the
FFT factorization of the Fourier matrix. In implementations, this factorization
is typically repeated, so that FN/2 is replaced with a factorization in terms of
FN/4, this again with a factorization in terms of FN/8, and so on.

The input vector x to the FFT algorithm is mostly assumed to be real. In
this case, the second half of the FFT factorization can be simplified, since we
have shown that the second half of the Fourier coefficients can be obtained by
symmetry from the first half. In addition we need the formula

yN/2 =
1√
N

N/2−1�

n=0

�
(x(e))n − (x(o))n

�

to obtain coefficient N

2 , since this is the only coefficient which can’t be obtained
from y0, y1, . . . , yN/2−1 by symmetry.

In an implementation based on formula (2.15), we would first compute PNx,
which corresponds to splitting x into the even-indexed and odd-indexed samples.
The two leftmost blocks in the block matrix in (2.15) correspond to applying
the N

2 -point DFT to the even samples. The two rightmost blocks correspond

76

to applying the N/2-point DFT to the odd samples, and multiplying the result
with DN/2. The results from these transforms are finally added together. By
repeating the splitting we will eventually come to the case where N = 1. Then
F1 is just the scalar 1, so the DFT is the trivial assignment y0 = x0. The FFT
can therefore be implemented with the following Matlab code:

function y = FFTImpl(x)

N = length(x);

if N == 1

y = x(1);

else

xe = x(1:2:(N-1));

xo = x(2:2:N);

ye = FFTImpl(xe);

yo = FFTImpl(xo);

D=exp(-2*pi*1j*(0:N/2-1)’/N);

y = [ye + yo.*D; ye - yo.*D]/sqrt(2);

end

Note that this function is recursive; it calls itself. If this is your first encounter
with a recursive program, it is worth running through the code manually for a
given value of N , such as N = 4.

2.9.1 The Inverse Fast Fourier Transform (IFFT)
The IDFT is very similar to the DFT, and it is straightforward to prove the
following analog to Theorem 2.31 and (2.15).

Theorem 2.35 (IDFT matrix factorization). The inverse of the Fourier ma-
trix can be factored as

(FN)H =
1√
2

�
(FN/2)

H EN/2(FN/2)
H

(FN/2)
H −EN/2(FN/2)

H

�
PN , (2.16)

where EN/2 is the (N/2) × (N/2)-diagonal matrix with entries given by
(EN/2)n,n = e2πin/N , for n = 0, 1, . . . , N/2− 1.

We note that the only difference between the factored forms of FN and FH

N

is the positive exponent in e2πin/N . With this in mind it is straightforward to
modify FFTImpl.m so that it performs the inverse DFT.

Matlab has built-in functions for computing the DFT and the IDFT using the
FFT algorithm. These functions are called fft and ifft. Note, however, that
these functions do not use the normalizing factor 1/

√
N that we have adopted

here. The Matlab help pages give a short description of these algorithms. Note
in particular that Matlab makes no assumption about the length of the vector.
Matlab may however check if the length of the vector is 2r, and in those cases a

77

variant of the algorithm discussed here is used. In general, fast algorithms exist
when the vector length N can be factored as a product of small integers.

Many audio and image formats make use of the FFT. To get optimal speed
these algorithms typically split the signals into blocks of length 2r with r some
integer in the range 5–10 and utilise a suitable variant of the algorithms discussed
above.

2.9.2 Reduction in the number of multiplications with the
FFT

Before we continue we also need to explain why the FFT and IFFT factoriza-
tions lead to more efficient implementations than the direct DFT and IDFT
implementations. We first need some terminology for how we count the number
of operations of a given type in an algorithm. In particular we are interested in
the limiting behaviour when N becomes large, which is the motivation for the
following definition.

Definition 2.36 (Order of an algorithm). Let RN be the number of operations
of a given type (such as multiplication or addition) in an algorithm, where N
describes the dimension of the data in the algorithm (such as the size of the
matrix or length of the vector), and let f be a positive function. The algorithm
is said to be of order N , also written O(f(N)), if the number of operations
grows as f(N) for large N , or more precisely, if

lim
N→∞

RN

f(N)
= 1.

We will also use this notation for functions, and say that a real function g
is O(f(x)) if lim g(x)/f(x) = 0 where the limit mostly will be taken as x → 0
(this means that g(x) is much smaller than f(x) when x approaches the limit).

Let us see how we can use this terminology to describe the complexity of
the FFT algorithm. Let MN be the number of multiplications needed by the
N -point FFT as defined by Theorem 2.31. It is clear from the algorithm that

MN = 2MN/2 +N/2. (2.17)

The factor 2 corresponds to the two matrix multiplications, while the term N/2
denotes the multiplications in the exponent of the exponentials that make up
the matrix DN/2 (or EN/2). The exponent 2πi/N may be computed once and
for all outside the loops, and has therefore not been counted. Also, we have
not counted the multiplications with 1/sqrt(2). The reason is that, in most
implementations, this factor is absorbed in the definition of the DFT itself.

Note that all multiplications performed by the FFT are complex. It is normal
to count the number of real multiplications instead, since any multiplication of
two complex numbers can be performed as four multiplications of real numbers

78

(and two additions), by writing the number in terms of its real and imaginary
part, and myltiplying them together. Therefore, if we instead define MN to be
the number of real multiplications required by the FFT, we obtain the alterna-
tive recurrence relation

MN = 2MN/2 + 2N. (2.18)

In Exercise 2 you will be asked to derive the solution of this equation and
show that the number of real multiplications required by this algorithm is
O(2N log2 N). In contrast, the direct implementation of the DFT requires N2

complex multiplications, and thus 4N2 real multiplications. The exact same
numbers are found for the IFFT.

Theorem 2.37 (Number of operations in the FFT and IFFT algorithms).
The N -point FFT and IFFT algorithms both require O(2N log2 N) real mul-
tiplications. In comparison, the number of real multiplications required by
direct implementations of the N -point DFT and IDFT is 4N2.

In other words, the FFT and IFFT significantly reduce the number of mul-
tiplications, and one can show in a similar way that the number of additions
required by the algorithm is also roughly O(N log2 N). This partially explains
the efficiency of the FFT algorithm. Another reason is that since the FFT splits
the calculation of the DFT into computing two DFT’s of half the size, the FFT
is well suited for parallel computing: the two smaller FFT’s can be performed
independently of one another, for instance in two different computing cores on
the same computer.

2.9.3 Applications of the FFT
The FFT has been stated as one the ten most important inventions of the
20’th century. With its invention, the Discrete Fourier Transform was within
computational reach in many fields. Real time processing is one important
apllication, such as processing of sound, image, and video.

Compression of sound is one of the many important applications of the FFT.
The MP3 standard uses it to find the different frequency components in sound,
and to macth this information with a psychoachoustic model, in order to find
how the different data should be compressed. We will later see that a set of
filters is applied to the sound data. It turns out that the MP3 standard applies
the FFT to the sound data directly, not to the filtered data. The output of
the FFT and the psychoachoustic model is then applied to the filtered data, to
decide how this data should be compressed.

Exercises for Section 2.9
1. (Trial exam UIO Spring 2012)

79

a. Compute the DFT of the vectors x1 = (1, 3, 5, 7), and of x2 =
(2, 4, 6, 8) (i.e. compute F4x1 and F4x2).

b. Explain how you can compute the DFT of the vector (1, 2, 3, 4, 5, 6, 7, 8)
based on the computation from a. (you don’t need to perform the actual
computation). What are the benefits of this approach, and what is the
algorithm called?

2. In this exercise we will compute the number of real multiplications needed by
the FFT algorithm given in the text. The starting point will be the difference
equation (2.18) for the number of real multiplications for an N -point FFT.

a. Explain why xr = M2r is the solution to the difference equation xr+1−
2xr = 4 · 2r.

b. Show that the general solution to the difference equation is xr =
2r2r + C2r.

c. Explain why MN = O(2N log2 N) (you do not need to write down the
initial conditions for the difference equation in order to find the particular
solution).

3. When we wrote down the difference equation MN = 2MN/2 + 2N for the
number of multiplications in the FFT algorithm, you could argue that some
multiplications were not counted. Which multiplications in the FFT algorithm
were not counted when writng down this difference equation? Do you have a
suggestion to why these multiplications were not counted?

4. Write down a difference equation for computing the number of real additions
required by the FFT algorithm.

5. It is of course not always the case that the number of points in a DFT is
N = 2n. In this exercise we will see how we can attack the more general case.

a. Assume that N can be divided by 3, and consider the following split-
ting, which follows in the same way as the splitting used in the deduction

80

of the FFT-algorithm:

yn =
1√
N

N−1�

k=0

xke
−2πink/N

=
1√
N

N/3−1�

k=0

x3ke
−2πin3k/N +

1√
N

N/3−1�

k=0

x3k+1e
−2πin(3k+1)/N

+
1√
N

N/3−1�

k=0

x3k+2e
−2πin(3k+2)/N

Find a formula which computes y0, y1, . . . , yN/3−1 by performing 3 DFT’s
of size N/3.

b. Find similar formulas for computing yN/3, yN/3+1, . . . , y2N/3−1, and
y2N/3, y2N/3 + 1, . . . , yN−1. State a similar factorization of the DFT ma-
trix as in Theorem 2.34, but this time where the matrix has 3× 3 blocks.

c. Assume that N = 3n, and that you implement the FFT using the
formulas you have deduced in a. and b.. How many multiplications does
this algorithm require?

d. Sketch a general procedure for speeding up the computation of the
DFT, which uses the factorization of N into a product of prime numbers.

2.10 Summary
We defined digital sound, and demonstrated how we could perform simple op-
erations on digital sound such as adding noise, playing at different rates e.t.c..
Digital sound could be obtained by sampling the sounds from the previous chap-
ter. We considered the analog of Fourier series for digital sound, which is called
the Discrete Fourier Transform, and looked at its properties and its relation to
Fourier series. We also saw that the sampling theorem guaranteed that there
is no loss in considering the samples of a function, as long as the sampling rate
is high enough compared to the highest frequency in the sound. We also ob-
tained an implementation of the DFT, called the FFT, which is more efficient in
terms of the number of arithmetic operations than a direct implementation of
the DFT. The FFT has been cited as one of the ten most important algorithms
of the 20’th century [3]. The original paper [4] by Cooley and Tukey dates back
to 1965.

81

Chapter 3

Operations on digital sound:

digital filters

In Section 1.8 we defined analog filters as operations on sound which preserved
different frequencies. Such operations are important since they can change the
frequency content in many ways. Analog filters can not be used computationally,
however, since they are defined for all instances in time. As when we defined the
DFT to make Fourier series computable, we would like to define digital filters,
in order to make analog filters computable. It turns out that what we will define
as digital filters can be computed by the following procedure:

zn =
1

4
(xn−1 + 2xn + xn+1), for n = 0, 1, . . . , N − 1. (3.1)

Here x denotes the input vector, and z the output vector. In other words, the
output of a digital filter is constructed by combining several input elements
linearly. The concrete filter defined by Equation (3.1) is called a smoothing
filter. We will demonstrate that it smooths the variations in the sound, and
this is where it gets its name from. We will start this chapter by by looking
at matrix representations for operations as given by Equation (3.1). Then we
will formally define digital filters in terms of preservation of frequencies as we
did for analog filters, and show that the formal definition is equivalent to such
operations.

3.1 Matrix representations of filters
Let us consider Equation (3.1) in some more detail to get more intuition about
filters. As before we assume that the input vector is periodic with period N ,
so that xn+N = xn. Our first observation is that the output vector z is also
periodic with period N since

zn+N =
1

4
(xn+N−1 + 2xn+N + xn+N+1) =

1

4
(xn−1 + 2xn + xn+1) = zn.

82

The filter is also clearly a linear transformation and may therefore be represented
by an N×N matrix S that maps the vector x = (x0, x1, . . . , xN−1) to the vector
z = (z0, z1, . . . , zN−1), i.e., we have z = Sx. To find S, for 1 ≤ n ≤ N − 2 it
is clear from Equation (3.1) that row n has the value 1/4 in column n− 1, the
value 1/2 in column n, and the value 1/4 in column n+1. For row 0 we must be
a bit more careful, since the index −1 is outside the legal range of the indices.
This is where the periodicity helps us out so that

z0 =
1

4
(x−1 + 2x0 + x1) =

1

4
(xN−1 + 2x0 + x1) =

1

4
(2x0 + x1 + xN−1).

From this we see that row 0 has the value 1/4 in columns 1 and N − 1, and the
value 1/2 in column 0. In exactly the same way we can show that row N − 1
has the entry 1/4 in columns 0 and N − 2, and the entry 1/2 in column N − 1.
In summary, the matrix of the smoothing filter is given by

S =
1

4





2 1 0 0 · · · 0 0 0 1
1 2 1 0 · · · 0 0 0 0
0 1 2 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1 2 1
1 0 0 0 · · · 0 0 1 2





. (3.2)

A matrix on this form is called a Toeplitz matrix. The general definition is as
follows and may seem complicated, but is in fact quite straightforward:

Definition 3.1 (Toeplitz matrices). An N ×N -matrix S is called a Toeplitz
matrix if its elements are constant along each diagonal. More formally, Sk,l =
Sk+s,l+s for all nonnegative integers k, l, and s such that both k+ s and l+ s
lie in the interval [0, N − 1]. A Toeplitz matrix is said to be circulant if in
addition

S(k+s) mod N,(l+s) mod N = Sk,l

for all integers k, l in the interval [0, N − 1], and all s (Here mod denotes the
remainder modulo N).

Toeplitz matrices are very popular in the literature and have many applica-
tions. A Toeplitz matrix is constant along each diagonal, while the additional
property of being circulant means that each row and column of the matrix
’wraps over’ at the edges. Clearly the matrix given by Equation (3.2) satisfies
Definition 3.1 and is a circulant Toeplitz matrix. A Toeplitz matrix is uniquely
identified by the values on its nonzero diagonals, and a circulant Toeplitz matrix
is uniquely identified by the values on the main diagonal, and on the diagonals
above (or under) it. While Toeplitz matrices here show up in the context of
filters, they will also show up later in the context of wavelets.

Equation (3.1) leads us to the more general expression

zn =
�

k

tkxn−k. (3.3)

83

This general expression opens up for defining many types of operations. The
values tk will be called filter coefficients. The range of k is not specified, but
is typically an interval around 0, since zn usually is calculated by combining
xk’s with indices close to n. Both positive and negative indices are allowed.
As an example, for formula (3.1) k ranges over −1, 0, and 1, and we have that
t−1 = t1 = 1/4, and t0 = 1/2. By following the same argument as above, the
following is clear:

Proposition 3.2. Any operation defined by Equation (3.3) is a linear trans-
formation which transforms a vector of period N to another of period N .
It may therefore be represented by an N × N matrix S that maps the vec-
tor x = (x0, x1, . . . , xN−1) to the vector z = (z0, z1, . . . , zN−1), i.e., we have
z = Sx. Moreover, the matrix S is a circulant Toeplitz matrix, and the first
column s of this matrix is given by

sk =

�
tk, if 0 ≤ k < N/2;

tk−N if N/2 ≤ k ≤ N − 1.
(3.4)

In other words, the first column of S can be obtained by placing the coefficients
in (3.3) with positive indices at the beginning of s, and the coefficients with
negative indices at the end of s.

This proposition will be useful for us, since it explains how to pass from the
form (3.3), which is most common in practice, to the matrix form S.

Example 3.3. Let us apply Proposition 3.2 to the operation defined by for-
mula (3.1):

1. for k = 0 Equation 3.4 gives s0 = t0 = 1/2.

2. For k = 1 Equation 3.4 gives s1 = t1 = 1/4.

3. For k = N − 1 Equation 3.4 gives sN−1 = t−1 = 1/4.

For all k different from 0, 1, and N − 1, we have that sk = 0. Clearly this gives
the matrix in Equation (3.2). ♣

Proposition 3.2 is also useful when we have a circulant Toeplitz matrix S,
and we want to find filter coefficients tk so that z = Sx can be written on the
form (3.3):

Example 3.4. Consider the matrix

S =





2 1 0 3
3 2 1 0
0 3 2 1
1 0 3 2



 .

84

This is a circulant Toeplitz matrix with N = 4, and we see that s0 = 2, s1 = 3,
s2 = 0, and s3 = 1. The first equation in (3.4) gives that t0 = s0 = 2, and
t1 = s1 == 3. The second equation in (3.4) gives that t−2 = s2 = 0, and
t−1 = s3 = 1. By including only the tk which are nonzero, the operation can be
written as

zn = t−1xn−(−1) + t0xn + t1xn−1 + t2xn−2 = xn+1 + 2x0 + 3xn−1.

♣

Exercises for Section 3.1
1. Assume that the filter S is defined by the formula

zn =
1

4
xn+1 +

1

4
xn +

1

4
xn−1 +

1

4
xn−2.

Write down the filter coefficients tk, and the matrix for S when N = 8.

2. Given the circulant Toeplitz matrix

S =





1 2 0 0
0 1 2 0
0 0 1 2
2 0 0 1



 ,

write down the filter coefficients tk.

3. Assume that S is a circulant Toeplitz matrix so that only

S0,0, . . . , S0,F and S0,N−E , . . . , S0,N−1

are nonzero on the first row, where E, F are given numbers. When implementing
this filter on a computer we need to make sure that the vector indices lie in
[0, N − 1]. Show that zn = (Sx)n can be split into the following different
formulas, depending on n, to achieve this:

a. 0 ≤ n < E:

zn =
n−1�

k=0

S0,N+k−nxk +
F+n�

k=n

S0,k−nxk +
N−1�

k=N−1−E+n

S0,k−nxk. (3.5)

b. E ≤ n < N − F :

zn =
n+F�

k=n−E

S0,k−nxk. (3.6)

85

c. N − F ≤ n < N :

zn =

n−(N−F)�

k=0

S0,k−nxk +
n−1�

k=n−E

S0,N+k−nxk +
N−1�

k=n

S0,k−nxk. (3.7)

From these three formulas we can write down a full implementation of the filter.
This implementation is often more useful than writing down the entire matrix
S, since we save computation when many of the matrix entries are zero.

3.2 Formal definition of filters and the vector fre-
quency response

Let us now define digital filters formally, and establish their relationship to
Toeplitz matrices. We have seen that a sound can be decomposed into different
frequency components, and we would like to define filters as operations which
adjust these frequency components in a predictable way. One such example is
provided in Example 2.27, where we simply set some of the frequency compo-
nents to 0. The natural starting point is to require for a filter that the output
of a pure tone is a pure tone with the same frequency.

Definition 3.5 (Digital filters and vector frequency response). A linear trans-
formation S : RN �→ RN is a said to be a digital filter, or simply a filter, if it
maps any Fourier vector in RN to a multiple of itself. In other words, for any
integer n in the range 0 ≤ n ≤ N − 1 there exists a value λS,n so that

S (φn) = λS,nφn, (3.8)

i.e., the N Fourier vectors are the eigenvectors of S. The vector of (eigen)values
λS = (λS,n)

N−1
n=0 is often referred to as the (vector) frequency response of S.

We will identify the linear transformation S with its matrix relative to the
standard basis. Since the Fourier basis vectors are orthogonal vectors, S is
clearly orthogonally diagonalizable. Since also the Fourier basis vectors are the
columns in (FN)H , we have that

S = FH

N
DFN (3.9)

whenever S is a digital filter, where D has the frequency response (i.e. the
eigenvalues) on the diagonal1. In particular, if S1 and S2 are digital filters, we
can write S1 = FH

N
D1FN and S2 = FH

N
D2FN , so that

S1S2 = FH

N
D1FNFH

N
D2FN = FH

N
D1D2FN .

1Recall that the orthogonal diagonalization of S takes the form S = PDPT , where P
contains as columns an orthonormal set of eigenvectors, and D is diagonal with the eigenvectors
listed on the diagonal (see Section 7.1 in [8]).

86

Since D1D2 = D2D1 for any diagonal matrices, we get the following corollary:

Corollary 3.6. The product of two digital filters is again a digital filter.
Moreover, all digital filters commute, i.e. if S1 and S2 are digital filters,
S1S2 = S2S1.

Clearly also S1+S2 is a filter when S1 and S2 are. The set of all filters is thus
a vector space, which also is closed under multiplication. Such a space is called
an algebra. Since all filters commute, this algebra is also called a commutative
algebra.

The formal definition of digital filters resembles that of analog filters, the
difference being that the Fourier basis is now discrete. From this one may think
that one can construct digital filters from analog filters. The following result
clarifies this:

Theorem 3.7. Let s be an analog filter with frequency response λs(f), and
assume that f1 ∈ VM,T and that s(f1) = f2. Let

x = (f1(0 · T/N), f1(1 · T/N), . . . , f1((N − 1)T/N))

z = (f2(0 · T/N), f2(1 · T/N), . . . , f2((N − 1)T/N))

be vectors of N = 2M + 1 uniform samples from the input and the output.
Then the operation S : x → z (i.e. the operation which sends the samples
of the input to the samples of the output) is well-defined on RN , and is an
N ×N -digital filter with frequency response λS,n = λs(n/T).

Proof. Assume that s(f1) = f2. When N = 2M + 1 we have that f1 ∈ VM,T is
uniquely determined from the N sample values in x. This means that s(f1) also
is uniquely determined from x, so that the sample values in z also are uniquely
determined from x. It follows that the operation S : x → z is well-defined on
RN .

Clearly also s(e2πint/T) = λs(n/T)e2πint/T . Since the samples of e2πint/T

is the vector e2πikn/N , and the samples of λs(n/T)e2πint/T is λs(n/T)e2πikn/N ,
the vector e2πikn/N is an eigenvector of S with eigenvalue λs(n/T). Clearly then
S is a digital filter with frequency response λS,n = λs(n/T).

It is interesting that the digital frequency response above is obtained by
sampling the analog frequency response. In this way we also see that it is easy
to realize any digital filter as the restriction of an analog filter: any analog filter
s will do where the frequency response has the values λS,n at the points n/T . In
the theorem it is essential that f1 ∈ VM,T . There are many functions with the
same samples, but where the samples of the output from the analog filter are
different. When we restrict to VM,T , however, the output samples are always
determined from the input samples.

The previous theorem explains how digital filters can occur in practice. In
the real world, a signal is modeled as a continuous signal f1(t), and an operation

87

f1
s ��

s

��

f2

x
S �� z

r

��

Figure 3.1: The connections between sampling, analog and digital filters pro-
vided by Theorem 3.7. The vertical arrows here represent sampling (s) and
reconstruction (r).

on signals as an analog filter s. We can’t compute the entire output s(f1) of the
analog filter, but we can obtain the vector x by sampling f1, and then compute
the output of a corresponding digital filter S. The output f2 can finally be
approximated by finding a function in VM,T interpolating this output, using the
interpolation formula from the sampling theorem. The role of a digital filter as
an approximation to an analog filter is illustrated in Figure 3.1. This clearly also
shows the algorithm for approximating the analog filter in terms of sampling, a
digital filter, and reconstruction/interpolation. If the input to s is in VM,T , then
clearly there is no error in using the digital filter instead of the analog filter. If
there is a bound on the highest frequency in f1, then f1 lies in some VM,T (as
long as M is chosen big enough), so that the output can be computed exactly.
What happens when there is no bound on the highest frequency? We know
that s((f1)N) = (f2)N . Since (f1)N is a good approximation to f1, the samples
x of f are close to the samples of fN . By continuity of the digital filter, the
output z of the filter will also be close to the samples of (f2)N (since z = Sx
and (f2)N = s((f1)N)). The interpolation formula from the sampling theorem
then gives a good approximation to (f2)N , which is again a good approximation
to f2. By construction then, the digital filter is a better approximation when
N is high. It is also a better approximation in cases where the Fourier series
(f1)N is a very good approximation. We can summarize this as follows:

Idea 3.8 (Approximating an analog filter). An analog filter s can be approxi-
mated by applying the digital filter S with frequency response λS,n = λs(n/T),
to samples of the input. When we restrict s to VM,T , it is the same as the
digital filter. When we increase the size N of the filter, the approximation
becomes better. If there is a bound on the highest frequency in the sound,
there exists an N so that the output can be computed exactly with the digital
filter for that size.

There are several other equivalent characterizations of a digital filter as well.
The next characterization helps us prove that the operations we started this
chapter with actually are filters.

88

Theorem 3.9. A linear transformation S is a digital filter if and only if it is
a circulant Toeplitz matrix.

Proof. That S is a filter is equivalent to the fact that S = (FN)HDFN for some
diagonal matrix D. We observe that the entry at position (k, l) in S is given by

Sk,l =
1

N

N−1�

n=0

e2πikn/NλS,ne
−2πinl/N =

1

N

N−1�

n=0

e2πi(k−l)n/NλS,n.

Another entry on the same diagonal (shifted s rows and s columns) is

S(k+s) mod N,(l+s) mod N =
1

N

N−1�

n=0

e2πi((k+s) mod N−(l+s) mod N)n/NλS,n

=
1

N

N−1�

n=0

e2πi(k−l)n/NλS,n = Sk,l,

which proves that S is a circulant Toeplitz matrix. Conversely, if S is a circulant
Toeplitz matrix, it is an exercise to prove that e2πikn/N are eigenvectors, so that
S is a digital filter.

In particular, operations defined by (3.3) are digital filters, when restricted to
vectors with period N . The following results enables us to compute the eigenval-
ues/frequency response easily, so that we do not need to form the characteristic
polynomial and find its roots:

Theorem 3.10. Any digital filter is uniquely characterized by the values in
the first column of its matrix. Moreover, if s is the first column in S, the
frequency response of S is given by

λS =
√
NFNs. (3.10)

Conversely, if we know the frequency response λS , the first column s of S is
given by

s =
1√
N

(FN)HλS . (3.11)

Proof. If we replace S by (FN)HDFN we find that

FNs = FNS





1
0
...
0




= FNFH

N
DFN





1
0
...
0




= DFN





1
0
...
0




=

1√
N

D




1
...
1



 ,

89

where we have used the fact that the first column in FN has all entries equal to
1/

√
N . But the diagonal matrix D has all the eigenvalues of S on its diagonal,

and hence the last expression is the vector of eigenvalues λS , which proves (3.10).
Equation (3.11) follows directly by applying the inverse DFT to (3.10).

The first column s, which thus characterizes the filter, is also called the
impulse response. This name stems from the fact that we can write s = Se0,
i.e. the vector s is the output (often called response) to the vector e0 (often
called an impulse). Equation (3.10) states that the frequency response can be
written as

λS,n =
N−1�

k=0

ske
−2πink/N , for n = 0, 1, . . . , N − 1, (3.12)

where sk are the components of s.

Example 3.11. The identity matrix is a digital filter since I = (FN)HIFN .
Since e0 is the first column, it has impulse response s = e0. Its frequency
response has 1 in all components and therefore preserves all frequencies, as
expected. ♣

Example 3.12. When only few of the coefficients sk are nonzero, it is possible
to obtain nice expressions for the frequency response. To see this, let us compute
the frequency response of the filter defined from formula (3.1). We saw that
the first column of the corresponding Toeplitz matrix satisfied s0 = 1/2, and
sN−1 = s1 = 1/4. The frequency response is thus

λS,n =
1

2
e0 +

1

4
e−2πin/N +

1

4
e−2πin(N−1)/N

=
1

2
e0 +

1

4
e−2πin/N +

1

4
e2πin/N =

1

2
+

1

2
cos(2πn/N).

♣

Equations (3.9), (3.10), and (3.11) are important relations between the
matrix- and frequency representations of a filter. We see that the DFT is a
crucial ingredient in these relations. A consequence is that, once you recognize
a matrix as circulant Toeplitz, you do not need to make the tedious calculation
of eigenvectors and eigenvalues which you are used to. Let us illustrate this
with an example.

Example 3.13. Let us compute the eigenvalues and eigenvectors of the simple
matrix

S =

�
4 1
1 4

�
.

It is straightforward to compute the eigenvalues and eigenvectors of this matrix
the way you learnt in your first course in linear algebra. However, this matrix
is also a circulant Toeplitz matrix, so that we can use the results in this section

90

to compute the eigenvalues and eigenvectors. Since here N = 2, we have that
e2πink/N = eπink = (−1)nk. This means that the Fourier basis vectors are
(1, 1)/

√
2 and (1,−1)/

√
2, which also are the eigenvectors of S. The eigenvalues

are the frequency response of S, which can be obtained as
√
NFNs =

√
2

1√
2

�
1 1
1 −1

��
4
1

�
=

�
5
3

�

The eigenvalues are thus 3 and 5. You could have obtained the same result
with Matlab. Note that Matlab may not return the eigenvectors exactly as
the Fourier basis vectors, since the eigenvectors are not unique (the multiple
of an eigenvector is also an eigenvector). Matlab may here for instance switch
the signs of the eigenvectors. We have no control over what Matlab actually
chooses to do, since it uses some underlying numerical algorithm for computing
eigenvectors which we can’t influence. ♣

In signal processing, the frequency content of a vector (i.e., its DFT) is
also referred to as its spectrum. This may be somewhat confusing from a linear
algebra perspective, because in this context the term spectrum is used to denote
the eigenvalues of a matrix. But because of Theorem 3.10 this is not so confusing
after all if we interpret the spectrum of a vector (in signal processing terms) as
the spectrum of the corresponding digital filter (in linear algebra terms).

Certain vectors are easy to express in terms of the Fourier basis. This enables
us to compute the output of such vectors from a digital filter easily, as the
following example shows.
Example 3.14. Let us consider the filter S defined by zn = 1

6 (xn+2 +4xn+1 +
6xn + 4xn−1 + xn−2), and see how we can compute Sx when

x = (cos(2π5 · 0/N), cos(2π5 · 1/N), . . . , cos(2π5 · (N − 1)/N)) ,

where N is the length of the vector. We note first that
√
Nφ5 =

�
e2πi5·0/N , e2πi5·1/N , . . . , e2πi5·(N−1)/N

�

√
NφN−5 =

�
e−2πi5·0/N , e−2πi5·1/N , . . . , e−2πi5·(N−1)/N

�
,

Since e2πi5k/N + e−2πi5k/N = 2 cos(2π5k/N), we get by adding the two vectors
that x = 1

2

√
N(φ5+φN−5). Since the φn are eigenvectors, we have expressed x

as a sum of eigenvectors. The corresponding eigenvalues are given by the vector
frequency response, so let us compute this. If N = 8, computing Sx means to
multiply with the 8× 8 circulant Toeplitz matrix

1

6





6 4 1 0 0 0 1 4
4 6 4 1 0 0 0 1
1 4 6 4 1 0 0 0
0 1 4 6 4 1 0 0
0 0 1 4 6 4 1 0
0 0 0 1 4 6 4 1
1 0 0 0 1 4 6 4
4 1 0 0 0 1 4 6





91

We now see that

λS,n =
1

6
(6 + 4e−2πin/N + e−2πi2n/N + e−2πi(N−2)n/N + 4e−2πi(N−1)n/N)

=
1

6
(6 + 4e2πin/N + 4e−2πin/N + e2πi2n/N + e−2πi2n/N)

= 1 +
4

3
cos(2πn/N) +

1

3
cos(4πn/N).

The two values of this we need are

λS,5 = 1 +
4

3
cos(2π5/N) +

1

3
cos(4π5/N)

λS,N−5 = 1 +
4

3
cos(2π(N − 5)/N) +

1

3
cos(4π(N − 5)/N)

= 1 +
4

3
cos(2π5/N) +

1

3
cos(4π5/N).

Since these are equal, x is a sum of eigenvectors with equal eigenvalues. This
means that x itself also is an eigenvector, with the same eigenvalue, so that

Sx =

�
1 +

4

3
cos(2π5/N) +

1

3
cos(4π5/N)

�
x.

♣

Exercises for Section 3.2
1. Let S be a circulant Toeplitz matrix. Show that the Fourier vectors e2πikn/N
are eigenvectors of S. This completes the proof of the converse part of Theo-
rem 3.9.

2. Let S be a digital filter. Show that S is symmetric if and only if the frequency
response satisfies sk = sN−k for all k.

3. Consider the matrix

S =





4 1 3 1
1 4 1 3
3 1 4 1
1 3 1 4



 .

a. Compute the eigenvalues and eigenvectors of S using the results of this
section. You should only need to perform one DFT in order to achieve
this.

b. Verify the result from a. by computing the eigenvectors and eigenval-
ues the way you taught in your first course in linear algebra. This should
be a much more tedious task.

92

c. Use Matlab to compute the eigenvectors and eigenvalues of S also.
For some reason some of the eigenvectors seem to be different from the
Fourier basis vectors, which you would expect from the theory in this
section. Try to find an explanation for this.

4. Assume that S1 and S2 are two circulant Toeplitz matrices.

a. How can you express the eigenvalues of S1 + S2 in terms of the eigen-
values of S1 and S2?

b. How can you express the eigenvalues of S1S2 in terms of the eigenvalues
of S1 and S2?

c. If A and B are general matrices, can you find a formula which expresses
the eigenvalues of A + B and AB in terms of those of A and B? If not,
can you find a counterexample to what you found in a. and b.?

5. Consider the linear mapping S which keeps every second component in RN ,
i.e. S(e2k) = e2k, and S(e2k−1) = 0. Is S a digital filter?

3.3 The continuous frequency response and prop-
erties

If we make the substitution ω = 2πn/N in the formula for λS,n, we may interpret
the frequency response as the values on a continuous function on [0, 2π).

Theorem 3.15. The function λS(ω) defined on [0, 2π) by

λS(ω) =
�

k

tke
−ikω, (3.13)

where tk are the filter coefficients of S, satisfies

λS,n = λS(2πn/N) for n = 0, 1, . . . , N − 1

for any N . In other words, regardless of N , the vector frequency reponse lies
on the curve λS .

93

Proof. For any N we have that

λS,n =
N−1�

k=0

ske
−2πink/N =

�

0≤k<N/2

ske
−2πink/N +

�

N/2≤k≤N−1

ske
−2πink/N

=
�

0≤k<N/2

tke
−2πink/N +

�

N/2≤k≤N−1

tk−Ne−2πink/N

=
�

0≤k<N/2

tke
−2πink/N +

�

−N/2≤k≤−1

tke
−2πin(k+N)/N

=
�

0≤k<N/2

tke
−2πink/N +

�

−N/2≤k≤−1

tke
−2πink/N

=
�

−N/2≤k<N/2

tke
−2πink/N = λS(ω).

where we have used Equation (3.4).

Both λS(ω) and λS,n will be referred to as frequency responses in the follow-
ing. To distinguish the two, while λS,n is called the vector frequency response of
S, λS(ω)) is called the continuous frequency response of S. ω is called angular
frequency.

The difference in the definition of the continuous- and the vector frequency
response lies in that one uses the filter coefficients tk, while the other uses the
impulse response sk. While these contain the same values, they are ordered dif-
ferently. Had we used the impulse response to define the continuous frequency
response, we would have needed to compute

�
N−1
k=0 ske−πiω, which does not con-

verge when N → ∞ (although it gives the right values at all points ω = 2πn/N
for all N)! The filter coefficients avoid this convergence problem, however, since
we assume that only tk with |k| small are nonzero. In other words, filter coef-
ficients are used in the definition of the continuous frequency response so that
we can find a continuous curve where we can find the vector frequency response
values for all N .

The frequency response contains the important characteristics of a filter,
since it says how it behaves for the different frequencies. When analyzing a
filter, we therefore often plot the frequency response. Often we plot only the
absolute value (or the magnitude) of the frequency response, since this is what
explains how each frequency is amplified or attenuated. Since λS is clearly
periodic with period 2π, we may restrict angular frequency to the interval [0, 2π).
The conclusion in Observation 2.26 was that the low frequencies in a vector
correspond to DFT indices close to 0 and N−1, and high frequencies correspond
to DFT indices close to N/2. This observation is easily translated to a statement
about angular frequencies:

Observation 3.16. When plotting the frequency response on [0, 2π), angular
frequencies near 0 and 2π correspond to low frequencies, angular frequencies
near π correspond to high frequencies

94

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

(a)

�3 �2 �1 1 2 3

0.2

0.4

0.6

0.8

1.0

(b)

Figure 3.2: The (absolute value of the) frequency response of the moving average
filter of Formula (3.1) from the beginning of this chapter.

λS may also be viewed as a function defined on the interval [−π, π). Plotting
on [−π, π] is often done in practice, since it makes clearer what corresponds to
lower frequencies, and what corresponds to higher frequencies:

Observation 3.17. When plotting the frequency response on [−π, π), angular
frequencies near 0 correspond to low frequencies, angular frequencies near ±π
correspond to high frequencies.

The following holds:

Theorem 3.18. Assume that s is an analog filter, and that we sample a
periodic function at rate fs over one period, and denote the corresponding
digital filter by S. The analog and digital frequency responses are related by
λs(f) = λS(2πffs).

To see this, note first that S has frequency response λS,n = λs(n/T) =
λs(f), where f = n/T . We then rewrite λS,n = λS(2πn/N) = λS(2πfT/N) =
λS(2πffs).

Example 3.19. In Example 3.12 we computed the vector frequency response
of the filter defined in formula (3.1). The filter coefficients are here t−1 = 1/4,
t0 = 1/2, and t1 = 1/4. The continuous frequency response is thus

λS(ω) =
1

4
eiω +

1

2
+

1

4
e−iω =

1

2
+

1

2
cosω.

Clearly this matches the computation from Example 3.12. Figure 3.2 shows
plots of this frequency response, plotted on the intervals [0, 2π) and [−π, π).
Both the continuous frequency response and the vector frequency response for
N = 51 are shown. Figure (b) shows clearly how the high frequencies are
softened by the filter. ♣

95

Since the frequency response is essentially a DFT, it inherits several proper-
ties from Theorem 2.21. We will mostly use the continuous frequency response
to express these properties.

Theorem 3.20. We have that

1. The continuous frequency response satisfies λS(−ω) = λS(ω).

2. If S is a digital filter, ST is also a digital filter. Morever, if the frequency
response of S is λS(ω), then the frequency response of ST is λS(ω).

3. If S is symmetric, λS is real. Also, if S is antisymmetric (the element on
the opposite side of the diagonal is the same, but with opposite sign),
λS is purely imaginary.

4. A digital filter S is an invertible if and only if λS,n �= 0 for all n. In that
case S−1 is also a digital filter, and λS−1,n = 1/λS,n.

5. If S1 and S2 are digital filters, then S1S2 also is a digital filter, and
λS1S2(ω) = λS1(ω)λS2(ω).

Proof. Property 1. and 3. follow directly from Theorem 2.21. Transposing a
matrix corresponds to reversing the first colum of the matrix and thus also the
filter coefficients. Due to this Property 2. also follows from Theorem 2.21. If
S = (FN)HDFN , and all λS,n �= 0, we have that S−1 = (FN)HD−1FN , where
D−1 is a digonal matrix with the values 1/λS,n on the diagonal. Clearly then
S−1 is also a digital filter, and its frequency response is λS−1,n = 1/λS,n, which
proves 4. The last property follows in the same was as we showed that filters
commute:

S1S2 = (FN)HD1FN (FN)HD2FN = (FN)HD1D2FN .

The frequency response of S1S2 is thus obtained by multiplying the frequency
responses of S1 and S2.

In particular the frequency response may not be real, although this was the
case in the first example of this section. Theorem 3.20 applies also for the vector
frequency response.

Example 3.21. Assume that the filters S1 and S2 have the frequency responses
λS1(ω) = cos(2ω), λS2(ω) = 1+3 cosω. Let us see how we can use Theorem 3.20
to compute the filter coefficients and the matrix of the filter S = S1S2. We first
notice that, since both frequency responses are real, all S1, S2, and S = S1S2

are symmetric. We rewrite the frequency responses as

λS1(ω) =
1

2
(e2iω + e−2iω) =

1

2
e2iω +

1

2
e−2iω

λS2(ω) = 1 +
3

2
(eiω + e−iω) =

3

2
eiω + 1 +

3

2
e−iω.

96

We now get that

λS1S2(ω) = λS1(ω)λS2(ω) =

�
1

2
e2iω +

1

2
e−2iω

��
3

2
eiω + 1 +

3

2
e−iω

�

=
3

4
e3iω +

1

2
e2iω +

3

4
eiω +

3

4
e−iω +

1

2
e−2iω +

3

4
e−3iω

From this expression we see that the filter coefficients of S are t±1 = 3/4,
t±2 = 1/2, t±3 = 3/4. All other filter coefficients are 0. Using Theorem 3.2, we
get that s1 = 3/4, s2 = 1/2, and s3 = 3/4, while sN−1 = 3/4, sN−2 = 1/2, and
sN−3 = 3/4 (all other sk are 0). This gives us the matrix representation of S.
♣

3.3.1 Windowing operations
In this section we will take a look at a very important, and perhaps surprising,
application of the continuous frequency response. Let us return to the compu-
tations from Example 2.27. There we saw that, when we restricted to a block
of the signal, this affected the frequency representation. If we substitute with
the angular frequencies ω = 2πn/N and ω0 = 2πn0/M in Equation (2.10), we
get

yn =
1

N

N−1�

k=0

eikω0e−ikω =
1

N

N−1�

k=0

e−ik(ω−ω0)

(here yn were the DFT components of the sound after we had restrcited to a
block). This expression states that, when we restrict to a block of length N in
the signal by discarding the other samples, a pure tone of angular frequency ω0

suddenly gets a frequency constribution at angular frequency ω also, and the
contribution is given by this formula. The expression is seen to be the same as
the frequency response of the filter 1

N
{1, 1, . . . , 1} (where 1 is repeated N times),

evaluated at ω−ω0. This filter is nothing but a (delayed) moving average filter.
The frequency response of a moving average filter thus governs how the different
frequencies pollute when we limit ourselves to a block of the signal. Since this
frequency response has its peak at 0, angular frequencies ω close to ω0 have
biggest values, so that the pollution is mostly from frequencies close to ω0. But
unfortunately, other frequencies also pollute.

One can also ask the question if there are better ways to restrict to a block
of size N of the signal. We formulate the following idea.

Idea 3.22. Let (x0, . . . , xM) be a sound of length M . We would like to find
values w = {w0, . . . , wN−1} so that the new sound (w0x0, . . . , wN−1xN−1) of
length N (i.e. where the samples are attenuated by the window samples, and
where samples have been discarded) has a frequency representation as close
to x as possible. The vector w is called a window of length N , and the new
sound is called the windowed signal.

97

−2 0 2
0

0.2

0.4

0.6

0.8

1

(a) Rectangular window
−2 0 2

0

0.2

0.4

0.6

0.8

1

(b) Hamming window

Figure 3.3: The frequency responses of the windows we have considered for
restricting to a block of the signal.

Above we encountered the window w = {1, 1, . . . , 1}. This is called the
rectangular window. To see how we can find a good window, note first that the
DFT values in the windowed signal of length N is

yn =
1

N

N−1�

k=0

wke
ikω0e−ikω =

1

N

N−1�

k=0

wke
−ik(ω−ω0).

This is the frequency response of 1
N
w. In order to limit the pollution from

other frequencies, we thus need to construct a window with a frequency response
with smaller values than that of the rectangular window away from 0. Let us
summarize our findings as follows:

Observation 3.23. Assume that we would like to construct a window of
length N . It is desirable that the frequency response of the window has small
values away from zero.

We will not go into techniques for how such frequency responses can be con-
strcuted, but only consider one example different from the rectangular window.
We define the Hamming window by

wn = 2(0.54− 0.46 cos(2πn/(N − 1))). (3.14)

The frequency responses of the rectangular window and the Hamming window
are compared in Figure 3.3 for N = 32. We see that the Hamming window
has much smaller values away from 0, so that it is better suited as a window.
However, the width of the “main lobe” (i.e. the main structure at the center),
seems to be bigger. The window coefficients themselves are shown in Figure 3.4.
It is seen that the Hamming filter attenuates more and more as we get close to
the boundaries.

98

0 10 20 30
0

0.5

1

1.5

2

(a) Rectangular window
0 10 20 30

0

0.5

1

1.5

2

(b) Hamming window

Figure 3.4: The window coefficients we have considered for restricting to a block
of the signal.

Exercises for Section 3.3
1. Let again S be the filter defined by the equation

zn =
1

4
xn+1 +

1

4
xn +

1

4
xn−1 +

1

4
xn−2,

as in Exercise 3.1.1. Compute and plot (the magnitude of) λS(ω).

2. Assume that the filters S1 and S2 have the frequency responses λS1(ω) =
2 + 4 cos(ω), λS2(ω) = 3 sin(2ω).

a. Compute and plot the frequency response of the filter S1S2.

b. Write down the filter coefficients tk and the impulse response s for
the filter S1S2.

3. The Hanning window is defined by wn = 1 − cos(2πn/(N − 1)). Compute
and plot the window coefficients and the continuous frequency response of this
window for N = 32, and compare with the window coefficients and the frequency
responses for the rectangular- and the Hamming window.

3.4 Assembling the filter matrix and compact no-
tation

Let us return to how we first defined a filter in Equation (3.3):

zn =
�

k

tkxn−k.

99

As mentioned, the range of k may not be specified. In some applications in
signal processing there may in fact be infinitely many nonzero tk. However,
when x is assumed to have period N , we may as well assume that the k’s range
over an interval of length N (else many of the tk’s can be added together to
simplify the formula). Also, any such interval can be chosen. It is common to
choose the interval so that it is centered around 0 as much as possible. For this,
we can choose for instance [�N/2� − N + 1, �N/2�]. With this choice we can
write Equation (3.3) as

zn =

�N/2��

k=�N/2�−N+1

tkxn−k. (3.15)

The index range in this sum is typically even smaller, since often much less than
N of the tk are nonzero (For Equation (3.1), there were only three nonzero tk).
In such cases one often uses a more compact notation for the filter:

Definition 3.24 (Compact notation for filters). Let kmin, kmax be the smallest
and biggest index of a filter coefficient in Equation (3.15) so that tk �= 0 (if no
such values exist, let kmin = kmax = 0), i.e.

zn =
kmax�

k=kmin

tkxn−k. (3.16)

We will use the following compact notation for S:

S = {tkmin
, . . . , t−1, t0, t1, . . . , tkmax

}.

In other words, the entry with index 0 has been underlined, and only the
nonzero tk’s are listed. kmax and kmin are also called the start and end indices
of S. By the length of S, denoted l(S), we mean the number kmax − kmin.

One seldom writes out the matrix of a filter, but rather uses this compact
notation.

Example 3.25. Using the compact notation for a filter, we would write S =
{1/4, 1/2, 1/4} for the filter given by formula (3.1)). For the filter

zn = xn+1 + 2x0 + 3xn−1

from Example 3.4, we would write S = {1, 2, 3}. ♣

Applying a filter to a vector x is also called taking the convolution of the two
vectors t and x. Convolution is usually defined without the assumption that
the input vector is periodic, and without any assumption on the vector lengths
(i.e. they may be sequences of inifinite length):

100

Definition 3.26 (Convolution of vectors). By the convolution of two vectors
x and y we mean the vector x ∗ y defined by

(x ∗ y)n =
�

k

xkyn−k. (3.17)

If both x and y have infinitely many nonzero entries, the sum is an infinite
one, and may diverge.

The case where both vectors x and y have a finite number of nonzero el-
ements deserves extra attention. Assume that x0, . . . , xN−1 and y0, . . . , yM−1

are the only nonzero elements. If z = x ∗ y, it is clear from Equation (3.17)
that only the elements z0, . . . , zM+N−2 can be nonzero. The convolution op-
eration is therefore fully represented by the finite-dimensional operation from
RN × RM → RM+N−1 defined by

(x0, . . . , xN−1)× (y0, . . . , yM−1) → (z0, . . . , zM+N−2). (3.18)

Matlab has the built-in function conv for performing this operation. The conv

function thus considers the convolution in terms of the (finite) nonzero parts
of the vectors, without keeping track of the start and end indices. Exercise 7
explains how one may keep track of these indices. Put differently, Matlab’s
conv-operation pads our original values with zeros in both directions, instead
of considering a periodic input vector. Due to its simplicity it is used much in
practice, but it is not exactly the same as applying a digital filter. The following
result states that the difference between convolution and filtering is only at the
start and end of the vector.

Theorem 3.27. Let S = {t−E , . . . , t0, . . . , tF } where E,F ≥ 0, and let x =
(x0, . . . , xN−1). We have that t∗x equals Sx at the indices from F to N−E−1.

Proof. We have that (Sx)n = t−Exn+E + . . . + tFxn−F . Here the indices of x
lie between 0 and N − 1 if and only if n + E ≤ N − 1 and n − F ≥ 0, which
happen if F ≤ n ≤ N − E − 1. We therefore do not access the added zeros
outside [0, N − 1], so that the result is equal.

We also have a very important connection between convolution and polyno-
mials

Proposition 3.28. Assume that p(x) = aNxN + aN−1xN−1 + . . . , a1x + a0
and q(x) = bMxM+bM−1xM−1+. . . , b1x+b0 are polynomials of degree N and
M respectively. Then the coefficients of the polynomial pq can be obtained by
computing conv(a,b).

We can thus interpret a filter as a polynomial. In this setting, clearly the
length l(S) of the filter can be interpreted as the degree of the polynomial.

101

Clearly also, this polynomial is the frequency response, when we insert eiω for
the variable. Also, applying two filters in succession is equivalent to applying
the convolution of the filters, so that two filtering operations can be combined
to one.

Since the number of nonzero filter coefficients is typically much less than N
(the period of the input vector), the matrix S have many entries which are zero.
Multiplication with such matrices requires less additions and multiplications
than for other matrices: If S has k nonzero filter coefficients, S has Nk nonzero
entries, so that kN multiplications and (k−1)N additions are needed to compute
Sx. This is much less than the N2 multiplications and (N − 1)N additions
needed in the general case. Perhaps more important is that we need not form
the entire matrix, we can perform the matrix multiplication directly in a loop.
Exercise 3 investigates this further. For large N we risk running into out of
memory situations if we had to form the entire matrix.

Exercises for Section 3.4
1. Compute and plot the continuous frequency response of the filter S =
{1/4, 1/2, 1/4}. Where does the frequency response achieve its maximum and
minimum value, and what are these values?

2. Plot the continuous frequency response of the filter T = {1/4,−1/2, 1/4}.
Where does the frequency response achieve its maximum and minimum value,
and what are these values? Can you write down a connection between this
frequency response and that from Exercise 1?

3. Define the filter S by S = {1, 2, 3, 4, 5, 6}. Write down the matrix for S when
N = 8. Plot (the magnitude of) λS(ω), and indicate the values λS,n for N = 8
in this plot.

4. Given the circulant Toeplitz matrix

S =
1

5





1 1 1 · · · 1
1 1 1 · · · 0
0 1 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
1 0 0 · · · 1
1 1 0 · · · 1
1 1 1 · · · 1





Write down the filter coefficients of this matrix, and use the compact notation
{tkmin

, . . . , t−1, t0, t1, . . . , tkmax
}. Compute and plot (the magnitude) of λS(ω).

5. Assume that S = {1, c, c2, . . . , ck}. Compute and plot λS(ω) when k = 4
and k = 8. How does the choice of k influence the frequency response? How
does the choice of c influence the frequency response?

102

6. Compute the convolution of {1, 2, 1} with itself. interpret the result in terms
of two polynomials.

7. In this exercise we will find out how to keep to track of the length and the
start and end indices when we convolve two sequences.

a. Let x be zero outside xa, . . . , xa+N−1, and y be zero outside yb, . . . , yb+M−1.
Show that z = x ∗y is zero outside za+b, . . . , za+b+M+N−2. Explain why
this means that l(x ∗ y) = l(x) + l(y) for general vectors.

b. Find expressions for the start- and end indices kmin, kmax for x ∗ y,
in terms of those of x and y.

8. Implement a Matlab function

function z=convimpl(x,y)

which from input vectors of dimension N and M returns an output vector of
dimension N + M − 1, as dictated by Equation (3.18). Test your function
together with the built-in Matlab conv-function to verify that the give the same
result.

9. Show that if S = {t0, . . . , tF } and x ∈ RN , then S

�
x
0F

�
= t ∗x. Thus if we

add zeros in a vector, filtering and convolution are the same.

3.5 Some examples of filters
We have now established the basic theory of filters, and it is time to study some
specific examples.

Example 3.29 (Time delay filters). The simplest possible type of Toeplitz
matrix is one where there is only one nonzero diagonal. Let us define the Toeplitz
matrix Ed as the one which has first column equal to ed. In the notation above,
and when d > 0, this filter can also be written as S = {0, . . . , 1} where the 1
occurs at position d. We observe that

(Edx)n =
N−1�

k=0

(Ed)n,k xk =
N−1�

k=0

(Ed)(n−k) mod N,0 xk = xn−d,

since only when (n − k) mod N = d do we have a contribution in the sum. It
is thus clear that multiplication with Ed delays a vector by d samples. For this
reason Ed is also called a time delay filter. The frequency response of the time
delay filter is clearly the function λS(ω) = e−idω, which has magnitude 1. This
filter therefore does not change the magnitude of the different frequencies. ♣

103

Example 3.30 (Adding echo). An echo is a copy of the sound that is delayed
and softer than the original sound. The sample that comes t seconds before
sample i has index i− tfs where fs is the sampling rate. This also makes sense
even if t is not an integer so we can use this to produce delays that are less than
one second. The one complication with this is that the number tfs may not be
an integer. We can get round this by rounding it to the nearest integer. This
corresponds to adjusting the echo slightly. The following holds:

Fact 3.31. Let (x, s) be a digital sound. Then the sound y with samples
given by

y=[x zeros(1,d)];

y((d+1):N)=x((d+1):N)-c*x(1:(N-d));

will include an echo of the original sound. Here d=round(ms) is the integer
closest to tfs, and c is a constant which is usually smaller than 1.

This is an example of a filtering operation where each output element is con-
structed from two input elements. As in the case of noise it is important to
dampen the part that is added to the original sound, otherwise the echo will be
too loud. Note also that the formula that creates the echo is not used at the
beginning of the signal, since it is not audible until after d samples. Also, the
echo is unaudible if d is too small. You can listen to the sample file with echo
added with d = 10000 and c = 0.5 here.

Using our compact filter notation, the filter which adds echo can be written
as

S = {1, 0, . . . , 0, c},

where the damping factor c appears after the delay d. The frequency response
of this is λS(ω) = 1+ ce−idω. This frequency response is not real, which means
that the filter is not symmetric. In Figure 3.5 we have plotted the magnitude
of this frequency response with c = 0.1 and d = 10. We see that the response
varies between 0.9 and 1.1, so that the deviation from 1 is controlled by the
damping factor c. Also, we see that the oscillation in the frequency response,
as visible in the plot, is controlled by the delay d. ♣

Let us now take a look at some filters which adjust the bass and treble in
sound. The fact that the filters are useful for these purposes will be clear when
we plot the frequency response.

Example 3.32 (Reducing the treble with moving average filters). The treble
in a sound is generated by the fast oscillations (high frequencies) in the signal.
If we want to reduce the treble we have to adjust the sample values in a way
that reduces those fast oscillations. A general way of reducing variations in a
sequence of numbers is to replace one number by the average of itself and its
neighbours, and this is easily done with a digital sound signal. If we let the new
sound signal be z = (zi)

N−1
i=0 we can compute it as

104

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Figure 3.5: The frequency response of a filter which adds an echo with damping
factor c = 0.1 and delay d = 10.

z(1)=(x(N)+x(1)+x(2))/3;

for t=2:(N-1)

z(t)=(x(t-1)+x(t)+x(t+1))/3;

end

z(N)=(x(N-1)+x(N)+x(1))/3;

In Example 3.30 we did not take into account that the signal is assumed periodic.
Above this has been taken into account through the addition of the first and
last lines (which correspond to the circulating part of the matrix). This filter is
also called a moving average filter, and it can be written in compact form as

S =

�
1

3
,
1

3
,
1

3

�
.

If we set N = 4, the corresponding circulant Toeplitz matrix for the filter is

S =
1

3





1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1





The frequency response is λS(ω) = (eiω + 1 + e−iω)/3 = (1 + 2 cos(ω))/3.
More generally we can construct the moving average filter of 2L + 1 elements,
which is S = {1, · · · , 1, · · · , 1}/(2L+ 1), where there is symmetry around 0. In
Example 2.18 we computed that the DFT of the vector {1, · · · , 1, · · · , 1} was

x =
1√
N

sin(πn(2L+ 1)/N)

sin(πn/N)
.

Due to this the frequency response of S is

λS,n =
1

2L+ 1

sin(πn(2L+ 1)/N)

sin(πn/N)
,

105

0 2 4 6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) L=1
0 2 4 6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) L=5

0 2 4 6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

(c) L=20

Figure 3.6: The frequency response of moving average filters of different length.

and thus
λS(ω) =

1

2L+ 1

sin((2L+ 1)ω/2)

sin(ω/2)
.

We clearly have

0 ≤ 1

2L+ 1

sin((2L+ 1)ω/2)

sin(ω/2)
≤ 1,

and this frequency response approaches 1 as ω → 0. The frequency response
thus peaks at 0, and it is clear that this peak gets narrower and narrower as
L increases, i.e. we use more and more samples in the averaging process. This
appeals to our intuition that this kind of filters smooth the sound by keeping
only lower frequencies. In Figure 3.6 we have plotted the frequency response for
moving average filters with L = 1, L = 5, and L = 20. We see, unfortunately,
that the frequency response is far from a filter which keeps some frequencies
unaltered, while annihilating others (this is a desirable property which is refered
to as being a bandpass filter): Although the filter distinguishes between high and

106

low frequencies, it slightly changes the small frequencies. Moreover, the higher
frequencies are not annihilated, even when we increase L to high values. ♣

In the previous example we mentioned filters which favour certain frequencies
of interest, while annihilating the others. This is a desirable property for filters,
so let us give names to such filters:

Definition 3.33. A filter S is called

1. a lowpass filter if λS(ω) is large when ω is close to 0, and λS(ω) ≈ 0
when ω is close to π (i.e. S keeps low frequencies and annhilates high
frequencies),

2. a highpass filter if λS(ω) is large when ω is close to π, and λS(ω) ≈ 0
when ω is close to 0 (i.e. S keeps high frequencies and annhilates low
frequencies),

3. a bandpass filter if λS(ω) is large within some interval [a, b] ⊂ [0, 2π], and
λS(ω) ≈ 0 outside this interval.

This definition should be considered rather vague when it comes to what we
mean by “ω close to 0, π”, and “λS(ω) is large”: in practice, when we talk about
lowpass and highpass filters, it may be that the frequency responses are still
quite far from what is commonly refered to as ideal lowpass or highpass filters,
where the frequency response only assumes the values 0 and 1 near 0 and π.
The next example considers an ideal lowpass filter.

Example 3.34 (Ideal lowpass filters). By definition, the ideal lowpass filter
keeps frequencies near 0 unchanged, and completely removes frequencies near
π. We now have the theory in place in order to find the filter coefficients for
such a filter: In Example 2.27 we implemented the ideal lowpass filter with
the help of the DFT. Mathematically you can see that this code is equivalent to
computing (FN)HDFN where D is the diagonal matrix with the entries 0, . . . , L
and N−L, . . . , N−1 being 1, the rest being 0. Clearly this is a digital filter, with
frequency response as stated. If the filter should keep the angular frequencies
|ω| ≤ ωc only, where ωc describes the highest frequency we should keep, we
should choose L so that ωc = 2πL/N . Again, in Example 2.18 we computed
the DFT of this vector, and it followed from Theorem 2.21 that the IDFT of
this vector equals its DFT. This means that we can find the filter coefficients
by using Equation (3.11): Since the IDFT was 1√

N

sin(πk(2L+1)/N)
sin(πk/N) , the filter

coefficients are

1√
N

1√
N

sin(πk(2L+ 1)/N)

sin(πk/N)
=

1

N

sin(πk(2L+ 1)/N)

sin(πk/N)
.

This means that the filter coefficients lie as N points uniformly spaced on the
curve 1

N

sin(ω(2L+1)/2)
sin(ω/2) between 0 and π. This curve has been encountered many

107

other places in these notes. The filter which keeps only the frequency ωc = 0 has
all filter coefficients being 1

N
(set L = 1), and when we include all frequencies

(set L = N) we get the filter where x0 = 1 and all other filter coefficients
are 0. When we are between these two cases, we get a filter where s0 is the
biggest coefficient, while the others decrease towards 0 along the curve we have
computed. The bigger L and N are, the quicker they decrease to zero. All
filter coefficients are usually nonzero for this filter, since this curve is zero only
at certain points. This is unfortunate, since it means that the filter is time-
consuming to compute. ♣

The two previous examples show an important duality between vectors which
are 1 on some elements and 0 on others (also called window vectors), and the
vector 1

N

sin(πk(2L+1)/N)
sin(πk/N) (also called a sinc): filters of the one type correspond

to frequency responses of the other type, and vice versa. The examples also
show that, in some cases only the filter coefficients are known, while in other
cases only the frequency response is known. In any case we can deduce the one
from the other, and both cases are important.

Filters are much more efficient when there are few nonzero filter coefficients.
In this respect the second example displays a problem: in order to create filters
with particularly nice properties (such as being an ideal lowpass filter), one
may need to sacrifice computational complexity by increasing the number of
nonzero filter coefficients. The trade-off between computational complexity and
desirable filter properties is a very important issue in filter design theory.

Example 3.35. In order to decrease the computational complexity for the ideal
lowpass filter in Example 3.34, one can for instance include only the first filter
coefficients, i.e. { 1

N

sin(πk(2L+1)/N)
sin(πk/N) }N0

k=−N0
, ignoring the last ones. Hopefully this

gives us a filter where the frequency reponse is not that different from the ideal
lowpass filter. In Figure 3.7 we show the corresponding frequency responses. In
the figure we have set N = 128, L = 32, so that the filter removes all frequencies
ω > π/2. N0 has been chosen so that the given percentage of all coefficients
are included. Clearly the figure shows that we should be careful when we omit
filter coefficients: if we drop too many, the frequency response is far away from
that of an ideal bandpass filter. In particular, we see that the new frequency
response oscillates wildly near the discontinuity of the ideal lowpass filter. Such
oscillations are called Gibbs oscillations. ♣

Example 3.36 (Filters and the MP3 standard). We mentioned previously that
the MP3 standard splits the sound into frequency bands. This splitting is actu-
ally performed by particular filters, which we will consider now.

In the example above, we saw that when we dropped the last filter coefficients
in the ideal lowpass filter, there were some undesired effects in the frequency
response of the resulting filter. Are there other and better approximations
to the ideal lowpass filter which uses the same number of filter coefficients?
This question is important, since the ear is sensitive to certain frequencies,
and we would like to extract these frequencies for special processing, using as
low computational complexity as possible. In the MP3-standard, such filters

108

0 2 4 6

0

0.5

1

(a) all N = 128 filter coefficients
0 2 4 6

0

0.5

1

(b) 1/4 of all filter coefficients

0 2 4 6

0

0.5

1

(c) 1/16 of all filter coefficients
0 2 4 6

0

0.5

1

(d) 1/32 of all filter coefficients

Figure 3.7: The frequency response which results by omitting the last filter
coefficients for the ideal lowpass filter.

109

−0.5 0 0.5
0

0.5

1

1.5

2

(a) Frequency response of the prototype filter
used in the MP3 standard

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

(b) Frequency responses of 5 of the other fil-
ters used in the MP3 standard. They are
shifted copies of that of the prototype

Figure 3.8: Frequency responses of some filters used in the MP3 standard.

have been constructed. These filters are more advanced than the ones we have
seen upto now. They have as many as 512 filter coefficients! We will not
go into the details on how these filters are constructed, but only show how
their frequency responses look. In Figure 3.8(a), the “prototype filter” which
is used in the MP3 standard is shown. We see that this is very close to an
ideal lowpass filter. Moverover, many of the undesirable effect from the previous
example have been eliminated: The oscillations near the discontinuities are much
smaller, and the values are lower away from 0. Using Property 4 in theorem 2.21,
it is straightforward to construct filters with similar frequency responses, but
centered around different frequencies: We simply need to multiply the filter
coefficients with a complex exponential, in order to obtain a filter where the
frequency response has been shifted to the left or right. In the MP3 standard,
this observation is used to construct 32 filters, each having a frequency response
which is a shifted copy of that of the prototype filter, so that all filters together
cover the entire frequency range. 5 of these frequency responses are shown in
Figure 3.8(b). To understand the effects of the different filters, let us apply
them to our sample sound. If you apply all filters in the MP3 standard in
successive order with the most lowpass filters first, the result will sound like
this. You should interpret the result as low frequencies first, followed by the
high frequencies. π corresponds to the frequency 22.05KHz (i.e. the highest
representable frequency equals half the sampling rate on 44.1KHz. The different
filters are concentrated on 1/32 of these frequencies each, so that the angular
frequencies you here are [π/64, 3π/64], [3π/64, 5π/64], [5π/64, 7π/64], and so
on, in that order. ♣

Example 3.37 (Reducing the treble II). When reducing the treble it is reason-
able to let the middle sample xi count more than the neighbours in the average,
so an alternative is to compute the average by instead writing

110

z(t)=(x(t-1)+2*x(t)+x(t+1))/4;

The coefficients 1, 2, 1 here have been taken from row 2 in Pascal’s triangle. It
turns out that this is a good choice of coefficients. Also if we take averages
of more numbers it will turn out that higher rows of Pascals triangle are good
choices. Let us take a look at why this is the case. Let S be the moving average
filter of two elements, i.e.

(Sx)n =
1

2
(xn−1 + xn).

In Example 3.32 we had an odd number of filter coefficients. Here we have only
two. We see that the frequency response in this case is

λS(ω) =
1

2
(1 + e−iω) = e−iω/2 cos(ω/2).

The frequency response is complex now, since the filter is not symmetric in this
case. Let us now apply this filter k times, and denote by Sk the resulting filter.
Theorem 3.20 gives us that the frequency response of Sk is

λSk(ω) =
1

2k
(1 + e−iω)k = e−ikω/2 cosk(ω/2),

which is a polynomial in e−iω with the coefficients taken from Pascal’s triangle
(remember that the values in Pascals triangle are the coefficients of x in the
expression (1 + x)k, i.e. the binomial coefficients

�
k

r

�
for 0 ≤ r ≤ k). At least,

this partially explains how filters with coefficients taken from Pascal’s triangle
appear. The reason why these are more desirable than moving average filters,
and are used much for smoothing abrupt changes in images and in sound, is the
following: Since we take a k’th power with k large, λSk is more square-like near
0, i.e. it becomes more and more like a bandpass filter near 0. In Figure 3.9 we
have plotted the magnitude of the frequence response when k = 5, and when
k = 30. This behaviour near 0 is not so easy to see from the figure. Note
that we have zoomed in on the frequency response to the area where it actually
decreases to 0.

If we pick coefficients from row 4 of Pascals triangle instead, we would write

for t=3:(N-2)

y(t)=(x(t-2)+4*x(t-1)+6*x(t)+4*x(t+1)+x(t+2))/16;

end

Here we have dropped the first and last part, which have special expressions
due to the circulant structure of the matrix. Picking coefficients from a row in
Pascal’s triangle works better the longer the filter is:

111

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

(a) k=5
0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

(b) k=30

Figure 3.9: The frequency response of filters corresponding to a moving average
filter convolved with itself k times.

Observation 3.38. Let x be the samples of a digital sound, and let {ci}2k+1
i=1

be the numbers in row 2k of Pascal’s triangle. Then the sound with samples
y given by

y=zeros(length(x));

for t=(k+1):(N-k)

for j=1:(2*k+1)

y(t)=y(t)+c(j)*x(t+k+1-j))/2^k;

end

end

has reduced treble compared with the sound given by the samples x.

An example of the result of smoothing is shown in Figure 3.10. (a) shows a real
sound sampled at CD-quality (44 100 samples per second). (b) shows the result
of applying the averaging process by using row 4 of Pascals triangle. We see that
the oscillations have been reduced, and if we play the sound it has considerably
less treble. In Exercise 4 you will be asked to implement reducing the treble in
our sample audio file. If you do this you should hear that the sound gets softer
when you increase k: For k = 32 the sound will be like this, for k = 256 it will
be like this. ♣

Another common option in an audio system is reducing the bass. This
corresponds to reducing the low frequencies in the sound, or equivalently, the
slow variations in the sample values. It turns out that this can be accomplished
by simply changing the sign of the coefficients used for reducing the treble. Let
us explain why this is the case. Let S be a filter with filter coefficients sk, and let
us consider the filter T with filter coefficient (−1)ksk. The frequency response

112

20 40 60 80 100 120 140

�0.10

�0.05

0.05

0.10

0.15

(a) The original sound signal

20 40 60 80 100 120 140

�0.10

�0.05

0.05

0.10

(b) The result of applying the filter from row
4 of Pascal’s triangle

Figure 3.10: Reducing the treble.

of T is

λT (ω) =
�

k

(−1)kske
−iωk =

�

k

(e−iπ)kske
−iωk

=
�

k

e−iπkske
−iωk =

�

k

ske
−i(ω+π)k = λS(ω + π).

where we have set −1 = e−iπ (note that this is nothing but Property 4. in
Theorem 2.21, with d = N/2). Now, for a lowpass filter S, λS(ω) has large
values when ω is close to 0 (the low frequencies), and values near 0 when ω is
close to π (the high frequencies). For a highpass filter T , λT (ω) has values near
0 when ω is close to 0 (the low frequencies), and large values when ω is close to
π (the high frequencies). When T is obtained by adding an alternating sign to
the filter coefficicents of S, The relation λT (ω) = λS(ω+ π) thus says that T is
a highpass filter when S is a lowpass filter, and vice versa:

Observation 3.39. Assume that T is obtained by adding an alternating sign
to the filter coefficicents of S. If S is a lowpass filter, then T is a highpass
filter. If S is a highpass filter, then T is a lowpass filter.

The following example elaborates further on this.

113

20 40 60 80 100 120 140

�0.10

�0.05

0.05

0.10

0.15

(a) The original sound

20 40 60 80 100 120 140

�0.015

�0.010

�0.005

0.005

0.010

(b) The result of applying the filter deduced
from row 4 in Pascals triangle

Figure 3.11: Reducing the bass.

Example 3.40 (Reducing the bass). Consider the bass-reducing filter deduced
from the fourth row in Pascals triangle:

y(t)=(x(t-2)-4*x(t-1)+6*x(t)-4*x(t+1)+x(t+2))/16;

An example of this filter applied to a sound is shown in Figure 3.11. The original
sound is shown in (a) and the result in (b). We observe that the samples in (b)
oscillate much more than the samples in (a). If we play the sound in (b), it is
quite obvious that the bass has disappeared almost completely.

Observation 3.41. Let x be the samples of a digital sound, and let {ci}2k+1
i=1

be the numbers in row 2k of Pascal’s triangle. Then the sound with samples
y given by

y=zeros(length(x));

for t=(k+1):(N-k)

for j=1:(2*k+1)

y(t)=x(t)+(-1)^(k+1-j)*c(j)*x(t+j-k-1))/2^k;

end

end

has reduced bass compared to the sound given by the samples y.

114

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Figure 3.12: The frequency response of the bass reducing filter, which corre-
sponds to row 5 of Pascal’s triangle.

In Exercise 4 you will be asked to implement reducing the bass in our sample
audio file. The new sound will be difficult to hear for large k, and we will
explain why later. For k = 1 the sound will be like this, for k = 2 it will be
like this. Even if the sound is quite low, you can hear that more of the bass has
disappeared for k = 2.

The frequency response we obtain from using row 5 of Pascal’s triangle is
shown in Figure 3.12. It is just the frequency response of the corresponding
treble-reducing filter shifted with π. The alternating sign can also be achieved
if we write the frequency response 1

2k (1 + e−iω)k from Example 3.37 as 1
2k (1−

e−iω)k, which corresponds to applying the filter S(x) = 1
2 (−xn−1+xn) k times.

♣

Exercises for Section 3.5
1. Let Ed1 and Ed2 be two time delay filters. Show that Ed1Ed2 = Ed1+d2 (i.e.
that the composition of two time delays again is a time delay) in two different
ways

a. Give a direct argument which uses no computations.

b. By using Property 3 in Theorem 2.21, i.e. by using a property for the
Discrete Fourier Transform.

2. In this exercise, we will experiment with adding echo to a signal.

a. Write a function

115

function playwithecho(c,d)

which plays the sound samples of castanets.wav with echo added for
damping constant c and delay d as described in Example 3.30.

b. Generate the sound from Example 3.30, and verify that it is the same
as the one you heard there.

c. Listen to the sound samples for different values of d and c. For which
range of d is the echo distinguisible from the sound itself? How low can
you choose c in order to still hear the echo?

3. Consider the two filters S1 = {1, 0, . . . , 0, c} and S2 = {1, 0, . . . , 0,−c}. Both
of these can be interpreted as filters which add an echo. Show that 1

2 (S1+S2) =
I. What is the interpretation of this relation in terms of echos?

4. In this exercise, we will experiment with increasing and reducing the treble
and bass in a signal as in examples 3.37 and 3.40.

a. Write functions

function reducetreble(k)

function reducebass(k)

which reduces bass and treble in the ways described above for the sound
from the file castanets.wav, and plays the result, when row number 2k
in Pascal’ triangle is used to construct the filters. Look into the Matlab
function conv to help you to find the values in Pascal’s triangle.

b. Generate the sounds you heard in examples 3.37 and 3.40, and verify
that they are the same.

c. In your code, it will not be necessary to scale the values after reducing
the treble, i.e. the values are already between −1 and 1. Explain why
this is the case.

d. How high must k be in order for you to hear difference from the actual
sound? How high can you choose k and still recognize the sound at all?

116

5. Consider again Example 3.34. Find an expression for a filter so that only
frequencies so that |ω−π| < ωc are kept, i.e. the filter should only keep angular
frequencies close to π (i.e. here we construct a highpass filter).

6. In this exercise we will investigate how we can combine lowpass and highpass
filters to produce other filters

a. Assume that S1 and S2 are lowpass filters. What kind of filter is
S1S2? What if both S1 and S2 are highpass filters?

b. Assume that one of S1, S2 is a highpass filter, and that the other is a
lowpass filter. What kind of filter S1S2 in this case?

7. A filter S1 has the frequency response 1
2 (1 + cosω), and another filter has

the frequency response 1
2 (1 + cos(2ω)).

a. Is S1S2 a lowpass filter, or a highpass filter?

b. What does the filter S1S2 do with angular frequencies close to ω = π/2.

c. Find the filter coefficients of S1S2.
Hint: Use Theorem 3.20 to compute the frequency response of S1S2 first.

d. Write down the matrix of the filter S1S2 for N = 8.

8. An operation describing some transfer of data in a system is defined as the
composition of the following three filters:

• First a time delay filter with delay d1 = 2, due to internal transfer of data
in the system,

• then the treble-reducing filter T = {1/4, 1/2, 1/4},

• finally a time delay filter with delay d2 = 4 due to internal transfer of the
filtered data.

We denote by T2 = Ed2TEd1 = E4TE2 the operation which applies these filters
in succession.

117

a. Explain why T2 also is a digital filter. What is (the magnitude of)
the frequency response of Ed1? What is the connection between (the
magnitude of) the frequency response of T and T2?

b. Show that T2 = {0, 0, 0, 0, 0, 1/4, 1/2, 1/4}.
Hint: Use the expressions (Ed1x)n = xn−d1 , (Tx)n = 1

4xn+1 + 1
2xn +

1
4xn−1, (Ed2x)n = xn−d2 , and compute first (Ed1x)n, then (TEd1x)n,
and finally (T2x)n = (Ed2TEd1x)n. From the last expression you should
be able to read out the filter coefficients.

c. Assume that N = 8. Write down the 8 × 8-circulant Toeplitz matrix
for the filter T2.

9. (Exam UIO V2012)

a. Explain what the code below does, line by line.

[S,fs]=wavread(’castanets.wav’);

S=S(:,1);

N=length(S);

newS=zeros(N,1);

for k=2:(N-1)

newS(k)=2*S(k+1) + 4*S(k) + 2*S(k-1);

end

newS(1)=2*S(2) + 4*S(1) + 2*S(N);

newS(N)=2*S(1) + 4*S(N) + 2*S(N-1);

newS=newS/max(abs(newS));

playerobj=audioplayer(newS,fs);

playblocking(playerobj)

Comment in particular on what happens in the three lines directly after
the for-loop, and why we do this. What kind of changes in the sound do
you expect to hear?

b. Write down the compact filter notation for the filter which is used
in the code, and write down a 5 × 5 circulant Toeplitz matrix which
corresponds to this filter. Plot the (continuous) frequency response. Is
the filter a lowpass- or a highpass filter?

118

c. Another filter is given by the circulant Toeplitz matrix




4 −2 0 0 −2
−2 4 −2 0 0
0 −2 4 −2 0
0 0 −2 4 −2

−2 0 0 −2 4




.

Express a connection between the frequency responses of this filter and
the filter from b. Is the new filter a lowpass- or a highpass filter?

3.6 Time-invariance of filters
As we have seen, filters can be characterized by their eigenvectors, and also as
circulant Toeplitz matrices. To make the picture more complete, we will in this
section state a third, important characterization of filters. This characterization
is stated in terms of the following concept:

Definition 3.42 (Time-invariance). A linear transformation from RN to RN

is said to be time-invariant if, for any d, the output of the delayed input vector
z defined by zn = xn−d is the delayed output vector w defined by wn = yn−d.

We have the following result:

Theorem 3.43. A linear transformation S is a digital filter if and only if it
is time-invariant.

Proof. Let y = Sx, and z,w as defined above. We have that

wn = (Sx)n−d =
N−1�

k=0

Sn−d,kxk

=
N−1�

k=0

Sn,k+dxk =
N−1�

k=0

Sn,kxk−d

=
N−1�

k=0

Sn,kzk = (Sz)n

This proves that Sz = w, so that S is time-invariant.

By Example 3.29, delaying a vector with d elements corresponds to applying
the filter Ed. Clearly, that S is time-invariant is the same as SEd = EdS for
any d. That all filters are time-invariant follows thus also immediately from the
fact that all filters commute.

Due to Theorem 3.43, digital filters are also called LTI filters (LTI stands
for Linear, Time-Invariant). By combining the definition of a digital filter with
theorems 3.10 and 3.43 we get the following theorem which summarizes our
findings.

119

Theorem 3.44 (Characterizations of digital filters). The following are equiv-
alent characterizations of a digital filter:

1. S = (FN)HDFN for a diagonal matrix D, i.e. the Fourier basis is a basis
of eigenvectors for S.

2. S is a circulant Toeplitz matrix.

3. S is linear and time-invariant.

Exercises for Section 3.6
1. In Example 2.7 we looked at time reversal as an operation on digital sound.
In RN this can be defined as the linear mapping which sends the vector ek to
eN−1−k for all 0 ≤ k ≤ N − 1.

a. Write down the matrix for the time reversal linear mapping, and ex-
plain from this why time reversal is not a digital filter.

b. Prove directly that time reversal is not a time-invariant operation.

3.7 More general filters
The starting point for defining filters at the beginning of this chapter was equa-
tions on the form

zn =
�

k

tkxn−k.

The important point here was that we had a limited number of nonzero tk, and
this enabled us to compute the filter on a computer. In practice, however, there
exist many filtering operations with an infinite number of filter coefficients. The
ideal lowpass filter from Example 3.34 is one example. It turns out that many
such cases can be made computable if we change our procedure slightly. The old
procedure for computing a filter is to compute z = Sx. Consider the following
alternative:

Idea 3.45 (More general filters (1)). Let x be the input to a filter, and let T
be a filter. By solving the system Tz = x for z we get another filter, which
we denote by S.

Of course T must then be the inverse of S (which also is a filter), but the point
is that the inverse of a filter may have a finite number of filter coefficicents, even
if the filter itself does not. In such cases this new procedure is more attractive

120

that the old one, since the equation system can be solved with few arithmetic
operations when T has few filter coefficients.

It turns out that there also are highly computable filters where neither the
filter nor its inverse have a finite number of filter coefficients. Consider the
following idea:

Idea 3.46 (More general filters (2)). Let x be the input to a filter, and let U
and V be filters. By solving the system Uz = V x for z we get another filter,
which we denote by S. The filter S can be implemented in two steps: first we
compute the right hand side y = V x, and then we solve the equation Uz = y.

If both U and V are invertible we have that the filter is S = U−1V , and this
is invertible with inverse S−1 = V −1U . The point is that, when U and V have
a finite number of filter coefficicents, both S and its inverse will typically have
an infinite number of filter coefficients. The filters from this idea are thus more
general than the ones from the previous idea, and the new idea makes a wider
class of filters implementable using row reduction of sparse matrices. Computing
a filter by solving Uz = V x may also give meaning when the matrices U and
V are singular: The matrix system can have a solution even if U is singular.
Therefore we should be careful in using the form T = U−1V .

We have the following result concerning the frequency responses:

Theorem 3.47. Assume that S is the filter defined from the equation Uz =
V x. Then we have that λS(ω) =

λV (ω)
λU (ω) whenever λU (ω) �= 0.

Proof. Set x = φn. We have that Uz = λU,nλS,nφn, and V x = λV,nφn. If the
expressions are equal we must have that λU,nλS,n = λV,n, so that λS,n = λV,n

λU,n

for all n. By the definition of the continuous frequency response this means that
λS(ω) =

λV (ω)
λU (ω) whenever λU (ω) �= 0.

The following example clarifies the points made above, and how one may
construct U and V from S. The example also shows that, in addition to making
some filters with infinitely many filter coefficients computable, the procedure
Uz = V x for computing a filter can also reduce the complexity in some filters
where we already have a finite number of filter coefficients.

Example 3.48. Consider again the moving average filter S from Example 3.32:

zn =
1

2L+ 1
(xn+L + · · ·+ xn + · · ·+ xn−L).

If we implemented this directly, 2L additions would be needed for each n, so

121

that we would need a total of 2NL additions. However, we can also write

zn+1 =
1

2L+ 1
(xn+1+L + · · ·+ xn+1 + · · ·+ xn+1−L)

=
1

2L+ 1
(xn+L + · · ·+ xn + · · ·+ xn−L) +

1

2L+ 1
(xn+1+L − xn−L)

= zn +
1

2L+ 1
(xn+1+L − xn−L).

This means that we can also compute the output from the formula

zn+1 − zn =
1

2L+ 1
(xn+1+L − xn−L),

which can be written on the form Uz = V x with U = {1,−1} and V =
1

2L+1{1, 0, . . . , 0,−1} where the 1 is placed at index −L − 1 and the −1 is
placed at index L . We now perform only 2N additions in computing the right
hand side, and solving the equation system requires only 2(N − 1) additions.
The total number of additions is thus 2N + 2(N − 1) = 4N − 2, which is much
less than the previous 2LN when L is large.

A perhaps easier way to find U and V is to consider the frequency response
of the moving average filter, which is

1

2L+ 1
(e−Liω + . . .+ eLiω) =

1

2L+ 1
e−Liω

1− e(2L+1)iω

1− eiω

=
1

2L+1

�
−e(L+1)iω + e−Liω

�

1− eiω
,

where we have used the formula for the sum of a geometric series. From here
we easily see the frequency responses of U and V from the numerator and the
denominator. ♣

Filters with an infinite number of filter coefficients are also called IIR filters
(IIR stands for Infinite Impulse Response). Thus, we have seen that some IIR
filters may still have efficient implementations.

Exercises for Section 3.7
1. A filter is defined by demanding that zn+2 − zn+1 + zn = xn+1 − xn.

a. Compute and plot the frequency response of the filter.

b. Use Matlab to compute the output of the vector x = (1, . . . , 10). In
order to do this you should write down two 10 × 10-circulant Toeplitz
matrices, and use these in Matlab.

122

3.8 Implementation of filters
As we saw in Example 3.48, a filter with many filter coefficients could be fac-
tored into the application of two simpler filters, and this could be used as a basis
for an efficient implementation. There are also several other possible efficient
implementations of filters. In this section we will consider two such techniques.
The first technique considers how we can use the DFT to speed up the compu-
tation of filters. The second technique considers how we can factorize a filter
into a product of simpler filters.

3.8.1 Implementation of filters using the DFT
If there are k filter coefficients, a direct implementation of a filter would require
kN multiplications. Since filters are diagonalized by the DFT, one can also
compute the filter as the product S = FH

N
DFN . This would instead require

O (N log2 N) complex multiplications when we use the FFT algorithm, which
may be a higher number of multiplications. We will however see that, by slightly
changing our algorithm, we may end up with a DFT-based implementation of
the filter which requires fewer multiplications.

The idea is to split the computation of the filter into smaller parts. As-
sume that we compute M elements of the filter at a time. If the nonzero filter
coefficients of S are t−k0 ,. . . ,tk−k0−1, we have that

(Sx)t =
�

r

trxs−r = t−k0xt+k0 + ..+ tk−k0−1xt−(k−k0−1).

From this it is clear that (Sx)t only depends on xt−(k−k0−1), . . . , xt+k0 . This
means that, if we restrict the computation of S to xt−(k−k0−1), . . . , xt+M−1+k0 ,
the outputs xt, . . . , xt+M−1 will be the same as without this restriction. This
means that we can compute the output M elements at a time, at each step
multiplying with a circulant Toeplitz matrix of size (M+k−1)×(M+k−1). If
we choose M so that M +k−1 = 2r, we can use the FFT and IFFT algorithms
to compute S = FH

N
DFN , and we require O(r2r) multiplications for every block

of length M . The total number of multiplications is Nr2r

M
= Nr2r

2r−k+1 . If k = 128,
you can check on your calculator that the smallest value is for r = 10 with
value 11.4158 × N . Since the direct implementation gives kN multiplications,
this clearly gives a benefit for the new approach, it gives a 90% decrease in the
number of multiplications.

3.8.2 Factoring a filter into several filters
In practice, filters are often applied in hardware, and applied in real-time sce-
narios where performance is a major issue. The most CPU-intensive tasks in
such applications often have few memory locations available. These tasks are
thus not compatible with filters with many filter coefficients, since for each out-
put sample we then need access to many input samples and filter coefficients.

123

A strategy which addresses this is to factorize the filter into the product of sev-
eral smaller filters, and then applying each filter in turn. Since the frequency
response of the product of filters equals the product of the frequency responses,
we get the following idea:

Idea 3.49. Let S be a filter with real coefficients. Assume that

λS(ω) = Keikω(eiω−a1) . . . (e
iω−am)(e2iω+b1e

iω+c1) . . . (e
2iω+bne

iω+cn).
(3.19)

Then we can write S = KEkA1 . . . AmB1 . . . Bn, where Ai = {1,−ai} and
Bi = {1, bi, ci}.

Note that in Equation 3.19 ai correspond to the real roots of the frequency re-
sponse, while bi, ci are obtained by pairing the complex conjugate roots. Clearly
the frequency responses of Ai, Bi equal the factors in the frequency response of
S, which in any case can be factored into the product of filters with 2 and 3
filter coefficients, followed by a time-delay.

Note that, even though this procedure factorizes a filter into smaller parts
(which is attractive for hardware implementations), the number of of arithmetic
operations is usually not reduced. However, consider Example 3.37, where we
factorized the treble-reducing filters into a product of moving average filters of
length 2 (all roots in the previous idea are real, and equal). Each application of a
moving average filter of length 2 does not really require any multiplications, since
multiplication with 1

2 corresponds to a bitshift. Therefore, the factorization
of Example 3.37 removes the need for doing any multiplications at all, while
keeping the number of additions the same. There are computational savings in
this case, due to the special filter structure here.

Exercises for Section 3.8
1. Write a function

function filterdftimpl(t,k0)

which takes the filter coefficients t and the value k0 from Section 3.8.1 as input,
computes the optimal M and implements the filter as described in that section.

2. Factor the filter S = {1, 5, 10, 6} into a product of two filters, one with two
filter coefficients, and one with three filter coefficients.

3.9 Summary
We defined digital filters, which do the same job for digital sound as analog filters
do for (continuous) sound. Digital filters turned out to be linear transformations
diagonalized by the DFT. We proved several other equivalent characterizations
of digital filters as well, such as being time-invariant, and having a matrix

124

which is circulant and Toeplitz. Just as for continuous sound, digital filters are
characterized by their frequency response, which explains how the filter treats
the different frequencies. We also went through several important examples of
filters, some of which corresponded to meaningful operations on sound, such as
adjustmest of bass and treble, and adding echo. We also explained that there
exist filters with useful implementations which have an infinite number of filter
coefficients, and we considered techniques for implementing filters efficiently.
Most of the topics covered on that can also be found in [12]. We also took a
look at the role of filters in the MP3 standard for compression of sound.

In signal processing literature, the assumption that vectors are periodic is
often not present, and filters are thus not defined as finite-dimensional oper-
ations. With matrix notation they would then be viewed as infinite matrices
which have the Toeplitz structure (i.e. constant values on the diagonals), but
with no circulation. The circulation in the matrices, as well as the restriction
to finite vectors, come from the assumption of a periodic vector. There are,
however, also some books which view filters as circulant Toeplits matrices as we
have done, such as [6].

125

Chapter 4

Symmetric filters and the

DCT

Recall that, in Figure 2.3, we listed an unknown operation, which should be a
“DFT specialized to symmetric vectors”. In this chapter we will construct this
operation. It turns out that the final ingredient we need in order to do this is to
specialize our analysis from the previous chapter to filters which are symmetric.
We start with this in the first section.

4.1 Symmetric filters and symmetric vectors
We will start this section by seeing how we can find a better approximation to
an analog filter s than the one we defined in Section 3.2. Assume that we apply
s to a general function f1, and denote as before its symmetric extension by f̆1.
Let also f2 = s(f1) be the output of the filter, which we would like to obtain a
better approximation to. We start with the following observation.

Observation 4.1. Due to continuity of s, and since (f̆1)N is a better approx-
imation to f̆1, compared to what (f1)N is to f1, s(f̆1)N) is a better approxi-
mation to s(f̆1), compared to what s((f1)N) is to s(f1) = f2.

Since s(f̆1) agrees with s(f1) except near the boundaries, s((f̆1)N) is a better
approximation to f2 than what s((f1)N) is.

We have seen that the restriction of s to VM,T is equivalent to an N × N
digital filter S, where N = 2M + 1. Let x be the samples of f1, x̆ the samples
of f̆1. Turning around the fact that (f̆1)N is a better approximation to f̆1,
compared to what (f1)N is to f1, the following is clear.

Observation 4.2. The samples x̆ are a better approximation to the samples
of (f̆1)N , than the samples x are to the samples of (f1)N .

126

f1
s ��

��

f2

��

f̆1

s

��

f̆2

s

��
x̆

��

z̆

��

r

��

(x̆0, x̆1, . . . , x̆N−1)
Sr �� (z̆0, z̆1, . . . , z̆N−1)

Figure 4.1: The connections between the new mapping Sr, sampling, and re-
construction.

Now, let z = Sx, and z̆ = Sx̆. The following is also clear.

Observation 4.3. Due to continuity of the digital filter S, it fol-
lows from the preceding observation that z̆ is a better approxi-
mation to S(samples of (f̆1)N) = samples of s((f̆1)N), than z is to
S(samples of (f1)N) = samples of s((f1)N).

Since we previously noted that s((f̆1)N) is a better approximation to the output
f2, we conclude that z̆ is a better approximation that z to the samples of the
output of the filter:

Observation 4.4. A better way to approximate the output of a filter is to
compute Sx̆, where S is the corresponding digital filter, and where x are the
samples of the input f1 to the filter.

If S furthermore preserves symmetric extensions, we can view its restriction to
symmetric extensions as a mapping Sr from RN to RN (since any symmetric
extension is uniquely characterized from the first half of the elements), and
we can thus approximate the analog filter s with the mapping Sr. We have
summarized these remarks in Figure 4.1, which is simply a specialization of
Figure 3.1 to symmetric functions. The mapping Sr will turn out not to be a
digital filter, and we will later characterize these mappings.

Let us therefore try to characterize filters which preserve symmetric exten-
sions. It will turn out that this is where symmetric filters come into the picture.
We will solve this in more generality by also considering symmetric vectors:

Definition 4.5 (Symmetric vector). We say that a vector x is symmetric if
there exists a number d so that xd+k = xd−k for all k so that d+ k and d− k
are integers. d is called the symmetry point of x

127

d can take any value, and it may not be an integer: It can also be an odd
multiple of 1/2, because then both d+ k and d− k are integers when k also is
an odd multiple of 1/2. Clearly, the symmetry point in symmetric extensions as
defined in Definition 2.25 is d = N − 1

2 . To characterize symmetric vectors, it
turns out to be useful first to characterize how the DFT of a symmetric vector
must look like. We will state two results for this. The first result is the simplest,
and considers integer symmetry points:

Theorem 4.6 (Symmetric vectors with integer symmetry points). Let d be
an integer. The following are equivalent

1. x is real and symmetric with d as symmetry point.

2. (�x)
n
= yne−2πidn/N where yn are real numbers so that yn = yN−n.

Proof. Assume first that d = 0. It follows in this case from property 2(a) of
Theorem 2.21 that (�x)

n
is a real vector. Combining this with property 1 of

Theorem 2.21 we see that �x, just as x, also must be a real vector symmetric
about 0. Since the DFT is one-to-one, it follows that x is real and symmetric
about 0 if and only if �x is. From property 3 of Theorem 2.21it follows that,
when d is an integer, x is real and symmetric about d if and only if (�x)

n
=

yne−2πidn/N , where yn is real and symmetric about 0. This completes the
proof.

Theorem 4.7 (Symmetric vectors with non-integer symmetry points). Let d
be an odd multiple of 1/2. The following are equivalent

1. x is real and symmetric with d as symmetry point.

2. (�x)
n
= yne−2πidn/N where yn are real numbers so that yN−n = −yn.

128

Proof. When x is as stated we can write

(�x)
n
=

1√
N

N−1�

k=0

xke
−2πikn/N

=
1√
N




�

s≥0

xd+se
−2πi(d+s)n/N +

�

s≥0

xd−se
−2πi(d−s)n/N





=
1√
N

�

s≥0

xd+s

�
e−2πi(d+s)n/N + e−2πi(d−s)n/N

�

=
1√
N

e−2πidn/N
�

s≥0

xd+s

�
e−2πisn/N + e2πisn/N

�

=
1√
N

e−2πidn/N
�

s≥0

2xd+s cos(2πsn/N).

Here s runs through odd multiples of 1/2. Since yn = 1√
N

�
s≥0 2xd+s cos(2πsn/N)

is a real number, we can write the result as yne−2πidn/N . Substituting N − n
for n, we get

(�x)
N−n

=
1√
N

e−2πid(N−n)/N
�

s≥0

2xd+s cos(2πs(N − n)/N)

=
1√
N

e−2πid(N−n)/N
�

s≥0

2xd+s cos(−2πsn/N + 2πs)

= − 1√
N

e−2πid(N−n)/N
�

s≥0

2xd+s cos(2πsn/N) = −yne
−2πid(N−n)/N .

This shows that yN−n = −yn, and this completes one way of the proof.
The other way, we can write

xk =
1√
N

N−1�

n=0

(�x)
n
e2πikn/N

if (�x)
n
= yne−2πidn/N and (�x)

N−n
= −yne−2πid(N−n)/N , the sum of the n’th

term and the N − n’th term in the sum is

yne
−2πidn/Ne2πikn/N − yne

−2πid(N−n)/Ne2πik(N−n)/N

= yn(e
2πi(k−d)n/N − e−2πid+2πidn/N−2πikn/N)

= yn(e
2πi(k−d)n/N + e2πi(d−k)n/N) = 2yn cos(2π(k − d)n/N).

This is real, so that all xk are real. If we set k = d+ s, k = d− s here we get

2yn cos(2π((d+ s)− d)n/N) = 2yn cos(2πsn/N)

2yn cos(2π((d− s)− d)n/N) = 2yn cos(−2πsn/N) = 2yn cos(2πsn/N).

129

By adding terms together and comparing we must have that xd+s = xd−s, and
the proof is done.

Once we have this characterization of symmetric vectors, it is straightforward
to characterize filters preserving them, by using a well-known property of the
frequency response:

Theorem 4.8. Let S be a filter. The following are equivalent

1. S preserves symmetric vectors (i.e. Sx is a symmetric vector whenever
x is).

2. The set of filter coefficients of S is a symmetric vector.

Also, when S preserves symmetric vectors, the following hold:

1. The vector of filter coefficients has an integer symmetry point if and only
if the input and output have the same type (integer or non-integer) of
symmetry point.

2. The input and output have the same symmetry point if and only if the
filter is symmetric.

Proof. Assume that the filter S maps a symmetric vector with symmetry at d1
to another symmetric vector. Let x be the symmetric vector so that (�x)

n
=

e−2πid1n/N for n < N/2. Since the output is a symmetric vector, we must have
that

λS,ne
−2πid1n/N = yne

−2πid2n/N

for some d2, yn and for n < N/2. But this means that λS,n = yne−2πi(d2−d1)n/N .
Similar reasoning applies for n > N/2, so that λS,n clearly equals �s for some
symmetric vector s from Theorems 4.6 and 4.7. This vector equals (up to mul-
tiplication with

√
N) the filter coefficients of S, which therefore is a symmetric.

Moreover, it is clear that the filter coefficients have an integer symmetry point
if and only if the input and output vector either both have an integer symmetry
point, or both a non-integer symmetry point.

Due to the inherent periodicity of x, it is clear that N must be an even
number for symmetric vectors to exist at all. We will therefore write 2N for N
in the following. In the literature, we encounter mostly symmetric vectors where
there is symmetry around N − 1 or N − 1/2. From Theorem 4.8 it follows that
symmetric filters preserve such symmetric vectors. For these filters we have the
following important result:

Theorem 4.9 (Characterization of filters which preserve vectors symmet-
ric about N − 1/2). Assume that S is a symmetric filter, and let y = Sx,

130

where x,y ∈ R2N . The restriction of S to vectors symmetric about N − 1/2
is uniquely characterized by the mapping Sr : RN → RN which sends

(x0, . . . , xN−1) to (y0, . . . , yN−1). Moreover, if we write S =

�
S1 S2

S3 S4

�
,

we have that Sr = S1 + (S2)f , where (S2)f is the matrix S2 with the columns
reversed.

Proof. With S as in the text of the theorem, we compute




y0
...

yN−1



 =
�
S1 S2

�





x0
...

xN−1

xN

...
x2N−1





= S1




x0
...

xN−1



+ S2




xN

...
x2N−1



 .

When x is a symmetric vector we can rewrite this as

S1




x0
...

xN−1



+ S2




xN−1

...
x0





= S1




x0
...

xN−1



+ (S2)
f




x0
...

xN−1



 =
�
S1 + (S2)f

�



x0
...

xN−1



 .

This shows that the mapping Sr : (x0, . . . , xN−1) → (y0, . . . , yN−1) is well-
defined, and that Sr = S1 + (S2)f .

S2 contains the circulant part of the matrix, and forming (S2)f means that
the circulant parts switch corners.

Example 4.10. Consider the averaging filter g = { 1
4 ,

1
2 ,

1
4}. Let us write down

the matrix Sr for the case when N = 4. First we obtain the matrix S as




1
2

1
4 0 0 0 0 0 1

4
1
4

1
2

1
4 0 0 0 0 0

0 1
4

1
2

1
4 0 0 0 0

0 0 1
4

1
2

1
4 0 0 0

0 0 0 1
4

1
2

1
4 0 0

0 0 0 0 1
4

1
2

1
4 0

0 0 0 0 0 1
4

1
2

1
4

1
4 0 0 0 0 0 1

4
1
2





where we have drawn the boundaries between the blocks S1, S2, S3, S4. From

131

this we see that

S1 =





1
2

1
4 0 0

1
4

1
2

1
4 0

0 1
4

1
2

1
4

0 0 1
4

1
2



 S2 =





0 0 0 1
4

0 0 0 0
0 0 0 0
1
4 0 0 0



 (S2)
f =





1
4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

4



 .

From this we get

Sr = S1 + (S2)
f =





3
4

1
4 0 0

1
4

1
2

1
4 0

0 1
4

1
2

1
4

0 0 1
4

3
4



 .

♣

Note that Sr is not a circulant matrix. Therefore, its eigenvectors are not
pure tones. We will return to this. The properties we just have proved essentially
say that filters which preserve symmetric vectors have a frequency response
where the argument of λS,n (λS(ω)) is linear in n (ω). Since ω is also called the
phase, such filters are often called linear phase filters:

Definition 4.11 (Linear phase). We say that a digital filter S has linear phase
if there exists some d so that Sd+n,0 = Sd−n,0 for all n.

Moreover, the case d = 0, corresponds to symmetric filters. An example
of linear phase filters which are not symmetric are smoothing filters where the
coefficients are taken from odd rows in Pascal’s triangle.

4.1.1 Implementations of symmetric filters
Symmetric filters are also important for applications since they can be imple-
mented efficiently. To see this, we can write

(Sx)n =
N−1�

k=0

skx(n−k) mod N

= s0xn +

(N−1)/2�

k=1

skx(n−k) mod N +
N−1�

k=(N+1)/2

skx(n−k) mod N

= s0xn +

(N−1)/2�

k=1

skx(n−k) mod N +

(N−1)/2�

k=1

skx(N−(n−k)) mod N

= s0xn +

(N−1)/2�

k=1

sk(x(n−k) mod N + x(k−n) mod N). (4.1)

If we compare the first and last expressions here, we need the same number of
summations, but the number of multiplications needed in the latter expression
has been halved.

132

Observation 4.12. For symmetric filters one can find implementations with
a reduced number of multiplications.

Similarly to as in Section 3.8.2, a symmetric filter can be factored into a
product of symmetric filters. To see how, note first that a real polynomial is
symmetric if and only if 1/a is a root whenever a is. If we pair together the
factors for the roots a, 1/a when a is real we get a component in the frequency
response of degree 2. If we pair the factors for the roots a, 1/a, a, 1/a when a is
complex, we get a component in the frequency response of degree 4. We thus
get the following idea:

Idea 4.13. Let S be a symmetric filter with real coefficients. There exist
constants K, a1, . . . , am, b1, c1, . . . , bn, cn so that

λS(ω) =K(a1e
iω + 1 + a1e

−iω) . . . (ameiω + 1 + ame−iω)

× (b1e
2iω + c1e

iω + 1 + c1e
−iω + b1e

−2iω) . . . (bne
2iω + cne

iω + 1 + cne
−iω + bne

−2iω).

We can write S = KA1 . . . AmB1 . . . Bn, where Ai = {ai, 1, ai} and Bi =
{bi, ci, 1, ci, bi}.

In any case we see that the component filters have 3 and 5 filter coefficients.

Exercises for Section 4.1
1. Recall that in Exercise 3.1.3 we wrote down formulas for the output of a
filter. Using the results of this section these formulas can be be written in a
way which reduces the number of arithmetic operations. Assume that S =
t−E , . . . , t0, . . . , tE is a symmetric filter. Use Equation (4.1) to show that zn =
(Sx)n in this case can be split into the following different formulas, depending
on n:

a. 0 ≤ n < E:

zn = t0xn +
n�

k=1

tk(xn+k + xn−k) +
E�

k=n+1

tk(xn+k + xn−k+N). (4.2)

b. E ≤ n < N − E:

zn = t0xn +
E�

k=1

tk(xn+k + xn−k). (4.3)

133

c. N − E ≤ n < N :

zn = t0xn +
N−1−n�

k=1

tk(xn+k + xn−k) +
E�

k=N−1−n+1

tk(xn+k−N + xn−k).

(4.4)

2. Assume that S = t−E , . . . , t0, . . . , tE is a symmetric filter, and let s =
(t0, . . . , tE)}. Write a function

function z=filterS(s,x)

which takes the vector s as input, and returns z = Sx using the formulas from
Exercise 1.

3. Repeat Exercise 2.2.4 by reimplementing the functions reducetreble and
reducebass using the function filterS from the previous exercise. The re-
sulting sound files should sound the same, since the only difference is that we
have modified the way we handle the beginning and end portion of the sound
samples.

4. In Example 3.36, we mentioned that the filters used in the MP3-standard
were constructed from a lowpass prototype filter by multiplying the filter co-
efficients with a complex exponential. The prototytype filter turns out to
be a symmetric filter, however, and then the new filters will not be sym-
metric after we have multiplied by a complex exponential. Show that, when
H is a symmetric lowpass filter (i.e. 0 is the center frequency), the filter
Hn = H cos

�
2π n(k+1/2)π

2N

�
is also a filter with a symmetric frequency response,

with the two center frequencies ±πn/N . (this formula for constructing teh new
filters is what actually is used in the MP3-standard, rather than the multipli-
cation with complex exponentials).

4.2 Construction of the DCT
In Section 4.1 we characterized filters which preserved symmetric vectors and
the symmetry point as the symmetric ones. We mentioned that such filters
applied to symmetric vectors are determined by looking at the first half of the
input and the output, so that they can be viewed as an operation from RN to
RN . We also remarked that the matrix Sr is not a circulant matrix. Therefore,
its eigenvectors are not pure tones. Let us find the eigenvectors of Sr. This will
enable us define the DCT, which plays the same role for symmetric filters/vectors
as the DFT did for filters in diagonalizing them.

Theorem 4.14. The set of all x symmetric around N − 1/2 is a vector space
of dimension N , and we have that

�
e0,

�
1√
2

�
eπin/(2N)en + e−πin/(2N)e2N−n

��N−1

n=1

�

134

is an orthonormal basis for �x where x is symmetric around N − 1/2.

Proof. For a vector x symmetric about d = N − 1/2 we have that (�x)
n

=
yne−2πi(N−1/2)n/(2N), with y2N−n = −yn. It is thus clear that
�
e0,

�
1√
2

�
e−2πi(N−1/2)n/(2N)en − e−2πi(N−1/2)(2N−n)/(2N)e2N−n

��N−1

n=1

�

is an orthonormal basis for the �x with x symmetric. We can write
1√
2

�
e−2πi(N−1/2)n/(2N)en − e−2πi(N−1/2)(2N−n)/(2N)e2N−n

�

=
1√
2

�
e−πineπin/(2N)en + eπine−πin/(2N)e2N−n

�

=
1√
2
eπin

�
eπin/(2N)en + e−πin/(2N)e2N−n

�
.

This also means that�
e0,

�
1√
2

�
eπin/(2N)en + e−πin/(2N)e2N−n

��N−1

n=1

�

is an orthonormal basis.

We immediately get the following result:

Theorem 4.15.

�
1√
2N

cos

�
2π

0

2N

�
k +

1

2

��
,

�
1√
N

cos

�
2π

n

2N

�
k +

1

2

���N−1

n=1

�
(4.5)

is an orthonormal basis for the set of vectors symmetric around N − 1/2 in
R2N .

Proof. Since the IDFT is unitary, the IDFT applied to the vectors above gives
an orthonormal basis for the set of symmetric extensions. We get that

(F2N)H(e0) =

�
1√
2N

,
1√
2N

, . . . ,
1√
2N

�
=

1√
2N

cos

�
2π

0

2N

�
k +

1

2

��
.

We also get that

(F2N)H
�

1√
2

�
eπin/(2N)en + e−πin/(2N)e2N−n

��

=
1√
2

�
eπin/(2N) 1√

2N
e2πink/(2N) + e−πin/(2N) 1√

2N
e2πi(2N−n)k/(2N)

�

=
1√
2

�
eπin/(2N) 1√

2N
e2πink/(2N) + e−πin/(2N) 1√

2N
e−2πink/(2N)

�

=
1

2
√
N

�
e2πi(n/(2N))(k+1/2) + e−2πi(n/(2N))(k+1/2)

�
=

1√
N

cos

�
2π

n

2N

�
k +

1

2

��
.

135

Since F2N is unitary, and thus preserves the scalar product, the given vectors
are orthonormal.

Finally, we need to establish that the given symmetric vectors are eigenvec-
tors for S, and that the restriction to the first half of the elements are eigenvec-
tors for Sr.

Corollary 4.16 (Basis of eigenvectors for Sr). Let S be a symmetric filter,
and let Sr be the mapping defined in Theorem 4.9. Define

dn,N =






�
1
N

, n = 0�
2
N

, 1 ≤ n < N

and dn = dn,N cos
�
2π n

2N

�
k + 1

2

��
for 0 ≤ n ≤ N−1, then {d0,d1, . . . ,dN−1}

is an orthonormal basis of eigenvectors for Sr.

Proof. Let us first show that the basis we have obtained actually are eigenvectors
for S. We have that

S

�
cos

�
2π

n

2N

�
k +

1

2

���

= S

�
1

2

�
e2πi(n/(2N))(k+1/2) + e−2πi(n/(2N))(k+1/2)

��

=
1

2

�
eπin/(2N)S

�
e2πink/(2N)

�
+ e−πin/(2N)S

�
e−2πink/(2N)

��

=
1

2

�
eπin/(2N)λS,ne

2πink/(2N) + e−πin/(2N)λS,2N−ne
−2πink/(2N)

�

=
1

2

�
λS,ne

2πi(n/(2N))(k+1/2) + λS,2N−ne
−2πi(n/(2N))(k+1/2)

�

where we have used that e2πink/(2N) is an eigenvector of S with eigenvalue
λS,n, and e−2πink/(2N) = e2πi(2N−n)k/(2N) is an eigenvector of S with eigenvalue
λS,2N−n. If S preserves symmetric extensions, we know that λS,n = λS,2N−n,
so that this can be written as

λS,n

1

2

�
e2πi(n/(2N))(k+1/2) + e−2πi(n/(2N))(k+1/2)

�
= λS,n cos

�
2π

n

2N

�
k +

1

2

��
.

so that the vectors actually are eigenvectors. Finally, it is clear that the first
half of the vectors must be eigenvectors of Sr, since when y = Sx = λS,nx, we
also have that

(y0, y1, . . . , yN−1) = Sr(x0, x1, . . . , xN−1) = λS,n(x0, x1, . . . , xN−1).

Moreover, since

�x, y� = 2�(x0, x1, . . . , xN−1), (y0, y1, . . . , yN−1)�

136

whenever x and y are symmetric around N − 1/2, we only need to multiply the
vectors we have by

√
2 to obtain an orthonormal basis of eigenvectors for Sr.

This completes the proof.

We now clearly see the analogy between symmetric functions and vectors:
while the first can be written as a cosine-series, the second can be written as
a sum of cosine-vectors. The orthogonal basis we have found is given its own
name:

Definition 4.17 (DCT basis). We denote by DN the orthogonal basis
{d0,d1, . . . ,dN−1}. We also call DN the N -point DCT basis.

Using the DCT basis instead of the Fourier basis we can make the following
definitions, which parallel those for the DFT:

Definition 4.18 (Discrete Cosine Transform). The change of coordinates
from the standard basis of RN to the DCT basis DN is called the discrete
cosine transform (or DCT). The N×N matrix DN that represents this change
of basis is called the (N -point) DCT matrix. If x is a vector in RN , its coor-
dinates y = (y0, y1, . . . , yN−1) relative to the DCT basis are called the DCT
coefficients of x (in other words, y = DNx).

As with the Fourier basis vectors, the DCT basis vectors are called synthesis
vectors, since we can write

x = y0d0 + y1d1 + · · ·+ yN−1dN−1 (4.6)

in the same way as for the DFT. Following the same reasoning as for the DFT,
D−1

N
is the matrix where the dn are columns. But since these vectors are real

and orthonormal, DN must be the matrix where the dn are rows. Moreover,
since Theorem 4.9 also states that the same vectors are eigenvectors for filters
which preserve symmetric extensions, we can state the following:

Theorem 4.19. DN is the orthogonal matrix where the rows are dn. More-
over, for any digital filter S which preserves symmetric extensions, (DN)T

diagonalizes Sr, i.e. Sr = DT

N
DDN where D is a diagonal matrix.

Let us also make the following definition:

Definition 4.20 (IDCT). We will call x = (DN)Ty the inverse DCT or
(IDCT) of x.

Example 4.21. As with Example 2.19, exact expressions for the DCT can be
written down just for a few specific cases. It turns out that the case N = 4 as

137

considered in Example 2.19 does not give the same type of nice, exact values,
so let us instead consider the case N = 2. We have that

D4 =

� 1√
2
cos(0) 1√

2
cos(0)

cos
�
π

2

�
0 + 1

2

��
cos

�
π

2

�
1 + 1

2

��
�

=

�
1√
2

1√
2

1√
2

− 1√
2

�

The DCT of the same vector as in Example 2.19 can now be computed as:

D2

�
1
2

�
=

�
3√
2

− 1√
2

�
.

♣

Example 4.22. A direct implementation of the DCT could be made as follows:

function y=DCTImpl(x)

N=length(x);

DN=zeros(N);

DN(1,:)=ones(1,N)/sqrt(N);

for n=1:N

DN(n,:)=cos(2*pi*((n-1)/(2*N))*((0:N-1)+1/2))*sqrt(2/N);

end

y=DN*x;

In the next chapter we will see that one also can make a much more efficient
implementation of the DCT than this. ♣

Similarly to Theorem 2.28 for the DFT, one can think of the DCT as a
least squares approximation and the unique representation of a function having
the same sample values, but this time in terms of sinusoids instead of complex
exponentials:

Theorem 4.23 (Interpolation with the DCT basis). Let f be a function
defined on the interval [0, T], and let x be the sampled vector given by

xk = f((2k + 1)T/(2N)) for k = 0, 1, . . . , N − 1.

There is exactly one linear combination g(t) on the form

N−1�

n=0

yndn,N cos(2π(n/2)t/T)

which satisfies the conditions

g((2k + 1)T/(2N)) = f((2k + 1)T/(2N)), k = 0, 1, . . . , N − 1,

and its coefficients are determined by y = DNx.

138

Proof. This follows by inserting t = (2k + 1)T/(2N) in the equation g(t) =�
N−1
n=0 yndn,N cos(2π(n/2)t/T) to arrive at the equations

f(kT/N) =
N−1�

n=0

yndn,N cos

�
2π

n

2N

�
k +

1

2

��
0 ≤ k ≤ N − 1.

This gives us an equation system for finding the yn with the invertible DCT
matrix as coefficient matrix, and the result follows.

From this result, and from our construction, it follows that the DCT can
be used as the unknown operation in Figure 2.3. There is, however, a slight
difference to how we applied the DFT, due to the subtle change in the sample
points, from kT/N for the DFT, to (2k + 1)T/(2N) for the DCT. The sample
points for the DCT are thus the midpoints on the intervals in a uniform partition
of [0, T] into N intervals, while they for the DFT are the start points on the
intervals. Also, the frequencies are divided by 2. In Figure 4.2 we have plotted
the sinusoids of Theorem 4.23 for T = 1, as well as the sample points used
in that theorem. The sample points in (a) correspond to the first column in
the DCT matrix, the sample points in (b) to the second column of the DCT
matrix, and so on (up to normalization with dn,N). As n increases, the functions
oscillate more and more. As an example, y5 says how much content of maximum
oscillation there is. In other words, the DCT of an audio signal shows the
proportion of the different frequencies in the signal, and the two formulas y =
DNx and x = (DN)Ty allow us to switch back and forth between the time
domain representation and the frequency domain representation of the sound.
In other words, once we have computed y = DNx, we can analyse the frequency
content of x. If we want to reduce the bass we can decrease the y-values with
small indices and if we want to increase the treble we can increase the y-values
with large indices.

Exercises for Section 4.2
1. Consider the matrix

S =
1

3





2 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 2





a. Compute the eigenvalues and eigenvectors of S using the results of
this section. You should only need to perform one DFT or one DCT in
order to achieve this.

139

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

(a) cos(2π(0/2)t)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(b) cos(2π(1/2)t)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(c) cos(2π(2/2)t)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(d) cos(2π(3/2)t)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(e) cos(2π(4/2)t)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(f) cos(2π(5/2)t)

Figure 4.2: The 6 different sinusoids used in DCT for N = 6, i.e. cos(2π(n/2)t),
0 ≤ n < 6. The plots also show piecewise linear functions (in red) between the
sample points 2k+1

2N 0 ≤ k < 6, since only the values at these points are used in
Theorem 4.23.

140

b. Use Matlab to compute the eigenvectors and eigenvalues of S also.
What are the differences from what you found in (a)?

c. Find a filter T so that S = Tr. What kind of filter is T?

4.3 Use of DCT in lossy compression of sound
The DCT is particularly popular for processing sound data before they are com-
pressed with lossless techniques such as Huffman coding or arithmetic coding.
The reason is, as mentioned, that the DCT provides a better approximation
from a low-dimensional space than the DFT does. The computation of scale-
factors in MP3 is based on applying a variant of the DCT (called the Modified
Discrete Cosine Transform, MDCT) to groups of 576 (in special circumstances
192) samples. One does here not actually apply the DCT directly. Rather one
applies a much more complex transformation, which can be implemented in
parts by using DCT in a clever way.

We have mentioned that we could achieve compression by setting the Fourier
coefficients which are small to zero. Translated to the DCT, we should set the
DCT coefficients which are small to zero, and we apply the inverse DCT in order
to reconstruct the signal in order to play it again. Let us test compression based
on this idea. The plots in figure 4.3 illustrate the principle. A signal is shown in
(a) and its DCT in (b). In (d) all values of the DCT with absolute value smaller
than 0.02 have been set to zero. The signal can then be reconstructed with the
inverse DCT; the result of this is shown in (c). The two signals in (a) and (c)
visually look almost the same even though the signal in (c) can be represented
with less than 25 % of the information present in (a).

We test this compression strategy on a data set that consists of 300 001
points. We compute the DCT and set all values smaller than a suitable tolerance
to 0. With a tolerance of 0.04, a total of 142 541 values are set to zero. When
we then reconstruct the sound with the inverse DCT, we obtain a signal that
differs at most 0.019 from the original signal. To verify that the new file is
not too different from the old file, we can take the read sound samples from
castanets.wav, run the following function for different eps

function A=skipsmallvals(eps,A)

B=dct(A);

B=(B>=eps).*B;

A=idct(B);

and play the new samples. We have here used Matlab’s functions for computing
the DCT and IDCT, called dct, and idct. These functions are defined in
Matlab exactly as they are here, contrary to the case for the FFT (where a
different normalizing factor was used). Finally we can store the signal by storing
a gzip’ed version of the DCT-values (as 32-bit floating-point numbers) of the

141

100 200 300 400

�0.10
�0.05

0.05
0.10
0.15

(a)

100 200 300 400
�0.2

0.2

0.4

(b)

100 200 300 400

�0.10

�0.05

0.05

0.10

0.15

(c)

100 200 300 400
�0.2

0.2

0.4

(d)

Figure 4.3: The signal in (a) are the sound samples from a small part of a song.
The plot in (b) shows the DCT of the signal. In (d), all values of the DCT
that are smaller than 0.02 in absolute value have been set to 0, a total of 309
values. In (c) the signal has been reconstructed from these perturbed values of
the DCT. The values have been connected by straight lines to make it easier to
interpret the plots.

142

perturbed signal. This gives a file with 622 551 bytes, which is 88 % of the
gzip’ed version of the original data.

The choice of the DCT in the MP3 standard has also much to do with that
the DCT, just as the DFT, has a very efficient implementation, as we will see
next.

Exercises for Section 4.3
1. In Section 4.3 we implemented the function skipsmallvals, which ran a
DCT on the entire vector. Explain why there is less computation involved
in splitting the vector into many parts and performing a DCT for each part.
Change the code accordingly. In light of Example 2.27, what are the disadvan-
tages with this strategy?

2. As in Example 4.21, state the exact cartesian form of the DCT matrix for
the case N = 3.

4.4 Efficient implementations of the DCT
When we defined the DCT in the preceding section, we converted to the fre-
quency domain, so that the DFT is involved. This enables us to use efficient
implementations of the DFT, such as the one we considered in Section 2.9.
However, the way we defined the DCT, there is a penalty in that we need to
compute a DFT of twice the length (the length doubles when we instead con-
sider the symmetric extension). We are also forced to use complex arithmetic
(note that any complex multiplication corresponds to 4 real multiplications, and
that any complex addition corresponds to 2 real additions). Is there a way to
get around these penalties, so that we can get an implementation of the DCT
which is more efficient, and uses less additions and multiplications than the one
you made in Exercise 1? The following theorem states an expression of the DCT
which achieves this. This expression is, together with a similar result for the
DFT in the next section, much used in practical implementations:

Theorem 4.24 (DCT algorithm). Let y = DNx be the N -point DCT of the
vector x. Then we have that

yn = cn,N
�
cos

�
π

n

2N

�
�((FNx(1))n) + sin

�
π

n

2N

�
�((FNx(1))n)

�
, (4.7)

where c0,N = 1 and cn,N =
√
2 for n ≥ 1, and where x(1) ∈ RN is defined by

(x(1))k = x2k for 0 ≤ k ≤ N/2− 1

(x(1))N−k−1 = x2k+1 for 0 ≤ k ≤ N/2− 1,

143

Proof. The N -point DCT of x is

yn = dn,N

N−1�

k=0

xk cos

�
2π

n

2N

�
k +

1

2

��
.

Splitting this sum into two sums, where the indices are even and odd, we get

yn = dn,N

N/2−1�

k=0

x2k cos

�
2π

n

2N

�
2k +

1

2

��

+ dn,N

N/2−1�

k=0

x2k+1 cos

�
2π

n

2N

�
2k + 1 +

1

2

��
.

If we reverse the indices in the second sum, this sum becomes

dn,N

N/2−1�

k=0

xN−2k−1 cos

�
2π

n

2N

�
N − 2k − 1 +

1

2

��
.

If we then also shift the indices with N/2 in this sum, we get

dn,N

N−1�

k=N/2

x2N−2k−1 cos

�
2π

n

2N

�
2N − 2k − 1 +

1

2

��

= dn,N

N−1�

k=N/2

x2N−2k−1 cos

�
2π

n

2N

�
2k +

1

2

��
,

where we used that cos is symmetric and periodic with period 2π. We see that
we now have the same cos-terms in the two sums. If we thus define the vector
x(1) as in the text of the theorem, we see that we can write

yn = dn,N

N−1�

k=0

(x(1))k cos

�
2π

n

2N

�
2k +

1

2

��

= dn,N�
�

N−1�

k=0

(x(1))ke
−2πin(2k+ 1

2)/(2N)

�

=
√
Ndn,N�

�
e−πin/(2N) 1√

N

N−1�

k=0

(x(1))ke
−2πink/N

�

= cn,N�
�
e−πin/(2N)(FNx(1))n

�

= cn,N
�
cos

�
π

n

2N

�
�((FNx(1))n) + sin

�
π

n

2N

�
�((FNx(1))n)

�
,

where we have recognized the N -point DFT, and where cn,N =
√
Ndn,N . In-

serting the values for dn,N , we see that c0,N = 1 and cn,N =
√
2 for n ≥ 1, which

agrees with the definition of cn,N in the theorem. This completes the proof.

144

With the result above we have avoided computing a DFT of double size.
If we in the proof above define the N × N -diagonal matrix QN by Qn,n =
cn,Ne−πin/(2N), the result can also be written on the more compact form

y = DNx = �
�
QNFNx(1)

�
.

We will, however, not use this form, since there is complex arithmetic involved,
contrary to (4.7). Let us see how we can use (4.7) to implement the DCT, once
we already have implemented the DFT in terms of the function FFTImpl as in
Section 2.9:

function y = DCTImpl(x)

N = length(x);

if N == 1

y = x;

else

x1 = [x(1:2:(N-1)); x(N:(-2):2)];

y = FFTImpl(x1);

rp = real(y);

ip = imag(y);

y = cos(pi*((0:(N-1))’)/(2*N)).*rp + sin(pi*((0:(N-1))’)/(2*N)).*ip;

y(2:N) = sqrt(2)*y(2:N);

end

In the code, the vector x(1) is created first by rearranging the components, and
it is sent as input to FFTImpl. After this we take real parts and imaginary parts,
and multiply with the cos- and sin-terms in (4.7).

4.4.1 Efficient implementations of the IDCT
As with the FFT, it is straightforward to modify the DCT implementation so
that it returns the IDCT. To see how we can do this, write from Theorem 4.24,
for n ≥ 1

yn = cn,N
�
cos

�
π

n

2N

�
�((FNx(1))n) + sin

�
π

n

2N

�
�((FNx(1))n)

�

yN−n = cN−n,N

�
cos

�
π
N − n

2N

�
�((FNx(1))N−n) + sin

�
π
N − n

2N

�
�((FNx(1))N−n)

�

= cn,N
�
sin

�
π

n

2N

�
�((FNx(1))n)− cos

�
π

n

2N

�
�((FNx(1))n)

�
,

where we have used the symmetry of FN for real signals. These two equations
enable us to determine �((FNx(1))n) and �((FNx(1))n) from yn and yN−n. We
get

cos
�
π

n

2N

�
yn + sin

�
π

n

2N

�
yN−n = cn,N�((FNx(1))n)

sin
�
π

n

2N

�
yn − cos

�
π

n

2N

�
yN−n = cn,N�((FNx(1))n).

145

Adding we get

cn,N (FNx(1))n =cos
�
π

n

2N

�
yn + sin

�
π

n

2N

�
yN−n + i(sin

�
π

n

2N

�
yn − cos

�
π

n

2N

�
yN−n)

=(cos
�
π

n

2N

�
+ i sin

�
π

n

2N

�
)(yn − iyN−n) = eπin/(2N)(yn − iyN−n).

This means that (FNx(1))n = 1
cn,N

eπin/(2N)(yn − iyN−n) for n ≥ 1. For n = 0,
since �((FNx(1))n) = 0 we have that (FNx(1))0 = 1

c0,N
y0. This means that

x(1) can be recovered by taking the IDFT of the vector with component 0 being
1

c0,N
y0 = y0, and the remaining components being 1

cn,N

eπin/(2N)(yn − iyN−n):

Theorem 4.25 (IDCT algorithm). Let x = (DN)Ty be the IDCT of y.
and let z be the vector with component 0 being 1

c0,N
y0, and the remaining

components being 1
cn,N

eπin/(2N)(yn − iyN−n). Then we have that

x(1) = (FN)Hz,

where x(1) is defined as in Theorem 4.24.

The implementation of IDCT can thus go as follows:

function x = IDCTImpl(y)

N = length(y);

if N == 1

x = y(1);

else

Q=exp(pi*1i*((0:(N-1))’)/(2*N));

Q(2:N)=Q(2:N)/sqrt(2);

yrev=y(N:(-1):2);

toapply=[y(1); Q(2:N).*(y(2:N)-1i*yrev)];

x1=IFFTImpl(toapply);

x=zeros(N,1);

x(1:2:(N-1))=x1(1:(N/2));

x(2:2:N)=x1(N:(-1):(N/2+1));

end

4.4.2 Reduction in the number of multiplications with the
DCT

Let us also state a result which confirms that the DCT and IDCT implementa-
tions we have described give the same type of reductions in the number multi-
plications as the FFT and IFFT:

146

Theorem 4.26 (Number of multiplications required by the DCT and IDCT
algorithms). Both the N -point DCT and IDCT factorizations given by The-
orem 4.24 and Theorem 4.25 require O(2(N + 1) log2 N) real multiplications.
In comparison, the number of real multiplications required by a direct imple-
mentation of the N -point DCT and IDCT is N2.

Proof. By Theorem 2.37, the number of multiplications required by the FFT
is O(2N log2 N). By Theorem 4.24, two additional multiplications are needed
for each index, giving additionally 2N multiplications in total, so that we end
up with O(2(N + 1) log2 N) real multiplications. For the IDCT, note first that
the vector z = 1

cn,N

eπin/(2N)(yn − iyN−n) seen in Theorem 4.25 should require
4N real multiplications to compute. But since the IDFT of z is real, z must
have conjugate symmetry between the first half and the second half of the
coefficients, so that we only need to perform 2N multiplications. Since the
IFFT takes an additional O(2N log2 N) real multiplications, we end up with
a total of O(2N + 2N log2 N) = O(2(N + 1) log2 N) real multiplications also
here. It is clear that the direct implementation of the DCT and IDCT needs
N2 multiplications, since only real arithmetic is involved.

Since the DCT and IDCT can be implemented using the FFT and IFFT,
it has the same advantages as the FFT when it comes to parallel computing.
Much literature is devoted to reducing the number of multiplications in the
DFT and the DCT even further than what we have done. In the next section
we will show an example on how this can be achieved, with the help of extra
work and some tedious math. Some more notes on computational complexity
are in order. For instance, we have not counted the operations sin and cos in
the DCT. The reason is that these values can be precomputed, since we take the
sine and cosine of a specific set of values for each DCT or DFT of a given size.
This is contrary to to multiplication and addition, since these include the input
values, which are only known at runtime. We have, however, not written down
that we use precomputed arrays for sine and cosine in our algorithms: This is
an issue to include in more optimized algorithms. Another point has to do with
multiplication of 1√

N
. As long as N = 22r, multiplication with N need not be

considered as a multiplication, since it can be implemented using a bitshift.

4.4.3 *An efficient joint implementation of the DCT and
the FFT

We will now present a more advanced FFT algorithm, which will turn out to
decrease the number of multiplications and additions even further. It also has
the advantage that it avoids complex number arithmetic altogether (contrary to
Theorem 2.31), and that it factors the computation into smaller FFTs and DCTs
so that we can also use our previous DCT implementation. This implementation
of the DCT and the DFT is what is mostly used in practice. For simplicity we
will drop this presentation for the inverse transforms, and concentrate only on
the DFT and the DCT.

147

Theorem 4.27 (Revised FFT algorithm). Let y = FNx be the N -point DFT
of the real vector x. Then we have that

�(yn) =






1√
2
�((FN/2x

(e))n) + (EDN/4z)n 0 ≤ n ≤ N/4− 1
1√
2
�((FN/2x

(e))n) n = N/4
1√
2
�((FN/2x

(e))n)− (EDN/4z)N/2−n N/4 + 1 ≤ n ≤ N/2− 1

(4.8)

�(yn) =






1√
2
�((FN/2x

(e))n) q = 0
1√
2
�((FN/2x

(e))n) + (EDN/4w)N/4−n 1 ≤ n ≤ N/4− 1
1√
2
�((FN/2x

(e))n) + (EDN/4w)n−N/4 N/4 ≤ n ≤ N/2− 1

(4.9)

where x(e) is as defined in Theorem 2.31, where z,w ∈ RN/4 defined by

zk = x2k+1 + xN−2k−1 0 ≤ k ≤ N/4− 1,

wk = (−1)k(xN−2k−1 − x2k+1) 0 ≤ k ≤ N/4− 1,

and where E is a diagonal matrix with diagonal entries E0,0 = 1
2 and En,n =

1
2
√
2

for n ≥ 1.

Proof. Taking real and imaginary parts in (2.13) we obtain

�(yn) =
1√
2
�((FN/2x

(e))n +
1√
2
�((DN/2FN/2x

(o))n)

�(yn) =
1√
2
�((FN/2x

(e))n +
1√
2
�((DN/2FN/2x

(o))n).

These equations explain the first parts on the right hand side in (4.8) and (4.9).

148

Furthermore, for 0 ≤ n ≤ N/4− 1 we can write

�((DN/2FN/2x
(o))n)

=
1�
N/2

�(e−2πin/N
N/2−1�

k=0

(x(o))ke
−2πink/(N/2))

=
1�
N/2

�(
N/2−1�

k=0

(x(o))ke
−2πin(k+ 1

2)/(N/2))

=
1�
N/2

N/2−1�

k=0

(x(o))k cos

�
2π

n(k + 1
2)

N/2

�

=
1�
N/2

N/4−1�

k=0

(x(o))k cos

�
2π

n(k + 1
2)

N/2

�

+
1�
N/2

N/4−1�

k=0

(x(o))N/2−1−k cos

�
2π

n(N/2− 1− k + 1
2)

N/2

�

=
1√
2

1�
N/4

N/4−1�

k=0

((x(o))k + (x(o))N/2−1−k) cos

�
2π

n
�
k + 1

2

�

N/2

�

= (E0DN/4z)n,

where we have used that cos is periodic with period 2π and symmetric, where z is
the vector defined in the text of the theorem, where we have recognized the DCT
matrix, and where E0 is a diagonal matrix with diagonal entries (E0)0,0 = 1√

2

and (E0)n,n = 1
2 for n ≥ 1 (E0 absorbs the factor 1√

N/2
, and the factor dn,N

from the DCT). By absorbing the additional factor 1√
2
, we get a matrix E as

stated in the theorem. For N/4 + 1 ≤ n ≤ N/2 − 1, everything above but the
last statement is valid. We can now use that

cos

�
2π

n(k + 1
2)

N/2

�
= − cos

�
2π

�
N

2 − n
� �

k + 1
2

�

N/2

�

to arrive at −(E0DN/4z)N/2−n instead. For the case n = N

4 all the cosine
entries are zero, and this completes (4.8). For the imaginary part, we obtain as
above

�((DN/2FN/2x
(o))n)

=
1�
N/2

N/4−1�

k=0

((x(o))N/2−1−k − (x(o))k) sin

�
2π

n(k + 1
2)

N/2

�

=
1�
N/2

N/4−1�

k=0

((x(o))N/2−1−k − (x(o))k)(−1)k cos

�
2π

(N/4− n)(k + 1
2)

N/2

�
.

149

where we have used that sin is periodic with period 2π and anti-symmetric, that

sin

�
2π

n(k + 1
2)

N/2

�
= cos

�
π

2
− 2π

n(k + 1
2)

N/2

�

= cos

�
2π

(N/4− n)(k + 1
2)

N/2
− kπ

�

= (−1)k cos

�
2π

(N/4− n)(k + 1
2)

N/2

�
,

When n = 0 this is 0 since all the cosines entries are zero. When 1 ≤ n ≤ N/4
this is (E0DN/4w)N/4−n, where w is the vector defined as in the text of the
theorem. For N/4 ≤ n ≤ N/2 − 1 we arrive instead at (E0DN/4z)n−N/4,
similarly to as above. This also proves (4.9), and the proof is done.

As for Theorem 2.31, this theorem says nothing about the coefficients yn
for n > N

2 . These are obtained in the same way as before through symmetry.
The theorem also says nothing about yN/2. This can be obtained with the same
formula as in Theorem 2.31.

It is more difficult to obtain a matrix interpretation for Theorem 4.27, so
we will only sketch an algorithm which implements it. The following code
implements the recursive formulas for �FN and �FN in the theorem:

function y = FFTImpl2(x)

N = length(x);

if N == 1

y = x;

elseif N==2

y = 1/sqrt(2)*[x(1) + x(2); x(1) - x(2)];

else

xe = x(1:2:(N-1));

xo = x(2:2:N);

yx = FFTImpl2(xe);

z = x(N:(-2):(N/2+2))+x(2:2:(N/2));

dctz = DCTImpl(z);

dctz(1)=dctz(1)/2;

dctz(2:length(dctz)) = dctz(2:length(dctz))/(2*sqrt(2));

w = (-1).^((0:(N/4-1))’).*(x(N:-2:(N/2+2))-x(2:2:(N/2)));

dctw = DCTImpl(w);

dctw(1)=dctw(1)/2;

dctw(2:length(dctw)) = dctw(2:length(dctw))/(2*sqrt(2));

y = yx/sqrt(2);

y(1:(N/4))=y(1:(N/4))+dctz;

if (N>4)

150

y((N/4+2):(N/2))=y((N/4+2):(N/2))-dctz((N/4):(-1):2);

y(2:(N/4))=y(2:(N/4))+1j*dctw((N/4):(-1):2);

end

y((N/4+1):(N/2))=y((N/4+1):(N/2))+1j*dctw;

y = [y; ...

sum(xe-xo)/sqrt(N); ...

conj(y((N/2):(-1):2))];

end

In addition, we need to change the code for DCTImpl so that it calls FFTImpl2

instead of FFTImpl. The following can now be shown:

Theorem 4.28 (Number of multiplications required by the revised FFT algo-
rithm). Let MN be the number of real multiplications required by the revised
algorithm of Theorem 4.27. Then we have that MN = O(23N log2 N).

This is a big reduction from the O(2N log2 N) required by the FFT algorithm
from Theorem 2.31. We will not prove Theorem 4.28. Instead we will go through
the steps in a proof in Exercise 3. The revised FFT has yet a bigger advantage
that the FFT when it comes to parallel computing: It splits the computation
into, not two FFT computations, but three computations (one of which is an
FFT, the other two DCT’s). This makes it even easier to make use of many
cores on computers which have support for this.

Exercises for Section 4.4
1. Write a function

function samples=DCTImpl(x)

which returns the DCT of the column vector x ∈ R2N as a column vector. The
function should use the FFT-implementation from the previous section, and the
factorization C = E−1AFB from above. The function should not construct the
matrices A,B,E explicitly.

2. Explain why, if FFTImpl needs MN multiplications AN additions, then the
number of multiplications and additions required by DCTImpl are MN +2N and
AN +N , respectively.

3. In this exercise we will compute the number of real multiplications needed
by the revised N -point FFT algorithm of Theorem 4.27, denoted MN .

a. Explain from the algorithm of Theorem 4.27 that

MN = 2(MN/4 +N/2) +MN/2 = N +MN/2 + 2MN/4. (4.10)

151

b. Explain why xr = M2r is the solution to the difference equation

xr+2 − xr+1 − 2xr = 4× 2r.

c. Show that the general solution to the difference equation is

xr =
2

3
r2r + C2r +D(−1)r.

d. Explain why MN = O(23N log2 N) (you do not need to write down the
initial conditions for the difference equation in order to find the particular
solution to it).

4.5 Summary
We started this chapter by noting that an analog filter could be better approx-
imated with a digital filter if we instead considered the symmetric extension. If
the filter also was symmetric, we showed that it preserved these symmetric ex-
tensions, and we obtained an N -dimensional mapping representing this process.
We found the eigenvectors and eigenvalues for this mapping, and this was what
lead us to the definition of the DCT. We also showed how to obtain an efficient
implementation of the DCT, which could reuse the FFT implementation. We
also took a look at the role of the DCT in the MP3 standard. The standard
document for MP3 [7] does not dig into the theory for this, only representing
what is needed in order to make an implementation. It is somewhat difficult
to read this document, since it is written in quite a different language, familiar
mainly to those working with international standards.

152

