
Part II

Wavelets and applications to

image processing

153



Chapter 5

Motivation for wavelets

In Part I our focus was to approximate functions or vectors with trigonometric
functions. We saw that the Discrete Fourier transform could be used to obtain
the representation of a vector in terms of such functions, and that computations
could be done efficiently with the FFT algorithm. This was useful for analyzing,
filtering, and compressing sound and other discrete data. The approach with
trigonometric functions has some limitations, however. One of these is that,
in a representation with trigonometric functions, the frequency content is fixed
over time. This is in contrast with much sound data, where frequency char-
acteristics are completely different in different parts. We have also seen that,
even if a sound has a simple representation in terms of trigonometric functions
on two different parts, the representation of the entire function may be more
complex. In particular, if the function is nonzero only on a very small interval,
a representation of it in terms of trigonometric functions is not so simple.

In this chapter we are going to introduce the basic properties of an alternative
to Fourier analysis, namely wavelets. Similar to Fourier analysis, wavelets are
also based on the idea of expressing a function in some basis. But in contrast to
Fourier analysis, where the basis is fixed, wavelets provide a general framework
with many different types of bases. In this chapter we first give a motivation for
wavelets, before we continue by introducing the simplest wavelet we have. We
then establish a more general framework from the experiences from this wavelet.
In the following chapters we then consider more general wavelets.

5.1 Why wavelets?
Figure 5.1(a) shows a view of the entire Earth. The startup image in Google
EarthTM, a program for viewing satellite images, maps and other geographic
information, is very similar to this. In (b) we have zoomed in on the Mexican
Gulff, as marked with a rectangle in (a). Similarly, in (c) we have further
zoomed in on Cuba and a small portion of Florida, as marked with a rectangle
in (b). There is clearly an amazing amount of information available behind a
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(a) Image of the earth (b) Zoomed in on the rect-
ange marked in (a)

(c) Zoomed further in on the
rectange marked in (b)

Figure 5.1: A view of Earth from space, together with versions of the image
where we have zoomed in.

program like Google EarthTM, since we there can zoom further in, and obtain
enough detail to differentiate between buildings and even trees or cars all over
the Earth. So, when the Earth is spinning in the opening screen of Google
EarthTM, all the Earth’s buildings appear to be spinning with it! If this was
the case the Earth would not be spinning on the screen, since there would just
be so much information to process that a laptop would not be able to display a
rotating Earth.

There is a simple reason that the globe can be shown spinning in spite of
the huge amounts of information that need to be handled. We are going to see
later that a digital image is just a rectangular array of numbers that represent
the colour at a dense set of points. As an example, the images in Figure 5.1 are
made up of a grid of 1064×1064 points, which gives a total of 1 132 096 points.
The colour at a point is represented by three eight-bit integers, which means
that the image files contain a total of 3 396 288 bytes each. So regardless of how
close to the surface of the Earth our viewpoint is, the resulting image always
contains the same number of points. This means that when we are far away
from the Earth we can use a very coarse model of the geographic information
that is being displayed, but as we zoom in, we need to display more details and
therefore need a more accurate model.

Observation 5.1. When discrete information is displayed in an image, there
is no need to use a mathematical model that contains more detail than what
is visible in the image.

A consequence of Observation 5.1 is that for applications like Google EarthTM

we should use a mathematical model that makes it easy to switch between dif-
ferent levels of detail, or different resolutions. Such models are called multireso-
lution models, and wavelets are prominent examples of this kind of models. We
will see that multiresolution models also provide us with means of approxima-
tion functions, just as Taylor series and Fourier series. Our new approximation
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Figure 5.2: Two examples of piecewise constant functions.

scheme differs from these in one important respect, however: When we approx-
imate with Taylor series and Fourier series, the error must be computed at the
same data points as well, so that the error contains just as much information as
the approximating function, and the function to be approximated. Multiresolu-
tion models on the other hand will be defined in such a way that the error and
the “approximating function” each contain half of the information from the func-
tion we approximate, i.e. their amount of data is reduced. This property makes
multiresolution models attractive for the problems at hand, when compared to
approaches such as Taylor series and Fourier series.

When we zoom in with Google EarthTM, it seems that this is done con-
tinuously. The truth is probably that the program only has representations at
some given resolutions (since each representation requires memory), and that
one interpolates between these to give the impression of a continuous zoom. In
the coming chapters we will first look at how we can represent the information
at different resolutions, so that only new information at each level is included.

We will now turn to the specifics of the simplest wavelet we have. Its con-
struction goes in the following steps: First we introduce what we call resolution
spaces, then the detail spaces, and the wavelet functions.

5.2 Resolution spaces
The starting point is the space of piecewise constant functions on an interval
[0, N).

Definition 5.2 (The resolution space V0). Let N be a natural number. The
resolution space V0 is defined as the space of functions defined on the interval
[0, N) that are constant on each subinterval [n, n+ 1) for n = 0, . . . , N − 1.

Note that this also corresponds to piecewise constant functions which are
periodic with period N . We will, just as we did in Fourier analysis, identify a
function defined on [0, N) with its (period N) periodic extension. Two examples
of functions in V0 for N = 10 are shown in Figure 5.2. It is easy to check that

156



1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

(a)

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

(b)

Figure 5.3: The functions φ2 (a) and φ7 (b) in V0.

V0 is a linear space, and for computations it is useful to know the dimension of
the space and have a basis.

Lemma 5.3. Define the function φ(t) by

φ(t) =

�
1, if 0 ≤ t < 1;

0, otherwise;
(5.1)

and set φn(t) = φ(t − n) for any integer n. The space V0 has dimension N ,
and the N functions {φn}N−1

n=0 form an orthonormal basis for V0 with respect
to the standard inner product

�f, g� =
�

N

0
f(t)g(t) dt. (5.2)

In particular, any f ∈ V0 can be represented as

f(t) =
N−1�

n=0

cnφn(t) (5.3)

for suitable coefficients (cn)N−1
n=0 . The function φn is referred to as the charac-

teristic function of the interval [n, n+ 1)

Note the small difference between the inner product we define here from the
inner product we used for functions previously: Here there is no scaling 1/T
involved. Also, for wavelets we will only consider real functions, and the inner
product will therefore not be defined for complex functions. Two examples of
the basis functions defined in Lemma 5.5 are shown in Figure 5.3.

Proof. Two functions φn1 and φn2 with n1 �= n2 clearly satisfy
�
φn1(t)φn2(t)dt =

0 since φn1(t)φn2(t) = 0 for all values of x. It is also easy to check that �φn� = 1
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Figure 5.4: The square wave in V0 (a) and an approximation to cos t from V0.

for all n. Finally, any function in V0 can be written as a linear combination the
functions φ0, φ1, . . . , φN−1, so the conclusion of the lemma follows.

In our discussion of Fourier analysis, the starting point was the function
sin 2πt that has frequency 1. We can think of the space V0 as being analogous
to this function: The function

�
N−1
n=0 (−1)nφn(t) is (part of the) square wave

that we discussed in Chapter 1, and which also oscillates regularly like the sine
function, see Figure 5.4 (a). The difference is that we have more flexibility
since we have a whole space at our disposal instead of just one function —
Figure 5.4 (b) shows another function in V0.

In Fourier analysis we obtained a linear space of possible approximations by
including sines of frequency 1, 2, 3, . . . , up to some maximum. We use a similar
approach for constructing wavelets, but we double the frequency each time and
label the spaces as V0, V1, V2, . . .

Definition 5.4 (Refined resolution spaces). The space Vm for the interval
[0, N) is the space of piecewise linear functions defined on [0, N) that are
constant on each subinterval [n/2m, (n+ 1)/2m) for n = 0, 1, . . . , 2mN − 1.

Some examples of functions in the spaces V1, V2 and V3 for the interval [0, 10]
are shown in Figure 5.5. As m increases, we can represent smaller details. In
particular, the function in (d) is a piecewise constant function that oscillates
like sin 2π22t on the interval [0, 10].

It is easy to find a basis for Vm, we just use the characteristic functions of
each subinterval.

Lemma 5.5. Let [0, N) be a given interval with N some positive integer, and
let Vm denote the resolution space of piecewise constant functions for some
integer m ≥ 0. Then the dimension of Vm is 2mN . Define the functions

φm,n(t) = 2m/2φ(2mt− n), for n = 0, 1, . . . , 2mN − 1, (5.4)
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Figure 5.5: Piecewise constant approximations to cos t on the interval [0, 10] in
the spaces V1 (a), V2 (b), and V3 (c). The plot in (d) shows the square wave in
V2.
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where φ is the characteristic function of the interval [0, 1]. The functions
{φm,n}2

m
N−1

n=0 form an orthonormal basis for Vm, and any function f ∈ Vm

can be represented as

f(t) =
2mN−1�

n=0

cnφm,n(t)

for suitable coefficients (cn)
2mN−1
n=0 .

Proof. The functions given in (5.19) are exactly the characteristic functions of
the subintervals [n/2m, (n + 1)/2m) which we referred to in Definition 5.4, so
the proof is very similar to the proof of Lemma 5.5. The one mysterious thing
may be the normalisation factor 2−m/2. This comes from the fact that
�

N

0
φ(2mt− n)2 dt =

� (n+1)/2m

n/2m
φ(2mt− n)2 dt = 2−m

� 1

0
φ(u)2 du = 2−m.

The normalisation therefore ensures that �φm,n� = 1 for all m.

In the theory of wavelets, the function φ is also called a scaling function. The
origin behind this name is that the scaled (and translated) functions φm,n of φ
are used as basis functions for the refined resolution spaces. Later on we will see
that other scaling functions φ can be chosen, where the scaled versions φm,n will
be used to define similar resolution spaces, with slightly different properties.

5.2.1 Function approximation property
Each time m is increased by 1, the dimension of Vm doubles, and the subinterval
on which the functions in Vm are constant are halved in size. It therefore seems
reasonable that, for most functions, we can find good approximations in Vm

provided m is big enough.

Theorem 5.6. Let f be a given function that is continuous on the interval
[0, N ]. Given � > 0, there exists an integer m ≥ 0 and a function g ∈ Vm such
that ��f(t)− g(t)

�� ≤ �

for all t in [0, N ].

Proof. Since f is (uniformly) continuous on [0, N ], we can find an integer m so
that

��f(t1)− f(t2)
�� ≤ � for any two numbers t1 and t2 in [0, N ] with |t1 − t2| ≤

2−m. Define the approximation g by

g(t) =
2mN−1�

n=0

f
�
tm,n+1/2

�
φm,n(t),
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where tm,n+1/2 is the midpoint of the subinterval
�
n2−m, (n+ 1)2−m

�
,

tm,n+1/2 = (n+ 1/2)2−m.

For t in this subinterval we then obviously have |f(t)−g(t)| ≤ �, and since these
intervals cover [0, N ], the conclusion holds for all t ∈ [0, N ].

Theorem 5.6 does not tell us how to find the approximation g although the
proof makes use of an approximation that interpolates f at the midpoint of each
subinterval. Note that if we measure the error in the L2-norm, we have

�f − g�2 =

�
N

0

��f(t)− g(t)
��2 dt ≤ N�2,

so �f − g� ≤ �
√
N . We therefore have the following corollary.

Corollary 5.7. Let f be a given continuous function on the interval [0, N ]
and let proj

Vm
(f) denote the best approximation to f from Vm. Then

lim
m→∞

�f − proj
Vm

(f)� = 0.

Figure 5.6 illustrates how some of the approximations of the function f(x) =
x2 from the resolution spaces for the interval [0, 1] improve with increasing m.

5.2.2 Detail spaces and wavelets
So far we have described a family of function spaces that allow us to determine
arbitrarily good approximations to a continuous function. The next step is to
introduce the so-called detail spaces and the wavelet functions. For this we focus
on the two spaces V0 and V1.

We start by observing that since

[n, n+ 1) = [2n/2, (2n+ 1)/2) ∪ [(2n+ 1)/2, (2n+ 2)/2)

we have
φ0,n =

1√
2
φ1,2n +

1√
2
φ1,2n+1. (5.5)

This provides a formal proof of the intuitive observation that V0 ⊂ V1. For if
g ∈ V0, then we can write

g(t) =
N−1�

n=0

cnφ0,n(t) =
N−1�

n=0

cn
�
φ1,2n + φ1,2n+1

�
/
√
2.

The right-hand side clearly lies in V1. A similar argument shows that Vk ⊂ Vk+1

for any integer k ≥ 0.

161



0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(a) The function to be approximated.
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(b) The projection onto V2.
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(c) The projection onto V4.
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(d) The projection onto V6.

Figure 5.6: Comparison of the function defined by f(t) = t2 on [0, 1] with the
projection onto different spaces Vm.
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Lemma 5.8. The spaces V0, V1, . . . , Vm, . . . are nested,

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm · · · .

The next step is to investigate what happens if we start with a function g1
in V1 and project this to an approximation g0 in V0.

Lemma 5.9. Let proj
V0

denote the orthogonal projection onto the subspace
V0. Then the projection of a basis function φ1,n is given by

proj
V0
(φ1,n) =

�
φ0,n/2/

√
2, if n is even;

φ0,(n−1)/2/
√
2, if n is odd.

(5.6)

If g1 ∈ V1 is given by

g1 =
2N−1�

n=0

c1,nφ1,n, (5.7)

then

proj
V0
(g1) = g0 =

N−1�

n=0

c0,nφ0,n

where c0,n is given by
c0,n =

c1,2n + c1,2n+1√
2

. (5.8)

Proof. We first observe that φ1,n(t) �= 0 if and only if n/2 ≤ t < (n + 1)/2.
Suppose that n is even. Then the intersection

�
n

2
,
n+ 1

2

�
∩ [n1, n1 + 1) (5.9)

is nonempty only if n1 = n

2 . Using the orthogonal decomposition formula we
get

proj
V0
(φ1,n) =

N−1�

k=0

�φ1,n, φ0,k�φ0,k = �φ1,n, φ0,n1�φ0,n1

=

� (n+1)/2

n/2

√
2 dt φ0,n/2 =

1√
2
φ0,n/2.

When n is odd, the intersection (5.9) is nonempty only if n1 = (n− 1)/2, which
gives the second formula in (5.6) in the same way.

We project the function g1 in V1 using the formulas in (5.6). We split the
sum in (5.7) into even and odd values of n,

g1 =
2N−1�

n=0

c1,nφ1,n =
N−1�

n=0

c1,2nφ1,2n +
N−1�

n=0

c1,2n+1φ1,2n+1. (5.10)
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We can now apply the two formulas in (5.6),

proj
V0
(g1) = proj

V0

�
N−1�

n=0

c1,2nφ1,2n +
N−1�

n=0

c1,2n+1φ1,2n+1

�

=
N−1�

n=0

c1,2n proj
V0
(φ1,2n) +

N−1�

n=0

c1,2n+1 proj
V0
(φ1,2n+1)

=
N−1�

n=0

c1,2nφ0,n/
√
2 +

N−1�

n=0

c1,2n+1φ0,n/
√
2

=
N−1�

n=0

c1,2n + c1,2n+1√
2

φ0,n

which proves (5.8)

When g1 ∈ V1 is projected onto V0, the result g0 = proj
V0
g1 is in general

different from g0. We can write g1 = g0 + e0, where e0 = g1 − g0 represents
the error we have commited in making this projection. e0 lies in the ortogonal
complement of V0 in V1 (in particular, e0 ∈ V1).

Definition 5.10. We will denote by W0 the orthogonal complement of V0 in
V1. We also call W0 a detail space

The name detail space is used since e0 ∈ W0 can be considered as the
detail which is left out when considering g0 instead of g1 (due to the expression
g1 = g0 + e0). Since V0 and W0 are mutually orthogonal spaces they are also
linearly independent spaces, so that we can use the following definition to rewrite
the space V0:

Definition 5.11 (Direct sum of vector spaces). Assume that U, V ⊂ W are
vector spaces, and that U and V are mutually linearly independent. By U⊕V
we mean the vector space consisting of all vectors of the form u + v, where
u ∈ U , v ∈ V . We will also call U ⊕ V the direct sum of U and V .

This definition also makes sense if we have several vector spaces, since the
direct sum clearly obeys the associate law U ⊕ (V ⊕W ) = (U ⊕V )⊕W , i.e. we
can define U ⊕ V ⊕W = U ⊕ (V ⊕W ). We will have use for this use of direct
sum of several vector space in the next section.

We can now write V1 = V0⊕W0, i.e. the resolution space V1 is the direct sum
of the lower order resolution space V0, and the detail space W0. The expression
g1 = g0 + e0 is thus a decomposition into a low-resolution approximation, and
the details which are left out in this approximation. In the context of our
Google EarthTMexample, in Figure 5.1 you should interpret g0 as the image in
(a), g1 as the image in (b), and e0 as the additional details which are needed to
reproduce (b) from (a). While Lemma 5.12 explained how we can compute the
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low level approximation g0 from g1, the next result states how we can compute
the detail/error e0 from g1.

Lemma 5.12. With W0 the orthogonal complement of V0 in V1, set

ψ̂0,n =
φ1,2n − φ1,2n+1

2

for n = 0, 1, . . . , N − 1. Then ψ̂0,n ∈ W0 and

proj
W0

(φ1,n) =

�
ψ̂0,n/2, if n is even;
−ψ̂0,(n−1)/2, if n is odd.

(5.11)

If g1 ∈ V1 is given by g1 =
�2N−1

n=0 c1,nφ1,n, then

proj
W0

(g1) = e0 =
N−1�

n=0

ŵ0,nψ̂0,n

where ŵ0,n is given by
ŵ0,n = c1,2n − c1,2n+1. (5.12)

Proof. We start by determining the error when φ1,n, for n even, is projected
onto V0. The error is then

proj
W0

(φ1,n) = φ1,n −
φ0,n/2√

2

= φ1,n − 1√
2

�
1√
2
φ1,n +

1√
2
φ1,n+1

�

=
1

2
φ1,n − 1

2
φ1,n+1

= ψ̂0,n/2.

Here we used the relation (5.6) in the second equation. When n is odd we have

proj
W0

(φ1,n) = φ1,n −
φ0,(n−1)/2√

2

= φ1,n − 1√
2

�
1√
2
φ1,n−1 +

1√
2
φ1,n

�

=
1

2
φ1,n − 1

2
φ1,n−1

= −ψ̂0,(n−1)/2.

For a general function g1 we first split the sum into even and odd terms as
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Figure 5.7: The projection of a basis function in V1 onto V0 and W0.

in (5.10) and then project each part onto W0,

proj
W0

(g1) = proj
W0

�
N−1�

n=0

c1,2nφ1,2n +
N−1�

n=0

c1,2n+1φ1,2n+1

�

=
N−1�

n=0

c1,2n proj
W0

(φ1,2n) +
N−1�

n=0

c1,2n+1 proj
W0

(φ1,2n+1)

=
N−1�

n=0

c1,2nψ̂0,n −
N−1�

n=0

c1,2n+1ψ̂0,n

=
N−1�

n=0

(c1,2n − c1,2n+1)ψ̂0,n

which is (5.12)

In Figure 5.7 we have useed lemmas 5.9 and 5.12 to plot the projections of
φ1,0 ∈ V1 onto V0 and W0. It is an interesting exercise to see from the plots
why exactly these functions should be least-squares approximations of φ1,n. It
is also an interesting exercise to prove the following from lemmas 5.9 and 5.12:

Proposition 5.13. Let f(t) ∈ V1, and let fn,1 be the value f attains on
[n, n+ 1/2), and fn,2 the value f attains on [n+ 1/2, n+ 1). Then proj

V0
(f)

is the function in V0 which equals (fn,1 + fn,2)/2 on the interval [n, n + 1).
Moreover, proj

W0
(f) is the function in W0 which is (fn,1 − fn,2)/2 on [n, n+

1/2), and −(fn,1 − fn,2)/2 on [n+ 1/2, n+ 1).

In other words, the projection on V0 is constructed by averaging on two
subintervals, while the projection on W0 is constructed by taking the difference
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Figure 5.8: The functions we used to analyse the space of piecewise constant
functions

from the mean. This sounds like a reasonable candidate for the least-squares
approximations. In the exercise we generalize these observations.

Consider the functions ψ̂0,n = (φ1,2n − φ1,2n+1)/2 from Lemma 5.12. They
are clearly orthogonal since their nonzero parts do not overlap. We also note
that �ψ̂0,n� =

√
2/2, since it has absolute value

√
2/2 on two intervals of length

1/2. The functions defined by ψ0,n(t) =
√
2 ψ̂0,n(t) will therefore form an or-

thonormal set.

Lemma 5.14. Define the function ψ by

ψ(t) =
�
φ1,0(t)− φ1,1(t)

�
/
√
2 = φ(2t)− φ(2t− 1) (5.13)

and set

ψ0,n(t) = ψ(t− n) =
�
φ1,2n(t)− φ1,2n+1(t)

�
/
√
2 for n = 0, 1, . . . , N − 1.

(5.14)
Then the set {ψ0,n}N−1

n=0 is an orthonormal basis for W0, the orthogonal com-
plement of V0 in V1.

Later we will encounter other functions, which also will be denoted by ψ,
and have similar properties as stated in Lemma 5.14. In the theory of wavelets,
such ψ are called mother wavelets. In Figure 5.8 we have plotted the functions
φ and ψ. There is one important property of ψ, which we will return to:

Observation 5.15. We have that
�
N

0 ψ(t)dt = 0.

This can be seen directly from the plot in Figure 5.8, since the parts of the
graph above and below the x-axis cancel.

We now have all the tools needed to define the Discrete Wavelet Transform.
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Theorem 5.16 (Discrete Wavelet Transform). The space V1 can be decom-
posed as the orthogonal sum V1 = V0 ⊕W0 where W0 is the orthogonal com-
plement of V0 in V1, and V1 therefore has the two bases

φ1 = (φ1,n)
2N−1
n=0 and (φ0,ψ0) =

�
(φ0,n)

N−1
n=0 , (ψ0,n)

N−1
n=0

�
.

The Discrete Wavelet Transform (DWT) is the change of coordinates from the
basis φ1 to the basis (φ0,ψ0). If

g1 =
2N−1�

n=0

c1,nφ1,n ∈ V1

g0 =
N−1�

n=0

c0,nφ0,n ∈ V0

e0 =
N−1�

n=0

w0,nψ0,n ∈ W0

and g1 = g0 + e0, then the DWT is given by
�
c0,n
w0,n

�
=

�
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

��
c1,2n

c1,2n+1

�
(5.15)

Conversely, the Inverse Discrete Wavelet Transform (IDWT) is the change of
coordinates from the basis (φ0,ψ0) to the basis φ1, and is given by

�
c1,2n

c1,2n+1

�
=

�
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

��
c0,n
w0,n

�
(5.16)

Proof. We have that

φ1,2n = proj
V0
(φ1,2n) + proj

W0
(φ1,2n) = φ0,n/

√
2 + ψ̂0,n

= φ0,n/
√
2 + ψ0,n/

√
2

φ1,2n+1 = proj
V0
(φ1,2n+1) + proj

W0
(φ1,2n+1) = φ0,n/

√
2− ψ̂0,n

= φ0,n/
√
2− ψ0,n/

√
2,

where we have used Equations (5.6) and (5.11). From this it follows that
(φ1,2n, φ1,2n+1) and (φ0,n, ψ0,n) span the same space, and that the correspond-

ing change of coordinate matrix is given by
�
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

�
. This proves

Equation (5.15). Equation (5.16) follows immediately since this matrix equals
its inverse.
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Exercises for Section 5.2
1. Show that the coordinate vector for f ∈ V0 in the basis {φ0,0, φ0,1, . . . , φ0,N−1}
is (f(0), f(1), . . . .f(N − 1)).
2. In this exercise we will consider the two projections from V1 onto V0 and W0.

a. Consider the projection proj
V0

of V1 onto V0. Use lemma 5.9 to write
down the matrix for proj

V0
relative to the bases φ1 and φ0.

b. Consider the projection proj
W0

of V1 onto V0. Use lemma 5.12 to
write down the matrix for proj

W0
relative to the bases φ1 and ψ0.

3. Consider again the projection proj
V0

of V1 onto V0.

a. Explain why proj
V0
(φ) = φ and proj

V0
(ψ) = 0.

b. Show that the matrix of proj
V0

relative to (φ0,ψ0) is given by the
diagonal matrix where the first half of the entries on the diagonal are 1,
the second half 0.

c. Show in a similar way that the projection of V1 onto W0 has a matrix
relative to (φ0,ψ0) given by the diagonal matrix where the first half of
the entries on the diagonal are 0, the second half 1.

4. Show that

proj
V0
(f) =

N−1�

n=0

��
n+1

n

f(t)dt

�
φ0,n(t) (5.17)

for any f . Show also that the first part of Proposition 5.13 follows from this.
5. Show that

�
�

n

��
n+1

n

f(t)dt

�
φ0,n(t)− f�2

= �f, f� −
�

n

��
n+1

n

f(t)dt

�2

.

This, together with the previous exercise, gives us an expression for the least-
squares error for f from V0 (at least after taking square roots).
6. Show that

proj
W0

(f) =
N−1�

n=0

��
n+1/2

n

f(t)dt−
�

n+1

n+1/2
f(t)dt

�
ψ0,n(t) (5.18)

for any f . Show also that the second part of Proposition 5.13 follows from this.
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5.3 Higher order resolution spaces
In Section 5 we introduced the important decomposition V1 = V0 ⊕W0 which
lets us rewrite a function in V1 as an approximation in V0 and the corresponding
error in W0, orthogonal to the approximation. The resolution spaces Vm were in
fact defined for all integers m ≥ 0. It turns out that all these resolution spaces
can be decomposed in the same way as V1.

Definition 5.17. The orthogonal complement of Vm−1 in Vm is denoted
Wm−1. All the spaces {Wk}k are also called detail spaces.

The first question we will try to answer is how we can, for f ∈ Vm, extract
the corresponding detail in Wm−1. We first need to define ψm,n in terms of ψ,
similarly to how we defined φm,n in terms of φ,

ψm,n(t) = 2m/2ψ(2mt− n), for n = 0, 1, . . . , 2mN − 1. (5.19)

As in Lemma 5.14, it is straightforward to prove that ψ
m

= {ψm,n}2
m
N−1

n=0 is
an orthonormal basis for Wm. Moreover, we have the following result, which is
completey analogous to Theorem 5.16.

Theorem 5.18. The space Vm can be decomposed as the orthogonal sum
Vm = Vm−1 ⊕ Wm−1 where Wm−1 is the orthogonal complement of Vm−1 in
Vm, and Vm has the two bases

φ
m

= (φm,n)
2mN−1
n=0

and
(φ

m−1,ψm−1) =
�
(φm−1,n)

2m−1
N−1

n=0 , (ψm−1,n)
2m−1

N−1
n=0

�
.

If

gm =
2mN−1�

n=0

cm,nφm,n ∈ Vm,

gm−1 =
2m−1

N−1�

n=0

cm−1,nφm−1,n ∈ Vm−1,

em−1 =
2m−1

N−1�

n=0

wm−1,nψm−1,n ∈ Wm−1,

and gm = gm−1 + em−1, then the change of coordinates from the basis φ
m

to
the basis (φ

m−1,ψm−1) is given by
�
cm−1,n

wm−1,n

�
=

�
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

��
cm,2n

cm,2n+1

�
(5.20)
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Conversely, the change of coordinates from the basis (φ
m−1,ψm−1) to the

basis φ
m

is given by
�

cm,2n

cm,2n+1

�
=

�
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

��
cm−1,n

wm−1,n

�
(5.21)

We will omit the proof of Theorem 5.20, and only remark that it can be
proved by making the substitution t → 2mu in Lemma 5.9 and Lemma 5.12,
and then following the proof of Theorem 5.16.

Let us return to our interpretation of the Discrete Wavelet Transform as
writing a function g1 ∈ V1 as a sum of a function g0 ∈ V0 at low resolution,
and a detail function e0 ∈ W0. Theorem 5.20 states similarly how we can write
gm ∈ Vm as a sum of a function gm−1 ∈ Vm−1 at lower resolution, and a detail
function em−1 ∈ Wm−1. The same decomposition can of course be applied to
gm−1 in Vm−1, then to the resulting approximation gm−2 in Vm−2, and so on,

Vm = Vm−1 ⊕Wm−1

= Vm−2 ⊕Wm−2 ⊕Wm−1

...
= V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wm−2 ⊕Wm−1. (5.22)

This change of coordinates corresponds to replacing as many φ-functions as we
can with ψ-functions, i.e. replacing the original function with a sum of as much
detail at different resolutions as possible. Let us give a name to the bases we
will use for these direct sums.

Definition 5.19 (Canonical basis for direct sum). Let C1, C2 . . . , Cn be inde-
pendent vector spaces, and let B1,B2, . . . ,Bn be corresponding bases. The ba-
sis {B1,B2, . . . ,Bn}, i.e., the basis where the basis vectors from Bi are included
before Bj when i < j, is referred to as the canonical basis for C1⊕C2⊕· · ·⊕Cn

and is denoted B1 ⊕ B2 ⊕ . . .⊕ Bn.

When we above say “basis for V0 ⊕ W0 ⊕ W1 ⊕ · · · ⊕ Wm−2 ⊕ Wm−1”, we
really mean the canonical basis for this space. In general, the Discrete Wavelet
Transform is used to denote a change of coordinates from φm to the canonical
basis, for any m.

Definition 5.20 (m-level Discrete Wavelet Transform). Let Fm denote the
change of coordinates from φ

m
to the canonical basis

φ0 ⊕ψ0 ⊕ψ1 ⊕ · · · ⊕ ⊕ψ
m−2 ⊕ψ

m−1

for V0 ⊕ W0 ⊕ W1 ⊕ · · · ⊕ Wm−2 ⊕ Wm−1. Fm is called a (m-level) Discrete
Wavelet Transform, or a DWT. After this change of coordinates, the result-
ing coordinates are called wavelet coefficients. The change of coordinates the
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opposite way is called an (m-level) Inverse Discrete Wavelet Transform, or
IDWT.

Clearly, this generalizes the Discrete Wavelet Transform defined in Section 5.
At each level in a DWT, Vk is split into one part from Vk−1, and one part
from Wk−1. We can visualize this with the following figure, where the arrows
represent changes of coordinates:

Vm
��

��

Vm−1
��

��

Vm−2
��

��

· · · ��

��

V0

Wm−1 Wm−2 Wm−3 W0

The part from Wk−1 is not subject to further transformation. This is seen in
the figure since Wm−1 is a leaf node, i.e. there are no arrows going out from
Wm−1. In a similar illustration for the IDWT, the arrows would go the opposite
way. The Discrete Wavelet Transform is the analogue in a wavelet setting to the
Discrete Fourier transform. When applying the DFT to a vector of length N ,
one starts by viewing this vector as coordinates relative to the standard basis.
When applying the DWT to a vector of length N , one instead views the vector
as coordinates relative to the basis φ

m
. This makes sense in light of Exercise 5.1.

The DWT is what is used in practice when transforming a signal using
wavelets, and it is straightforward to implement: One simply needs to iterate
Equation (5.20) for m,m− 1, . . . , 1, also at each step, the coordinates in φ

m−1

should be placed before the ones in ψ
m−1, due to the order of the basis vectors

in the canonical basis of the direct sum. At each step, only the first coordinates
are further transformed. The following function, called DWTHaarImpl, follows
this procedure. It takes as input the number of levels m, as well as the input
vector x, runs the m-level DWT on x, and returns the result:

function xnew=DWTHaarImpl(x,m)

xnew=x;

for mres=m:(-1):1

len=length(xnew)/2^(m-mres);

c=(xnew(1:2:(len-1))+xnew(2:2:len))/sqrt(2);

w=(xnew(1:2:(len-1))-xnew(2:2:len))/sqrt(2);

xnew(1:len)=[c w];

end

Note that this implementation is not recursive, contrary to the FFT. The for-
loop here runs through the different resolutions. Inside the loop we perform the
change of coordinates from φ

k
to (φ

k−1,ψk−1) by applying Equation (5.20).
This works on the first coordinates, since the coordinates from φ

k
are stored

first in
Vk ⊕Wk ⊕Wk+1 ⊕ · · · ⊕Wm−2 ⊕Wm−1.

Finally, the c-coordinates are stored before the w-coordinates, again as required
by the order in the canonical basis. In this implementation, note that the first
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levels require the most multiplications, since the latter levels leave an increasing
part of the coordinates unchanged. Note also that the change of coordinates
matrix is a very sparse matrix: At each level a coordinate can be computed
from only two of the other coordinates, so that this matrix has only two nonzero
elements in each row/column. The algorithm clearly shows that there is no need
to perform a full matrix multiplication to perform the change of coordinates.

The corresponding function for the IDWT, called IDWTHaarImpl, goes as
follows:

function x=IDWTHaarImpl(xnew,m)

x=xnew;

for mres=1:m

len=length(x)/2^(m-mres);

ev=(x(1:(len/2))+x((len/2+1):len))/sqrt(2);

od=(x(1:(len/2))-x((len/2+1):len))/sqrt(2);

x(1:2:(len-1))=ev;

x(2:2:len)=od;

end

Here the steps are simply performed in the reverse order, and by iterating Equa-
tion (5.21).

You may be puzzled by the names DWTHaarImpl and IDWTHaarImpl. In
the next sections we will consider other cases, where the underlying function φ
may be a different function, not necessarily piecewise constant. It will turn out
that much of the analysis we have done makes sense for other functions φ as
well, giving rise to other structures which we also will refer to as wavelets. The
wavelet resulting from piecewise constant functions is thus simply one example
out of many, and it is commonly referred to as the Haar wavelet.

Example 5.21. When you run a DWT you may be led to believe that coeffi-
cients from the lower order resolution spaces may correspond to lower frequen-
cies. This sounds reasonable, since the functions φ(2mt− n) ∈ Vm change more
quickly than φ(t − n) ∈ V0. However, the functions φm,n do not correspond
to pure tones in the setting of wavelets. But we can still listen to sound from
the different resolution spaces. In Exercise 9 you will be asked to implement
a function which runs an m-level DWT on the first samples of the sound file
castanets.wav, extracts the coefficients from the lower order resolution spaces,
transforms the values back to sound samples with the IDWT, and plays the
result. When you listen to the result the sound is clearly recognizable for lower
values of m, but is degraded for higher values of m. The explanation is that
too much of the detail is omitted when you use a higher m. To be more pre-
cise, when listening to the sound by throwing away wvereything from the detail
spaces W0,W1, . . . ,Wm−1, we are left with a 2−m share of the data. Note that
this procedure is mathematically not the same as setting some DFT coefficients
to zero, since the DWT does not operate on pure tones.

It is of interest to plot the samples of our test audio file castanets.wav, and
compare it with the first order DWT coefficients of the same samples. This is
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(b) The first order DWT coefficients

Figure 5.9: The sound samples and the DWT coefficients of the sound
castanets.wav.

shown in Figure 5.9. The first half part of the plot represents the low-resolution
approximation of the sound, the second half part represents the detail/error.
We see that the detail is quite significant in this case. This means that the first
order wavelet approximation does not give a very good approximation to the
sound. In the exercises we will experiment more on this.

It is also interesting to plot only the detail/error in the sound, for different
resolutions. For this, we must perform a DWT so that we get a representation
in the basis V0⊕W0⊕W1⊕· · ·⊕Wm−1, set the coefficicents from V0 to sero, and
transform back with the IDWT. In figure 5.10 the error is shown for the test
audio file castanets.wav for m = 1, m = 2. This clearly shows that the error
is larger when two levels of the DWT are performed, as one would suspect. It
is also seen that the error is larger in the part of the file where there are bigger
variations. This also sounds reasonable. ♣

The previous example illustrates that wavelets as well may be used to per-
form operations on sound. As we will see later, however, our main application
for wavelets will be images, where they have found a more important role than
for sound. Images typically display variations which are less abrupt than the
ones found in sound. Just as the functions above had smaller errors in the corre-
sponding resolution spaces than the sound had, images are thus more suited for
for use with wavelets. The main idea behind why wavelets are so useful comes
from the fact that the detail, i.e., wavelet coefficients corresponding to the spaces
Wk, are often very small. After a DWT one is therefore often left with a couple
of significant coefficients, while most of the coefficients are small. The approxi-
mation from V0 can be viewed as a good approximation, even though it contains
much less information. This gives another reason why wavelets are popular for
images: Detailed images can be very large, but when they are downloaded to
a web browser, the browser can very early show a low-resolution of the image,
while waiting for the rest of the details in the image to be downloaded. When
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(a) m = 1
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(b) m = 2

Figure 5.10: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) in
the sound file castanets.wav, for different values of m.

we later look at how wavelets are applied to images, we will need to handle one
final hurdle, namely that images are two-dimensional.

Example 5.22. Above we plotted the DWT coefficients of a sound, as well
as the detail/error. We can also experiment with samples generated from a
mathematical function. Figure 5.11 plots the error for different functions, with
N = 1024. In these cases, we see that we require large m before the detail/error
becomes significant. We see also that there is no error for the square wave. The
reason is that the square wave is a piecewise constant function, so that it can be
represented exactly by the φ-functions. For the other functions, however, this
is not the case, so we here get an error. ♣

Above we used the functions DWTHaarImpl, IDWTHaarImpl to plot the er-
ror. For the functions we plotted in the previous example it is also possible to
compute the wavelet coefficients, which we previously have denoted by wm,n,
exactly. You will be asked to do this in exercises 12 and 13. The following
example shows the general procedure which can be used for this:

Example 5.23. Let us compute the wavelet coefficients wm,n for the function
f(t) = 1− t/N . This function decreases linearly from 1 to 0 on [0, N ]. Since the
wm,n are coefficients in the basis {ψm,n}, it follows by the orthogonal decompo-
sition formula that wm,n = �f, ψm,n� =

�
N

0 f(t)ψm,n(t)dt. Using the definition
of ψm,n we get that

wm,n =

�
N

0
(1− t/N)ψm,n(t)dt = 2m/2

�
N

0
(1− t/N)ψ(2mt− n)dt.

Moreover ψm,n is nonzero only on [2−mn, 2−m(n+1)), and is 1 on [2−mn, 2−m(n+
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(a) A square wave
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(b) f(t) = 1− 2|1/2− t/N |
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(c) f(t) = 1/2 + cos(2πt/N)/2

Figure 5.11: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) for
N = 1024 for different functions f(t), for different values of m.
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1/2)), and −1 on [2−m(n+ 1/2), 2−m(n+ 1)). We can therefore write

wm,n = 2m/2

� 2−m(n+1/2)

2−mn

(1− t/N)dt− 2m/2

� 2−m(n+1)

2−m(n+1/2)
(1− t/N)dt

= 2m/2

�
t− t2

2N

�2−m(n+1/2)

2−mn

− 2m/2

�
t− t2

2N

�2−m(n+1)

2−m(n+1/2)

= 2m/2

�
2−m(n+ 1/2)− 2−2m(n+ 1/2)2

2N
− 2−mn++

2−2mn2

2N

�

− 2m/2

�
2−m(n+ 1)− 2−2m(n+ 1)2

2N
− 2−m(n+ 1/2) +

2−2m(n+ 1/2)2

2N

�

= 2m/2

�
2−2mn2

2N
− 2−2m(n+ 1/2)2

N
+

2−2m(n+ 1)2

2N

�

=
2−3m/2

2N

�
n2 − 2(n+ 1/2)2 + (n+ 1)2

�

=
1

N22+3m/2
.

We see in particular that wm,n → 0 when m → ∞. We see also that there were
a lot of computations even in this very simple example. For most functions we
therefore usually do not compute wm,n exactly. Instead we use implementations
like DWTHaarImpl, IDWTHaarImpl, and run them on a computer. ♣

Exercises for Section 5.3
1. Generalize exercise 3 to the projections from Vm+1 onto Vm amd Wm.

2. Show that f(t) ∈ Vm if and only if g(t) = f(2t) ∈ Vm+1.

3. Let C1, C2 . . . , Cn be independent vector spaces, and let Ti : Ci → Ci be
linear transformations. The direct sum of T1, T2,. . . ,Tn, written as T1 ⊕ T2 ⊕
. . . ⊕ Tn, denotes the linear transformation from C1 ⊕ C2 ⊕ · · · ⊕ Cn to itself
defined by

T1 ⊕ T2 ⊕ . . .⊕ Tn(c1 + c2 + · · ·+ cn) = T1(c1) + T2(c2) + · · ·+ Tn(cn)

when c1 ∈ C1, c2 ∈ C2, . . . , cn ∈ Cn. Similarly, when A1, A2, . . . , An are square
matrices, A1 ⊕ A2 ⊕ · · · ⊕ An is defined as the block matrix where the blocks
along the diagonal are A1, A2, . . . , An, and where all other blocks are 0. Show
that, if Bi is a basis for Ci then

[T1 ⊕ T2 ⊕ . . .⊕ Tn]B1⊕B2⊕...⊕Bn
= [T1]B1 ⊕ [T2]B2 ⊕ · · · ⊕ [Tn]Bn

,

Here three new concepts are used: a direct sum of matrices, a direct sum of
bases, and a direct sum of linear transformations.
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4. Assume that T1 and T2 are matrices, and that the eigenvalues of T1 are
equal to those of T2. What are the eigenvalues of T1 ⊕T2? Can you express the
eigenvectors of T1 ⊕ T2 in terms of those of T1 and T2?

5. Assume that A and B are square matrices which are invertible. Show that
A⊕B is invertible, and that (A⊕B)−1 = A−1 ⊕B−1.

6. Let A,B,C,D be square matrices of the same dimensions. Show that (A⊕
B)(C ⊕D) = (AC)⊕ (BD).

7. Assume that you run an m-level DWT on a vector of length r. What value
of N does this correspond to? Note that an m-level DWT performs a change of
coordinates from Vm to V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wm−2 ⊕Wm−1.

8. Run a 2-level DWT on the first 217 sound samples of the audio file castanets.wav,
and plot the values of the resulting DWT-coefficients. Compare the values of
the coefficients from V0 with those from W0 and W1.

9. In this exercise we will experiment with applying an m-level DWT to a sound
file.

a. Write a function

function playDWTlower(m)

which

1. reads the audio file castanets.wav,
2. performs an m-level DWT to the first 217 sound samples of x using

the function DWTHaarImpl,
3. sets all wavelet coefficients representing detail to zero (i.e. keep only

wavelet coefficients from V0 in the decomposition V0 ⊕W0 ⊕W1 ⊕
· · · ⊕Wm−2 ⊕Wm−1),

4. performs an IDWT on the resulting coefficients using the function
IDWTHaarImpl,

5. plays the resulting sound.

b. Run the function playDWTlower for different values of m. For which m
can you hear that the sound gets degraded? How does it get degraded?
Compare with what you heard through the function playDFTlower in
Example 2.27, where you performed a DFT on the sound sample instead,
and set some of the DFT coefficients to zero.
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c. Do the sound samples returned by playDWTlower lie in [−1, 1]?

10. Attempt to construct a (nonzero) sound where the function playDWTlower

form the previous exercise does not change the sound for m = 1, 2.

11. Repeat Exercise 9, but this time instead keep only wavelet coefficients from
the detail spaces W0,W1, . . .. Call the new function playDWTlowerdifference.
What kind of sound do you hear? Can you recognize the original sound in what
you hear?

12. Compute the wavelet detail coefficients analytically for the functions in
Example 5.22, i.e. compute the quantities wm,n =

�
N

0 f(t)ψm,n(t)dt similarly
to how this was done in Example 5.23.

13. Compute the wavelet detail coefficients analytically for the functions f(t) =�
t

N

�k, i.e. compute the quantities wm,n =
�
N

0

�
t

N

�k
ψm,n(t)dt similarly to how

this was done in Example 5.23. How do these compare with the coefficients
from the Exercise 12?

14. (Exam UIO V2012) Suppose that we have the vector x with length 210 =
1024 defined by xn = 1 for 0 ≤ n ≤ 511, while xn = 0 for all other values of n.
What will be the result if you run a 10-level DWT with the Haar-wavelet on x?

5.4 Multiresolution analysis: A generalization
Let us summarize the properties of the spaces Vm. We showed that they were
nested, i.e.

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ · · · .

We also showed that continuous functions could be approximated arbitrarily well
from Vm, as long as m was chosen large enough. Moreover it is clear that the
space V0 is closed under all translates, at least if we view the functions in V0 as
periodic with period N . In the following we will always identify a function with
this periodic extension, just as we did in Fourier analysis. When performing this
identification, we also saw that f(t) ∈ Vm if and only if g(t) = f(2t) ∈ Vm+1.
We have therefore shown that the scaling funtion φ fits in with the following
general framework.

Definition 5.24 (Multiresolution analysis). A Multiresolution analysis, or
MRA, is a nested sequence of function spaces

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ · · · (5.23)

so that

1. Any function can be approximated arbitrarily well from Vm, as long as
m is large enough,
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2. f(t) ∈ V0 if and only if f(2mt) ∈ Vm,

3. f(t) ∈ V0 if and only if f(t− n) ∈ V0 for all n.

4. There is a function φ, called a scaling function, so that {φ(t−n)}0≤n<N

is an orthonormal basis for V0. .

Also in this more general setting the spaces Vm are called resolution spaces.
Due to the orthonormality of {φ(t−n)}0≤n<N , we say that we have an orthonor-
mal MRA. MRA’s are much used, and one can find a wide variety of functions
φ, not only piecewise constant functions, which give rise to MRA’s.

In the MRA-setting it helps to think about the continuous-time function
f(t) as the model for an image, which is the object under study. f itself may
not be in any Vm (this corresponds to that detail is present in the image for
infinitely many m), and increasing m corresponds to that we also include the
detail we see when we zoom in on the image. The best we can do is thus to look
at the least squares approximation of f at resolution m, f (m) ∈ Vm, which can
be written as

f (m)(t) =
�

n

cm,nφm,n(t),

where the coordinates cm,n are given by

cm,n =

�
N

0
f(t)φm,n(t)dt.

Finding f (m) thus requires the computation of integrals where all function values
are needed. However, as before we have only access to some samples f(2−mn),
0 ≤ n < 2mN . These are called pixel values in the context of images, so that
we can only hope to obtain a good approximation to f (m) (and thus f) from
the pixel values. The following result explains how we can obtain this.

Theorem 5.25. If f is continuous, and φ has compact support, we have that,
for all t,

f(t) = lim
m→∞

2mN−1�

n=0

2−m

�
N

0 φm,0(t)dt
f(n/2m)φm,n(t).

Proof. We have that

2−m

2mN−1�

n=0

φm,n =
2mN−1�

n=0

2−mφm,0(t− 2−mn).

We recognize this as a Riemann sum for the integral
�
N

0 φm,0(t)dt. Therefore,
limm→∞

�2mN−1
n=0 2−mφm,n =

�
N

0 φm,0(t)dt. Also, finitely many n contribute
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in this sum since φ has compact support. We now get that

2mN−1�

n=0

2−mf(n/2m)φm,n(t) =
�

n so that 2−mn≈t

2−mf(n/2m)φm,n(t)

≈
�

n so that 2−mn≈t

2−mf(t)φm,n(t)

= f(t)
�

n so that 2−mn≈t

2−mφm,n(t) ≈ f(t)

�
N

0
φm,0(t)dt.

where we have used the continuity of f and that limm→∞
�2mN−1

n=0 2−mφm,n =�
N

0 φm,0(t)dt. The result follows. Note that here we have not used the require-
ment that {φ(t− n)}n are orthogonal.

The coordinate vector x =
�

2−m

�
N

0 φm,0(t)dt
f(n/2m)

�2mN−1

n=0
in φ

m
is therefore

a candidate to an approximation of both f and f (m) from Vm, using only the
pixel values. Normally one drops the leading constant 2−m

�
N

0 φm,0(t)dt
, so that one

simply considers the sample values f(n/2m) as a coordinate vector in φ
m

. This
is used as the input to the DWT.

5.4.1 Connection between wavelet coefficients and anlog
filters

We can further write

cm,n =

�
N

0
f(t)φm,n(t)dt = 2m/2

�
N

0
f(t)φ(2mt− n)dt

= 2m/2

�
N

0
φ(2m(t− 2−mn))f(t)dt = 2m/2

�
N

0
φ(−2mt)f(2−mn− t)dt

=

�
N

0
(−φm,0(−t))f(2−mn− t)dt.

This gives the first connection with wavelets and filters:

Observation 5.26 (Connection between analog filters and the DWT). Define
the analog filter

sφ,m(f(t)) =

�
N

0
(−φm,0(−u))f(t− u)du (5.24)

(i.e. the filter with convolution kernel g(t) = −φm,0(−t)). The coefficients cm,n

of an approximation at resolution m can be computed by sampling sφ,m(f(t))
at the points 2−mn.
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5.4.2 Mother wavelet
With an MRA there is another important thing we also need: As in the case
of piecewise constant functions, we need to be able to efficiently compute the
decomposition of gm ∈ Vm into a low resolution approximation and a detail/er-
ror. By the low resolution approximation we mean an element gm−1 ∈ Vm−1, as
with previous notation. Previous notation also indicates that we should write
em−1 ∈ Wm−1 for the detail, but we have not defined the detail spaces Wm

yet. Previously we just defined Wm−1 as the orthogonal complement of Vm−1

in Vm. This is what we do in the general setting of MRA as well. We also
would like to find a simple basis for Wm. Once we have this, we can perform a
change of coordinates to find the detail and low resolution approximations. Let
us summarize this with the following recipe:

Idea 5.27 (Recipe for constructing wavelets). In order to construct MRA’s
which are useful for practical purposes, we need to do the following:

1. Find a function φ which can serve as the scaling function for an MRA,

2. Find a function ψ so that ψ = {ψ(t−n)}0≤n<N and φ = {φ(t−n)}0≤n<N

together form an orthonormal basis for V1. The function ψ is also called
a mother wavelet.

With V0 the space spanned by φ = {φ(t−n)}0≤n<N , and W0 the space spanned
by ψ = {ψ(t − n)}0≤n<N , φ and ψ should be chosen so that we easily can
compute the decomposition of g1 ∈ V1 into g0+e0, where g0 ∈ V0 and e0 ∈ W0.
If we can achieve this, the m-level Discrete Wavelet Transform can be defined
and computed similarly as in the case when φ is a piecewise constant function,
with the obvious replacements.

Note that there may be many possible choices of ψ so that ψ span W0.
In general we choose one which easily helps us compute the decomposition
gm = gm−1 + em−1, but we will see later that it also is desirable to choose
a ψ with other properties. The term wavelet is used in very general terms.
However, the term mother wavelet is quite concrete, and is what gives rise to
the theory of wavelets. With the help of ψ and the DWT, f (m) is instead written
as

f (m) =
�

n

c0,nφ0,n +
�

m�<m,n

wm�,nψm�,n, (5.25)

In this decomposition, it is useful to interpret m as frequency, n as time, and
wm,n as the contribution in f at frequency m and time n. In this sense, wavelets
provide a time-frequency representation of signals. This is what can make them
more useful than Fourier analysis, which only provides a frequency representa-
tion.

As before we can write

wm,n =

�
N

0
f(t)ψm,n(t)dt =

�
N

0
(−ψm,0(−t))f(2−mn− t).
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Thus, if we define the analog filter

sψ,m(f(t)) =

�
N

0
(−ψm,0(−u))f(t− u)du (5.26)

(which is similar to how we defined sφ,m), wm,n are the samples of sψ,m at
2−mn. If we combine this with what we previously found, the DWT of the vector
{cm,n}n can be obtained by applying the analog filters given by equations 5.24
and 5.26 for m� < m, to f =

�
n
cm,nφm,n ∈ Vm. The entire DWT can thus be

expressed in terms of analog filters. It is important to note that the input to the
DWT are typically samples from a function f(t) (the model), and what we aim
for is to have the DWT mimic what the analog filter (the operation) does, to as
high precision as possible. If the functions φ, ψ are symmetric around 0, these
filters are symmetric (since a filter is symmetric if and only if the convolution
kernel is symmetric around 0), in which case we know that such a high precision
implementation is possible using the simple technique of symmetric extension.
Let us summarize this as the following idea.

Idea 5.28. If the functions φ, ψ in a wavelet are symmetric around 0, then
we can obtain an implementation of the DWT with higher precision when we
consider symmetric extensions of the input.

Unfortunately the filter is not symmetric for the φ we have considered in
this chapter, since φ is not symmetric around 0. We will return to this later
when we consider wavelets where the filters are symmetric.

With the Haar wavelet we succeeded in finding a function ψ which could be
used in the recipe above. Note, however, that there may be many other ways to
define a function ψ which can be used in the recipe. In the next chapter we will
follow the recipe in order to contruct other wavelets, and we will try to express
which pairs of function φ, ψ are most interesting, and which resolution spaces
are most interesting.

5.5 Summary
We started this chapter by motivating the theory of wavelets as a different func-
tion approximation scheme, which solved some of the shortcomings of Fourier se-
ries. While one approximates functions with trigonometric functions in Fourier
theory, with wavelets one instead approximates a function in several stages,
where one at each stage attempts to capture information at a given resolution,
using a function prototype. This prototype is localized in time, contrary to
the Fourier basis functions, and this makes the theory of wavelets suitable for
making time-frequency representations of signals. We used an example based
on Google EarthTMto illustrate that the wavelet-based scheme can represent an
image at different resolutions in a scalable way, so that passing from one reso-
lution to a better resolution simply mounts to adding some detail information
to the lower resolution version of the image.
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We defined the simplest wavelet, the Haar wavelet, which is a function ap-
proximation scheme based on piecewise constant functions. We deduced the
properties of the Haar wavelet, and established a general framework by summa-
rizing these. We defined the Discrete Wavelet Transform as a change of basis
corresponding to the function spaces we defined. We will continue in the next
chapter to construct more general wavelets.
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Chapter 6

Wavelets constructed from

piecewise linear functions

In Section 5.3 we started with the simple space of functions that are constant on
each interval between two integers, which has a very simple orthonormal basis
given by translates of the characteristic function of the interval [0, 1). From
this we constructed a so-called multiresolution analysis of successively refined
spaces of piecewise constant functions that may be used to approximate any
continuous function arbitrarily well. We then saw how a given function in a fine
space could be projected orthogonally into the preceding coarser space. The
computations were all taken care of with the Discrete Wavelet Transform.

Unfortutately, piecewise constant functions are too simple to provide good
approximations. In this chapter we are going to extend the construction of
wavelets to piecewise linear functions. The advantage is that piecewise linear
functions are better for approximating smooth functions and data than piecewise
constants, which should translate into smaller components (errors) in the detail
spaces in many practical situations. As an example, this would be useful if
we are interested in compression. In this new setting it turns out that we
loose the orthonormality we had for the Haar wavelet. On the other hand,
we will see that the new scaling functions and mother wavelets are symmetric
functions, so that, as commented, the corresponding DWT and IDWT have
simple implementations with higher precision.

6.1 A first construction of a wavelet for piecewise
constant functions

Our experience from deriving Haar wavelets will guide us in the construction
of piecewise linear wavelets. The first task is to define the underlying function
spaces.
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(a) A piecewise linear function.
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(b) The two functions φ(t) and φ(t− 3).

Figure 6.1: Some piecewise linear functions.

Definition 6.1 (Resolution spaces of piecewise linear functions). The space
Vm is the subspace of continuous functions on R which are periodic with period
N , and linear on each subinterval of the form [n2−m, (n+ 1)2−m).

Any f ∈ Vm is uniquely determined by its values on [0, N). Figure 6.1 (a)
shows an example of a piecewise linear function in V0 on the interval [0, 10]. We
note that a piecewise linear function in V0 is completely determined by its value
at the integers, so the functions that are 1 at one integer and 0 at all others are
particularly simple and therefore interesting, see Figure 6.1 (b). These simple
functions are all translates of each other and can therefore be built from one
scaling function, as is required for a multiresolution analysis.

Recall that the support of a function f defined on a subset I of R is given
by the closure of the set of points where the function is nonzero,

supp(f) = {t ∈ I | f(t) �= 0}.

Lemma 6.2. Let the function φ be defined by

φ(t) =






1 + t, if −1 ≤ t < 0;

1− t, if 0 ≤ t < 1;

0, otherwise;
(6.1)

and for any m ≥ 0 set

φm,n(t) = 2m/2φ(2mt− n) for n = 0, 1, . . . , 2mN − 1,

or in vector notation

φ
m

= (φm,0, φm,1, . . . , φm,2mN−1).

The functions {φm,n}2
m
N−1

n=0 , restricted to the interval [0, N ], form a basis for
the space Vm for this interval. In other words, the function φ is a scaling
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function for the spaces V0, V1, . . . . Moreover, the function φ0,n(t) is the
function in V0 with smallest support that is nonzero at t = n.

Proof. The proof is similar for all the resolution spaces, so it is sufficient to
consider the proof in the case of V0. The function φ is clearly linear between each
pair of neighbouring integers, and it is also easy to check that it is continuous.
Its restriction to [0, N ] therefore lies in V0. And as we noted above φ0,n(t) is 0
at all the integers except at t = n where its value is 1.

A general function f in V0 is completely determined by its values at the inte-
gers in the interval [0, N ] since all straight line segments between neighbouring
integers are then fixed. Note that we can also write f as

f(t) =
N−1�

n=0

f(n)φ0,n(t) (6.2)

since this function agrees with f at the integers in the interval [0, N ] and is
linear on each subinterval between two neighbouring integers. This means that
V0 is spanned by the functions {φ0,n}N−1

n=0 . On the other hand, if f is identically
0, all the coefficients in (6.2) are also 0, so {φ0,n}N−1

n=0 are linearly independent
and therefore a basis for V0.

Suppose that the function g ∈ V0 has smaller support than φ0,n, but is
nonzero at t = n. Then g must be identically zero either on [n − 1, n) or on
[n, n + 1], since a straight line segment cannot be zero on just a part of an
interval between integers. But then g cannot be continuous, which contradicts
the fact the it lies in V0.

The function φ and its translates and dilates are often referred to as hat
functions for obvious reasons.

A formula like (6.2) is also valid for functions in Vm.

Lemma 6.3. A function f ∈ Vm may be written as

f(t) =
2mN−1�

n=0

f(n/2m)2−m/2φm,n(t). (6.3)

An essential property of a multiresolution analysis is that the spaces should
be nested.

Lemma 6.4. The piecewise linear resolution spaces are nested,

V0 ⊂ V1 ⊂ · · · ⊂ Vm ⊂ · · · .
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Proof. We only need to prove that V0 ⊂ V1 since the other inclusions are similar.
But this is immediate since any function in V0 is continuous, and linear on any
subinterval in the form [n/2, (n+ 1)/2).

In the piecewise constant case, we saw in Lemma 5.5 that the scaling func-
tions were automatically orthogonal since their supports did not overlap. This
is not the case in the linear case, but we could orthogonalise the basis φ

m
with

the Gram-Schmidt process from linear algebra. The disadvantage is that we lose
the nice local behaviour of the scaling functions and end up with basis functions
that are nonzero over all of [0, N ]. And for most applications, orthogonality is
not essential; we just need a basis.

Let us sum up our findings so far.

Observation 6.5. The spaces V0, V1, . . . , Vm, . . . form a multiresolution
analysis generated by the scaling function φ.

The next step in the derivation of wavelets is to find formulas that let us
express a function given in the basis φ0 for V0 in terms of the basis φ1 for V1.

Lemma 6.6. The function φ0,n satisfies the relation

φ0,n =
1√
2

�
1

2
φ1,2n−1 + φ1,2n +

1

2
φ1,2n+1

�
. (6.4)

Proof. Since φ0,n is in V0 it may be expressed in the basis φ1 with formula (6.3),

φ0,n(t) = 2−1/2
2N−1�

k=0

φ0,n(k/2)φ1,k(t).
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The relation (6.4) now follows since

φ0,n

�
(2n− 1)/2

�
= φ0,n

�
(2n+ 1)/2

�
= 1/2, φ0,n(2n/2) = 1,

and φ0,n(k/2) = 0 for all other values of k.

6.1.1 Detail spaces and wavelets
The next step in our derivation of wavelets for piecewise linear functions is the
definition of the detail spaces. In the case of V0 and V1, we need to determine
a space W0 so that V1 is the direct sum of V0 and W0. In the case of piecewise
constants we started with a function g1 in V1, computed the least squares ap-
proximation g0 in V0, and then defined the space W0 as the space of all possible
error functions. This is less appealing in the linear case since we do not have
an orthogonal basis for V0.

As in the case of piecewise constants we start with a function g1 in V1, but
we use an extremely simple approximation method, we simply drop every other
coefficient.

Definition 6.7. Let g1 be a function in V1 given by

g1 =
2N−1�

n=0

c1,n φ1,n. (6.5)

The approximation g0 = S(g1) in V0 interpolates g1 at the integers,

g0(n) = g1(n), n = 0, 1, . . . , N − 1. (6.6)

It is very easy to see that the coefficients of g0 actually can be obtained by
dropping every other coefficient:

Lemma 6.8. Let g1 be given by (6.5) and suppose that g0 =
�

N−1
n=0 c0,nφ0,n

in V0 interpolates g1 at the integers in 0, . . . , N − 1. Then

S(φ1,n) =

�√
2φ0,n/2, if n is an even integer;

0, otherwise.

Once the method of approximation is determined, it is straightforward to
determine the detail space as the space of error functions. With the notation
from Definition 6.7, the error is given by e0 = g1 − g0. Since g0 interpolates g1
at the integers, the error is 0 there,

e0(n) = 0, for n = 0, 1, . . . , N − 1.
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Conversely, any function in V1 which is 0 at the integers may be viewed as
an error function in the above sense. This provides the basis for a precise
description of the error functions.

Lemma 6.9. Suppose the function g0 in V0 interpolates a function g1 in V1

at the integers. Then the error e0 = g1 − g0 lies in the space W0 defined by

W0 = {f ∈ V1 | f(n) = 0, for n = 0, 1, . . . , N − 1.

A basis for W0 is given by the wavelets {ψ0,n}N−1
n=0 defined by

ψ0,n =
1√
2
φ1,2n+1, for n = 0, 1, . . . , N − 1.

Proof. Since g0(n) = g1(n) for all integers n, e0(n) = 0. This means that the
error functions are precisely the piecewise linear functions at the half intervals
which are zero at the integers. Clearly this is the same space as that spanned
by the ψ0,n = 1√

2
φ1,2n+1.

We now have all the ingredients to formulate an analog of Theorem 5.20 that
describes how Vm can be expressed as a direct sum of Vm−1 and Wm−1. The
formulas for m = 1 generalise without change, except that the upper bound on
the summation indices must be adjusted.

Theorem 6.10. The space Vm can be decomposed as the direct sum Vm =
Vm−1 ⊕Wm−1 where Wm−1 is the space of all functions in Vm that are zero
at the points {n/2m−1}N2m−1−1

n=0 . The space Vm has the two bases

φ
m

= (φm,n)
2mN−1
n=0

and
(φ

m−1,ψm−1) =
�
(φm−1,n)

2m−1
N−1

n=0 , (ψm−1,n)
2m−1

N−1
n=0

�
.

The equations above take the form

φ0,n =
1

2
√
2
φ1,2n−1 +

1√
2
φ1,2n +

1

2
√
2
φ1,2n+1

ψ0,n =
1√
2
φ1,2n+1. (6.7)

These two relations together give all columns in the change of coordinate matrix
Pφ1←(φ0⊕ψ0) (i.e. the IDWT), when the spaces φ

m
, ψ

m
instead are defined in

terms of the function ψ, and the normalized φ. Similarly we can compute the
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Figure 6.2: The error (i.e. the contribution from W0⊕W1⊕· · ·⊕Wm−1) in the
sound file castanets.wav, for different values of m.

change of coordinate matrix the opposite way by rewriting equations (6.7) as

1√
2
φ1,2n = φ0,n − 1

2
√
2
φ1,2n−1 −

1

2
√
2
φ1,2n+1

1√
2
φ1,2n+1 = ψ0,n,

from which it follows that

φ1,2n =
√
2φ0,n − 1

2
φ1,2n−1 −

1

2
φ1,2n+1

= −
√
2

2
ψ0,n−1 +

√
2φ0,n −

√
2

2
ψ0,n (6.8)

φ1,2n+1 =
√
2ψ0,n. (6.9)

This gives us the columns in the change of coordinate matrix P(φ0⊕ψ0)←φ1
as

well, i.e. the DWT .

Example 6.11. In Section 7 we will construct an algorithm which performs
DWT/IDWT, for a general wavelet. In particular, this algorithm can be used
for the wavelet we constructed in this section. Let us also for this wavelet plot
the detail/error in the test audio file castanets.wav for different resolutions,
as we did in Example 5.21. The result is shown in Figure 6.2. When comparing
with Figure 5.10 we see much of the same, but it seems here that the error is
bigger than before. In the next section we will try to explain why this is the
case, and construct another wavelet based on piecewise linear functions which
remedies this. ♣

Example 6.12. Let us also repeat Exercise 5.22, where we plotted the de-
tail/error at different resolutions, for the samples of a mathematical function.
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(a) A square wave
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(b) f(t) = 1− 2|1/2− t/N |
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(c) f(t) = 1/2 + cos(2πt/N)/2

Figure 6.3: The error (i.e. the contribution from W0 ⊕ W1 ⊕ · · · ⊕ Wm−1) for
N = 1024 for different functions f(t), for different values of m.
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Figure 6.3 shows the new plot. With the square wave we see now that there is an
error. The reason is that a piecewise constant function can not be represented
exactly by piecewise linear functions, due to discontinuity. For the second func-
tion we see that there is no error. The reason is that this function is piecewise
constant, so there is no error when we represent the function from the space V0.
With the third function, hoewever, we see an error. ♣

Exercises for Section 6.1
1. Show that, for f ∈ V0 we have that [f ]φ0

= (f(0), f(1), . . . , f(N − 1)). This
generalizes the result for piecewise constant functions.

2. Show that

�φ0,n, φ0,n� =
2

3

�φ0,n, φ0,n±1� =
1

6
�φ0,n, φ0,n±k� = 0 for k > 1.

As a consequence, the {φ0,n}n are neither orthogonal, nor have norm 1.

3. The convolution of two functions defined on (−∞,∞) is defined by

(f ∗ g)(x) =
� ∞

−∞
f(t)g(x− t)dt.

Show that we can obtain the piecewise linear φ we have defined as φ = χ[−1/2,1/2)∗
χ[−1/2,1/2) (recall that χ[−1/2,1/2) is the function which is 1 on [−1/2, 1/2) and
0 elsewhere). This gives us a nice connection between the piecewise constant
scaling function (which is similar to χ[−1/2,1/2)) and the piecewise linear scaling
function in terms of convolution.

6.2 Multiresolution analysis: Another general-
ization

Let us generalize our definition of Multiresolution analysis from Section 5.4 so
that the theory also fits with what we have found so far in this chapter. The
first difference we have is that the {φ(t−n)}0≤n<N are not orthogonal anymore.
We will remedy this by changing requirement 4 for a Multiresolution analysis
in Definition 5.24 to the following:

Definition 6.13 (Alternative requirement 4 for a Multiresolution Analysis).
There is a function φ, called a scaling function, so that {φ(t− n)}0≤n<N is a
basis for V0.

As with the example we started this chapter with, it turns out to be easier to
construct interesting MRA’s when we do not assume orthonormality as above.
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6.2.1 Dual scaling function
One other difference from before is that we can not easily compute the best
approximation f (m) to f from Vm anymore, since that would require that we
create an orthogonal basis. In fact we will not compute the best approximation
anymore, but something similar. This new type of approximation is obtained
in terms of what is called a dual scaling function:

Theorem 6.14. Assume that we have a an MRA with scaling function φ.
There exists a function φ̃ so that

f(t) = lim
m→∞

�

n

cm,nφm,n(t),

with cm,n =
�
N

0 f(t)φ̃m,ndt. φ̃ is also called the dual scaling function.

This definition has a clear interpretation for orthonormal MRA’s, since φ̃ = φ
then. With cm,n defined as above, one may believe that

�
n
cm,nφm,n actually is

the best approximation to f from Vm. This is certainly the case for orthonormal
MRA’s, but it may not hold generally. So, for non-orthonormal MRA’s, we have
no procedure for computing best approximations. Anyway, we have mentioned
that Theorem 5.25 was valid also when {φ(t − n)}n were not orthogonal, i.e.

2−m

�
N

0 φm,0(t)dt
f(n/2m)φm,n(t), has validity as an approximation to f also in this

more general setting.

6.2.2 Construction of the detail spaces
Now let us consider the more general construction of the detail spaces Wm.
Since we do not assume orthogonality anymore, we will not require that Wm−1

is the orthogonal complement of Vm−1 in Vm either. Rather we will allow Wm−1

to be any space independent from Vm−1 so that Vm−1 and Wm−1 together
span Vm (i.e. we require that Vm = Vm−1 ⊕ Wm−1). Even though Wm−1 is
unique when we require orthogonality, it, and hence also the decomposition
gm = gm−1 + em−1, is not unique when we require that the two spaces together
span Vm. We thus have some freedom in the design of Wm. We also need to
choose a ψ so that ψ = {ψ(t − n)}0≤n<N is a basis for W0 (again, there is no
requirement on orthogonality here). The recipe for constructing wavelets is thus
rewritten as follows:

Idea 6.15 (Recipe for constructing wavelets, non-orthonormal case). In order
to construct MRA’s which are useful for practical purposes, we need to do the
following

1. Find a vector space W0, linearly independent from V0, and so that V1 =
V0 ⊕W0.
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2. Find a function ψ so that ψ = {ψ(t− n)}0≤n<N is a basis for W0. The
function ψ is also called a mother wavelet.

Again, φ and ψ should be chosen so that we easily can compute the decompo-
sition of g1 ∈ V1 into g0 + e0, where g0 ∈ V0 and e0 ∈ W0. This gives rise to
the m-level Discrete Wavelet Transform as before.

6.2.3 Dual mother wavelet
Now, assume that we have found a pair (φ, ψ) for an MRA. We state the fol-
lowing without proof, for how the DWT can be expressed.

Theorem 6.16. Assume that f (m)(t) =
�

n
cm,nφm,n ∈ Vm, and assume that

φ̃ is as in Theorem 6.14. There exists a function ψ̃ so that

f (m)(t) =
�

n

c0,nφ0,n +
�

m�<m,n

wm�,nψm�,n,

with wm,n =
�
N

0 f (m)(t)ψ̃m,n(t)dt.

Together, theorem 6.14 and 6.16 help us express the DWT for a non-orthonormal
wavelet in terms of analog filters, thereby generalizing what we previously did
for orthonormal wavelets:

Observation 6.17. Let

f (m) =
�

n

cm,nφm,n =
�

n

c0,nφ0,n +
�

m�<m,n

wm�,nψm�,n

be the approximation of f from Vm we obtain as above. Regardless of whether
the wavelet is orthogonal or not, cm,n and wm,n can be computed by sampling
the output of an analog filter. To be more precise, there exist functions φ̃, ψ̃
so that

cm,n = �f, φ̃m,n� =
�

N

0
f(t)φ̃m,n(t)dt =

�
N

0
(−φ̃m,0(−t))f(2−mn− t)dt

wm,n = �f, ψ̃m,n� =
�

N

0
f(t)ψ̃m,n(t)dt =

�
N

0
(−ψ̃m,0(−t))f(2−mn− t)dt.

In other words, if we define the analog filters s
φ̃,m

, s
ψ̃,m

by

s
φ̃,m

(f(t)) =

�
N

0
(−φ̃m,0(−u))f(t− u)du (6.10)

s
ψ̃,m

(f(t)) =

�
N

0
(−φ̃m,0(−u))f(t− u)du (6.11)
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cm,n can be obtained by sampling s
φ̃,m

(f(t)) at the points 2−mn, and wm,n

can be obtained by sampling s
ψ̃,m

(f(t)) at the points 2−mn.

Here the convolution kernels of the filters were as before, with the exception
that φ, ψ were replaced by φ̃, ψ̃. Note also that, if the functions φ̃, ψ̃ are sym-
metric, we can increase the precision in the DWT with the method of symmetric
extension also in this more general setting. It is possible to show that the pair
(φ̃, ψ̃) can be used to define another multiresolution analysis, called the dual
wavelet. We will not go into the theory of this here.

6.2.4 Vanishing moments
The direct sum decomposition with piecewise linear functions we started this
chapter with was very simple, but also has its shortcomings. To see this, set N =
1 and consider the space V10, which has dimension 210. When we apply a DWT,
we start with a function g10 ∈ V10. This may be a very good representation of
the underlying data. However, when we compute gm−1 we just pick every other
coefficient from gm. By the time we get to g0 we are just left with the first and
last coefficient from g10. In some situations this may be adequate, but usually
not. The following idea addresses this shortcoming:

Idea 6.18. We would like a wavelet basis to be able to represent f effi-
ciently. By this we mean that the approximation f (m) =

�
n
c0,nφ0,n +�

m�<m,n
wm�,nψm�,n to f from Observation 6.17 should converge quickly for

the f we work with, as m increases. This means that, with relatively few ψm,n,
we can create good approximations of f .

To address this, let us use Observation 6.17 and write for f ∈ Vm

f =
N−1�

n=0

�f, φ̃0,n�φ0,n +
m−1�

r=0

2rN−1�

n=0

�f, ψ̃r,n�ψr,n. (6.12)

If f is s times differentiable, it can be represented as f = Ps(x) +Qs(x), where
Ps is a polynomial of degree s, and Qs is a function which is very small (Ps

could for instance be a Taylor series expansion of f). If in addition �tk, ψ̃� = 0,
for k = 1, . . . , s, we have also that �tk, ψ̃r,t� = 0 for r ≤ s, so that �Ps, ψ̃r,t� = 0
also. This means that Equation (6.12) can be written

f =
N−1�

n=0

�Ps +Qs, φ̃0,n�φ0,n +
m−1�

r=0

2rN−1�

n=0

�Ps +Qs, ψ̃r,n�ψr,n

=
N−1�

n=0

�Ps +Qs, φ̃0,n�φ0,n +
m−1�

r=0

2rN−1�

n=0

�Ps, ψ̃r,n�ψr,n +
m−1�

r=0

2rN−1�

n=0

�Qs, ψ̃r,n�ψr,n

=
N−1�

n=0

�f, φ̃0,n�φ0,n +
m−1�

r=0

2rN−1�

n=0

�Qs, ψ̃r,n�ψr,n.
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Here the first sum lies in V0. We see that the wavelet coefficients from Wr are
�Qs, ψ̃r,n�, which are very small since Qs is small. This means that the detail in
the different spaces Wr is very small, which is exactly what we aimed for. Let
us summarize this as follows:

Theorem 6.19 (Vanishing moments). We say that ψ has k vanishing mo-
ments if the integrals

�∞
−∞ tlψ(t)dt = 0 for all 0 ≤ l ≤ k − 1. If a function

f ∈ Vm is r times differentiable, and ψ̃ has r vanishing moments, then f can
be approximated well from V0. Moreover, the quality of this approximation
improves when r increases.

Having many vanishing moments is thus very good for compression, since
the corresponding wavelet basis is very efficient for compression. In particular,
if f is a polynomial of degree less than or equal to k − 1 and ψ̃ has k vanishing
moments, then the detail coefficients wm,n are exactly 0. Since (φ, ψ) and (φ̃,
ψ̃) both are wavelet bases, it is equally important for both to have vanishing
moments. We will in the following concentrate on the number of vanishing
moments of ψ.

The Haar wavelet has one vanishing moment, since ψ̃ = ψ and
�
N

0 ψ(t)dt = 0
as we noted in Observation 5.15. It is an exercise to see that the Haar wavelet
has only one vanishing moment, i.e.

�
N

0 tψ(t)dt �= 0.

6.3 Alternative wavelets for piecewise linear func-
tions

Now consider the wavelet we have used up to now for piecewise linear functions,
i.e. ψ(t) = φ1,1(t). Clearly this has no vanishing moments, since ψ(t) ≥ 0 for all
t. This is thus not a very good choice of wavelet. Let us see if we can construct
an alternative function ψ̂, which has two vanishing moments, i.e. one more than
the Haar wavelet.

Idea 6.20. Adjust the wavelet construction in Theorem 6.10 so that the new
wavelets {ψ̂m−1,n}N2m−1

n=0 in Wm−1 satisfy
�

N

0
ψ̂m−1,n(t) dt =

�
N

0
tψ̂m−1,n(t) dt = 0, (6.13)

for n = 0, 1, . . . , N2m − 1.

As usual, it is sufficient to consider what happens when V1 is written as a
direct sum of V0 and W0. From Idea 6.20 we see that we need to enforce two
conditions for each wavelet function. If we adjust the wavelets in Theorem 6.10
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by adding multiples of the two neighbouring hat functions, we have two free
parameters,

ψ̂0,n = ψ0,n − αφ0,n − βφ0,n+1 (6.14)

that we may determine so that the two conditions in (6.13) are enforced. If we
do this, we get the following result:

Lemma 6.21. The function

ψ̂0,n(t) = ψ0,n(t)−
1

4

�
φ0,n(t) + φ0,n+1(t)

�
(6.15)

satisfies the conditions
�

N

0
ψ̂0,n(t) dt =

�
N

0
tψ̂0,n(t) dt = 0.

Using Equation (6.4), which stated that

φ0,n(t) =
1√
2
(
1

2
φ1,2n−1 + φ1,2n +

1

2
φ1,2n+1) (6.16)

we get

ψ̂0,n(t) = ψ0,n(t)−
1

4

�
φ0,n(t) + φ0,n+1(t)

�

=
1√
2
φ1,2n+1(t)−

1

4

1√
2

�1
2
φ1,2n−1 + φ1,2n +

1

2
φ1,2n+1 +

1

2
φ1,2n+1 + φ1,2n+2 +

1

2
φ1,2n+3

�

= − 1

8
√
2
φ1,2n−1 −

1

4
√
2
φ1,2n +

3

4
√
2
φ1,2n+1 −

1

4
√
2
φ1,2n+2 −

1

8
√
2
φ1,2n+3

(6.17)

Note that what we did here is equivalent to finding the coordinates of ψ̂ in the
basis φ1: Equation (6.15) says that

[ψ̂]φ0⊕ψ0
= (−1/4,−1/4, 0, . . . , 0)⊕ (1, 0, . . . , 0). (6.18)

Since the IDWT is the change of coordinates from φ0⊕ψ0 to φ1, we could also
have computed [ψ̂]φ1

by taking the IDWT of (−1/4,−1/4, 0, . . . , 0)⊕(1, 0, . . . , 0).
In the next section we will consider more general implementations of the DWT
and the IDWT, which we thus can use instead of performing the computation
above.

In summary we have

φ0,n(t) =
1

2
√
2
φ1,2n−1 +

1√
2
φ1,2n +

1

2
√
2
φ1,2n+1

ψ̂0,n(t) = − 1

8
√
2
φ1,2n−1 −

1

4
√
2
φ1,2n +

3

4
√
2
φ1,2n+1 −

1

4
√
2
φ1,2n+2 −

1

8
√
2
φ1,2n+3,

(6.19)
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Figure 6.4: The function ψ we constructed as an alternative wavelet for piecewise
linear functions.
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(b) m = 2

Figure 6.5: The error (i.e. the contribution from W0⊕W1⊕· · ·⊕Wm−1) in the
sound file castanets.wav, for different values of m.

which gives us the change of coordinate matrix Pφ1←(φ0⊕ψ0). The new function
ψ = ψ̂ is plotted in Figure 6.4.

Example 6.22. Let us also plot the detail/error in the test audio file castanets.wav
for different resolutions for our alternative wavelet, as we did in Example 5.21.
The result is shown in Figure 6.5. Again, when comparing with Figure 5.10
we see much of the same. It is difficult to see an improvement from this fig-
ure. However, this figure also clearly shows a smaller error than the wavelet of
the preceding section. A partial explanation is that the wavelet we now have
constructed has two vanishing moments. ♣

Example 6.23. Let us also repeat Exercise 5.22 for our alternative wavelet,
where we plotted the detail/error at different resolutions, for the samples of a
mathematical function. Figure 6.6 shows the new plot. Again for the square
wave there is an error, which seems to be slightly lower than for the previous
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(a) A square wave
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(b) f(t) = 1− 2|1/2− t/N |
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(c) f(t) = 1/2 + cos(2πt/N)/2

Figure 6.6: The error (i.e. the contribution from W0 ⊕ W1 ⊕ · · · ⊕ Wm−1) for
N = 1024 for different functions f(t), for different values of m.
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wavelet. For the second function we see that there is no error, as before. The
reason is the same as before, since the function is piecewise constant. With the
third function there is an error. The error seems to be slightly lower than for
the previous wavelet, which fits well with the number of vanishing moments. ♣

Exercises for Section 6.3
1. In this exercise we will show that there is a unique function on the form (6.14)
which has two vanishing moments.

a. Show that, when ψ̂ is defined by (6.14), we have that

ψ̂(t) =






−αt− α for − 1 ≤ t < 0

(2 + α− β)t− α for 0 ≤ t < 1/2

(α− β − 2)t− α+ 2 for 1/2 ≤ t < 1

βt− 2β for 1 ≤ t < 2

0 for all other t

b. Show that
�

N

0
ψ̂(t)dt =

1

2
− α− β

�
N

0
tψ̂(t)dt =

1

4
− β.

c. Explain why there is a unique function on the form (6.14) which
has two vanishing moments, and that this function is given by Equa-
tion (6.15).

2. In the previous exercise we ended up with a lot of calculations to find α, β
in Equation (6.14). Let us try to make a program which does this for us, and
which also makes us able to generalize the result.

a. Define

ak =

� 1

−1
tk(1− |t|)dt

bk =

� 2

0
tk(1− |t− 1|)dt

ek =

� 1

0
tk(1− 2|t− 1/2|)dt,
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for k ≥ 0. Explain why finding α, β so that we have two vanishing
moments in Equation 6.14 is equivalent to solving the following equation:

�
a0 b0
a1 b1

��
α
β

�
=

�
e0
e1

�

Write a program which sets up and solves this system of equations, and
use this program to verify the values for α, β we previously have found.
Hint: recall that you can integrate functions in Matlab with the function
quad. As an example, the function φ(t), which is nonzero only on [−1, 1],
can be integrated as follows:

quad(@(t)t.^k.*(1-abs(t)),-1,1)

b. The procedure where we set up a matrix equation in a. allows for
generalization to more vanishing moments. Define

ψ̂ = ψ0,0 − αφ0,0 − βφ0,1 − γφ0,−1 − δφ0,2. (6.20)

We would like to choose α, β, γ, δ so that we have 4 vanishing moments.
Define also

gk =

� 0

−2
tk(1− |t+ 1|)dt

dk =

� 3

1
tk(1− |t− 2|)dt

for k ≥ 0. Show that α, β, γ, δ must solve the equation




a0 b0 g0 d0
a1 b1 g1 d1
a2 b2 g2 d2
a3 b3 g3 d3









α
β
γ
δ



 =





e0
e1
e2
e3



 ,

and solve this with Matlab.

c. Plot the function defined by (6.20), which you found in b.
Hint: If t is the vector of t-values, and you write
(t>=0).*(t<=1).*(1-2*abs(t-0.5)), you get the points φ1,1(t).

d. Explain why the coordinate vector of ψ̂ in the basis φ0 ⊕ψ0 is

[ψ̂]φ0⊕ψ0
= (−α,−β,−δ, 0, . . . , 0− γ)⊕ (1, 0, . . . , 0).
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Hint: you can also compare with Equation (6.18) here. The placement of
−γ may seem a bit strange here, and has to with that φ0,−1 is not one of
the basis functions {φ0,n}N−1

n=0 . However, we have that φ0,−1 = φ0,N−1,
i.e. φ(t + 1) = φ(t − N + 1), since we always assume that the functions
we work with have period N .

e. Sketch a more general procedure than the one you found in b., which
can be used to find wavelet bases where we have even more vanishing
moments.

3. Let φ(t) be the function we used when we defined the Haar-wavelet.

a. Compute proj
V0
(f(t)), where f(t) = t2, and where f is defined on

[0, N).

b. Find constants α, β so that ψ̂(t) = ψ(t)− αφ0,0(t)− βφ0,1(t) has two
vanishing moments, i.e. so that �ψ̂, 1� = 0, and �ψ̂, t� = 0. Plot also the
functiin ψ̂.
Hint: Start with computing the integrals

�
ψ(t)dt,

�
tψ(t)dt,

�
φ0,0(t)dt,

�
φ0,1(t)dt,

and
�
tφ0,0(t)dt,

�
tφ0,1(t)dt.

c. Express φ and ψ̂ with the help of functions from φ1, and use this to
write down the change of coordinate matrix from {φ0, ψ̂0} to φ1.

4. It is also possible to add more vanishing moments to the Haar wavelet. Define

ψ̂ = ψ0,0 − a0φ0,0 − · · · − ak−1φ0,k−1.

Define also cr,l =
�
l+1
l

trdt, and er =
� 1
0 trψ(t)dt.

a. Show that ψ̂ has k vanishing moments if and only if a0, . . . , ak−1 solves
the equation





c0,0 c0,1 · · · c0,k−1

c1,0 c1,1 · · · c1,k−1
...

...
...

...
ck−1,0 ck−1,1 · · · ck−1,k−1









a0
a1
...

ak−1




=





e0
e1
...

ek−1




(6.21)

b. Write a function

function a=vanishingmomshaar(k)

which solves Equation 6.21, and returns a0, a1, . . . , ak−1 in the vector a.
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6.4 Summary
We defined another wavelet, which was a function approximation scheme based
on piecewise linear functions, instead of piecewise constant functions as in the
previous chapter. There were several differences with the new wavelet when
compared to the previous one. First of all, the basis functions were not or-
thonormal, and we did not attempt to make them orthonormal. The resolution
spaces are not defined in terms of orthogonal bases, and we had some freedom
on how we defined the detail spaces, since they are not defined as orthogonal
complements anymore. Similarly, we had some freedom on how we define the
mother wavelet, and we saw that we could define it so that it is more suitable
for approximation of functions, by adding what we called vanishing moments.

We generalized the concept of multiresolution analysis so that it also applies
in this new setting, and established some more properties. We will continue in
the next chapter to construct even more general wavelets, based on this extended
framework.
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Chapter 7

Wavelets and filters

Previously we have seen that analog filters restricted to the Fourier spaces gave
rise to digital filters. These digital filters sent the samples of the input function
to the samples of the output function, and they are easily implementable in
contrast to the analog filters.

We have also seen that wavelets give rise to analog filters. This leads us
to believe that the DWT also can be implemented in terms of digital filters.
In this chapter we will prove that this is in fact the case. There are some
differences, however. First of all, the DWT is not constructed by looking at
the samples of a function, but rather by looking at coordinates in a given basis.
Secondly, the function spaces we work in (i.e. Vm) are different from the Fourier
spaces. Thirdly, we saw that the wavelet transform gave rise to two different
types of analog filters: The filter defined by Equation 6.10 for obtaining cm,n,
and the filter defined by Equation 6.11 for obtaining wm,n. We want both to
correspond to digital filters. Due to these differences, the way we realize wavelet
transformations in terms of digital filters is a bit different from before. Despite
the differences, this chapter will make it clear that the output of a wavelet
transform can be interpreted as the output of two different filters, and each
filter will have a clear interpretation in terms of frequency representations.

7.1 The filters corresponding to a wavelet trans-
formation

We will make the connection with digital filters by looking again at the different
examples of wavelet bases we have seen: The one for piecewise constant func-
tions, and the one for piecewise linear functions. We start by reordering the
basis vectors in (φ0,ψ0) as

C1 = {φ0,0, ψ0,0, φ0,1, ψ0,1, · · · , φ0,N−1, ψ0,N−1}. (7.1)

The subscript 1 is used since C1 is a basis for V1. It turns out to be useful to
reorder of the basis functions since it makes it easier to write down the change of
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coordinates matrices. To be more precise, let us first consider the Haar wavelet.
From formula (5.16) it is apparent that Pφ1←C1 is the matrix where

�
1√
2

1√
2

1√
2

− 1√
2

�

is repeated along the main diagonal N times. Also, from formula (5.15) it
is apparent that PC1←φ1

is the same matrix. Such matrices are called block
diagonal matrices. This particular block diagonal matrix is clearly orthogonal,
since it transforms one orthonormal base to another.

For higher m we also reorder the basis vectors for (φ
m−1,ψm−1) as in Equa-

tion (7.1), i.e. we define

Cm = {φm−1,0, ψm−1,0, φm−1,1, ψm−1,1, · · · , φm−1,2m−1N−1, ψm−1,2m−1N−1}.
(7.2)

The bases φ
m

and Cm are both referred to as wavelet bases . Again, both
change of coordinates matrices Pφ

m
←Cm

, PCm←φ
m

can be obtained by repeating
the matrix from Equation (7.1) along the diagonal, but this time it is repeated
2m−1N times.

For the piecewise linear wavelet, if we define the bases Cm again by Equa-
tion 7.1 (i.e. with φ and ψ replaced). Equation 6.7 gives that the first two
columns in Pφ1←C1 take the form

1√
2





1 0
1/2 1
0 0
...

...
0 0
1/2 0





. (7.3)

The remaining columns are obtained by shifting this, as in a circulant Toeplitz
matrix. Similarly, Equation 6.9 gives that the first two columns in PC1←φ1

take
the form

√
2





1 0
−1/2 1
0 0
...

...
0 0

−1/2 0





. (7.4)

Also here, the remaining columns are obtained by shifting this, as in a circulant
Toeplitz matrix.

For the alternative piecewise linear wavelet, Equation 6.19 give all columns
in the change of coordinate matrix Pφ1←C1 also, when the spaces φ

m
, Cm instead

are defined in terms of the function ψ̂, and φ. In particular, the first two columns
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in this matrix are

1√
2





1 −1/4
1/2 3/4
0 −1/4
0 −1/8
0 0
...

...
0 0
1/2 −1/8





. (7.5)

The first column is the same as before, since there was no change in the definition
of φ. The remaining columns are obtained by shifting this, as in a circulant
Toeplitz matrix. Similarly we could compute the change of coordinate matrix
the opposite way, PC1←φ1

. We will explain shortly how this can be done.
In each case above it turned out that the change of coordinate matrices

Pφ
m
←Cm

, PCm←φ
m

had a special structure: They were obtained by repeating
the first two columns in a circulant way, similarly to how we did in a circulant
Toeplitz matrix. The matrices were not exactly circulant Toeplitz matrices,
however, since there are two different columns repeating. The change of coordi-
nate matrices occuring in the stages in a DWT are thus not digital filters, but
they seem to be related. Let us start by giving these new matrices names:

Definition 7.1 (MRA-matrices). An N ×N -matrix T , with N even, is called
an MRA-matrix if the columns are translates of the first two columns in alter-
nating order, in the same way as the columns of a circulant Toeplitz matrix.

From our previous calculations it is clear that, once φ and ψ are given
through an MRA, the corresponding change of coordinate matrices will always
be MRA-matrices. The MRA-matrices is our connection between filters and
wavelets. Let us make the following definition:

Definition 7.2. We denote by H0 the (unique) filter with the same first row as
PCm←φ

m
, and by H1 the (unique) filter with the same second row as PCm←φ

m
.

H0 and H1 are also called the DWT filter components.

Using this definition it is clear that

(PCm←φ
m
cm)k = (H0cm)k when k is even

(PCm←φ
m
cm)k = (H1cm)k when k is odd

since the left hand side depends only on row k in the matrix PCm←φ
m

, and this
is equal to row k in H0 (when k is even) or row k in H1 (when k is odd). This
means that PCm←φ

m
cm can be computed with the help of H0 and H1 as follows:
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Theorem 7.3 (DWT expressed in terms of filters). Let cm be the coordinates
in φ

m
, and let H0, H1 be defined as above. Any stage in a DWT can ble

implemented in terms of filters as follows:

1. Compute H0cm. The even-indexed entries in the result are the cordinates
cm−1 in φ

m−1.

2. Compute H1cm. The odd-indexed entries in the result are the coordi-
nates wm−1 in ψ

m−1.

This gives an important connection between wavelets and filters: The DWT
corresponds to applying two filters, H0 and H1, and the result from the DWT
is produced by assembling half of the coordinates from each. In practice we do
not compute the full application of the filters, since only half of the result is
needed. We can now complement Figure 5.3 by giving names to the arrows as
follows:

Vm

H0 ��

H1

��

Vm−1
H0 ��

H1

��

Vm−2
H0 ��

H1

��

· · · H0 ��

H1

��

V0

Wm−1 Wm−2 Wm−3 W0

Let us make a similar anlysis for the IDWT, and let us first make the following
definition:

Definition 7.4. We denote by G0 the (unique) filter with the same first
column as Pφ

m
←Cm

, and by G1 the (unique) filter with the same second column
as Pφ

m
←Cm

. G0 and G1 are also called the IDWT filter components.

These filters are uniquely determined, since any filter is uniquely determined
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from one of its columns. We can now write

Pφ
m
←Cm





cm−1,0

wm−1,0

cm−1,1

wm−1,1

· · ·
cm−1,2m−1N−1

wm−1,2m−1N−1





= Pφ
m
←Cm









cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1

0





+





0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1









= Pφ
m
←Cm





cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1

0





+ Pφ
m
←Cm





0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1





= G0





cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1

0





+G1





0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1





.

Here we have split a vector into its even-indexed and odd-indexed elements,
which correspond to the coefficients from φ

m−1 and ψ
m−1, respectively. In the

last equation, we replaced with G0, G1, since the multiplications with Pφ
m
←Cm

depend only on the even and odd columns in that matrix (due to the zeros
inserted), and these columns are equal in G0, G1. We can now state the following
characterization of the inverse Discrete Wavelet transform:

Theorem 7.5 (IDWT expressed in terms of filters). Let G0, G1 be defined
as above. Any stage in an IDWT can be implemented in terms of filters as
follows:

cm = G0





cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1

0





+G1





0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1





. (7.6)

We can now also complement Figure 5.3 for the IDWT with named arrows
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as follows:

Vm Vm−1
G0

�� Vm−2
G0

�� · · ·
G0

�� V0
G0

��

Wm−1

G1

��

Wm−2

G1

��

Wm−3

G1

��

W0

G1

��

Note that the filters G0, G1 were defined in terms of the columns of Pφ
m
←Cm

,
while the filters H0, H1 were defined in terms of the rows of PCm←φ

m
. This

difference is seen from the computations above to come from that the change
of coordinates one way splits the coordinates into two parts, while the inverse
change of coordinates performs the opposite.

There are several reasons why it is smart to express a wavelet transformation
in terms of filters. First of all, it enables us to reuse theoretical results from
the world of filters in the world of wavelets, and to give useful interpretations
of the wavelet transform in terms of frequencies. Secondly, and perhaps most
important, it enables us to reuse efficient implementations of filters in order
to compute wavelet transformations. A lot of work has been done in order to
establish efficient implementations of filters, due to their importance.

In Example 5.21 we argued that the elements in Vm−1 correspond to fre-
quencies at lower frequencies than those in Vm, since V0 = Span(φ0,n) should be
interpreted as content of lower frequency than the φ1,n, with W0 = Span(ψ0,n

the remaining high frequency detail. To elaborate more on this, we have that
have that

φ(t) =
2N−1�

n=0

(G0)n,0φ1,n(t) (7.7)

ψ(t) =
2N−1�

n=0

(G1)n,1ψ1,n(t)., (7.8)

where (Gk)i,j are the entries in the matrix Gk. Similar equations are true
for φ(t − k), ψ(t − k). Due to (7.7), the filter G0 should have lowpass filter
characteristics, since it extracts the information at lower frequencies. G1 should
have highpass filter characteristics du to (7.8). Let us verify this for the different
wavelets we have defined up to now.

Let us also consider the frequency responses for the filters arising from the
wavelets we have looked at. We start with the Haar wavelet.

Example 7.6. For the Haar wavelet we saw that, in Pφ
m
←Cm

, the matrix
�

1√
2

1√
2

1√
2

− 1√
2

�

repeated along the diagonal. From this it is clear that

G0 = {1/
√
2, 1/

√
2}

G1 = {1/
√
2,−1/

√
2}.
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(a) λG0 (ω)
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(b) λG1 (ω)

Figure 7.1: The frequency responses for the MRA of piecewise constant func-
tions.

We have seen these filters previously: G0 is a movinge average filter of two
elements (up to multiplication with a constant). This is a lowpass filter. G1 is
a bass-reducing filter, which is a highpass filter. Up to a constant, this is also
an approximation to the derivative. Since G1 is constructed from G0 by adding
an alternating sign to the filter coefficients, we know from before that G1 is
the highpass filter corresponding to the lowpass filter G0, so that the frequency
response of the second is given by a shift of frequency with π in the first. The
frequency responses are

λG0(ω) =
1√
2
+

1√
2
e−iω =

√
2e−iω/2 cos(ω/2)

λG1(ω) =
1√
2
eiω − 1√

2
=

√
2ieiω/2 sin(ω/2).

The magnitude of these are plotted in Figure 7.1, where the lowpass/highpass
characteristics are clearly seen. In this case we also have that

H0 = {1/
√
2, 1/

√
2}

H1 = {1/
√
2,−1/

√
2},

so that the frequency responses for the DWT have the same lowpass/highpass
characteristics. ♣

It turns out that this connection between G0 and G1 as lowpass and highpass
filters corresponding to each other can be found in all orthonormal wavelets. We
will prove this in the next chapter.

Example 7.7. For the first wavelet for piecewise linear functions we looked at
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Figure 7.2: The frequency response λG0(ω) for the first choice of wavelet for
piecewise linear functions

in the previous section, Equation (7.3) gives that

G0 =
1√
2
{1/2, 1, 1/2}

G1 =
1√
2
{1}. (7.9)

G0 is again a filter we have seen before: Up to multiplication with a constant, it
is the treble-reducing filter with values from row 2 of Pascal’s triangle. We see
something different here when compared to the Haar wavelet, in that the filter
G1 is not the highpass filter corresponding to G0. The frequency responses are
now

λG0(ω) =
1

2
√
2
eiω +

1√
2
+

1

2
√
2
e−iω =

1√
2
(cosω + 1)

λG1(ω) =
1√
2
.

λG1(ω) thus has magnitude 1√
2

at all points. The magnitude of λG0(ω) is plotted
in Figure 7.2. Comparing with Figure 7.1 we see that here also the frequency
response has a zero at π. The frequency response seems also to be flatter around
π. For the DWT, Equation (7.4) gives us

H0 =
√
2{1}

H1 =
√
2{−1/2, 1,−1/2}. (7.10)

Even though G1 was not the highpass filter corresponding to G0, we see that,
up to a constant, H1 is (it is a bass-reducing filter with values taken from row
2 of Pascals triangle). ♣
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Note that the role of H1 as the highpass filter corresponding to G0 is the case
in both previous examples. We will prove in the next chapter that this is a much
more general result which holds for all wavelets, not only for the orthonormal
ones.

Exercises for Section 7.1
1. Write down the corresponding filters G0 og G1 for Exercise 6.3.3. Plot their
frequency responses, and characterize the filters as lowpass- or highpass filters.

2. Find two symmetric filters, so that the corresponding MRA-matrix, con-
structed with alternating rows from these two filters, is not a symmetric matrix.

3. Assume that an MRA-matrix is symmetric. Are the corresponding filters
H0, H1, G0, G1 also symmetric? If not, find a counterexample.

7.2 Perfect reconstruction systems
If we choose a good wavelet, the output of the DWT is more suitable for com-
pression purposes. The DWT and IDWT are inverse operations, and this pair
therefore fits into the following framework:

Definition 7.8 (Perfect reconstruction system). By a perfect reconstruction
system we mean a pair of N × N -matrices (G,H) so that GH = I. For a
vector x we refer to z = Hx as the transformed vector. For a vector z we
refer to x = Gz as the reconstructed vector.

The names perfect reconstruction, transformation, and reconstruction come
from signal processing, where one thinks of H as a transform, and G as the
inverse transform which reconstructs the input to the first transform from its
output. In practice, we are interested in finding perfect reconstruction systems
where the transformed Hx is so that it is more suitable for further processing,
such as compression, or playback in an audio system. Clearly ((FN )H , FN ) is a
perfect reconstruction system for any N , and similarly for the DCT. One prob-
lem with these systems is that the matrices are not sparse. Although efficient
algorithms exist for the DFT, one may find systems of sparse matrices or other
types of matrices which are quicker to compute in the transform and reconstruc-
tion steps. In practice we are interested in establishing perfect reconstruction
systems, where the involved matrices have particular forms.

Digital filters is one such form. Many filters are invertible, and both the
filter and the inverse filter are quick to compute as long as one one of them has
few nonzero filter coefficients.

Another form is a perfect reconstruction system constructed from a wavelet.
This form offers increased flexibility when compared to using only one filter,
since the two filters can concentrate on different frequencies: Low frequencies,
and high frequencies.
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7.3 Wavelets with symmetric filters
As mentioned, it is desirable to apply the DWT to the symmetric extension of
the input when the wavelet is symmetric. This really corresponds to considering
the symmetric extension f̆ instead of f , where f is our model. If the input x
to the DWT is the samples (f(n/2m))2

m
N−1

n=0 , we create a vector x̆ representing
the samples of f̆ . It is clear that this vector should be

x̆ =

�
(f(n/2m))2

m
N−1

n=0 , lim
t→N−

f(t), (f((2mN − n)/2m))2
m
N−1

n=1

�
.

In this vector there is symmetry around entry 2mN , so that the vector is de-
termined from the N � = 2mN + 1 first elements. Also the boundary is not
duplicated, contrary to previous symmetric extensions. Instead using N � as the
length of the input vector, we thus need to define a symmetric extension slightly
different from before:

Definition 7.9 (Symmetric extension of a vector). By the symmetric exten-
sion of x ∈ RN , we mean x̆ ∈ R2N−2 defined by

x̆k =

�
xk 0 ≤ k < N

x2N−2−k N ≤ k < 2N − 3
(7.11)

With this notation, N−1 is the symmetry point in all symmetric extensions.
Clearly symmetric filters preserve symmetry around N − 1. Applying a filter
to this kind of symmetric extension in R2N−2 can therefore be viewed as a
mapping from RN to RN . If S is a symmetric filter, we will as before write Sr

for this operation. We have the following analog to Theorem 4.9 for these new
mappings, which is proved in very much the same way.

Theorem 7.10. With S =

�
S1 S2

S3 S4

�
a symmetric filter, we have that

Sr = S1 +
�
0 (S2)f 0

�
.

Proof. We write




y0
...

yN−1



 =
�
S1 S2

�





x0
...

xN−1

xN

...
x2N−3





= S1




x0
...

xN−1



+ S2




xN

...
x2N−3



 .
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When x is a symmetric vector we can rewrite this as

S1




x0
...

xN−1



+ S2




xN−2

...
x1





= S1




x0
...

xN−1



+ (S2)
f




x1
...

xN−2





= S1




x0
...

xN−1



+
�
0 (S2)f 0

�



x0
...

xN−1





=
�
S1 +

�
0 (S2)f 0

� �



x0
...

xN/2−1



 .

This shows that Sr = S1 +
�
0 (S2)f 0

�
.

In practice we want to apply the wavelet transform to a symmetric extension,
since then symmetric filters can give a better approximation to the underlying
analog filters. In order to achieve this, the following result says that we only
need to replace the filters H0, H1, G0, and G1 in the wavelet transform with
(H0)r, (H1)r, (G0)r, and (G1)r.

Theorem 7.11. If the filters H0, H1, G0, and G1 in a wavelet transform are
symmetric, then the corresponding MRA matrices preserve symmetric exten-
sions (as defined above). Also, applying the filters H0, H1, G0, and G1 to
x̆ ∈ R2N−2 in the DWT/IDWT is equivalent to applying (H0)r, (H1)r, (G0)r,
and (G1)r to x ∈ RN in the same way.

Proof. Since H0 and H1 are symmetric, their output from x̆ is also a symmetric
vector, and by assembling their outputs as the even- and odd-indexed entries, we
see that the output (c0, w0, c1, w1, . . .) of the MRA-matrix H also is a symmetric
vector. The same then applies for the matrix G, since it inverts the first. This
proves the first part.

Now, assume that x ∈ RN . By definition of (Hi)r, (Hix̆)n = ((Hi)rx)n
for 0 ≤ n ≤ N − 1. This means that we get the same first N output ele-
ments in a wavelet transform if we repace H0, H1 with (H0)r, (H1)r. Since the
vectors (c0, 0, c1, 0, . . .) and (0, w0, 0, w1, . . .) also are symmetric vectors when
(c0, w0, c1, w1, . . .) is, it follows that (G0)r, (G1)r will reproduce the same first
N elements as G0, G1 also. In conclusion, for symmetric vectors, the wavelet
transform restricted to the first N elements produces the same result when we
replace H0, H1, G0, and G1 with (H0)r, (H1)r, (G0)r, and (G1)r. This proves
the result.
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Exercises for Section 7.3
1. In the literature it is not customary to write down an orthonormal basis for
the eigenvectors of Sr when symmetric extensions is defined as in this section.
Show that {cos

�
2π n

2N−2k
�
}N−1
n=0 is an orthogonal basis of eigenvectors for Sr.

7.4 Filter-based algorithm for the DWT and the
IDWT

When we apply wavelets in practice, they are often defined in terms of the filters
H0, H1, G0, G1. We therefore need an implementation of the DWT and the
IDWT which takes as input the filter coefficients of these filters. All wavelets
we look at, except for the Haar wavelet (which we have already implemented),
will have symmetric filters, so we will restrict our implementations to symmetric
filters. You will be spared writing these implementations: you can assume that
the function

xnew=DWTImpl(h0,h1,x,m)

takes as input symmetric filters h0 and h1, a vector x, and m, and returns the
result of the m-level DWT for us, i.e. it returns the coordinates of x in the basis
V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wm−1. You can also assume that the function

x=IDWTImpl(g0,g1,xnew,m)

performs the m-level IDWT in a similar way, where g0 and g1 also are symmetric
filters.

Although you are spared writing these implementations, we will comment on
some of the issues in writing them. Previously we mentioned that we could use
Matlab’s conv function to implement filters. Since the DWT and the IDWT
now have been expressed in terms of filters, the conv-function can be used
to implement the DWT and the IDWT as well. More precisely, they can be
implemented by taking the convolution with the rows (since the entries in the
first column equal the enctries in the first row when the filter is symmetric) of
the MRA-matrix. With the DWT we have these rows, since the rows in PCm←φ

m

are given by the rows of H0, H1. With the IDWT we need a translation from
the column representation of the MRA-matrix to the row representation of the
matrix. This is a straightforward task, however a bit tedious. In the function
IDWTImpl you will see some additional code at the beginning taking care of this.

Symmetric filters are very common in practice, since MRA-matrices with
symmetric filters also preserve symmetric vectors. Due to this they share some
of the desirable properties of symmetric filters (which lead us to the definition
of the DCT). DWTImpl and IDWTImpl are written so that they are applied to the
symmetric extension of the sound. Note also that, since these implementations
call the conv-function, they compute all output elements of the filter. But
Theorem 7.3 states that only half of the output entries for each filter need to be
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computed. The current implementation is therefore not optimal. In Chapter 9
we will describe a method which solves this issue, and which also provides further
computational savings when compared to a direct implementation of the filters.

Finally, let us provide an example of how we write down the parameters
h0, h1, g0, g1 to the implementations. They represent the nonzero filter
coefficients of H0, H1, G0, G1, respectively. If

H0 = {h0,−k0 , . . . , h0,−1h0,0, h0,1, . . . , h0,k0}

H1 = {h1,−k1 , . . . , h1,−1h1,0, h1,1, . . . , h1,k1},

then the vectors

h0 = (h0,−k0 , . . . , h0,−1, h0,0, h0,1, . . . , h0,k0)

h1 = (h1,−k1 , . . . , h1,−1, h1,0, h1,1, . . . , h1,k1)

should be input to the DWTImpl function.

Example 7.12. In Exercise 3 you will be asked to implement a function
playDWTfilterslower which plays the low-resolution approximations of our
audio test file, for any type of wavelet, using the functions we have described.
With this function we can play the result for all the wavelets we have considered
up to now, in succession, and at a given resolution, with the following code:

function playDWTall(m)

disp(’Haar wavelet’);

playDWTlower(m);

disp(’Wavelet for piecewise linear functions’);

playDWTfilterslower(m,sqrt(2)*[1],...

sqrt(2)*[-1/2 1 -1/2],...

[1/2 1 1/2]/sqrt(2),...

[1]/sqrt(2));

disp(’Wavelet for piecewise linear functions, alternative version’);

playDWTfilterslower(m,...

sqrt(2)*[-1/8 1/4 3/4 1/4 -1/8],...

sqrt(2)*[-1/2 1 -1/2],...

[1/2 1 1/2]/sqrt(2),...

[-1/8 -1/4 3/4 -1/4 -1/8]/sqrt(2));

The call to playDWTlower first plays the result, using the Haar wavelet. The
code then moves on to the piecewise linear wavelet. From Equation (7.10) we
first see that

h0 = (h0,−k0 , . . . , h0,−1, h0,0, h0,1, . . . , h0,k0) =
√
2(1) (7.12)

h1 = (h1,−k1 , . . . , h1,−1, h1,0, h1,1, . . . , h1,k1) =
√
2(−1/2, 1,−1/2), (7.13)
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and from Equation (7.9) we see that

g0 = (g0,0, g0,1, . . . , g0,l0) =
1√
2
(1/2, 1, 1/2) (7.14)

g1 = (g1,0, g1,1, . . . , g1,l1) =
1√
2
(1). (7.15)

These explain the parameters to the call to playDWTfilterslower for the piece-
wise linear wavelet. The code then moves to the alternative piecewise linear
wavelet. For this wavelet we have not computed all filter coefficicents yet. This
is delayed till Example 8.4, since we need some more techniques in order to
compute these. From Equation (8.12) in that example we see that

h0 = (h0,−k0 , . . . , h0,−1, h0,0, h0,1, . . . , h0,k0) =
√
2(−1/8, 1/4, 3/4, 1/4,−1/8)

h1 = (h1,−k1 , . . . , h1,−1, h1,0, h1,1, . . . , h1,k1) =
√
2(−1/2, 1,−1/2),

and from Equation (8.10) we see that

g0 = (g0,−l0 , . . . , g0,−1, g0,0, g0,1, . . . , g0,l0) =
1√
2
(1/2, 1, 1/2)

g1 = (g1,−l1 , . . . , g1,−1, g1,0, g1,1, . . . , g1,l1) =
1√
2
(−1/8,−1/4, 3/4,−1/4,−1/8).

These explain the parameters to the call to playDWTfilterslower for the al-
ternative piecewise linear wavelet. ♣

Exercises for Section 7.4
1. In this exercise we will practice setting up the parameters h0,h1,g0,g1 which
are used in the calls to DWTImpl and IDWTImpl.

a. Assume that one stage in a DWT is given by the MRA-matrix

PC1←φ1
=





1/5 1/5 1/5 0 0 0 · · · 0 1/5 1/5
−1/3 1/3 −1/3 0 0 0 · · · 0 0 0
1/5 1/5 1/5 1/5 1/5 0 · · · 0 0 0
0 0 −1/3 1/3 −1/3 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...





Write down the compact form for the corresponding filters H0, H1, and
compute and plot the frequency responses. Are the filters symmetric? If
so, also write down the parameters h0,h1 you would use for this matrix
in a call to DWTImpl.
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b. Assume that one stage in the IDWT is given by the MRA-matrix

Pφ1←C1 =





1/2 −1/4 0 0 · · ·
1/4 3/8 1/4 1/16 · · ·
0 −1/4 1/2 −1/4 · · ·
0 1/16 1/4 3/8 · · ·
0 0 0 −1/4 · · ·
0 0 0 1/16 · · ·
0 0 0 0 · · ·
...

...
...

...
...

0 0 0 0 · · ·
1/4 1/16 0 0 · · ·





Write down the compact form for the filters G0, G1, and compute and
plot the frequency responses. Are the filters symmetric? If so, also write
down the parameters g0,g1 you would use for this matrix in a call to
IDWTImpl.

2. Let us also practice on writing down the change of coordinate matrices from
the parameters h0,h1,g0,g1.

a. Assume that h0=[1/16 1/4 3/8 1/4 1/16] and h1=[-1/4 1/2 -1/4].
Write down the compact form for the filters H0, H1. Plot the frequency
responses and verify that H0 is a lowpass filter, and that H1 is a highpass
filter. Also write down the change of coordinate matrix PC1←φ1

for the
wavelet corresponding to these filters.

b. Assume that g0=[1/3 1/3 1/3] and g1=[1/5 -1/5 1/5 -1/5 1/5].
Write down the compact form for the filters G0, G1. Plot the frequency
responses and verify that G0 is a lowpass filter, and that G1 is a highpass
filter. Also write down the change of coordinate matrix Pφ1←C1 for the
wavelet corresponding to these filters.

3. Write a function

function playDWTfilterslower(m,h0,h1,g0,g1)

which reimplements the function playDWTlower from Exercise 5.3.9 so that it
takes as input the coefficients of the four different filters as in Example 7.12.
Listen to the result using the different wavelets we have encountered and for
different m, using the code from Example 7.12. Can you hear any difference
from the Haar wavelet? If so, which wavelet gives the best sound quality?

4. In this exercise we will change the code in Example 7.12 so that it instead
only plays the contribution from the detail spaces (i.e. W0⊕W1⊕· · ·⊕Wm−1).
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a. Reimplement the function you made in Exercise 3 so that it instead
plays the contribution from the detail spaces. Call the new function
playDWTfilterslowerdifference.

b. In Exercise 5.3.11 we implemented a function playDWTlowerdifference

for listening to the detail/error when the Haar wavelet is used. In the
function playDWTall from Example 7.12, replace playDWTlower and playDWTfilterslower

with playDWTlowerdifference and
playDWTfilterslowerdifference. Describe the sounds you hear for dif-
ferent m. Try to explain why the sound seems to get louder when you
increase m.

5. Let us return to the piecewise linear wavelet from Exercise 6.3.2.

a. With ψ̂ as defined as in Exercise 6.3.2 b., compute the coordinates of
ψ̂ in the basis φ1 (i.e. [ψ̂]φ1

) with N = 8, i.e. compute the IDWT of

[ψ̂]φ0⊕ψ0
= (−α,−β,−δ, 0, 0, 0, 0,−γ)⊕ (1, 0, 0, 0, 0, 0, 0, 0),

which is the coordinate vector you computed in Exercise 6.3.2 d.. For
this, you should use the function IDWTImpl, with parameters being the
filters G0, G1, given as described by g0,g1 by equations (7.14)-(7.15) in
Example 7.12.

b. If we redefine the basis C1 from {φ0,0, ψ0,0, φ0,1, ψ0,1, . . .},
to {φ0,0, ψ̂0,0, φ0,1, ψ̂0,1, . . .}, the vector you obtained in a. gives us an ex-
pression for the second column in Pφ1←C1 . After redefining the basis like
this, the corresponding filter G1 has changed from that of the piecewise
linear wavelet we started with. Use Matlab to so state the new filter G1

with our compact filter notation. Also, plot its frequency response.
Hint: Here you are asked to find the unique filter with the same second
column as Pφ1←C1 , i.e. the vector from a..

c. Write code which uses Equation (8.11) to find H0, H1 from G0, G1, and
state these filters with our compact filter notation. Also, state the forms
h0,h1, which should be used in calls to DWTImpl for our new wavelet.
These replace the forms from equations (7.12)-(7.13) in Example 7.12,
which we found for the first piecewise linear wavelet.
Hint: Note that the filter G0 is unchanged from that of the first piecewise
linear wavelet (since φ is unchanged when compared to the other wavelets
for piecewise linear functions).
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d. The filters you have found above should be symmetric, so that we
can follow the procedure from Example 7.12 to listen to sound which has
been wavelet-transformed by this wavelet. Write a program which plays
our audio test file as in Example 7.12 for m = 1, 2, 3, 4 (i.e. plays the part
in V0), as well as the difference as in Exercise 4 (i.e. play the part from
W0 ⊕W1 ⊕ · · · ⊕Wm−1), where the new filters you have found are used.
Listen to the sounds.

6. Repeat the previous exercise for the Haar wavelet as in exercise 4, and plot
the corresponding frequency responses for k = 2, 4, 6.

7. (Trial Exam UIO V2012) Suppose that we run the following algorithm on
the sound represented by the vector S:

l=length(S);

c=(S(1:2:(l-1))+S(2:2:l))/sqrt(2);

w=(S(1:2:(l-1))-S(2:2:l))/sqrt(2);

newS=[c w];

newS=newS/max(abs(newS));

playerobj=audioplayer(newS,44100);

playblocking(playerobj)

a. Comment the code and explain what happens. Which wavelet is used?
What do the vectors c and w represent? Describe the sound you believe
you will hear.

b. Assume that we add lines in the code above which sets the elements in
the vector w to 0 before we compute an inverse wavelet transform What
will you hear if you play the new sound you then get?

7.5 Connections with the MP3 standard
There is a very close connection between the way filters are used in the MP3
standard, and the way filters are applied in the context of wavelets. Much
literature fails to mention this:

Fact 7.13 (Similarities between the DWT and the MP3 standard). Let x
be a vector representing a sound of length 32N . In the MP3-standard, x is
transformed with the help of 32 filters H0, H1,. . . , H31 in the following way:
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1. Compute H0x. The entries with indices from (0, 32, . . . , (N − 1)32) in
the result is called z0, and represent the output of the transform at the
same indices.

2. Compute H1x. The entries with indices from (1, 32+1, . . . , (N−1)32+1)
in the result is called z1, and represent the output of the transform at
the same indices.

3. . . .

4. Compute H31x. The entries with indices from (32−1, 64−1, . . . , N32−1
in the result is called z31, and represent the output of the transform at
the same indices.

In the MP3 standard, the vectors zi are processed further separately after this
transformation.

This has a compelling similarity with how we defined the DWT in terms of
filters. The difference is that, instead of two filters which produce the output in
alternating order, we now have 32 filters which produce the output in alternating

order. While the DWT produces
�
cm−1

wm−1

�
as output, one can group the outputs

of the transformation in the MP3 standard as (z0, z1, . . . , z31). In both cases
the filters can be interpreted as concentrating on specific frequency ranges: The
filters for a wavelet concentrate on low and high frequencies, while the filters
in the MP3 standard concentrate each on a smaller frequency band. The filters
were shown in Example 3.36 as examples of filters which concentrate on specific
frequency ranges. These filters shared the property of the Haar wavelet that
they were just shifted in frequency with respect to oneanother. Since zi are
samples from a filter concentrating on a specific frequency band, its values are
also called subband samples.

The similarities are also very clear for the IDWT:

Fact 7.14 (Similarities between the IDWT and the MP3 standard). In the
MP3 standard, sound is reconstructed from the transform of Fact 7.13 with
the help of 32 filters G0, G1,. . . , G31 by computing

x = G0w1 +G1w2 + . . .+GM−1wM−1. (7.16)

where wi is the vector with the components of zi at indices (i, 32+ i, . . . , (N−
1)32 + i), and 0 elsewhere.

One difference from the DWT is that the MP3 standard does not apply
this transform in stages. The filters used by the MP3 standard work in such
a way that the inverse transform of Fact 7.14 exactly inverts the transform of
Fact 7.13. The filters used in the MP3 standard thus provide another type of
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perfect reconstruction system. It is hard to construct such filters which also are
good bandpass filters, and we will therefore not go into the details of this.

7.6 Summary
We started this chapter by noting that the change of coordinate matrices in
a DWT/IDWT took a particular form. From this form we realized that the
DWT could be realized in terms of two digital filters H0 and H1, and that
the IDWT could be realized in terms of two other digital filters G0 and G1.
We looked at the frequency responses of these filters for the wavelets we have
encountered upto now. From these we saw that G0, H0 were lowpass filters, and
that G1, H1 were highpass filters, and we argued that this would be the case
in any wavelet transformation. We also added the remaining parts we needed
to make an implementation of these filters and the DWT, such as symmetric
extension. We will use this implementation in the coming sections, in order to
analyze images.

The filter characterization gives an entirely different view on wavelets: in-
stead of constructing function spaces with certain properties and consider the
corresponding filters, we may instead construct filters with given properties
(which is a discrete problem), and construct from these the corresponding
mother wavelet, scaling function, and function spaces. In practice this is what
is done, as we will see in the next chapter.
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Chapter 8

Constructing interesting

wavelets

In the previous chapter we saw that a wavelet corresponded in linear algebra
to perfect reconstruction systems of MRA matrices, and we examplified this in
terms of the two simplest wavelets we have looked at. In this chapter we will
start by stating a characterization of perfect reconstruction systems of MRA
matrices in terms of the involved filters. We will then translate the problem
of finding interesting wavelets to that of finding filters with certain properties
that satisfy a certain joint relation. We will then solve this relation in the
orthonormal and the non-orthonormal case in order to find the most interesting
wavelets, and take a closer look at these in examples. Some of these wavelets
are heavily used in applications, in particular in image compression.

8.1 Characterization of perfect reconstruction sys-
tems of MRA matrices

Let us first state the general theorem for characterizing perfect reconstruction
systems of MRA-matrices:

Theorem 8.1. Assume that G and H are MRA-matrices. The following
statements are equivalent:

1. (G,H) is a perfect reconstruction system,

2. there exist α ∈ R and d ∈ Z so that
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3.

(H1)n = (−1)nα(G0)−n−2d (8.1)
(G1)n = (−1)nα−1(H0)−n−2d (8.2)

2 = λG0,nλH0,n + λG0,n+N/2λH0,n+N/2 (8.3)

The proof of Theorem 8.1 will wait till section 9.2, since it uses some tech-
niques we still haven’t considered. Theorem 8.1 can be used in the following
way to construct perfect reconstruction systems: First we find the filters G0,
H0. These can be found by first finding λG0,n, λH0,n by solving (8.3), which is
a set of linear equations if some of the coefficients are already known, and then
using the IDFT. The filters G1, H1 are then found by using (8.1) and (8.2).

It is also common to express Theorem 8.1 in terms of the continuous fre-
quency responses of the filters. Equation (8.3) thus takes the following form:

2 = λG0(ω)λH0(−ω) + λG0(ω + π)λH0(−(ω + π)). (8.4)

This leaves us with an equation with the unknown functions λG0 , λH0 . (8.1)
and (8.2) can equivalently be expressed in terms of the continuous frequency
responses as

λH1(ω) =
�

k

(H1)ke
−ikω = α

�

k

(−1)k(G0)−k−2de
−ikω

= α
�

k

(−1)k(G0)ke
ikω+2idω = αe2idω

�

k

(G0)ke
ik(ω+π)

= αe2idωλG0(−(ω + π)).

A similar computation can be done for λG1(ω), so that we get the following
result:

Theorem 8.2. We have that

λH1(ω) = αe2idωλG0(−(ω + π)) (8.5)

λG1(ω) = α−1e2idωλH0(−(ω + π)). (8.6)

In other words, when G0 and H0 are lowpass filters, when we only consider
the magnitude of the frequency response, up to a constant H1 and G1 are the
corresponding highpass filters, as we previously have considered.

We will be particularly concerned with perfect reconstruction systems of
MRA-matrices with symmetric filters, for which we can state the following corol-
lary.
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Corollary 8.3. (G,H) is a perfect reconstruction system of MRA-matrices
with symmetric filters if and only if

λH1(ω) = αλG0(ω + π) (8.7)
λG1(ω) = α−1λH0(ω + π) (8.8)

2 = λG0(ω)λH0(ω) + λG0(ω + π)λH0(ω + π). (8.9)

Proof. Since H0 is symmetric, (H0)n = (H0)−n, and from (8.1) and (8.2) it
follows that

(G1)n−2d = (−1)n−2dα−1(H0)−(n−2d)−2d = (−1)nα−1(H0)−n

= (−1)nα−1(H0)n = (−1)−n−2dα−1(H0)−(−n−2d)−2d

= (G1)−n−2d.

This shows that G1 is symmetric about both 2d, in addition to being symmetric
about 0 (by assumption). We must thus have that d = 0, so that (H1)n =
(−1)nα(G0)−n and (G1)n = (−1)nα−1(H0)−n. We now get that

λH1(ω) =
�

k

(H1)ke
−ikω = α

�

k

(−1)k(G0)−ke
−ikω

= α
�

k

e−ikπ(G0)ke
−ikω = α

�

k

(G0)ke
−ik(ω+π)

= αλG0(ω + π),

which proves Equation (8.7). Equation (8.7) follows similarly. Equation (8.9)
follows from Equation (8.4) by using that λG0(ω) = λG0(−ω) due to symmetry,
and similarly for G1, H0, and H1.

When constructing a perfect reconstruction system it may be that we know
one of the two pairs (G0, G1), (H0, H1), and that we would like to construct the
other two. This can be achieved if we can find the constants d and α. If the
filters are symmetric we saw above that d = 0. If (G0, G1) is known, in order
for a perfect reconstruction system we must have that

1 =
�

n

(G1)n(H1)n =
�

n

(G1)nα(−1)n(G0)n = α
�

n

(−1)n(G0)n(G1)n,

so that α = 1�
n
(−1)n(G0)n(G1)n

. Similarly, if (H0, H1) is known, we must have
that

1 =
�

n

(G1)n(H1)n =
�

n

α−1(−1)n(H0)n(H1)n = α−1
�

n

(−1)n(H0)n(H1)n,

so that α =
�

n
(−1)n(H0)n(H1)n.
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Example 8.4. One wavelet remains for which we have not computed the filters
and the frequency response, namely the alternative wavelet of piecewise linear
functions. In Equation (7.5) we wrote down the first two columns in Pφ

m
←Cm

.
This gives us that the filters G0 ans G1 are

G0 =
1√
2
{1/2, 1, 1/2}

G1 =
1√
2
{−1/8,−1/4, 3/4,−1/4,−1/8}. (8.10)

Here G0 was as for the wavelet of piecewise linear functions since we use the
same scaling function. G1 was changed, however. Let us use Theorem 8.1 and
the remark above to compute the two remaining filters H0 and H1. These filters
are also symmetric, since G0, G1 were. We get that

α =
1�

n
(−1)n(G0)n(G1)n

=
1

1
2

�
− 1

2

�
− 1

4

�
+ 1 · 3

4 − 1
2

�
− 1

4

�� = 2.

Theorem 8.1 now gives

(H0)n = α(−1)n(G1)n = 2(−1)n(G1)n

(H1)n = α(−1)n(G0)n = 2(−1)n(G0)n, (8.11)

so that

H0 =
√
2{−1/8, 1/4, 3/4, 1/4,−1/8}

H1 =
√
2{−1/2, 1,−1/2}. (8.12)

We now have that

λG1(ω) = −1/(8
√
2)e2iω − 1/(4

√
2)eiω + 3/(4

√
2)− 1/(4

√
2)e−iω − 1/(8

√
2)e−2iω

= − 1

4
√
2
cos(2ω)− 1

2
√
2
cosω +

3

4
√
2
.

The magnitude of λG1(ω) is plotted in Figure 8.1. Clearly, G1 now has highpass
characteristics, while the lowpass characteristic of G0 has been preserved. The
filters G0, G1, H0, H1 are particularly important in applications: Apart from the
scaling factors 1/

√
2,

√
2 in front, we see that the filter coefficients are all dyadic

fractions, i.e. they are on the form β/2j . Arithmetic operations with dyadic
fractions can be carried out exactly on a computer, due to representations as
binary numbers in computers. These filters are thus important in applications,
since they can be used as transformations for lossless coding. The same argu-
ment can be made for the Haar wavelet, but this wavelet had one less vanishing
moment.

Previously we have plotted the scaling function and the mother wavelet for
this wavelet. But how do the dual functions look? And can we obtain an expres-
sion for them? It turns out that one rarely can obtain an analytical expression
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Figure 8.1: The frequency response λG1(ω) for the alternative wavelet for piece-
wise linear functions.

for these functions (as is the case for the scaling function and the mother wavelet
itself in most cases). However, it is easy to obtain good approximations for these
functions. The reason is that these functions are basis functions in V0 and W0,
and by performing an IDWT over m levels, we can easily find their coordinates
in Vm. If m is high enough, we have previously learnt that these coordinates
give a good approximation to the samples of the function. To be precise, the
coordinates of φ̃ in Ṽ0 ⊕ W̃0 ⊕ W̃1 . . . is the vector with 1 first, followed by only
zeros. Similarly, the coordinates of ψ̃ in Ṽ0 ⊕ W̃0 ⊕ W̃1 . . . is the vector with N
zeros first, then a 1, and then only zeros. The length of the vector is N2m. The
coordinates in Ṽm for φ̃ and ψ̃ are obtained by performing an m-level IDWT
(where the G and H filters have changed placse) on these vectors. In Figure 8.2
we have plotted the coordinates in Ṽ10, and thus a good approximation to φ̃ and
ψ̃. We see that these functions look very irregular. Also, they are very different
from the original scaling function and mother wavelet. We will later argue that
this is bad, it would be much better if φ ≈ φ̃ and ψ ≈ ψ̃. The algorithm we
employed here in order to plot the dual scaling function and mother wavelet is
also called the cascade algorithm. ♣

8.2 Construction of useful wavelets: zeros at π in
λH0 and λG0

We would like a wavelet to have many vanishing moments, so that they ap-
proximate functions well. This in itself is not enough, however, since we also
must ensure that the corresponding filters have efficient implementations, such
as having few nonzero filter coefficients. The following result shows that this
problem can be solved within the world of filters, so that we in fact do not even
need to write down the wavelet bases.
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Figure 8.2: Dual scaling function and dual mother wavelet for the alternative
piecewise linear wavelet.

Theorem 8.5. The number of vanishing moments of ψ, ψ̃ equal the multi-
plicities of the zeros of the frequency responses λH0(ω), λG0(ω), respectively,
at ω = π.

In other words, the flatter the frequency responses λH0(ω) and λG0(ω) are
near high frequencies (ω = π), the better the wavelet is for representation. This
is analogous to the smoothing filters we constructed previously, where the use of
values from Pascals triangle resulted in filters which behaved like the constant
function one at low frequencies. The frequency response for the Haar wavelet
had just a simple zero at π, so that it cannot represent functions efficiently. The
result also proves why we should consider G0, H0 as lowpass filters, G1, H1 as
highpass filters.

Proof. The mathematics behind Theorem 8.5 is quite involved. Theorem 6.19
says that, if f ∈ Vr is r times differentiable, and ψ̃ has r vanishing moments,
then f has a very good approximation from V0. Denote by s the analog filter
corresponding to ψ̃, i.e. s(f1) =

�
ψ̃(s)f1(t − s)ds. The frequency response of

this filter is
λs(f) =

� ∞

−∞
ψ̃(t)e−2πiftdt. (8.13)

By differentiating this expression many times w.r.t. f (we can differentiate
under the integral sign) we get

(λs)
(k)(f) =

�
(−2πit)kψ̃(t)e−itωdt. (8.14)
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Evaluating this at 0 gives

(λs)
(k)(0) =

�
(−2πit)kψ̃(t)dt = 0 (8.15)

when k ≤ r, where we have used that ψ̃ has r vanishing moments. Let us
summarize this as follows:

Lemma 8.6. ψ̃ has r vanishing moments if and only if λs(f)) has a zero of
multiplicity r at 0, i.e. the first r+1 terms in its Taylor series around 0 vanish.

We now can write

λs(f) =

� ∞

−∞
ψ̃(t)e−2πiftdt

=

� ∞

−∞

�
�

n

(H1)n
√
2φ̃(2t− n)

�
e−2πiftdt

=
√
2
�

n

� ∞

−∞
(H1)nφ̃(2t− n)e−2πiftdt

=
1√
2

�

n

� ∞

−∞
(H1)nφ̃(t)e

−2πif(n+t)/2dt

=
1√
2

�

n

� ∞

−∞
(H1)ne

−2πifn/2φ̃(t)e−2πi(f/2)t)dt

=
1√
2

�
�

n

(H1)ne
−2πifn/2

�� ∞

−∞
φ̃(t)e−2πi(f/2)t)dt

=
λH1(2πf/2)√

2
λs2(f/2),

where s2 is the analog filter corresponding to φ̃. In a similar way we get that
λs2(f) =

λH0 (2πf/2)√
2

λs2(f/2). This procedure can also be continued, so that we
get

λs(f) =
λH1(2πf/2)√

2
λs2(f/2) =

λH1(2πf/2)√
2

λH0(2πf/4)√
2

λs2(f/4)

...

=
λH1(2πf/2)√

2

k�

s=2

λH0(2πf/2
s)√

2
λs2(f/2

k). (8.16)

�
k

s=2
λH0 (2πf/2

s)√
2

is nonzero at 0, since by our construction H0 is a lowpass
filter. Moreover, λs2(f/2

k) is nonzero close to 0 by our assumptions. The only
possibility left is that λH1(2πf/2) holds the zeros of λs at 0, so that λH1(ω)
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does the same. But this also means that λG0(ω) has the same number of zeros
at π, due to Theorem 8.1. All this means that the number of zeros for λs(f)
at f = 0 equals the number of zeros for λG0(ω) at ω = π. From Lemma 8.6
it follows that the number of zeros for λG0(ω) at ω = π equals the number of
vanishing moments of ψ̃. This proves one way of the result. The other way
follows by substituting with φ, ψ instead.

We will use this result in the next chapter to construct interesting wavelets.

8.3 Characterization of wavelets w.r.t. number
of vanishing moments

We have seen that wavelets are particularly suitable for approximation of func-
tions when the mother wavelet or the dual mother wavelet have vanishing mo-
ments. The more vanishing moments they have, the more attractive they are.
In this section we will attempt to characterize wavelets which have a given num-
ber of vanishing moments. In particular we will characterize the simplest such,
those where the filters have few filters coefficients.

There are two particular cases we will look at. First we will consider the case
when all filters are symmetric. Then we will look at the case of orthonormal
wavelets. It turns out that these two cases are mutually disjoint (except for
trivial examples), but that there is a common result which can be used to
characterize the solutions to both problems. We state the result in terms of the
multiplicities of the zeros of λH0 , λG0 at π, which we proved are the same as the
number of vanishing moments. The main result when the filters are symmetric
looks as follows.

Theorem 8.7. Assume that (H,G) is a perfect reconstruction system of
MRA-matrices where all filters are symmetric, and assume also that λH0 has
a zero of multiplicity N1 at π, and that λG0 has a zero of multiplicity N2 at
π. Then N1 and N2 are even, and

λH0(ω) =

�
1

2
(1 + cosω)

�N1/2

Q1

�
1

2
(1− cosω)

�
(8.17)

λG0(ω) =

�
1

2
(1 + cosω)

�N2/2

Q2

�
1

2
(1− cosω)

�
, (8.18)

where Q = Q1Q2 satisfies the equation

u(N1+N2)/2Q(1− u) + (1− u)(N1+N2)/2Q(u) = 2. (8.19)

Proof. Since the filters are symmetric, λH0(ω) = λH0(−ω) and λG0(ω) = λG0(−ω).
Since einω + e−inω = 2 cos(nω), and since cos(nω) is the real part of (cosω +
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i sinω)n, which is a polynomial in cosk ω sinl ω with l even, and since sin2 ω =
1 − cos2 ω, λH0 and λG0 can both be written on the form P (cosω), with P a
real polynomial.

Note that a zero at π in λH0 , λG0 corresponds to a factor of the form 1+e−iω,
so that we can write

λH0(ω) =

�
1 + e−iω

2

�N1

f(eiω) = e−iN1ω/2 cosN1(ω/2)f(eiω),

where f is a polynomial. In order for this to be real, we must have that
f(eiω) = eiN1ω/2g(eiω) where g is real-valued, and then we can write g(eiω)
as a real polynomial in cosω. This means that λH0(ω) = cosN1(ω/2)P1(cosω),
and similarly for λG0(ω). Clearly this can be a polynomial in eiω only if N1 is
even. Both N1 and N2 must then be even, and we can write

λH0(ω) = cosN1(ω/2)P1(cosω) = (cos2(ω/2))N1/2P1(1− 2 sin2(ω/2))

= (cos2(ω/2))N1/2Q1(sin
2(ω/2)),

where we have used that cosω = 1−2 sin2(ω/2), and defined Q1 by the relation
Q1(x) = P1(1−2x). Similarly we can write λG0(ω) = (cos2(ω/2))N2/2Q2(sin

2(ω/2))
for another polynomial Q2. Using the identities

cos2
ω

2
=

1

2
(1 + cosω) sin2

ω

2
=

1

2
(1− cosω),

we see that λH0 and λG0 satisfy (8.17) and (8.18). With Q = Q1Q2, (8.3) can
now be rewritten as

2 = λG0(ω)λH0(−ω) + λG0(ω + π)λH0(−(ω + π))

=
�
cos2

ω

2

�(N1+N2)/2
Q(sin2(ω/2)) +

�
cos2

ω + π

2

�(N1+N2)/2

Q(sin2((ω + π)/2))

= (cos2(ω/2))(N1+N2)/2Q(sin2(ω/2)) + (sin2(ω/2))(N1+N2)/2Q(cos2(ω/2))

= (cos2(ω/2))(N1+N2)/2Q(1− cos2(ω/2)) + (1− cos2(ω/2))(N1+N2)/2Q(cos2(ω/2))

Setting u = cos2(ω/2) we see that Q must fulfill the equation

u(N1+N2)/2Q(1− u) + (1− u)(N1+N2)/2Q(u) = 2,

which is (8.19). This completes the proof.

While this result characterizes all wavelets with a given number of vanishing
moments, it does not say which of these have fewest filter coefficients. The
polynomial Q decides the length of the filters H0, G0, however, so that what we
need to do is to find the polynomial Q of smallest degree. In this direction, note
first that the polynomials uN1+N2 and (1− u)N1+N2 have no zeros in common.
Bezouts theorem, proved in Appendix 8.4, states that u(N1+N2)/2q1(u) + (1 −
u)(N1+N2)/2q2(u) = 1 has unique solutions with deg(q1), deg(q2) < (N1+N2)/2,
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when q1 and q2 have no zeros in common. To find these solutions, substituting
1− u for u gives the following equations:

u(N1+N2)/2q1(u) + (1− u)(N1+N2)/2q2(u) = 1

u(N1+N2)/2q2(1− u) + (1− u)(N1+N2)/2q1(1− u) = 1,

and uniqueness in Bezouts theorem gives that q1(u) = q2(1 − u), and q2(u) =
q1(1− u). u(N1+N2)/2q1(u) + (1− u)(N1+N2)/2q2(u) = 1 now gives

q2(u) = (1− u)−(N1+N2)/2(1− u(N1+N2)/2q1(u))

= (1− u)−(N1+N2)/2(1− u(N1+N2)/2q2(1− u))

=




(N1+N2)/2−1�

k=0

�
(N1 +N2)/2 + k − 1

k

�
uk +O(u(N1+N2)/2)



 (1− u(N1+N2)/2q2(1− u))

=

(N1+N2)/2−1�

k=0

�
(N1 +N2)/2 + k − 1

k

�
uk +O(u(N1+N2)/2),

where we have used the first (N1+N2)/2 terms in the Taylor series expansion of
(1−u)−(N1+N2)/2 around 0. Since q2 is a polynomial of degree (N1+N2)/2−1,
we must have that

Q(u) = 2q2(u) = 2

(N1+N2)/2−1�

k=0

�
(N1 +N2)/2 + k − 1

k

�
uk. (8.20)

The first such Q are as follows:

Q(0)(u) = 2

Q(1)(u) = 2 + 4u

Q(2)(u) = 2 + 6u+ 12u2

Q(3)(u) = 2 + 8u+ 20u2 + 40u3,

for which we compute

Q(0)

�
1

2
(1− cosω)

�
= 2

Q(1)

�
1

2
(1− cosω)

�
= −e−iω + 4− eiω

Q(2)

�
1

2
(1− cosω)

�
=

3

4
e−2iω − 9

2
e−iω +

19

2
− 9

2
eiω +

3

4
e2iω

Q(3)

�
1

2
(1− cosω)

�
= −5

8
e−3iω + 5e−2iω − 131

8
e−iω + 26− 131

8
eiω + 5e2iω − 5

8
e3iω,

Thus in order to construct wavelets where λH0 , λG0 have as many zeros at π
as possible, and where there are as few filter coefficients as possible, we need
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to compute the polynomials above, factorize them, and distribute the factors
among λH0 and λG0 . Since we need real factorizations, we must in any case pair
complex roots. If we do this we obtain the factorizations

Q(0)

�
1

2
(1− cosω)

�
= 2

Q(1)

�
1

2
(1− cosω)

�
=

1

3.7321
(eiω − 3.7321)(e−iω − 3.7321)

Q(2)

�
1

2
(1− cosω)

�
=

3

4

1

9.4438
(e2iω − 5.4255eiω + 9.4438)

× (e−2iω − 5.4255e−iω + 9.4438)

Q(3)

�
1

2
(1− cosω)

�
=

5

8

1

3.0407

1

7.1495
(eiω − 3.0407)(e2iω − 4.0623eiω + 7.1495)

× (e−iω − 3.0407)(e−2iω − 4.0623e−iω + 7.1495), (8.21)

One possibility is to let one of these frequency responses absorb all the
factors, another possibility is to split the factors as evenly as possible across the
two. That a frequency response absorbs more factors means that it gets more
filter coefficients. In the following examples, bith factor distribution staregies
will be encountered.

Now we turn to the other case where the filters are equal, i.e. where the
MRA-matrix is orthogonal. We have the following result:

Theorem 8.8. We get an orthogonal MRA-matrix (i.e. G0 = H0) with a
zero of multiplicity N at π if we choose

λG0(ω) =

�
1 + e−iω

2

�N

f(eiω), (8.22)

with f satisfying f(eiω)f(e−iω) = Q
�
1
2 (1− cosω)

�
, and with Q satisfying

Equation (8.19).

Proof. N vanishing moments means that we can write

λG0(ω) =

�
1 + e−iω

2

�N

f(eiω) = (cos(ω/2))Ne−iNω/2f(eiω),

where f is a polynomial. The condition for perfect reconstruction now says that

2 = λG0(ω)λG0(−ω) + λG0(ω + π)λG0(−(ω + π))

= (cos2(ω/2))Nf(eiω)f(e−iω) + (sin2(ω/2))Nf(ei(ω+π))f(e−i(ω+π)).

Now, the function f(eiω)f(e−iω) is symmetric around 0, so that it can be written
on the form P (cosω) with P a polynomial, so that

(cos2(ω/2))NP (cosω) + (sin2(ω/2))NP (cos(ω + π)) = 2.
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If we as in the proof of Theorem 8.7 define Q by Q(x) = P (1 − 2x), we can
write this as

(cos2(ω/2))NQ(sin2(ω/2)) + (sin2(ω/2))NQ(cos2(ω/2)) = 2,

which again gives Equation (8.19) for finding Q. What we thus need to do is to
compute the polynomial Q

�
1
2 (1− cosω)

�
as before, and consider the different

factorizations of this on the form f(eiω)f(e−iω). Since this polynomial is sym-
metric, a is a root if and only 1/a is, and if and only if ā is. If the real roots
are b1, . . . ., bm, 1/b1, . . . , 1/bm, and the complex roots are a1, . . . , an, a1, . . . , an
and 1/a1, . . . , 1/an, 1/a1, . . . , 1/an, we can write

Q

�
1

2
(1− cosω)

�

= K(e−iω − b1) . . . (e
−iω − bm)

× (e−iω − a1)(e
−iω − a1)(e

−iω − a2)(e
−iω − a2) · · · (e−iω − an)(e

−iω − an)

× (eiω − b1) . . . (e
iω − bm)

× (eiω − a1)(e
iω − a1)(e

iω − a2)(e
iω − a2) · · · (eiω − an)(e

iω − an)

where K is a constant. We now can define

f(eiω) =
√
K(e−iω − b1) . . . (e

−iω − bm)

× (e−iω − a1)(e
−iω − a1)(e

−iω − a2)(e
−iω − a2) · · · (e−iω − an)(e

−iω − an)

in order to obtain a factorization Q
�
1
2 (1− cosω)

�
= f(eiω)f(e−iω). This con-

cludes the proof.

In the previous proof we note that the polynomial f is not unique - we could
choose the roots to pair in many different ways. The new algorithm is thus as
follows:

1. As before, write Q
�
1
2 (1− cosω)

�
as a polynomial in eiω, and find the

roots.

2. Split the roots into the two classes {b1, . . . ., bm, a1, . . . , an, a1, . . . , an} and
{1/b1, . . . , 1/bm, 1/a1, . . . , 1/an, 1/a1, . . . , 1/an}, and form the polynomial
f .

3. Compute
�

1+e
iω

2

�N

f(eiω).

Clearly the filters obtained with this strategy are not symmetric since f is not
symmetric. In Section 8.7 we will take a closer look at the wavelets constructed
in this way.

Exercises for Section 8.3
1. Calculate the number of vanishing moment for the ψ as defined in Lemma ??.
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8.4 *The proof of Bezouts theorem

Theorem 8.9. If p1 and p2 are two polynomials, of degrees n1 and n2 respec-
tively, with no common zeros, then there exist unique polynomials q1, q2, of
degree less than n2, n1, respectively, so that

p1(x)q1(x) + p2(x)q2(x) = 1. (8.23)

Proof. We first establish the existence of q1, q2 satisfying (8.23). Denote by
deg(P ) the degree of the polynomial P . Renumber the polynomials if necessary,
so that n1 ≥ n2. By polynomial division, we can now write

p1(x) = a2(x)p2(x) + b2(x),

where deg(a2) = deg(p1)− deg(p2), deg(b2) < deg(p2). Similarly, we can write

p2(x) = a3(x)b2(x) + b3(x),

where deg(a3) = deg(p2) − deg(b2), deg(b3) < deg(b2). We can repeat this
procedure, so that we obtain a sequence of polynomials an(x), bn(x) so that

bn−1(x) = an+1(x)bn(x) + bn+1(x), (8.24)

where deg an+1 = deg(bn−1) − deg(bn), deg(bn+1 < deg(bn). Since deg(bn) is
strictly decreasing, we must have that bN+1 = 0 and bN �= 0 for some N , i.e.
bN−1(x) = aN+1(x)bN (x). Since bN−2 = aNbN−1 + bN , it follows that bN−2

can be divided by bN , and by induction that all bn can be divided by bN , in
particlar p1 and p2 can be divided by bN . Since p1 and p2 have no common
zeros, bN must be a nonzero constant.

Using (8.24), we can write recursively

bN = bN−2 − aNbN−1

= bN−2 − aN (bN−3 − aN−1bN−2)

= (1 + aNaN−1)bN−2 − aNbN−3.

By induction we can write

bN = a(1)
N,k

bN−k + a(2)
N,k

bN−k−1.

We see that the leading order term for a(1)
N,k

is aN · · · aN−k+1, which has degree

(deg(bN−2)−deg(bN−1)+· · ·+(deg(bN−k−1)−deg(bN−k) = deg(bN−k−1)−deg(bN−1),

while the leading order term for a(2)
N,k

is aN · · · aN−k+2, which similarly has order
deg(bN−k)− deg(bN−1). For k = N − 1 we find

bN = a(1)
N,N−1b1 + a(2)

N,N−1b0 = a(1)
N,N−1p2 + a(2)

N,N−1p1, (8.25)
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with deg(a(1)
N,N−1) = deg(p1) − deg(bN−1) < deg(p1) (since by construction

deg(bN−1) > 0), and deg(a(2)
N,N−1) = deg(p2) − deg(bN−1) < deg(p2). From

(8.25) it follows that q1 = a(2)
N,N−1/bN and q2a

(1)
N,N−1/bN satisfies (8.23), and

that they satisfy the required degree constraints.
Now we turn to uniquness of solutions q1, q2. Assume that r1, r2 are two

other solutions to (8.23). Then

p1(q1 − r1) + p2(q2 − r2) = 0.

Since p1 and p2 have no zeros in common this means that every zero of p2 is a
zero of q1 − r1, with at least the same multiplicity. If q1 �= r1, this means that
deg(q1 − r1) ≥ deg(p2), which is impossible since deg(q1) < deg(p2), deg(r1) <
deg(p2). Hence q1 = r1. Similarly q2 = r2, establishing uniqueness.

8.5 A design strategy suitable for lossless com-
pression

We choose Q1 = Q, Q2 = 1. In this case there is no need to find factors in Q.
The filters in the filter factorization take the form

λH0(ω) =

�
1

2
(1 + cosω)

�N1/2

Q

�
1

2
(1− cosω)

�

λG0(ω) =

�
1

2
(1 + cosω)

�N2/2

.

Since Q has degree N1+N2
2 −1, λH0 has degree N1+N1+N2−2 = 2N1+N2−2,

and λG0 has degree N2. These are both even numbers, so that the filters have
odd length. The names of these filters are indexed by the filter lengths, and are
called Spline wavelets, since, as we now now will show, the scaling function for
this design strategy is the B-spline of order N2: we have that

λG0(ω) =
1

2N2/2
(1 + cosω)N2/2 = cos(ω/2)N2 .
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Letting s be the analog filter with convolution kernel φ we can as in Equa-
tion (8.16) write

λs(f) = λs(f/2
k)

k�

i=1

λG0(2πf/2
i)

2

= λs(f/2
k)

k�

i=1

cosN2(πf/2i)

2

= λs(f/2
k)

k�

i=1

�
sin(2πf/2i)

2 sin(πf/2i)

�N2

= λs(f/2
k)

�
sin(πf)

2k sinπf/2k

�N2

,

where we have used the identity cosω = sin(2ω)
2 sinω

. If we here let k → ∞, and use
the identity limf→0

sin f

f
= 1, we get that

λs(f) = λs(0)

�
sin(πf)

πf

�N2

.

On the other hand, the frequency response of χ[−1/2,1/2)(t)

=

� 1/2

−1/2
e−2πiftdt =

�
1

−2πif
e−2πift

�1/2

−1/2

=
1

−2πif
(e−πif − eπif ) =

1

−2πif
2i sin(−πf)

=
sin(πf)

πf
.

Due to this
�

sin(πf)
πf

�N2

is the frequency response of ∗N2
k=1χ[−1/2,1/2)(t). By the

uniqueness of the frequency response we have that φ(t) = φ̂(0)∗N2
k=1χ[−1/2,1/2)(t).

In Exercise 2 you will be asked to show that this scaling function gives rise to
the multiresolution analysis of functions which are piecewise polynomials which
are differentiable at the borders, also called splines. This explains why this type
of wavelet is called a spline wavelet. To be more precise, the resolution spaces
are as follows

Definition 8.10 (Resolution spaces of piecewise polynomials). We define Vm

as the subspace of functions which are r − 1 times continuously differentiable
and equal to a polynomial of degree r on any interval of the form [n2−m, (n+
1)2−m].

Note that the piecewise linear wavelet can be considered as the first Spline
wavelet. This is further considered in the following example.
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Example 8.11. For the case of N1 = N2 = 2 when the first design strategy is
used, equations (8.17) and (8.18) take the form

λG0(ω) =
1

2
(1 + cosω) =

1

4
eiω +

1

2
+

1

4
e−iω

λH0(ω) =
1

2
(1 + cosω)Q(1)

�
1

2
(1− cosω)

�

=
1

4
(2 + eiω + e−iω)(4− eiω − e−iω)

= −1

4
e2iω +

1

2
eiω +

3

2
+

1

2
e−iω − 1

4
e−2iω.

The filters G0, H0 are thus

G0 = {1
4
,
1

2
,
1

4
}

H0 = {−1

4
,
1

2
,
3

2
,
1

2
,−1

4
}

The length of the filters are 3 and 5 in this case, so that this wavelet is called
the Spline 5/3 wavelet. Up to a constant, the filters are seen to be the same
as those of the alternative piecewise linear wavelet, see Example 8.4. Now, how
do we find the filters (G1, H1)? Previously we saw how to find the constant α
in Theorem 8.1 when we knew one of the two pairs (G0, G1), (H0, H1). This
was the last part of information we needed in order to construct the other two
filters. Here we know (G0, H0) instead. In this case it is even easier to find
(G1, H1) since we can set α = 1. This means that (G1, H1) can be obtained
simply by adding alternating signs to (G0, H0), i.e. they are the corresponding
highpass filters. We thus can set

G1 = {−1

4
,−1

2
,
3

2
,−1

2
,−1

4
}

H1 = {−1

4
,
1

2
,−1

4
}.

We have now found all the filters. It is clear that the scaling function and
mother wavelet of this wavelet equals those of the alternative piecewise linear
wavelet, up to a constant. ♣

The coefficients for the Spline wavelets are always dyadic fractions, and are
therefore suitable for lossless compression, as they can be computed using low
precision arithmetic and bitshift operations. Due to this, this wavelet is used
for lossless compression with JPEG2000.

Exercises for Section 8.5
1. Write code which computes the coefficents in

�
1
2 (1± cosω)

�k as a polynomial
in eiω. Since 1± cosω = 1± 1

2e
iω± 1

2e
−iω you should think of it as the sequence

{± 1
2 , 1,±

1
2}, and then use the conv-function to compute the coefficients in the

k’th power.
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2. Show that Br(t) = ∗r
k=1χ[−1/2,1/2)(t) is r−2 times differentiable, and equals

a polynomial of degree r− 1 on subintervals of the form [n, n+1]. Explain why
these functions can be used as basis for the spaces Vj of functions which are
piecewise polynomials of degree r−1 on intervals of the form [n2−m, (n+1)2−m],
and r − 2 times differentiable. Br is also called the B-spline of order r.

8.6 A design strategy suitable for lossy compres-
sion

The factors of Q are split evenly among Q1 and Q2. In this case we need to
factorize Q into a product of real polynomials. This can be done by finding all
roots, and pairing the complex conjugate roots into real second degree polyno-
mials (if Q is real, its roots come in conjugate pairs), and then distribute these as
evenly as possible among Q1 and Q2. These filters are called the CDF-wavelets,
after Cohen, Daubechies, and Feauveau, who discovered them.

Example 8.12. We choose N1 = N2 = 4. In Equation (8.21) we pair inverse
terms to obtain

Q(3)

�
1

2
(1− cosω)

�
=

5

8

1

3.0407

1

7.1495
(eiω − 3.0407)(e−iω − 3.0407)

× (e2iω − 4.0623eiω + 7.1495)(e−2iω − 4.0623e−iω + 7.1495)

=
5

8

1

3.0407

1

7.1495
(−3.0407eiω + 10.2456− 3.0407e−iω)

× (7.1495e2iω − 33.1053eiω + 68.6168− 33.1053e−iω + 7.1495e−2iω).

We can write this as Q1Q2 with Q1(0) = Q2(0) when

Q1(ω) = −1.0326eiω + 3.4795− 1.0326e−iω

Q2(ω) = 0.6053e2iω − 2.8026eiω + 5.8089− 2.8026e−iω + 0.6053e−2iω,

from which we obtain

λG0(ω) =

�
1

2
(1 + cosω)

�2

Q1(ω)

= −0.0645e3iω − 0.0407e2iω + 0.4181eiω + 0.7885

+ 0.4181e−iω − 0.0407e−2iω − 0.0645e−3iω

λH0(ω) =

�
1

2
(1 + cosω)

�2

40Q2(ω)

= 0.0378e4iω − 0.0238e3iω − 0.1106e2iω + 0.3774eiω + 0.8527

+ 0.3774e−iω − 0.1106e−2iω − 0.0238e−3iω + 0.0378e−4iω.

The filters G0, H0 are thus

G0 = {−0.0645,−0.0407, 0.4181, 0.7885, 0.4181,−0.0407,−0.0645}
H0 = {0.0378,−0.0238,−0.1106, 0.3774, 0.8527, 0.3774,−0.1106,−0.0238, 0.0378}.
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Figure 8.3: The frequency responses for the filters of Example 8.12.

The corresponding frequency responses are plotted in Figure 8.3. It is seen that
both filters are lowpass filters also here, and that the are closer to an ideal
bandpass filter. Here, the frequency response acts even more like the constant
zero function close to π, proving that our construction has worked. We also get

G1 = {0.0378, 0.0238,−0.1106,−0.3774, 0.8527,−0.3774,−0.1106, 0.0238, 0.0378}
H1 = {0.0645,−0.0407,−0.4181, 0.7885,−0.4181,−0.0407, 0.0645}.

The length of the filters are 9 and 7 in this case, so that this wavelet is called the
CDF 9/7 wavelet. This wavelet is for instance used for lossy compression with
JPEG2000 since it gives a good tradeoff between complexity and compression.

In Example 8.4 we saw that we had analytical expressions for the scaling
functions and the mother wavelet, but that we could not obtain this for the
dual functions. For the CDF 9/7 wavelet it turns out that none of the four
functions have analytical expressions. Let us therefore use the strategy from
Example 8.4 to plot these functions. The results are shown in Figure 8.4. Again
they have irregular shapes, but now at least the functions and dual functions
more resemple each other. ♣

In the above example there was a unique way of factoring Q into a product
of real polynomials. For higher degree polynomials there is no unique way to
form to distribute the factors, and we will not go into what strategy can be used
for this. In general, the steps we must go through are as follows:

1. Compute the polynomial Q, and find its roots.

2. Pair complex conjugate roots into real second degree polynomials, and
form polynomials Q1, Q2.

3. Compute the coefficients in (8.17) and (8.18).
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Figure 8.4: Scaling functions and mother wavelets for the CDF 9/7 wavelet.
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Exercises for Section 8.6
1. As in Exercise 8.5.?? write a function

function [g0,g1,h0,h1]=filters97()

which verifies the filter coefficients of Example 8.12.

8.7 Orthonormal wavelets
Since the filters here are not symmetric, the method of symmetric extension
does not work in the same simple way as before. This partially explains why
symmetric filters are used more often: They may not be as efficient in represent-
ing functions, since the corresponding basis is not orthogonal, but their simple
implementation still makes them attractive.

The polynomials Q(0), Q(1), and Q(2) require no further action to obtain
the factorization f(eiω)f(e−iω) = Q

�
1
2 (1− cosω)

�
. The polynomial Q(3) in

Equation (8.21) can be factored further as

Q(3)

�
1

2
(1− cosω)

�
=

5

8

1

3.0407

1

7.1495
(e−3iω − 7.1029e−2iω + 19.5014−iω − 21.7391)

× (e3iω − 7.1029e−iω + 19.5014iω − 21.7391),

Note, however, that this factorization is not unique. This gives the frequency
responses

1

2
(e−iω + 1)

√
2

1

4
(e−iω + 1)2

�
1

3.7321
(e−iω − 3.7321)

1

8
(e−iω + 1)3

�
3

4

1

9.4438
(e−2iω − 5.4255e−iω + 9.4438)

1

16
(e−iω + 1)4

�
5

8

1

3.0407

1

7.1495
(e−3iω − 7.1029e−2iω + 19.5014−iω − 21.7391),

which gives the filters

G0 = H0 =(
√
2/2,

√
2/2)

G0 = H0 =(−0.4830,−0.8365,−0.2241, 0.1294)

G0 = H0 =(0.3327, 0.8069, 0.4599,−0.1350,−0.0854, 0.0352)

G0 = H0 =(−0.2304,−0.7148,−0.6309, 0.0280, 0.1870,−0.0308,−0.0329, 0.0106)

so that we get 2, 4, 6 and 8 filter coefficients in G0 = H0. We see that the filter
coefficients when N = 1 are those of the Haar wavelet. The three next filters we
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Figure 8.5: The magnitude of the frequency responses λG0(ω) = λH0(ω) for the
first orthonormal wavelets with vanishing moments.

have not seen before. Using Theorem 8.1, the filter H1 = G1 can be obtained
by reversing the elements and adding an alternating sign, so that

G1 = H1 =(
√
2/2,−

√
2/2)

G1 = H1 =(0.1294, 0.2241,−0.8365, 0.4830)

G1 = H1 =(0.0352, 0.0854,−0.1350,−0.4599, 0.8069,−0.3327)

G1 = H1 =(0.0106, 0.0329,−0.0308,−0.1870, 0.0280, 0.6309,−0.7148, 0.2304).

Frequency responses are shown in Figure 8.5. The frequency responses are now
complex, so their magnitudes are plotted. The lowpass characteristic of these
filters is clearly visible. We also see the highpass characteristics resemble the
lowpass characteristics.

Also in this case we can use the cascade algorithm to visualize the scaling
functions and mother wavelets. The way we have defined the filters, the supports
for both the scaling function and the mother wavelet must be [0, 3] when N = 2,
[0, 5] when N = 3, and [0, 7] when N = 4. These are shown in Figure 8.6.

8.8 Summary
We started the section with giving a general characterization of perfect recon-
struction systems of MRA-matrices. In this characterization, the frequency
responses of the lowpass filters needed to satisfy a certain equation, and once
this is satsified the highpass filters can be easily obtained in the way we previ-
ously have obtained highpass filters from lowpass filters. We then specialized
our search for wavelets to cases with vanishing moments, and where we have
few filter coefficients. This search could also be done in terms of the frequency
responses of the involved filters. Finally we studied some examples, which have
applications to image compression.

For the wavelets we constructed in this chapter, we also plotted the corre-
sponding scaling functions and mother wavelets (see figures 8.2, 8.4, 8.6). The
importance of these functions are that they are particularly suited for approx-
imation of regular functions, and providing a compact representation of these
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Figure 8.6: The scaling functions and mother wavelets for the first orthonormal
wavelets with vanishing moments.
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functions which is localized in time. It seems difficult to guess that these strange
shapes are connected to such approximation. Moreover, it may seem strange
that, although these functions are useful, we can’t write down exact expressions
for them, and they are only approximated in terms of the Cascade Algorithm.
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Chapter 9

Lifting

Previously we saw that a filter could be factored into smaller filters, which allows
for efficient hardware implementations. Since a DWT is equivalent to apply-
ing two filters, the same factorization can be applied for the DWT. However,
we need not take into account that only every second component of the filter
needs to be evaluated. Therefore we need to make some small adjustements
to the factorization into filters. After these adjustments the new factorization
is called the lifting factorization. It turns out that this factorization provides
some reductions in the number of arithmetic operations as well. This chapter
is devoted to establishing the lifting factorization, and proving its properties.

9.1 Motivation
Let us again consider the piecewise linear wavelet, for which we found that
the change of coordinates matrix Pφ1←C1 was given by Equation (7.3). Let us
instead consider the change of coordinates from φ1 ⊕ψ1 to

D1 = {φ1,0, φ1,2, φ1,4 . . . , φ1,1, φ1,3, φ1,5, . . .},

i.e. we reorder the basis vectors in φ1 so that the even-indexed ones come first.
Clearly PD1←φ1⊕ψ1

is formed from Pφ1←C1 by taking even- and odd-indexed
elements in all possible ways from Pφ1←C1 , and storing these as the four different
blocks in the resulting matrix. Clearly these blocks must be filters, and we can
easily deduce them from the first two columns. If we underline the corresponding
elements in Pφ1←C1 we get

1√
2





1 0
1/2 1
0 0
...

...
0 0
1/2 0





,
1√
2





1 0
1/2 1
0 0
...

...
0 0
1/2 0





,
1√
2





1 0
1/2 1
0 0
...

...
0 0
1/2 0





,
1√
2





1 0
1/2 1
0 0
...

...
0 0

1/2 0





. (9.1)
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We therefore get the following:

• The upper left corner of PD1←φ1⊕ψ1
is 1√

2
I.

• The upper right corner of PD1←φ1⊕ψ1
is 0.

• The lower left corner of PD1←φ1⊕ψ1
is 1√

2
T1, where T1 = {1/2, 1/2}.

• The lower right corner of PD1←φ1⊕ψ1
is 1√

2
I.

In other words,

PD1←φ1⊕ψ1
=

1√
2

�
I 0
T1 I

�
. (9.2)

Note also that this matrix is easily inverted, since
�
I 0
T1 I

��
I 0

−T1 I

�
=

�
I 0

T1 − T1 I

�
=

�
I 0
0 I

�
= I.

This means that
Pφ1⊕ψ1←D1 =

√
2

�
I 0

−T1 I

�
.

We have thus seen two advantages of reordering the wavelet bases as we did here:
First of all, we obtain block matrices where all blocks are filters. Secondly, these
block matrices are easily inverted.

Clearly, PD1←φ1⊕ψ1
for a general wavelet is a also a block matrix where the

blocks are filters:

Theorem 9.1. For any wavelet, PD1←φ1⊕ψ1
and Pφ1⊕ψ1←D1 are on the form�

S(0,0) S(0,1)

S(1,0) S(1,1)

�
, where the matrices S(i,j) are filters. S(i,j) are also called the

DWT polyphase components and the IDWT polyphase components, and can be
found as the submatrices of Pφ1←C1 and PC1←φ1

where we extract even- and
odd-indexed elements from the rows/columns in all possible ways.

In the following we will interchangeably use this polyphase representation
and the MRA-matrix when we represent the wavelet, We will write A ↔ B
when A = Pφ1⊕ψ1←D1 or A = PD1←φ1⊕ψ1

is the polyphase representation of
the wavelet, and B = PC1←φ1

or B = Pφ1←C1 is the MRA-matrix of the wavelet.
We have the following result on the polyphase components. This result is easily
proved from manipulation with block matrices, and is therefore left to the reader.

Theorem 9.2. Let A and B be MRA-matrices with polyphase components
A(i,j), B(i,j). The following hold

1. C = AB is also an MRA-matrix, and with polyphase components
C(i,j) = A(i,0)B(0,j) +A(i,1)B(1,j).
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2. AT is also an MRA-matrix, and with polyphase components of AT are
((AT )(i,j))kl = (A(j,i))lk.

Also, the polyphase from of the identity matrix is
�

I 0
0 I

�
.

Example 9.3. Polyphase components can be defined for any MRA-matrix,
regardless of whether it arises from a wavelet or not. As an example, consider
the 6× 6 MRA-matrix

S =





2 3 0 0 0 1
4 5 6 0 0 0
0 1 2 3 0 0
0 0 4 5 6 0
0 0 0 1 2 3
6 0 0 0 4 5




. (9.3)

The polyphase components of S are

S(0,0) =




2 0 0
0 2 0
0 0 2



 S(0,1) =




3 0 1
1 3 0
0 1 3





S(1,0) =




4 6 0
0 4 6
6 0 4



 S(1,1) =




5 0 0
0 5 0
0 0 5





♣

Even though the DWT and the IDWT polyphase components are filters,
they are not the same as the filters G0, G1, H0, H1, since they are formed by
taking every second element from these in all possible ways.

PD1←φ1⊕ψ1
is different from Equation (9.2) in general, so that it is not

so easily inverted in general. To look further into this, let us consider the
alternative piecewise linear wavelet. In this case, Equation (7.5) shows that

PD1←φ1⊕ψ̂1
is not on the form

�
I 0
T1 I

�
for some T1, since there is more than

one element in every column. However we can write

PD1←φ1⊕ψ̂1
= PD1←φ1⊕ψ1

Pφ1⊕ψ1←φ1⊕ψ̂1
.

where ψ̂ is defined in Section 6.3 by Equation 6.15. From this equation it is
clear that

Pφ1⊕ψ1←φ1⊕ψ̂1
=

�
I T2

0 I

�
,
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where

T2 = −1

4





1 0 0 · · · 0 1
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0
0 0 0 · · · 1 1





= −1

4
{1, 1}. (9.4)

Since we already have computed PD1←φ1⊕ψ1
, this means that

PD1←φ1⊕ψ̂1
=

1√
2

�
I 0
T1 I

��
I T2

0 I

�
.

In other words, also here the same type of matrix could be used to express the
change of coordinates. This matrix is also easily invertible, and

Pφ1⊕ψ̂1←D1
=

√
2

�
I −T2

0 I

��
I 0

−T1 I

�
.

It is also clear how the DWT for the Haar wavelet can be written in the same
way: If we first defined ψ̂ = −

√
2φ1,1 for the Haar wavelet, and then continued

by defining ψ = ψ̂ + φ, ψ is the same function as we originally defined for the

Haar wavelet. This gives us that Pφ1⊕ψ1←φ1⊕ψ̂1
=

�
I T2

0 I

�
for some T2 also

here. As above, it also follows that PD1←φ1⊕ψ1
is on the form

�
I 0
T1 I

�
for

some T1, so that the same type of factorization can be written down for the
Haar wavelet as well.

9.2 The lifting factorization
For the wavelets we have considered we saw above that their matrices could be
factored into a product of matrices on the form

�
I T
0 I

�
or

�
I 0
T I

�
. These

matrices will be the building blocks in the lifting factorization, so let us make
the following definition.

Definition 9.4. A matrix on the form
�

I T
0 I

�
where S is a filter is called

an elementary lifting matrix of even type. A matrix on the form
�

I 0
T I

�
is

called an elementary lifting matrix of odd type.

The following are the most useful properties of elementary lifting matrices:
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Lemma 9.5. The following hold:

1.
�

I T
0 I

�T

=

�
I 0
TT I

�
, and

�
I 0
T I

�T

=

�
I TT

0 I

�
,

2.
�

I T1

0 I

��
I T2

0 I

�
=

�
I T1 + T2

0 I

�
,

3.
�

I 0
T1 I

��
I 0
T2 I

�
=

�
I 0

T1 + T2 I

�
,

4.
�

I T
0 I

�−1

=

�
I −T
0 I

�−1

5.
�

I 0
T I

�−1

=

�
I 0
−T I

�−1

These statements follow directly from Theorem 9.2. Due to Property 2, one
can assume that odd and even types of lifting matrices appear in alternating
order, since matrices of the same type can be grouped together. The following
result says that the elementary lifting matrices can be used as general building
blocks:

Theorem 9.6. Any invertible matrix on the form S =

�
S(0,0) S(0,1)

S(1,0) S(1,1)

�

where the S(i,j) are filters can be written on the form

Λ1 · · ·Λn

�
α0Ep 0
0 α1Eq

�
, (9.5)

where Λi are elementary lifting matrices, p, q are integers, α0, α1 are nonzero
scalars, and Ep, Eq are time delay filters. The inverse is given by

�
α−1
0 E−p 0
0 α−1

1 E−q

�
(Λn)

−1 · · · (Λ1)
−1. (9.6)

Note that (Λi)−1 can be computed with the help of properties 4 and 5 of
Lemma 9.5.

Proof. The proof will use the concept of the length of a filter, as defined in

Definition 3.24. Let S =

�
S(0,0) S(0,1)

S(1,0) S(1,1)

�
be an arbitrary invertible matrix.

We will incrementally find an elementary lifting matrix Λi with filter Ti in the
lower left or upper right corner so that ΛiS has filters of lower length in the
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first column. Assume first that l(S(0,0)) ≥ l(S(1,0)), where l(S) is the length of
a filter as given by Definition 3.24. If Λi is of even type, then the first column
in ΛiS is �

I Ti

0 I

��
S(0,0)

S(1,0)

�
=

�
S(0,0) + TiS(1,0)

S(1,0)

�
. (9.7)

Ti can now be chosen so that l(S(0,0) + TiS(1,0)) < l(S(1,0)). To see how, recall
that we in Section 3.4 stated that multiplying filters corresponds to multiplying
polynomials. Ti can thus be found from polynomial division with remainder:
when we divide S(0,0) by S(1,0), we actually find polynomials Ti and P with
l(P ) < l(S(1,0)) so that S(0,0) = TiS(1,0) +P , so that the length of P = S(0,0) −
TiS(1,0) is less than l(S(1,0)). The same can be said if Λi is of odd type, in which
case the first and second components are simply swapped. This procedure can
be continued until we arrive at a product

Λn · · ·Λ1S

where either the first or the second component in the first column is 0. If the
first component in the first column is 0, the identity

�
I 0
−I I

��
I I
0 I

��
0 X
Y Z

�
=

�
Y X + Z
0 −X

�

explains that we can bring the matrix to a form where the second element in
the first column is zero instead, with the help of the additional lifting matrices

Λn+1 =

�
I I
0 I

�
, and Λn+2 =

�
I 0
−I I

�
, so that we always can assume

that the second element in the first column is 0, i.e.

Λn · · ·Λ1S =

�
P Q
0 R

�
,

for some matrices P,Q,R. From the proof of Theorem 8.1 we will see that
in order for S to be invertible, we must have that S(0,0)S(1,1) − S(0,1)S(1,0) =

−α−1Ed for some nonzero scalar α and integer d. Since
�

P Q
0 R

�
is also

invertible, we must thus have that PR must be on the form αEn, and for this
we must have that P = α0Ep and R = α1Eq for some p, q, α0, α1. Using this,
and also isolating S on one side, we obtain that

S = (Λ1)
−1 · · · (Λn)

−1

�
α0Ep Q
0 α1Eq

�
, (9.8)

Noting that
�

α0Ep Q
0 α1Eq

�
=

�
1 1

α1
E−qQ

0 1

��
α0Ep 0
0 α1Eq

�
,

we can rewrite (9.8) as

S = (Λ1)
−1 · · · (Λn)

−1

�
1 1

α1
E−qQ

0 1

��
α0Ep 0
0 α1Eq

�
,
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which is a lifting factorization of the form we wanted to arrive at. The last
matrix in the lifting factorization is not really a lifting matrix, but it too can
easily be inverted, so that we arrive at (9.6). This completes the proof.

The factorization 9.5 is what we call the lifting factorization of S. In prac-
tice, one starts with a given wavelet with certain proved properties such as the
ones from the preceding chapter, and applies an algorithm to obtain a lifting
factorization of it. The algorihtm can easily be written down from the proof
of Theorem 9.6. The lifting factorization is far from unique, and the algorithm
only gives one of them.

It is desirable for an implementation to obtain a lifting factorization where
the lifting steps are as simple as possible. Let us restrict to the case of wavelets
with symmetric filters, since the wavelets used in most applications are sym-
metric.

Assume that we in the proof of Theorem 9.6 add an elementary lifting of even
type. At this step we then compute S(0,0)+TiS(1,0) in the first entry of the first
column. Since S(0,0) is symmetric, TiS(1,0) must also be symmetric in order for
the length to be reduced. And since the filter coefficients of S(1,0) are symmetric
about −1/2 when S is symmetric, Ti must have coefficients symmetric around
1/2. If the difference in the lengths of the filters in the first column is 1, we
can choose a filter of length 2 to reduce the lengths by 2, so that the Ti in the
even lifting steps take the form Ti = λi{1, 1}. Similarly, for odd lifting steps
one shows that Ti = λi{1, 1}. Let us summarize this as follows:

Theorem 9.7. When the filters in a wavelet are symmetric and the lengths of
the filters in the first column differ by 1 at all steps in the lifting factorization,

the lifting steps of even type take the simplified form
�
I λi{1, 1}
0 I

�
, and the

lifting steps of odd type take the simplified form
�

I 0
λi{1, 1} I

�
.

For the wavelets we will consider in the following examples it will turn out
the filters in the first column differ by 1 at all steps in the lifting factorization,
so that this theorem applies. Such lifting steps are quickly computed due to
their simple structure. Writing these elementary lifting steps as MRA-matrices
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we get

�
I λi{1, 1}
0 I

�
↔





1 λ 0 0 · · · 0 0 λ
0 1 0 0 · · · 0 0 0
0 λ 1 λ · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · λ 1 λ
0 0 0 0 · · · 0 0 1





�
I 0

λi{1, 1} I

�
↔





1 0 0 0 · · · 0 0 0
λ 1 λ 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1 0
λ 0 0 0 · · · 0 λ 1





.

We see that these lifting steps are also MRA-matrices with symmetric filters.
In other words, when the lifting factorization is applied as above, it means that
an MRA-matrix with symmetric filters is factored into simpler MRA-matrices
which also have symmetric filters, i.e. S = A1 · · ·An where all S, Ai are MRA-
matrices with symmetric filters. If we apply the DWT to symmetric extensions,
we clearly also have that Sr = (A1)r · · · (An)r, where Sr is given by Theo-
rem 7.10. We also have that

�
I λi{1, 1}
0 I

�

r

↔





1 2λ 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0
0 λ 1 λ · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · λ 1 λ
0 0 0 0 · · · 0 0 1





(9.9)

�
I 0

λi{1, 1} I

�

r

↔





1 0 0 0 · · · 0 0 0
λ 1 λ 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1 0
0 0 0 0 · · · 0 2λ 1





. (9.10)

These matrices can thus be used to implement the wavelets we look at. These
have very simple implementations: everey second element is left unchanged,
while for the remaining elements we simply add the two neighbours.

In the following examples we consider how the lifting factorization looks for
two of the wavelets we have encountered. The examples also explain how lifting
helps us to obtain some computational improvements in the number of aritmetic
operations.
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Example 9.8 (Lifting of the Spline 5/3 wavelet). Let us consider the Spline
5/3 wavelet, which we defined in Examplee 8.11. Let us start by looking at the
matrix where GT . This has the filter coefficients of G0 and G1 in the first two
rows, and we recall that

G0 = {1
4
,
1

2
,
1

4
}

G1 = {−1

4
,−1

2
,
3

2
,−1

2
,−1

4
},

from which we see that the polyphase components are
�
S(0,0) S(0,1)

S(1,0) S(1,1)

�
=

�
1
2I { 1

4 ,
1
4}

{− 1
2 ,−

1
2} {− 1

4 ,
3
2 ,−

1
4}

�

We see here that the lower filter has biggest length in the first column, so that
we must start with an elementary lifting of odd type. We must then find a T1 so
that Ti

1
2I + {− 1

2 ,−
1
2} has lower length than 1

2I. It is clear that we can choose
Ti = {1, 1}, and that we then get 0. The first lifting step thus gives

Λ1G
T =

�
I 0

{1, 1} I

��
1
2I { 1

4 ,
1
4}

{− 1
2 ,−

1
2} {− 1

4 ,
3
2 ,−

1
4}

�
=

� 1
2I { 1

4 ,
1
4}

0 2I

�

=

�
I 1

8{1, 1}
0 I

��
1
2I 0
0 2I

�
,

where we also used the same rewriting as in the proof of Theorem 9.6. This
gives

GT =

�
I 0

{−1,−1} I

��
I 1

8{1, 1}
0 I

��
1
2I 0
0 2I

�
.

Transposing this expression gives

G =

�
1
2I 0
0 2I

��
I 0

1
8{1, 1} I

��
I {−1,−1}
0 I

�

Taking inverses of this expression gives

H =

�
I {1, 1}
0 I

��
I 0

− 1
8{1, 1} I

��
2I 0
0 1

2I

�

We now have obtained the lifting factorization. Only two lifting steps were
required. We also see that the lifting steps involve only dyadic fractions, just
as the filter coefficients did. This means that both the lifting factorization also
can be used for lossless operations.

Let us also compute the number of additions and multiplications performed
when we apply the lifting factorization. For a signal of length N , each lifting
step uses a number of N additions and N/2 multiplications. Since there are
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two lifting steps, the number of additions and multiplications are 2N and 2N ,
respectively, where we have taken into account multiplication with the diagonal
matrix as well. A direct implementation of DWT in terms of filters would need
a total of 3N additions and 2.5N multiplications, where we have taken the
symmetry of the filters into account. We thus see that the lifting factorization
gives a small decrease in the number of operations. ♣
Example 9.9 (Lifting of the CDF 9/7 wavelet). For the wavelet we considered
in Example 8.12, it is more cumbersome to compute the lifting factorization
by hand. It is however, straightforward to write an algorithm which computes
the lifting steps, as these are performed in the proof of Theorem 9.6. You will
be spared the details of this algorithm. Also, when we use these wavelets in
implementations later they will use precomputed values of these lifting steps,
and you can take these implementations for granted too. If we run the algorithm
for computing the lifting factorization we obtain

H =

�
I 0.5861{1, 1}
0 I

��
I 0

0.6681{1, 1} I

��
I −0.0700{1, 1}
0 I

�

×
�

I 0
−1.2002{1, 1} I

��
1/0.8699 0

0 1/1.1496

�

G =

�
0.8699 0

0 1.1496

��
I 0

1.2002{1, 1} I

��
I 0.0700{1, 1}
0 I

�

×
�

I 0
−0.6681{1, 1} I

��
I −0.5861{1, 1}
0 I

�
.

In this case four lifting steps were required. Let us also here compute the number
of additions and multiplications performed. Since there now are four lifting
steps, the number of additions and multiplications are 4N and 3N , respectively.
A direct implementation of DWT in terms of filters would need a total of 7N
additions and 4.5N multiplications, where we again have taken the symmetry
of the filters into account. Still the decrease in the number of operations is not
very big, but at least the decrease is clearer than in the previous example. ♣

It is not very hard to show that, as the number of lifting steps increase, the
lifting factorization halves the number of additions and multiplications when
compared to the direct implementation. Perhaps more important than this is
the fact that the lifting factorization splits the DWT and IDWT into simpler
components, each very attractive for hardware implementations. Lifting pro-
vides us with a complete implementation strategy for the DWT and IDWT.
What remains now is to extend to two-dimensional objects such as images. We
will start with this in the next chapter.

Exercises for Section 9.2
1. Write functions

function x=liftingstepapplyA(lambda,x)

function x=liftingstepapplyB(lambda,x)
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which applies the elementary lifting matrices (9.9) and (9.10), respectively, to
the vector x. You can assume that N has even length. The function should
not perform matrix multiplication to achieve this, and the result should be
returned in the same vector as the input. The function should also perform as
few multiplications as possible. How can you achieve this?

2. Write functions DWTImpl53 and IDWTImpl53 which implements the DWT and
the IDWT for the Spline 5/3 wavelet, using the lifting factorization obtained in
Example 9.8. You should use the functions you implemented in Exercise 1.

3. Write functions DWTImpl97 and IDWTImpl97 which implements the DWT
and the IDWT for the CDF 9/7 wavelet, using the lifting factorization obtained
in Example 9.9.

The proof of Theorem 8.1

Since the polyphase form of HT is
�

(H(0,0))T (H(1,0))T

(H(0,1))T (H(1,1))T

�
, The polyphase

form for the equation GHT = I is thus
�

G(0,0) G(0,1)

G(1,0) G(1,1)

��
(H(0,0))T (H(1,0))T

(H(0,1))T (H(1,1))T

�
=

�
I 0
0 I

�
,

which can be split into the four equations

G(0,0)(H(0,0))T +G(0,1)(H(0,1))T = I (I)

G(0,0)(H(1,0))T +G(0,1)(H(1,1))T = 0 (II)

G(1,0)(H(0,0))T +G(1,1)(H(0,1))T = 0 (III)

G(1,0)(H(1,0))T +G(1,1)(H(1,1))T = I (IV )

Combining these and substracting, this can be written

(G(0,0)G(1,1) −G(0,1)G(1,0))(H(0,1))T = −G(1,0)

((H(0,0))T (H(1,1))T − (H(0,1))T (H(1,0))T )G(1,0) = −(H(0,1))T

where we in the first formula performed G(0,0)(III) − G(1,0)(I), and in the
second formula performed (H(1,1))T (III)− (H(0,1))T (IV ). Since G(0,0)G(1,1) −
G(0,1)G(1,0) and (H(0,0))T (H(1,1))T−(H(0,1))T (H(1,0))T also are circulant Toeplitz
matrices the number of filter coefficients satisfy l((H(0,1))T ) ≤ l(G(1,0)), and
l((H(0,1))T ) ≥ l(G(1,0)), respectively, so that l(H(0,1)) = l(G(1,0)), and both
matrices

G(0,0)G(1,1) −G(0,1)G(1,0)

(H(0,0))T (H(1,1))T − (H(0,1))T (H(1,0))T
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must have only one nonzero diagonal. By combining equations (I)-(IV) in other
ways as well, and defining the diagonal matrix D = G(0,0)G(1,1)−G(0,1)G(1,0) =
−α−1Ed for some α, d, we obtain

G(1,0) = −D(H(0,1))T = α−1Ed(H
(0,1))T (9.11)

G(1,1) = D(H(0,0))T = −α−1Ed(H
(0,0))T (9.12)

(H(1,0))T = −D−1G(0,1) = αE−dG
(0,1)

(H(1,1))T = D−1G(0,0) = −αE−dG
(0,0),

where the last two equations also can be written

H(1,0) = α(G(0,1))TEd = αEd(G
(0,1))T (9.13)

H(1,1) = −α(G(0,0))TEd = −Edα(G
(0,0))T . (9.14)

The equations can thus be written

(G(1,0))n = α−1(H(0,1))−n−d

(G(1,1))n = −α−1(H(0,0))−n−d

(H(1,0))n = α(G(0,1))−n−d

(H(1,1))n = −α(G(0,0))−n−d

Using the two first equations we get

(G1)2n−1 = (G(1,0))n = α−1(H(0,1))−n−d = α−1(H0)2(−n−d)+1

= (−1)2nα−1(H0)−(2n−1)−2d

(G1)2n = (G(1,1))n = −α−1(H(0,0))−n−d = −α−1(H0)2(−n−d)

= (−1)2n+1α−1(H0)−2n−2d.

Using the two last equations we get

(H1)2n−1 = (H(1,0))n = α(G(0,1))−n−d = α(G0)2(−n−d)+1

= (−1)2nα(G0)−(2n−1)−2d

(H1)2n = (H(1,1))n = −α(G(0,0))−n−d = −α(G0)2(−n−d)

= (−1)2n+1α(G0)−2n−2d.

We thus see that

(G1)n = (−1)nα−1(H0)−n−2d

(H1)n = (−1)nα(G0)−n−2d,

which proves (8.1) and (8.2). To also prove (8.3), first substitute (9.11)-(9.14)
in (II)-(III). Then we get

G(0,0)G(0,1) −G(0,1)G(0,0) = 0

(H(0,1))T (H(0,0))T − (H(0,0))T (H(0,1))T = 0.
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This is always the case since filters commute, so we are left with considering (I)
and (IV). These become

G(0,0)(H(0,0))T +G(0,1)(H(0,1))T = I (9.15)

(H(0,1))TG(0,1) + (H(0,0))TG(0,0) = I (9.16)

These two are equivalent for the same reason, so we are left with Equation 9.15.
Using Theorem 3.10 and Theorem 3.20, this can be written as

λG(0,0),nλH(0,0),n + λG(0,1),nλH(0,1),n = 1. (9.17)

The rest of the proof follows by rewriting (8.3), till we arrive at (9.17). We first
write

λG0,nλH0,n + λG0,n+N/2λH0,n+N/2

= λG0,nλH0,n + λG0,N/2−nλH0,N/2−n,

where we have used the symmetry property of the DFT coefficients (Theo-
rem 2.21 1.). Using Theorem ?? we have

λG0,q = λG(0,0),q + e−2πiq/NλG(0,1),q

λH0,q = λH(0,0),q + e−2πiq/NλH(0,1),q,

and substituting these expressions in the above we get

=
�
λG(0,0),n + e−2πin/NλG(0,1),n

��
λH(0,0),n + e−2πin/NλH(0,1), n

�
+

�
λG(0,0),N/2−n + e−2πi(N/2−n)/NλG(0,1),N/2−n

��
λH(0,0),N/2−n + e−2πi(N/2−n)/NλH(0,1),N/2−n

�

=
�
λG(0,0),n + e−2πin/NλG(0,1),n

��
λH(0,0),n + e−2πin/NλH(0,1),n

�

+
�
λG(0,0),N/2−n − e2πin/NλG(0,1),N/2−n

��
λH(0,0),N/2−n − e2πin/NλH(0,1),N/2−n

�
.

Using the symmetry property of the DFT coefficients again, and multiplying
out we get

=
�
λG(0,0),n + e−2πin/NλG(0,1),n

��
λH(0,0),n + e2πin/NλH(0,1),n

�

+
�
λG(0,0),n − e−2πin/NλG(0,1),n

��
λH(0,0),n − e2πin/NλH(0,1),n

�

=2λG(0,0),nλH(0,0),n + 2λG(0,1),nλH(0,1),n

+ e2πin/NλG(0,0),nλH(0,1),n + e−2πin/NλG(0,1),nλH(0,0),n

− e2πin/NλG(0,0),nλH(0,1),n − e−2πin/NλG(0,1),nλH(0,0),n

=2λG(0,0),nλH(0,0),n + 2λG(0,1),nλH(0,1),n

Combining this with (9.17) we get

λG0,nλH0,n + λG0,n+N/2λH0,n+N/2 = 2,

which is (8.3).
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9.3 Summary
We found a way to factorize a wavelet into simpler components, and called this
the lifting factorization. The lifting factorization has a similar role as the FFT
for the DFT. We applied the lifting factorization to the wavelets we constructed
in the previous chapter. We now have made most developments for wavelets,
except to extend the analysis so that it can be applied to two-dimensional func-
tions such as images.
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Chapter 10

Digital images

The theory on wavelets has been presented as a one-dimensional theory upto
now. Images, however, are two-dimensional by nature. This poses another chal-
lenge, contrary to the case for sound. In the next chapter we will establish the
mathematics to handle this, but first we will present some basics on images. Im-
ages are a very important type of digital media, and we will go through how they
can be represented and manipulated with simple mathematics. This is useful
general knowledge for anyone who has a digital camera and a computer, but for
many scientists, it is an essential tool. In astrophysics, data from both satellites
and distant stars and galaxies is collected in the form of images, and information
extracted from the images with advanced image processing techniques. Medical
imaging makes it possible to gather different kinds of information in the form
of images, even from the inside of the body. By analysing these images it is
possible to discover tumours and other disorders.

10.1 What is an image?
Before we do computations with images, it is helpful to be clear about what an
image really is. Images cannot be perceived unless there is some light present,
so we first review superficially what light is.

10.1.1 Light

Fact 10.1 (What is light?). Light is electromagnetic radiation with wave-
lengths in the range 400–700 nm (1 nm is 10−9 m): Violet has wavelength
400 nm and red has wavelength 700 nm. White light contains roughly equal
amounts of all wave lengths.

Other examples of electromagnetic radiation are gamma radiation, ultraviolet
and infrared radiation and radio waves, and all electromagnetic radiation travel
at the speed of light (3× 108 m/s). Electromagnetic radiation consists of waves
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and may be reflected and refracted, just like sound waves (but sound waves are
not electromagnetic waves).

We can only see objects that emit light, and there are two ways that this can
happen. The object can emit light itself, like a lamp or a computer monitor,
or it reflects light that falls on it. An object that reflects light usually absorbs
light as well. If we perceive the object as red it means that the object absorbs
all light except red, which is reflected. An object that emits light is different; if
it is to be perceived as being red it must emit only red light.

10.1.2 Digital output media
Our focus will be on objects that emit light, for example a computer display. A
computer monitor consists of a rectangular array of small dots which emit light.
In most technologies, each dot is really three smaller dots, and each of these
smaller dots emit red, green and blue light. If the amounts of red, green and
blue is varied, our brain merges the light from the three small light sources and
perceives light of different colours. In this way the colour at each set of three
dots can be controlled, and a colour image can be built from the total number
of dots.

It is important to realise that it is possible to generate most, but not all,
colours by mixing red, green and blue. In addition, different computer monitors
use slightly different red, green and blue colours, and unless this is taken into
consideration, colours will look different on the two monitors. This also means
that some colours that can be displayed on one monitor may not be displayable
on a different monitor.

Printers use the same principle of building an image from small dots. On
most printers however, the small dots do not consist of smaller dots of different
colours. Instead as many as 7–8 different inks (or similar substances) are mixed
to the right colour. This makes it possible to produce a wide range of colours,
but not all, and the problem of matching a colour from another device like
a monitor is at least as difficult as matching different colours across different
monitors.

Video projectors builds an image that is projected onto a wall. The final
image is therefore a reflected image and it is important that the surface is white
so that it reflects all colours equally.

The quality of a device is closely linked to the density of the dots.

Fact 10.2 (Resolution). The resolution of a medium is the number of dots per
inch (dpi). The number of dots per inch for monitors is usually in the range
70–120, while for printers it is in the range 150–4800 dpi. The horizontal and
vertical densities may be different. On a monitor the dots are usually referred
to as pixels (picture elements).

262



(a) (b) (c)

Figure 10.1: Different version of the same image; black and white (a), grey-level
(b), and colour (c).

10.1.3 Digital input media
The two most common ways to acquire digital images is with a digital camera
or a scanner. A scanner essentially takes a photo of a document in the form of
a rectangular array of (possibly coloured) dots. As for printers, an important
measure of quality is the number of dots per inch.

Fact 10.3. The resolution of a scanner usually varies in the range 75 dpi to
9600 dpi, and the colour is represented with up to 48 bits per dot.

For digital cameras it does not make sense to measure the resolution in dots
per inch, as this depends on how the image is printed (its size). Instead the
resolution is measured in the number of dots recorded.

Fact 10.4. The number of pixels recorded by a digital camera usually varies
in the range 320 × 240 to 6000 × 4000 with 24 bits of colour information per
pixel. The total number of pixels varies in the range 76 800 to 24 000 000
(0.077 megapixels to 24 megapixels).

For scanners and cameras it is easy to think that the more dots (pixels), the
better the quality. Although there is some truth to this, there are many other
factors that influence the quality. The main problem is that the measured colour
information is very easily polluted by noise. And of course high resolution also
means that the resulting files become very big; an uncompressed 6000 × 4000
image produces a 72 MB file. The advantage of high resolution is that you can
magnify the image considerably and still maintain reasonable quality.

10.1.4 Definition of digital image
We have already talked about digital images, but we have not yet been precise
about what it is. From a mathematical point of view, an image is quite simple.
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Fact 10.5 (Digital image). A digital image P is a rectangular array of intensity
values {pi,j}m,n

i,j=1. For grey-level images, the value pi,j is a single number, while
for colour images each pi,j is a vector of three or more values. If the image is
recorded in the rgb-model, each pi,j is a vector of three values,

pi,j = (ri,j , gi,j , bi,j),

that denote the amount of red, green and blue at the point (i, j).

Note that, when refering to the coordinates (i, j) in an image, i will refer to
row index, j to column index, in the same was as for matrices. In particular,
the top row in the image have coordinates {(0, j)}N−1

j=0 , while the left column in
the image has coordinates {(i, 0)}M−1

i=0 . With this notation, the dimension of the
image is M ×N . The value pi,j gives the colour information at the point (i, j).
It is important to remember that there are many formats for this. The simplest
case is plain black and white images in which case pi,j is either 0 or 1. For grey-
level images the intensities are usually integers in the range 0–255. However,
we will assume that the intensities vary in the interval [0, 1], as this sometimes
simplifies the form of some mathematical functions. For colour images there are
many different formats, but we will just consider the rgb-format mentioned in
the fact box. Usually the three components are given as integers in the range
0–255, but as for grey-level images, we will assume that they are real numbers
in the interval [0, 1] (the conversion between the two ranges is straightforward,
see section 10.11 below). Figure 10.1 shows an image in different formats. We
will use this image as our test image in most parts of this book.

Fact 10.6. In these notes the intensity values pi,j are assumed to be real
numbers in the interval [0, 1]. For colour images, each of the red, green, and
blue intensity values are assumed to be real numbers in [0, 1].

If we magnify the part of the colour image in figure 10.1 around one of
the eyes, we obtain the images in figure 10.2. As we can see, the pixels have
been magnified to big squares. This is a standard representation used by many
programs — the actual shape of the pixels will depend on the output medium.
Nevertheless, we will consider the pixels to be square, with integer coordinates
at their centres, as indicated by the grids in figure 10.2.

Fact 10.7 (Shape of pixel). The pixels of an image are assumed to be square
with sides of length one, with the pixel with value pi,j centred at the point
(i, j).

10.1.5 Images as surfaces
Recall from your previous calculus courses that a function f : R2 �→ R can be
visualised as a surface in space. A grey-level image is almost on this form. If
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(a) 18× 18 pixels (b) 50× 50 pixels

Figure 10.2: Two excerpts of the colour image in figure 10.1. The grid indicates
the borders between the pixels.
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Figure 10.3: A grey-level image viewed as a parametric surface in space.

we define the set of integer pairs by

Zm,n =
�
(i, j) | 1 ≤ i ≤ m and 1 ≤ j ≤ n

�
,

we can consider a grey-level image as a function P : Zm,n �→ [0, 1]. In other
words, we may consider an image to be a sampled version of a surface with
the intensity value denoting the height above the (x, y)-plane. In Figure 10.3
we have plotted the surface obtained from the grey-level version of our sample
image.

Fact 10.8 (Grey-level image as a surface). Let P = (p)m,n

i,j=1 be a grey-level
image. Then P can be considered a sampled version of the piecewise constant
surface

FP : [1/2,m+ 1/2]× [1/2, n+ 1/2] �→ [0, 1]
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which has the constant value pi,j in the square (pixel)

[i− 1/2, i+ 1/2]× [j − 1/2, j + 1/2]

for i = 1, . . . , m and j = 1, . . . , n.

10.2 Operations on images
Images are two-dimensional arrays of numbers, contrary to the sound signals we
considered in the previous section. In this respect it is quite obvious that we can
manipulate an image by performing mathematical operations on the numbers.
In this section we will consider some of the simpler operations. In later sections
we will go through more advanced operations, and explain how the theory for
these can be generalized from the corresponding theory for one-dimensional
(sound) signals (which we wil go through first).

In order to perform these operations, we need to be able to use images with
a programming environment such as MATLAB.

10.2.1 Images and MATLAB
An image can also be thought of as a matrix, by associating each pixel with
an element in a matrix. The matrix indices thus correspond to positions in the
pixel grid. Black and white images correspond to matrices where the elements
are natural numbers between 0 and 255. To store a colour image, we need 3
matrices, one for each colour component. This enables us to use linear algebra
packages, such as MATLAB, on order to work with images. After we now have
made the connection with matrices, we can create images from mathematical
formulas, just as we could with sound in the previuos sections. But what we also
need before we go through operations on images, is, as in the sections on sound,
means of reading an image from a file so that its contents are accessible as a
matrix, and write images represented by a matrix which we have constructed
ourself to file. Reading a function from file can be done with help of the function
imread. If we write

A = double(imread(’filename.fmt’,’fmt’));

the image with the given path and format is read, and stored in the matrix
A. ’fmt’ can be ’jpg’,’tif’, ’gif’, ’png’,... You should consult the MATLAB help
pages to see which formats are supported. After the call to imread, we have
a matrix where the entries represent the pixel values, and of integer data type
(more precisely, the data type uint8 in Matlab). To perform operations on the
image, we must first convert the entries to the data type double. This is done
with a call to the Matlab function double. Similarly, the function imwrite can
be used to write the image represented by a matrix to file. If we write

imwrite(uint8(A), ’filename.fmt’,’fmt’)
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the image represented by the matrix A is written to the given path, in the given
format. Before the image is written to file, you see that we have converted
the matrix values back to the integer data type with the help of the function
uint8. In other words: imread and imwrite both assume integer matrix entries,
while operations on matrices assume double matrix entries. If you want to print
images you have created yourself, you can use this function first to write the
image to a file, and then send that file to the printer using another program.
Finally, we need an alternative to playing a sound, namely displaying an image.
The function imshow(A) displays the matrix A as an image in a separate window.
Also here you need to convert the samples using the function uint8 prior to this
call.

The following examples go through some much used operations on images.

Example 10.9 (Normalising the intensities). We have assumed that the in-
tensities all lie in the interval [0, 1], but as we noted, many formats in fact use
integer values in the range [0,255]. And as we perform computations with the
intensities, we quickly end up with intensities outside [0, 1] even if we start out
with intensities within this interval. We therefore need to be able to normalise
the intensities. This we can do with the simple linear function

g(x) =
x− a

b− a
, a < b,

which maps the interval [a, b] to [0, 1]. A simple case is mapping [0, 255] to
[0, 1] which we accomplish with the scaling g(x) = x/255. More generally, we
typically perform computations that result in intensities outside the interval
[0, 1]. We can then compute the minimum and maximum intensities pmin and
pmax and map the interval [pmin, pmax] back to [0, 1]. Below we have shown a
function mapto01 which achieves this task.

function newimg=mapto01(img)

minval = min(min(min(img)));

maxval = max(max(max(img)));

newimg = (img - minval)/(maxval-minval);

Several examples of using this function will be shown below. ♣

Example 10.10 (Extracting the different colours). If we have a colour image
P = (ri,j , gi,j , bi,j)

m,n

i,j=1 it is often useful to manipulate the three colour compo-
nents separately as the three images

Pr = (ri,j)
m,n

i,j=1, Pr = (gi,j)
m,n

i,j=1, Pr = (bi,j)
m,n

i,j=1.

As an example, let us first see how we can produce three separate images,
showing the R,G, and B colour components, respectively. Let us take the image
lena.png used in Figure 10.1. When the image is read, three matrices are
returned, one for each colour component, and we can generate new files for the
different colour components with the following code:
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(a) (b) (c)

Figure 10.4: The red (a), green (b), and blue (c) components of the colour image
in Figure 10.1.

img=double(imread(’lena.png’,’png’));

newimg=zeros(size(img));

newimg(:,:,1)=img(:,:,1);

imwrite(uint8(newimg),’gr.png’,’png’);

newimg=zeros(size(img));

newimg(:,:,2)=img(:,:,2);

imwrite(uint8(newimg),’ggg.png’,’png’);

newimg=zeros(size(img));

newimg(:,:,3)=img(:,:,3);

imwrite(uint8(newimg),’gb.png’,’png’);

The resulting image files are shown in Figure 10.4. ♣

Example 10.11 (Converting from colour to grey-level). If we have a colour
image we can convert it to a grey-level image. This means that at each point
in the image we have to replace the three colour values (r, g, b) by a single
value p that will represent the grey level. If we want the grey-level image to
be a reasonable representation of the colour image, the value p should somehow
reflect the intensity of the image at the point. There are several ways to do this.

It is not unreasonable to use the largest of the three colour components as
a measure of the intensity, i.e, to set p = max(r, g, b). The result of this can be
seen in Figure 10.5(a).

An alternative is to use the sum of the three values as a measure of the total
intensity at the point. This corresponds to setting p = r + g + b. Here we have
to be a bit careful with a subtle point. We have required each of the r, g and b
values to lie in the range [0, 1], but their sum may of course become as large as
3. We also require our grey-level values to lie in the range [0, 1] so after having
computed all the sums we must normalise as explained above. The result can
be seen in Figure 10.5(b).

A third possibility is to think of the intensity of (r, g, b) as the length of
the colour vector, in analogy with points in space, and set p =

�
r2 + g2 + b2.
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A colour image P = (ri,j , gi,j , bi,j)
m,n

i,j=1 can be converted to a grey level image
Q = (qi,j)

m,n

i,j=1 by one of the following three operations:

1. Set qi,j = max(ri,j , gi,j , bi,j) for all i and j.

2. (a) Compute q̂i,j = ri,j + gi,j + bi,j for all i and j.
(b) Transform all the values to the interval [0, 1] by setting

qi,j =
q̂i,j

maxk,l q̂k,l
.

3. (a) Compute q̂i,j =
�

r2
i,j

+ g2
i,j

+ b2
i,j

for all i and j.

(b) Transform all the values to the interval [0, 1] by setting

qi,j =
q̂i,j

maxk,l q̂k,l
.

Again, we may end up with values in the range [0,
√
3] so we have to normalise

like we did in the second case. The result is shown in Figure 10.5(c).
Let us sum this up as an algorithm.
This can be implemented by using most of the code from the previous ex-

ample, and replacing with the lines

newimg1=max(img,[],3);

newvals=img(:,:,1)+img(:,:,2)+img(:,:,3);

newimg2=newvals/max(max(newvals))*255;

newvals=sqrt(img(:,:,1).^2+img(:,:,2).^2+img(:,:,3).^2);

newimg3=newvals/max(max(newvals))*255;

respectively. In practice one of the last two methods are usually preferred,
perhaps with a preference for the last method, but the actual choice depends
on the application. These resuliting images are visualised as grey-level images
in Figure 10.4.

♣

Example 10.12 (Computing the negative image). In film-based photography
a negative image was obtained when the film was developed, and then a positive
image was created from the negative. We can easily simulate this and compute
a negative digital image.

Suppose we have a grey-level image P = (pi,j)
m,n

i,j=1 with intensity values in
the interval [0, 1]. Here intensity value 0 corresponds to black and 1 corresponds
to white. To obtain the negative image we just have to replace an intensity p
by its ’mirror value’ 1− p.
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(a) Each colour triple has
been replaced by its maxi-
mum

(b) Each colour triple has
been replaced by its sum
and the result mapped to
(0, 1)

(c) Each triple has been re-
placed by its length and the
result mapped to (0, 1)

Figure 10.5: Alternative ways to convert the colour image in Figure 10.1 to a
grey level image.

(a) (b) (c)

Figure 10.6: The negative versions of the corresponding images in figure 10.5.

Fact 10.13 (Negative image). Suppose the grey-level image P = (pi,j)
m,n

i,j=1
is given, with intensity values in the interval [0, 1]. The negative image Q =
(qi,j)

m,n

i,j=1 has intensity values given by qi,j = 1− pi,j for all i and j.

This is also easily translated to code as above. The resulting image is shown
in Figure 10.6. ♣

Example 10.14 (Increasing the contrast). A common problem with images is
that the contrast often is not good enough. This typically means that a large
proportion of the grey values are concentrated in a rather small subinterval of
[0, 1]. The obvious solution to this problem is to somehow spread out the values.
This can be accomplished by applying a function f to the intensity values, i.e.,
new intensity values are computed by the formula

p̂i,j = f(pi,j)
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(b)

(c) The middle function in (a) has
been applied to the intensity values
of the image in figure 10.5

(d) The middle function in (b) has
been applied to the same image

Figure 10.7: The plots in (a) and (b) show some functions that can be used to
improve the contrast of an image.
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for all i and j. If we choose f so that its derivative is large in the area where
many intensity values are concentrated, we obtain the desired effect.

Figure 10.7 shows some examples. The functions in the left plot have quite
large derivatives near x = 0.5 and will therefore increase the contrast in images
with a concentration of intensities with value around 0.5. The functions are all
on the form

fn(x) =
arctan

�
n(x− 1/2)

�

2 arctan(n/2)
+

1

2
. (10.1)

For any n �= 0 these functions satisfy the conditions fn(0) = 0 and fn(1) = 1.
The three functions in figure 10.7(a) correspond to n = 4, 10, and 100.

Functions of the kind shown in figure 10.7(b) have a large derivative near
x = 0 and will therefore increase the contrast in an image with a large proportion
of small intensity values, i.e., very dark images. The functions are given by

g�(x) =
ln(x+ �)− ln �

ln(1 + �)− ln �
, (10.2)

and the ones shown in the plot correspond to � = 0.1, 0.01, and 0.001.
In figure 10.7c the middle function in (a) has been applied to the image in

figure 10.5c. Since the image was quite well balanced, this has made the dark
areas too dark and the bright areas too bright. In figure 10.7d the function in
(b) has been applied to the same image. This has made the image as a whole
too bright, but has brought out the details of the road which was very dark in
the original.

Observation 10.15. Suppose a large proportion of the intensity values pi,j
of a grey-level image P lie in a subinterval I of [0, 1]. Then the contrast of the
image can be improved by computing new intensities p̂i,j = f(p,j) where f is
a function with a large derivative in the interval I.

Increasing the contrast is easy to implement. The following function has
been used to generate the image in Figure 10.7(d). The function takes � in
Equation (10.2) as parameter:

function newimg=contrastadjust(img,epsilon)

newimg = img/255; % Maps the pixel values to [0,1]

newimg = (log(newimg+epsilon) - log(epsilon))/...

(log(1+epsilon)-log(epsilon));

newimg = newimg*255; % Maps the values back to [0,255]

We will see more examples of how the contrast in an image can be enhanced
when we try to detect edges below. ♣

The next examples fall within the same category of operations, those given
by computational molecules, defined in the following way:
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Definition 10.16. We say that an operation T on an image X is given by
the computational molecule

A =





...
...

...
...

...
· · · a−1,−1 a−1,0 a−1,1 · · ·
· · · a0,−1 a0,0 a0,1 · · ·
· · · a1,−1 a1,0 a1,1 · · ·
...

...
...

...
...





(where we underline the element with index (0, 0), and where only the nonzero
ai,j are listed, similarly to how we do this with compact filter notation). if we
have that

(TX)i,j =
�

k1,k2

ak1,k2Xi+k1,j+k2 (10.3)

Here the indices are allowed to be both positive and negative.

The interpretation of a computation molecule is that we place the centre
of the molecule on a pixel, multiply the pixel and its neighbours by the cor-
responding weights ai,j , and finally summing up in order to produce the new
value.

Example 10.17 (Smoothing an image). When we considered filtering of digital
sound, we observed that replacing each sample of a sound by an average of the
sample and its neighbours dampened the high frequencies of the sound. We can
do a similar operation on images.

Consider the computational molecule

A =
1

16




1 2 1
2 4 2
1 2 1



 . (10.4)

Applying this computational molecule to an image corresponds to smoothing
the image. More precisely, we would compute the new pixels by

p̂i,j =
1

16

�
4pi,j + 2(pi,j−1 + pi−1,j + pi+1,j + pi,j+1)

+ pi−1,j−1 + pi+1,j−1 + pi−1,j+1 + pi+1,j+1

�
.

Since the weights sum to one, the new intensity value p̂i,j is a weighted average
of the intensity values on the right. As in the section on sound, we could have
used equal weights for all pixels, but it seems reasonable that the weight of a
pixel should be larger the closer it is to the centre pixel. For the onedimensional
case on sound, we used the values of Pascal’s triangle here, since these weights
are known to give a very good smoothing effect. We will return to how we can
generalize the use of Pascal’s triangle to obtain computational molecules for use
in images.
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(a) (b) (c)

Figure 10.8: The images in (b) and (c) show the effect of smoothing the image
in (a).

A larger filter is given by the array

1

4096





1 6 15 20 15 6 1
6 36 90 120 90 36 6
15 90 225 300 225 90 15
20 120 300 400 300 120 20
15 90 225 300 225 90 15
6 36 90 120 90 36 6
1 6 15 20 15 6 1





. (10.5)

These numbers are taken from row six of Pascal’s triangle. More precisely, the
value in row k and column l is given by the product

�6
k

��6
l

�
. The scaling 1/4096

comes from the fact that the sum of all the numbers in the table is 26+6 = 4096.
The result of applying the two filters in (10.4) and (10.5) to our greyscale-

image is shown in Figure 10.8(b) and -(c) respectively. To make the smoothing
effect visible, we have zoomed in on the face in the image. The smoothing effect
is most visible in the second image, since this molecule is bigger.

Observation 10.18. An image P can be smoothed out by replacing the
intensity value at each pixel by a weighted average of the intensity at the pixel
and the intensity of its neighbours.

It is straightforward to write a function which performs smoothing. Assume
that the image is stored as the matrix img, and the computational molecule
is stored as the matrix compmolecule. The following function will return the
smoothed image:

function newimg=smooth(img,compmolecule)

[m,n]=size(img);

[k,k1] = size(compmolecule); % We need k==k1, and odd

sc = (k+1)/2;

for m1=1:m
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for n1=1:n

slidingwdw = zeros(k,k);

% slidingwdw is the part of the picture which

% compmolecule is applied to pixel (m1,n1)

slidingwdw(max(sc+1-m1,1):min(sc+m-m1,2*sc-1) , ...

max(sc+1-n1,1):min(sc+n-n1,2*sc-1)) = ...

img(max(1,m1-(sc-1)):min(m,m1+(sc-1)) , ...

max(1,n1-(sc-1)):min(n,n1+(sc-1)));

newimg(m1,n1) = sum(sum(compmolecule .* slidingwdw));

end

end

What makes this code difficult to write is the fact that the computational
molecule may extend outside the borders of the image, when we are close to
these borders. With this function, the first smoothing above can be performed
by writing

smooth(img,(1/16)*[ 1 2 1; 2 4 2; 1 2 1]);

♣

Example 10.19 (Detecting edges). The final operation on images we are going
to consider is edge detection. An edge in an image is characterised by a large
change in intensity values over a small distance in the image. For a continuous
function this corresponds to a large derivative. An image is only defined at
isolated points, so we cannot compute derivatives, but we have a perfect situa-
tion for applying numerical differentiation. Since a grey-level image is a scalar
function of two variables, numerical differentiation techniques can be applied.

Partial derivative in x-direction. Let us first consider computation of the
partial derivative ∂P/∂x at all points in the image. Note first that it is the
second coordinate in an image which refers to the x-direction we are used to from
plotting functions. This means that the familiar symmetric Newton quotient
approximation for the partial derivative takes the form

∂P

∂x
(i, j) =

pi,j+1 − pi,j−1

2
, (10.6)

where we have used the convention h = 1 which means that the derivative is
measured in terms of ’intensity per pixel’. We can run through all the pixels in
the image and compute this partial derivative, but have to be careful for j = 1
and j = m where the formula refers to non-existing pixels. We will adapt the
simple convention of assuming that all pixels outside the image have intensity 0.
If we apply this to the same excerpt of the Lena image, we obtain figure 10.9(a).

This image is not very helpful since it is almost completely black. The
reason for this is that many of the intensities are in fact negative, and these
are just displayed as black. More specifically, the intensities turn out to vary
in the interval [−0.424, 0.418]. We therefore normalise and map all intensities
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(a) The partial derivative in
the x-direction

(b) The intensities in (a)
have been normalised to
(0, 1)

(c) The contrast has been
enhanced with the function
f50, equation 10.1

Figure 10.9: Experimenting with the partial derivative for the image in 10.5.

to [0, 1]. The result of this is shown in (b). The predominant colour of this
image is an average grey, i.e, an intensity of about 0.5. To get more detail in
the image we therefore try to increase the contrast by applying the function f50
in equation 10.1 to each intensity value. The result is shown in figure 10.9(c)
which does indeed show more detail.

It is important to understand the colours in these images. We have computed
the derivative in the x-direction, and we recall that the computed values varied
in the interval [−0.424, 0.418]. The negative value corresponds to the largest
average decrease in intensity from a pixel pi−1,j to a pixel pi+1,j . The positive
value on the other hand corresponds to the largest average increase in intensity.
A value of 0 in figure 10.9a corresponds to no change in intensity between the
two pixels.

When the values are mapped to the interval [0, 1] in figure 10.9b, the small
values are mapped to something close to 0 (almost black), the maximal values
are mapped to something close to 1 (almost white), and the values near 0 are
mapped to something close to 0.5 (grey). In figure 10.9c these values have just
been emphasised even more.

Figure 10.9c tells us that in large parts of the image there is very little vari-
ation in the intensity. However, there are some small areas where the intensity
changes quite abruptly, and if you look carefully you will notice that in these
areas there is typically both black and white pixels close together, like down the
vertical front corner of the bus. This will happen when there is a stripe of bright
or dark pixels that cut through an area of otherwise quite uniform intensity.

Since we display the derivative as a new image, the denominator is actually
not so important as it just corresponds to a constant scaling of all the pixels;
when we normalise the intensities to the interval [0, 1] this factor cancels out.

We sum up the computation of the partial derivative by giving its computa-
tional molecule.
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Observation 10.20. Let P = (pi,j)
m,n

i,j=1 be a given image. The partial deriva-
tive ∂P/∂x of the image can be computed with the computational molecule

1

2




0 0 0
−1 0 1
0 0 0



 . (10.7)

As we remarked above, the factor 1/2 can usually be ignored. We have
included the two rows of 0s just to make it clear how the computational molecule
is to be interpreted; it is obviously not necessary to multiply by 0.

Partial derivative in y-direction. The partial derivative ∂P/∂y can be
computed analogously to ∂P/∂x. Note that the positive direction of this axis
in an image is opposite to the direction of the y-axis we use when plotting
functions.

Observation 10.21. Let P = (pi,j)
m,n

i,j=1 be a given image. The partial deriva-
tive ∂P/∂y of the image can be computed with the computational molecule

1

2




0 −1 0
0 0 0
0 1 0



 . (10.8)

The result is shown in figure 10.11(b). The intensities have been normalised
and the contrast enhanced by the function f50 in (10.1).

The gradient. The gradient of a scalar function is often used as a measure
of the size of the first derivative. The gradient is defined by the vector

∇P =

�
∂P

∂x
,
∂P

∂y

�
,

so its length is given by

|∇P | =

����
�
∂P

∂x

�2

+

�
∂P

∂y

�2

.

When the two first derivatives have been computed it is a simple matter to
compute the gradient vector and its length; the resulting is shown as an image
in figure 10.10c.

The image of the gradient looks quite different from the images of the two
partial derivatives. The reason is that the numbers that represent the length of
the gradient are (square roots of) sums of squares of numbers. This means that
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(a) The computed gradient (b) The intensities in (a)
have been normalised to
(0, 1)

(c) The contrast has been
enhanced with the function
f50

Figure 10.10: Computing the gradient.

(a) The first-order par-
tial derivatives in the
x-direction

(b) The first-order par-
tial derivatives in the
y-direction

(c) The length of the gradi-
ent

Figure 10.11: In all images, the computed numbers have been normalised and
the contrast enhanced.

the parts of the image that have virtually constant intensity (partial derivatives
close to 0) are coloured black. In the images of the partial derivatives these
values ended up in the middle of the range of intensity values, with a final
colour of grey, since there were both positive and negative values.

Figure 10.10a shows the computed values of the gradient. Although it is pos-
sible that the length of the gradient could become larger than 1, the maximum
value in this case is about 0.876. By normalising the intensities we therefore
increase the contrast slightly and obtain the image in figure 10.10b.

To enhance the contrast further we have to do something different from what
was done in the other images since we now have a large number of intensities
near 0. The solution is to apply a function like the ones shown in figure 10.7(b)
to the intensities. If we use the function g0.01 defined in equation(10.2) we
obtain the image in figure 10.10(c).

♣
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10.2.2 Comparing the first derivatives
Figure 10.11 shows the two first-order partial derivatives and the gradient. If
we compare the two partial derivatives we see that the x-derivative seems to
emphasise vertical edges while the y-derivative seems to emphasise horizontal
edges. This is precisely what we must expect. The x-derivative is large when
the difference between neighbouring pixels in the x-direction is large, which is
the case across a vertical edge. The y-derivative enhances horizontal edges for
a similar reason.

The gradient contains information about both derivatives and therefore em-
phasises edges in all directions. It also gives a simpler image since the sign of
the derivatives has been removed.

10.2.3 Second-order derivatives
To compute the three second order derivatives we apply the corresponding com-
putational molecules which we already have described.

Observation 10.22 (Second order derivatives of an image). The second order
derivatives of an image P can be computed by applying the computational
molecules

∂2P

∂x2
:

1

4




0 0 0
1 −2 1
0 0 0



 , (10.9)

∂2P

∂y∂x
:

1

4




1 0 −1
0 0 0
−1 0 1



 , (10.10)

∂2P

∂y2
:

1

4




0 1 0
0 −2 0
0 1 0



 . (10.11)

With the information in observation 10.22 it is quite easy to compute the
second-order derivatives, and the results are shown in figure 10.12. The com-
puted derivatives were first normalised and then the contrast enhanced with the
function f100 in each image, see equation 10.1.

As for the first derivatives, the xx-derivative seems to emphasise vertical
edges and the yy-derivative horizontal edges. However, we also see that the
second derivatives are more sensitive to noise in the image (the areas of grey
are less uniform). The mixed derivative behaves a bit differently from the other
two, and not surprisingly it seems to pick up both horizontal and vertical edges.
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(a) The second-order par-
tial derivatives in the x-
direction

(b) The second-order par-
tial derivatives in the xy-
direction

(c) The second-order par-
tial derivatives in the y-
direction

Figure 10.12: In all images, the computed numbers have been normalised and
the contrast enhanced.

Exercises for Section 10.2
1. Black and white images can be generated from greyscale images (with values
between 0 and 255) by replacing each pixel value with the one of 0 and 255
which is closest. Use this strategy to generate the black and white image shown
in Figure 10.1(a).

2. Generate the image in Figure 10.7(d) on your own by writing code which
uses the function contrastadjust.

3. Let us also consider the second way we mentioned for increasing the contrast.

a. Write a function contrastadjust0 which instead uses the function 10.1
to increase the contrast. n should be a parameter to the function.

b. Generate the image in Figure 10.7(c) on your own by using your code
from Exercise 2, and instead calling the function contrastadjust0.

4. In this exercise we will look at another function for increasing the contrast
of a picture.

a. Show that the function f : R → R given by

fn(x) = xn,

for all n maps the interval [0, 1] → [0, 1], and that f �(1) → ∞ as n → ∞.
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Figure 10.13: Secret message

b. The color image secret.jpg,shown in Figure 10.13, contains some
information that is nearly invisible to the naked eye on most computer
monitors. Use the function f(x), to reveal the secret message.
Hint: You will first need to convert the image to a greyscale image. You
can then use the function contrastadjust as a starting point for your
own program.

5. Generate the image in Figure 10.8(b) and -(c) by writing code which calls
the function smooth with the appropriate computational molecules.

6. Generate the image in Figure 10.9(c) by writing code in the same way. Also
generate the images in figures 10.10, 10.11, and 10.12.

10.3 Adaptations to image processing
There are two particular image standards we will consider in these notes. The
first is the JPEG standard. JPEG is short for Joint Photographic Experts Group,
and is an image format that was approved as an international standard in 1994.
JPEG is usually lossy, but may also be lossless and has become a popular for-
mat for image representation on the Internet. The standard defines both the
algorithms for encoding and decoding and the storage format. JPEG performs
a DCT on the image, and neglects DCT-coefficients which are below a given
threshold. We will describe this in the next chapter. JPEG codes the remaining
DCT-coefficients by a variation of Huffman coding, but it may also use arith-
metic coding. The compression level in JPEG images is selected by the user and
may result in conspicuous artefacts if set too high. JPEG is especially prone to
artefacts in areas where the intensity changes quickly from pixel to pixel. The
extension of a JPEG-file is .jpg or .jpeg.

The second standard we will consider is JPEG2000. It was developed to
address some of the shortcomings of JPEG, and is based on wavelets.

There are several extensions, additions and modifications to the theory we
will present in the later chapters, which are needed in order for us to have a
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full image compression system: the wavelet transform, the DCT, and the DFT
were addressed because these are linked to relevant mathematics, and because
they are important ingredients in many standards for sound and images. In this
section we will mention many other extensions which also are important.

10.3.1 Lossless coding
Somewhere in the image processing or sound processing pipeline we need a
step which actually achieves compression of the data. We have not mentioned
anything about this step, since the output from the wavelet transform or the
DCT is simply another set of data of the same size, called the transformed data.
What we need to do is to apply a coding algorithm to this data to achieve
compression. This may be Huffman coding, arithmetic coding, or any other
algorithm. These methods are applied to the transformed data, since the effect
of the wavelet transform is that it exploits the data so that it can be represented
with data with lower entropy, so that it can be compressed more efficiently with
these techniques.

10.3.2 Quantization
Coding as we have learnt previously is a lossless operation. As we saw, for cer-
tain wavelets the transform can also be performed in a lossless manner. These
wavelets are, however, quite restrictive, which is why there is some loss involved
with most wavelets used in practical applications. When there is some loss
inherent in the transform, a quantization of the transformed data is also per-
formed before the coding takes place. This quantization is typically done with
a fixed number of bits, but may also be more advanced.

10.3.3 Preprocessing
Image compression as performed for certain image standards also often prepro-
cess the pixel values before any transform is applied. The preprocessing may
be centering the pixel values around a certain value, or extracting the different
image components before they are processed separately.

10.3.4 Tiles, blocks, and error resilience
We have presented the wavelet transform as something which transforms the
entire image. In practice this is not the case. The image is very often split into
smaller parts, often called tiles. The tiles in an image are processed indepen-
dently, so that errors whih occur within one tile do not affect the appearance of
parts in the image which correspond to other tiles. This makes the image com-
pression what we call error-resilient, to errors such as transmission errors. The
second reason for splitting into tiles has to do with that it may be more efficient
to perform many transforms on smaller parts, rather than one big transform
for the entire image. Performing one big transform would force us to have a
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big part of the image in memory during each computation, as well as remove
possibilities for parallel computing. Often the algorithm itself also requires more
computations when the size is bigger. For some standards, tiles are split into
even smaller parts, called blocks, where parts of the processing within each
block also is performed independently. This makes the possibilities for parallel
computing even bigger. As an example, we mentioned that the JPEG standard
performs the two-dimensional DCT on blocks as small as size 8× 8.

10.3.5 Metadata
An image standard also defines how to store metadata about an image, and what
metadata is accepted, like resolution, time when the image was taken, or where
the image was taken (GPS coordinates) and similar information. Metadata can
also tell us how the colour in the image are represented. As we have already
seen, in most colour images the colour of a pixel is represented in terms of the
amount of red, green and blue or (r, g, b). But there are other possibilities as
well: Instead of storing all 24 bits of colour information in cases where each of
the three colour components needs 8 bits, it is common to create a table of 256
colours with which a given image could be represented quite well. Instead of
storing the 24 bits, one then just stores a colour table in the metadata, and at
each pixel, the eight bits corresponding to the correct entry in the table. This
is usually referred to as eight-bit colour and the table is called a look-up table
or palette. For large photographs, however, 256 colours is far from sufficient to
obtain reasonable colour reproduction.

Metadata is usually stored in the beginning of the file, formatted in a very
specific way.

10.4 Summary
We started by discussing the basic question what an image is, and took a closer
look at digital images. We then went through several operations which give
meaning for digital images, and showed how to implement these.

In introductory image processing textbooks, many other techniques for pro-
cessing images are presented. We limited the techniques prrsented here, since
our interest in images is mainly for compression purposes. The tensor product
construction, which will be introduced in the next chapter, will help us in this
direction.
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Chapter 11

Definition and properties of

tensor products

The DFT, the DCT, and the wavelet transform were all defined as changes
of coordinates for vectors or functions of one variable and therefore cannot
be directly applied to higher dimensional data like images. In this chapter
we will introduce a simple recipe for extending such one-dimensional schemes
to two (and higher) dimensions. The basic ingredient is the tensor product
construction. This is a general tool for constructing two-dimensional functions
and filters from one-dimensional counterparts. This will allow us to generalise
the filtering and compression techniques for audio to images, and we will also
recognise some of the basic operations for images introduced in Chapter 10 as
tensor product constructions.

A two-dimensional discrete function on a rectangular domain, like for exam-
ple an image, is conveniently represented in terms of a matrix X with elements
Xi,j , and with indices in the ranges 0 ≤ i ≤ M − 1 and 0 ≤ j ≤ N − 1. One
way to apply filters to X would be to rearrange the matrix into a long vector,
column by column. We could then apply a one-dimensional filter to this vector
and then split the resulting vector into columns that can be reassembled back
into a matrix again. This approach may have some undesirable effects near the
boundaries between columns. In addition, the resulting computations may be
rather ineffective. Consider for example the case where X is an N ×N matrix
so that the long vector has length N2. Then a linear transformation applied to
X involves multiplication with an N2 ×N2-matrix. Each such matrix multipli-
cation may require as many as N4 multiplications which is substantial when N
is large.

The concept of tensor products can be used to address these problems. Us-
ing tensor products, one can construct operations on two-dimensional functions
which inherit properties of one-dimensional operations. Tensor products also
turn out to be computationally efficient.

284



(a) Original. (b) Horizontal smoothing.

(c) Vertical smoothing. (d) Horizontal and vertical smoothing.

Figure 11.1: The results of smoothing an image with the filter {1/4, 1/2, 1/4}
horizontally, vertically, and both. The pixels are shown as disks with intensity
corresponding to the pixel values.

11.1 The tensor product of vectors
In Chapter 10 we saw examples of several filters applied to images. The filters of
special interest to us now are those that determined a new image by combining
neighbouring pixels, like the smoothing filter in Example 10.17 and the edge
detection filter in Example 10.19. Our aim now is to try and apply filters like
these as a repeated application of one-dimensional filters rather than using a
computational molecule like in Chapter 10. It will be instructive to do this
with an example before we describe the general construction, so let us revisit
Example 10.17.

Figure 11.1 (a) shows an example of a simple image. We want to smooth this
image X with the one-dimensional filter T given by yn = (T (x))n = (xn−1 +
2xn + xn+1)/4, or equivalently T = {1/4, 1/2, 1/4}. There are two obvious
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one-dimensional operations we can do:

1. Apply the filter to each row in the image.

2. Apply the filter to each column in the image.

The problem is of course that these two operations will only smooth the image
either horizontally or vertically as can be seen in the image in (b) and (c) of
Figure 11.1.

So what else can we do? We can of course first smooth all the rows of
the image and then smooth the columns of the resulting image. The result
of this is shown in Figure 11.1 (d). Note that we could have performed the
operations in the opposite order: first vertical smoothing and then horizontal
smoothing, and currently we do not know if this is the same. We will show
that these things actually are the same, and that computational molecules,
as we saw in Chapter 10, naturally describe operations which are performed
both vertically and horizontally. The main ingredient in this will be the tensor
product construction. We start by defining the tensor product of two vectors.

Definition 11.1 (Tensor product of vectors). If x,y are vectors of length M
and N , respectively, their tensor product x⊗y is defined as the M×N -matrix
defined by (x⊗ y)ij = xiyj . In other words, x⊗ y = xyT .

In particular x ⊗ y is a matrix of rank 1, which means that most matrices
cannot be written as tensor products. The special case ei ⊗ ej is the matrix
which is 1 at (i, j) and 0 elsewhere, and the set of all such matrices forms a
basis for the set of M ×N -matrices.

Observation 11.2 (Interpretation of tensor products for vectors). Let

EM = {ei}M−1
i=0 and EN = {ei}N−1

i=0

be the standard bases for RM and RN . Then

EM,N = {ei ⊗ ej}(M−1,N−1)
(i,j)=(0,0)

is a basis for LM,N (R), the set of M ×N -matrices. This basis is often referred
to as the standard basis for LM,N (R).

An image can simply be thought of as a matrix in LM,N (R). With this
definition of tensor products, we can define operations on images by extending
the one-dimensional filtering operations defined earlier.

Definition 11.3 (Tensor product of matrices). If S : RM → RM and T :
RN → RN are matrices, we define the linear mapping S ⊗ T : LM,N (R) →
LM,N (R) by linear extension of (S ⊗ T )(ei ⊗ ej) = (Sei)⊗ (Tej). The linear
mapping S ⊗ T is called the tensor product of the matrices S and T .
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A couple of remarks are in order. First, from linear algebra we know that,
when T is linear mapping from V and T (vi) is known for a basis {vi}i of V ,
T is uniquely determined. In particular, since the {ei ⊗ ej}i,j form a basis,
there exists a unique linear transformation S ⊗ T so that (S ⊗ T )(ei ⊗ ej) =
(Sei) ⊗ (Tej). This unique linear transformation is what we call the linear
extension from the values in the given basis.

Secondly S ⊗ T also satisfies (S ⊗ T )(x ⊗ y) = (Sx) ⊗ (Ty). This follows
from

(S ⊗ T )(x⊗ y) = (S ⊗ T )((
�

i

xiei)⊗ (
�

j

yjej)) = (S ⊗ T )(
�

i,j

xiyj(ei ⊗ ej))

=
�

i,j

xiyj(S ⊗ T )(ei ⊗ ej) =
�

i,j

xiyj(Sei)⊗ (Tej)

=
�

i,j

xiyjSei((Tej))
T = S(

�

i

xiei)(T (
�

j

yjej))
T

= Sx(Ty)T = (Sx)⊗ (Ty).

Here we used the result from Exercise 6. Linear extension is necessary anyway,
since only rank 1 matrices have the form x⊗ y.

Example 11.4 (Smoothing an image). Assume that S and T are both filters,
and that S = T = {1/4, 1/2, 1/4}. Let us set M = 5 and N = 7, and let us
compute (S ⊗ T )(e2 ⊗ e3). We have that

(S ⊗ T )(e2 ⊗ e3) = (Se2)(Te3)
T = (col2S)(col3T )T .

Since

S =
1

4





2 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 2




T =

1

4





2 1 0 0 0 0 0
1 2 1 0 0 0 0
0 1 2 1 0 0 0
0 0 1 2 1 0 0
0 0 0 1 2 1 0
0 0 0 0 1 2 1
1 0 0 0 0 1 2





,

we get that (S ⊗ T )(e2 ⊗ e3) is

1

4





0
1
2
1
0




1

4

�
0 0 1 2 1 0 0

�
=

1

16





0 0 0 0 0 0 0
0 0 1 2 1 0 0
0 0 2 4 2 0 0
0 0 1 2 1 0 0
0 0 0 0 0 0 0





We recognize here the computational molecule from Example 10.17 for smooth-
ing an image. More generally it is not hard to see that (S ⊗ T )(ei ⊗ ej) is
the matrix where the same computational molecule is placed with its centre at
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(i, j). Clearly then, the linear extension S ⊗ T is obtained by placing the com-
putational molecule over all indices, multiplying by the value at that index, and
summing everything together. This is equivalent to the procedure for smoothing
we learnt in Example 10.17. ♣

As hinted in the previous example, there is a close connection between tensor
products of filters and computational molecules. This is the content of the next
theorem.

Theorem 11.5. If S and T are filters with compact filter notation s and t,
respectively, then S ⊗ T is a mapping with computational molecule rev(s) ⊗
rev(t), where rev(s) denotes the vector with the order of the elements reversed.

Proof. We have that

((S ⊗ T )(x⊗ y))i,j

= ((Sx)⊗ (Ty))i,j = (Sx)(Ty)T )i,j = (Sx)i(Ty)j

=

�
�

k

skxi−k

��
�

k

tkyj−k

�

=
�

k1,k2

xi−k1sk1tk2yj−k2 =
�

k1,k2

xi+k1s−k1t−k2yj+k2

=
�

k1,k2

xi+k1(rev(s))k1(rev(t))k2yj+k2

=
�

k1,k2

xi+k1(rev(s)⊗ rev(t))k1,k2yj+k2

=
�

k1,k2

(rev(s)⊗ rev(t))k1,k2(x⊗ y))i+k1,j+k2 .

By linear extension we have also that

((S ⊗ T )X)i,j =
�

k1,k2

(rev(s)⊗ rev(t))k1,k2Xi+k1,j+k2

for all images X, so that S ⊗ T is a mapping with computational molecule
rev(s)⊗ rev(t).

We have not formally defined the tensor product of compact filter notations.
This is a straightforward extension of the usual tensor product of vectors, where
we additionally mark the element at index (0, 0).

In the previous theorem, note that the filter coefficients need to be reversed
when we compute the computational molecule. This may seem strange. The
difference lies in that we define filtering differently, compared to how we define
applications of computational molecules: a filter is “placed” over the samples in
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reverse order, contrary to a computational molecule. To be more precise, this
has to do with the difference of sign in the equations

(Sx)n =
�

k

skxn−k

(TX)i,j =
�

k1,k2

ak1,k2Xi+k1,j+k2

in how we define applying a filter and a computational molecule, respectively.
In most of the examples here the filters are symmetric, and then this difference
causes no confusion.

Example 11.6. Returning to Example 11.4, using the previous result we find
that the computational molecule of S ⊗ T is

s⊗ t =




1/4
1/2
1/4



�
1/4 1/2 1/4

�
=

1

16




1 2 1
2 4 2
1 2 1



 .

This again confirms that the computational molecule given by Equation 10.4 in
Example 10.17 is the tensor product of the filter {1/4, 1/2, 1/4} with itself. ♣

While we have seen that the computational molecules from Chapter 10 can
be written as tensor products, not all computational molecules can be written
as tensor products: we need of course that the molecule is a rank 1 matrix, since
matrices which can be written as a tensor product always have rank 1.

The tensor product can be expressed explicitly in terms of matrix products.

Theorem 11.7. If S : RM → RM and T : RN → RN are matrices, the action
of their tensor product on a matrix X is given by (S ⊗ T )X = SXTT for any
X ∈ LM,N (R).

Proof. We have that

(S ⊗ T )(ei ⊗ ej) = (Sei)⊗ (Tej)

= (coli(S))⊗ (colj(T )) = coli(S)(colj(T ))T

= coli(S)rowj(T
T ) = S(ei ⊗ ej)T

T .

This means that (S⊗T )X = SXTT for any X ∈ LM,N (R), since equality holds
on the basis vectors ei ⊗ ej .

This leads to the following implementation for the tensor product of matrices:

Theorem 11.8 (Implementation of a tensor product of matrices). If S :
RM → RM , T : RN → RN are matrices, and X ∈ LM,N (R), we have that
(S ⊗ T )X can be computed as follows:
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1. Apply S to every column of X.

2. Transpose the resulting matrix.

3. Apply T to every column in the resulting matrix.

4. Transpose the resulting matrix.

This recipe for computing (S ⊗ T )X is perhaps best seen if we write

(S ⊗ T )X = SXTT = (T (SX)T )T . (11.1)

In the first step above we compute SX, in the second step (SX)T , in the third
step T (SX)T , in the fourth step (T (SX)T )T . The reason for writing the tensor
product this way, as an operation column by column, has to do with with that
S and T are mostly filters for our purposes, and that we want to reuse efficient
implementations instead of performing full matrix multiplications, just as we
decided to express a wavelet transformation in terms of filters. The reason for
using columns instead of rows has to do with that we have expressed filtering
as a matrix by column multiplication. Note that this choice of using columns
instead of rows should be influenced by how the computer actually stores values
in a matrix. If these values are stored column by column, performing operations
columnwise may be a good idea, since then the values from the matrix are read
in the same order as they are stored. If matrix values are stored row by row,
it may be a good idea to rewrite the procedure above so that operations are
performed row by row also (see Exercise 8).

Theorem 11.8 leads to the following algorithm for computing the tensor
product of matrices:

[M,N]=size(X);

for col=1:N

X(:,col)=S*X(:,col);

end

X=X’

for col=1:M

X(:,col)=T*X(:,col);

end

X=X’;

This algorithm replaces the rows and columns in X at each step. In the fol-
lowing, S = T in most cases. In this case we can replace with the following
algorithm, which is even simpler:

for k=1:2

for col=1:size(X,2)

X(:,col)=S*X(:,col);

end
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X=X’;

end

Here size(X,2) returns the number of columns of X (similarly, size(X,1) re-
turns the number of rows of X). In an efficient algorithm, we would of course
replace the matrix multiplications with S and T with efficient implementations.

If we want to apply a sequence of tensor products of filters to a matrix, the
order of the operations does not matter. This will follow from the next result:

Corollary 11.9. If S1 ⊗ T1 and S2 ⊗ T2 are two tensor products of one
dimensional filters, then (S1 ⊗ T1)(S2 ⊗ T2) = (S1S2)⊗ (T1T2).

Proof. By Theorem 11.7 we have that

(S1⊗T1)(S2⊗T2)X = S1(S2XTT

2 )TT

1 = (S1S2)X(T1T2)
T = ((S1S2)⊗(T1T2))X.

for any X ∈ LM,N (R). This proves the result.

Suppose that we want to apply the operation S ⊗ T to an image. We can
write

S ⊗ T = (S ⊗ I)(I ⊗ T ) = (I ⊗ T )(S ⊗ I). (11.2)

Moreover, from Theorem 11.7 it follows that

(S ⊗ I)X = SX

(I ⊗ T )X = XTT = (TXT )T .

This means that S⊗I corresponds to applying S to each column in X, and I⊗T
corresponds to applying T to each row in X. When S and T are smoothing fil-
ters, this is what we refered to as vertical smoothing and horizontal smoothing,
respectively. The relations in Equation (11.2) thus have the following interpre-
tation (alternatively note that the order of left or right multiplication does not
matter).

Observation 11.10. The order of vertical and horizontal smoothing does not
matter, and any tensor product of filters S ⊗ T can be written as a horizontal
filtering operation I ⊗ T followed by a vertical filtering operation S ⊗ I.

In fact, the order of any vertical operation S ⊗ I and horizontal operation
I ⊗ T does not matter: it is not required that the operations are filters. For
filters we have a stronger result: If S1, T1, S2, T2 all are filters, we have from
Corollary 11.9 that (S1 ⊗ T1)(S2 ⊗ T2) = (S2 ⊗ T2)(S1 ⊗ T1), since all filters
commute. This does not hold in general since general matrices do not commute.
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Example 11.11 (Computing partial derivatives and detecting edges). Consider
the bass reducing filter T = {1/2, 0,−1/2}, i.e. (T (x))n = 1

2 (xn+1−xn−1). The
computational molecule of the vertical filtering operation T ⊗ I is

rev(s)⊗ rev(t) =




−1/2
0
1/2



�
1
�
=




−1/2
0
1/2



 .

This shows as above that T ⊗ I is the transformation where the computational
molecule given by Equation 10.8 in Example 10.19 is placed over the image
samples. This tensor product thus computes the symmetric Newton quotient
approximation to the partial derivative in the y-direction (but note that the y-
direction points downwards, as commented in Example 10.19!). Equivalently, it
can be used for detecting horizontal edges in images. Similarly, I ⊗T computes
an approximation to the partial derivative in the x-direction (see Exercise 2).
This can be generalized to second order derivatives, as in Observation 10.22.
The computational molecules there can be factored as

(I ⊗ T )(I ⊗ T ) = I ⊗ (T 2)

(I ⊗ T )(T ⊗ I) = T ⊗ T

(T ⊗ I)(T ⊗ I) = (T 2)⊗ I,

respectively. More generally, the approximation to the partial derivative ∂
k+l

P

∂xk∂yl

of the function P can be computed by applying the tensor product (T l)⊗ (T k)
to the sample values of P . ♣

Exercises for Section 11.1
1. Let the filter T be defined by T = {−1, 1}.

a. Let A be a matrix which represents the pixel values in an image. What
can you say about how the new images (T ⊗I)A og (I⊗T )A look? What
are the interpretations of these operations?

b. Write down the 4 ⊗ 4-matrix A = (1, 1, 1, 1) ⊗ (0, 0, 1, 1). Compute
(T ⊗ I)A by applying the filters to the corresponding rows/columns of A
as we have learnt, and interpret the result. Do the same for (I ⊗ T )A.

2. With T = {1/2, 0,−1/2}, show that I ⊗ T is the transformation where
the computational molecule is given by Equation 10.7 in Example 10.19. This
tensor product can be used for computing partial derivatives in the x-direction,
equivalently detecting vertical edges in images.

3. With T = {1/2, 0,−1/2}, show that T ⊗T corresponds to the computational
molecule given by Equation 10.10 in Example 10.19.
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4. Let T be the moving average filter of length 2L+1, i.e. T = 1
L
{1, · · · , 1, 1, 1, · · · , 1� �� �

2L+1 times

}.

As in Example 11.4, find the computational molecule of T ⊗ T .

5. Verify that the computational molecule given by Equation 10.5 in Exam-
ple 10.19 is the same as that of T ⊗T , where T = { 1

64 ,
6
64 ,

15
64 ,

20
64 ,

15
64 ,

6
64 ,

1
64} (the

coefficients come from row 6 of Pascals triangle).

6. Show that the mapping F (x,y) = x ⊗ y is bi-linear, i.e. that F (αx1 +
βx2,y) = αF (x1,y)+βF (x2,y), and F (x, αy1+βy2) = αF (x,y1)+βF (x,y2).

7. Attempt to find matrices S : RM → RM and T : RN → RN so that the
following mappings from LM,N (R) to LM,N (R) can be written on the form
X → SXTT = (S ⊗ T )X. In all the cases, it may be that no such S, T can be
found. If this is the case, prove it.

a. The mapping which reverses the order of the rows in a matrix.

b. The mapping which reverses the order of the columns in a matrix.

c. The mapping which transposes a matrix.

8. Find an alternative form for Equation (11.1) and an accompanying reim-
plementation of Theorem 11.8 which is adapted to the case when we want all
operations to be performed row by row, instead of column by column.

9. (Trial Exam UIO V2012) Let the filter T be defined by T = {1, 2, 1}.

a. Write down the computational molecule of T ⊗ T .

b. Let us define x = (1, 2, 3), y = (3, 2, 1), z = (2, 2, 2), and w = (1, 4, 2).
Compute the matrix A = x⊗ y + z ⊗w.

c. Compute (T ⊗ T )A by applying the filter T to every row and column
in the matrix the way we have learnt. If the matrix A was more generally
an image, what can you say about how the new image will look?
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11.2 Change of bases in tensor products
In this section we will prove a specialization of our previous result to the case
where S and T are change of coordinate matrices. We start by proving the
following:

Theorem 11.12. If B1 = {vi}M−1
i=0 is a basis for RM , and B2 = {wj}N−1

j=0 is
a basis for RN , then {vi ⊗wj}(M−1,N−1)

(i,j)=(0,0) is a basis for LM,N (R). We denote
this basis by B1 ⊗ B2.

Proof. Suppose that
�(M−1,N−1)

(i,j)=(0,0) αi,j(vi⊗wj) = 0. Setting hi =
�

N−1
j=0 αi,jwj

we get
N−1�

j=0

αi,j(vi ⊗wj) = vi ⊗ (
N−1�

j=0

αi,jwj) = vi ⊗ hi.

where we have used the bi-linearity of the tensor product mapping (x,y) → x⊗y
(Exercise 11.1.6). This means that

0 =

(M−1,N−1)�

(i,j)=(0,0)

αi,j(vi ⊗wj) =
M−1�

i=0

vi ⊗ hi =
M−1�

i=0

vih
T

i
.

Column k in this matrix equation says 0 =
�

M−1
i=0 hi,kvi, where hi,k are the

components in hi. By linear independence of the vi we must have that h0,k =
h1,k = · · · = hM−1,k = 0. Since this applies for all k, we must have that all
hi = 0. This means that

�
N−1
j=0 αi,jwj = 0 for all i, from which it follows by

linear independence of the wj that αi,j = 0 for all j, and for all i. This means
that B1 ⊗ B2 is a basis.

In particular, as we have already seen, the standard basis for LM,N (R) can be
written EM,N = EM ⊗EN . This is the basis for a useful convention: For a tensor
product the bases are most naturally indexed in two dimensions, rather than
the usual sequential indexing. This difference translates also to the meaning
of coordinate vectors, which now are more naturally thought of as coordinate
matrices:

Definition 11.13 (Coordinate matrix). Let {vi}M−1
i=0 , {wj}N−1

j=0 be bases for
RM and RN . By the coordinate matrix of

�
k,l

αk,l(vk⊗wl) we will mean the
M ×N -matrix X with entries Xkl = αk,l.

We will have use for the following theorem, which shows how change of
coordinates in RM and RN translate to a change of coordinates in the tensor
product:
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Theorem 11.14 (Change of coordinates in tensor products). Assume that
B1, C1 are bases for RM , and B2, C2 are bases for RN , and that S is the change
of coordinates matrix from C1 to B1, and that T is the change of coordinates
matrix from C2 to B2. Both B1⊗B2 and C1⊗C2 are bases for LM,N (R), and if
X is the coordinate matrix in C1⊗C2, and Y the coordinate matrix in B1⊗B2,
then

Y = SXTT . (11.3)

Proof. Let cki be the i’th basis vector in Ck, bki the i’th basis vector in Bk,
k = 1, 2. Since any change of coordinates is linear, it is enough to show that it
coincides with X → SXTT on the basis C1 ⊗C2. The basis vector c1i ⊗ c2j has
coordinate vector X = ei ⊗ ej in C1 ⊗ C2. With the mapping X → SXTT this
is sent to

SXTT = S(ei ⊗ ej)T
T = coli(S)rowj(T

T ).

On the other hand, since column i in S is the coordinates of c1i in the basis B1,
and column j in T is the coordinates of c2j in the basis B2, we can write

c1i ⊗ c2j =

�
�

k

Sk,ib1k

�
⊗

�
�

l

Tl,jb2l

�
=

�

k,l

Sk,iTl,j(b1k ⊗ b2l)

=
�

k,l

Sk,i(T
T )j,l(b1k ⊗ b2l) =

�

k,l

(coli(S)rowj(T
T ))k,l(b1k ⊗ b2l)

we see that the coordinate vector of c1i⊗c2j in the basis B1⊗B2 is coli(S)rowj(TT ).
In other words, change of coordinates coincides with X → SXTT , and the proof
is done.

In both cases of tensor products of matrices and change of coordinates in
tensor products, we see that we need to compute the mapping X → SXTT . This
means that we can restate Theorem 11.8 for change of coordinates as follows:

Theorem 11.15 (Implementation of change of coordinates in tensor prod-
ucts). The change of coordinates from C1⊗C2 to B1⊗B2 can be implemented
as follows:

1. For every column in the coordinate matrix in C1 ⊗C2, perform a change
of coordinates from C1 to B1.

2. Transpose the resulting matrix.

3. For every column in the resulting matrix, perform a change of coordinates
from C2 to B2.

4. Transpose the resulting matrix.
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We can reuse the algorithm from the previous section to implement this. In
the following operations on images, we will visualize the pixel values in an image
as coordinates in the standard basis, and perform a change of coordinates.

Example 11.16 (Change of coordinates with the DFT). The DFT is one partic-
ular change of coordinates which we have considered. The DFT was the change
of coordinates from the standard basis to the Fourier basis. The corresponding
change of coordinates in a tensor product is obtained by substituting with the
DFT as the function implementing change of coordinates in Theorem 11.15.
The change of coordinates in the opposite direction is obtained by using the
IDFT instead of the DFT.

Modern image standards do typically not apply a change of coordinates to
the entire image. Rather one splits the image into smaller squares of appropriate
size, called blocks, and perform change of coordinates independently for each
block. With the JPEG standard, the blocks are always 8× 8. It is of course not
a coincidence that a power of 2 is chosen here, since the DFT takes a simplified
form in case of powers of 2.

The DFT values express frequency components. The same applies for the
two-dimensional DFT and thus for images, but frequencies are now represented
in two different directions. The thing which actually provides compression in
many image standards is that frequency components which are small are set to
0. This corresponds to neglecting frequencies in the image which have small
contributions. This type of lossy compression has little effect on the human
perception of the image, if we use a suitable neglection threshold. After we
have performed the two-dimensional DFT on an image, we can neglect DFT-
coefficients below a threshold on the resulting matrix X with the following code:

X=X.*(abs(X)>=threshold);

Here, the command abs(X)>=threshold returns a matrix with 1 and 0 of the
same size as X. 1 represents a value of true in the logical expression which is
evaluated, 0 represents false. The value is 1 if and only if the absolute value of the
corresponing element is greater than or equal to threshold. abs(X)>=threshold
thus returns what we could call a threshold matrix, and when we multiply with
this, elements below a given threshold are neglected.

In Figure 11.2 we have applied the two-dimensional DFT to our test image.
We have then neglected DFT coefficients which are below certain thresholds,
and transformed the samples back to reconstruct the image. When increasing
the threshold, the image becomes more and more unclear, but the image is quite
clear in the first case, where as much as more than 90% of the samples have
been neglected. The blocking effect at the block boundaries is clearly visible. ♣

Example 11.17 (Change of coordinates with the DCT). Similarly to the DFT,
the DCT was the change of coordinates from the standard basis to what we
called the DCT basis. The DCT is used more than the DFT in image pro-
cessing. Change of coordinates in tensor products between the standard basis
and the DCT basis is obtained by substituting with the DCT and the IDCT in
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(a) Threshold 30. 91.4%
of the DFT-values were ne-
glected

(b) Threshold 50. 95.3%
of the DFT-values were ne-
glected

(c) Threshold 100. 97.7%
of the DFT-values were ne-
glected

Figure 11.2: The effect on an image when it is transformed with the DFT, and
the DFT-coefficients below a certain threshold were neglected.

Theorem 11.15. The JPEG standard actually applies a two-dimensional DCT
to the blocks of size 8× 8, it does not apply the two-dimensional DFT.

If we follow the same strategy for the DCT as for the DFT, so that we
neglect DCT-coefficients which are below a given threshold, we get the images
shown in Figure 11.3. We see similar effects as with the DFT, but it seems that
the latter images are a bit clearer, verifying that the DCT is a better choice
than the DFT. It is also interesting to compare with what happens when we
drop splitting the image into blocks. Of course, when we neglect many of the
DCT-coefficients, we should see some artifacts, but there is no reason to believe
that these should be at the old block boundaries. The new artifacts can be seen
in Figure 11.4, where the same thresholds as before have been used. Clearly,
the new artifacts take a completely different shape. ♣

In the exercises you will be asked to implement functions which generate the
images shown in these examples.

Exercises for Section 11.2
1. Implement functions

function newx=FFT2Impl(x)

function x=IFF2Impl(newx)

function newx=DCT2Impl(x)

function x=IDCT2Impl(newx)

which implement the two-dimensional DCT, FFT, and their inverses as de-
scribed in this section. Base your code on the algorithm at the end of Sec-
tion 11.1.

2. Implement functions
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(a) Threshold 30. 93.1%
of the DCT-values were ne-
glected

(b) Threshold 50. 96.6%
of the DCT-values were ne-
glected

(c) Threshold 100. 98.8%
of the DCT-values were ne-
glected

Figure 11.3: The effect on an image when it is transformed with the DCT, and
the DCT-coefficients below a certain threshold were neglected.

(a) Threshold 30. 93.2%
of the DCT-values were ne-
glected

(b) Threshold 50. 95.8%
of the DCT-values were ne-
glected

(c) Threshold 100. 97.7%
of the DCT-values were ne-
glected

Figure 11.4: The effect on an image when it is transformed with the DCT, and
the DCT-coefficients below a certain threshold were neglected. The image has
not been split into blocks here.
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function samples=transform2jpeg(x)

function samples=transform2invjpeg(x)

which splits the image into blocks of size 8×8, and performs the DCT2/IDCT2
on each block. Finally run the code

function showDCThigher(threshold)

img=double(imread(’lena.png’,’png’));

zeroedout=0;

for k=1:3

newimg=transform2jpeg(img(:,:,k));

thresholdmatr=(abs(newimg)>=threshold);

zeroedout=zeroedout+size(img,1)*size(img,2)-sum(sum(thresholdmatr));

img(:,:,k)=transform2invjpeg(newimg.*thresholdmatr);

end

imshow(uint8(255*mapto01(img)));

fprintf(’%i percent of samples zeroed out\n’,...

100*zeroedout/(3*size(img,1)*size(img,2)));

for different threshold parameters, and check that this reproduces the test im-
ages of this section, and prints the correct numbers of values which have been
neglected (i.e. which are below the threshold) on screen.

3. (Exam UIO V2012) Suppose that FFTImpl and IFFTImpl are implementa-
tions of the FFT and IFFT algorithms. Suppose also that we have given an
image by the matrix X. Consider the following Matlab code:

threshold=30;

for k=1:2

for s=1:size(X,2)

X(:,s)=FFTImpl(X(:,s));

end

X=X’;

end

X=X.*(abs(X)>=threshold);

for k=1:2

for s=1:size(X,2)

X(:,s)=IFFTImpl(X(:,s));

end

X=X’;

end

Comment what the code does. Comment in particular on the meaning of the
parameter threshold, and what effect this has on the image.
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11.3 Summary
We defined the tensor product, and saw how this could be used to define op-
erations on images in a similar way to how we defined operations on sound.
It turned out that the tensor product construction could be used to construct
some of the operations on images we looked at in the previous chapter, which
now could be factorized into first filtering the columns in the image, and then
filtering the rows in the image. We went through an algorithm for computing
the tensor product, and established how we could perform change of coordi-
nates in tensor products. This enables us to define two-dimensional extensions
of the DCT and the DFT and their inverses, and we used these extensions to
experiment on images.

We mentioned that the JPEG standard essentially follows the approach de-
scribed in this chapter. A more detailed description of this standard can be
found in [11].
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Chapter 12

Tensor products in a wavelet

setting

In Chapter 11 we defined tensor products in terms of vectors, and we saw that
the tensor product of two vectors is in fact a matrix. The same construction
can be applied to other vector spaces, in particular to vector spaces that are
function spaces. As we will see, the tensor product of two univariate function
spaces will be a space of functions in two variables. Recall that wavelets are
defined in terms of function spaces, so this construction will allow us to define
tensor products of wavelets. Through this we will be able to define wavelet
transforms that can be applied to images.

Definition 12.1 (Tensor product of function spaces). Let U1 and U2 be two
vector spaces of functions defined on the intervals [0,M) and [0, N), respec-
tively, and suppose that f1 ∈ U1 and f2 ∈ U2. The tensor product of f1 and f2,
denoted f1⊗f2, denotes the function in two variables defined on [0,M)×[0, N)
given by f1(t1)f2(t2). The function f1 ⊗ f2 is also referred to as the separa-
ble extension of f1 and f2 to two variables. The tensor product of the two
spaces U1 ⊗ U2 denotes the set of all functions in two variables defined on
[0,M)× [0, N) and on the form f1(t1)f2(t2), where f1 ∈ U1 and f2 ∈ U2.

We will always assume that the spaces U1 and U2 consist of functions which
are at least integrable. In this case U1 ⊗U2 is also an inner product space, with
the inner product given by a double integral,

�f, g� =
�

N

0

�
M

0
f(t1, t2)g(t1, t2)dt1dt2. (12.1)
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In particular, this says that

�f1 ⊗ f2, g1 ⊗ g2� =
�

N

0

�
M

0
f1(t1)f2(t2)g1(t1)g2(t2)dt1dt2

=

�
M

0
f1(t1)g1(t1)dt1

�
N

0
f2(t2)g2(t2)dt2 = �f1, g1��f2, g2�.

(12.2)

This means that for tensor products, a double integral can be computed as the
product of two one-dimensional integrals.

The tensor product space defined in Definition 12.1 is useful for approxima-
tion of functions of two variables if each of the two spaces of univariate functions
have good approximation properties.

Idea 12.2. If the spaces U1 and U2 can be used to approximate functions
in one variable, then U1 ⊗ U2 can be used to approximate functions in two
variables.

We will not state this precisely, but just consider some important examples.

Example 12.3. Let U1 = U2 be the space of all polynomials of finite degree.
We know that U1 can be used for approximating many kinds of functions, such as
continuous functions, for example by Taylor series. The tensor product U1⊗U1

consists of all functions on the form
�

i,j
αi,jti1t

j

2. It turns out that polynomi-
als in several variables have approximation properties analogous to univariate
polynomials. ♣

Example 12.4. Let U1 = U2 = VN,T be the Nth order Fourier space which is
spanned by the functions

e−2πiNt/T , . . . , e−2πit/T , 1, e2πit/T , . . . , e2πiNt/T

The tensor product space U1 ⊗ U1 now consists of all functions on the form�
N

k,l=0 αk,le2πikt1/T e2πilt2/T . One can show that this space has approximation
properties similar to VN,T . This is the basis for the theory of Fourier series in
two variables. ♣

In the following we think of U1 ⊗ U2 as a space which can be used for
approximating a general class of functions. By associating a function with the
vector of coordinates relative to some basis, and a matrix with a function in two
variables, we have the following parallel to Theorem 11.12:

Theorem 12.5. If {fi}M−1
i=0 is a basis for U1 and {gj}N−1

j=0 is a basis for
U2, then {fi ⊗ gj}(M−1,N−1)

(i,j)=(0,0) is a basis for U1 ⊗ U2. Moreover, if the bases
for U1 and U2 are orthogonal/orthonormal, then the basis for U1 ⊗ U2 is
orthogonal/orthonormal.
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Proof. The proof is similar to that of Theorem 11.12: if

(M−1,N−1)�

(i,j)=(0,0)

αi,j(fi ⊗ gj) = 0,

we define hi(t2) =
�

N−1
j=0 αi,jgj(t2). It follows as before that

�
M−1
i=0 hi(t2)fi = 0

for any t2, so that hi(t2) = 0 for any t2 due to linear independence of the fi.
But then αi,j = 0 also, due to linear independene of the gj . The statement
about orthogonality follows from Equation 12.2.

We can now define the tensor product of two bases of functions as before: if
B = {fi}M−1

i=0 and C = {gj}N−1
j=0 , we set B⊗C = {fi⊗gj}(M−1,N−1)

(i,j)=(0,0) . Coordinate
matrices can also be defined as before: if f(t1, t2) =

�
Xi,j(fi ⊗ gj)(t1, t2), the

coordinate matrix of f is the matrix X with elements Xi,j . Theorem 11.14 can
also be proved in the same way in the context of function spaces. We state this
as follows:

Theorem 12.6 (Change of coordinates in tensor products of function spaces).
Assume that B1, C1 are bases for U1, and B2, C2 are bases for U2, and that S
is the change of coordinates matrix from C1 to B1, and that T is the change
of coordinates matrix from C2 to B2. Both B1 ⊗ B2 and C1 ⊗ C2 are bases for
U1 ⊗ U2, and if X is the coordinate matrix in C1 ⊗ C2, and Y the coordinate
matrix in B1 ⊗ B2, then

Y = SXTT . (12.3)

12.1 Adopting the tensor product terminology to
wavelets

In the remaining part of this chapter we will apply the tensor product con-
struction to wavelets. In particular the spaces U1, U2 from Definition 12.1 are
defined from function spaces Vm, Wm, constructed from a given wavelet. We
can in particular form the tensor products φ0,n1 ⊗ φ0,n2 . We will assume that

1. the first component φ0,n1 has period M (so that {φ0,n1}M−1
n1=0 is a basis for

the first component space),

2. the second component φ0,n2 has period N (so that {φ0,n2}N−1
n2=0 is a basis

for the second component space).

When we speak of V0 ⊗ V0 we thus mean an MN -dimensional space with basis
{φ0,n1 ⊗ φ0,n2}

(M−1,N−1)
(n1,n2)=(0,0), where the coordinate matrices are M × N . This

difference in the dimension of the two components is done to allow for images
where the number of rows and columns may be different. In the following we

303



will implicitly assume that the component spaces have dimension M and N , to
ease notation. If we use that φ

m−1 ⊕ ψ
m−1 also is a basis for Vm, we get the

following corollary to Theorem 12.5:

Corollary 12.7. Let φ, ψ be a scaling function and a mother wavelet. Then
the two sets of tensor products given by

φ
m
⊗ φ

m
= {φm,n1 ⊗ φm,n2}n1,n2

and

(φ
m−1 ⊕ψ

m−1)⊗ (φ
m−1 ⊕ψ

m−1)

= {φm−1,n1 ⊗ φm−1,n2 ,

φm−1,n1 ⊗ ψm−1,n2 ,

ψm−1,n1 ⊗ φm−1,n2 ,

ψm−1,n1 ⊗ ψm−1,n2}n1,n2

are both bases for Vm ⊗ Vm. This second basis is orthogonal/orthonormal
whenever the first basis is.

From this we observe that while the one-dimensional wavelet decomposition
splits Vm into a direct sum of the two vector spaces Vm−1 and Wm−1, the
corresponding two-dimensional decomposition splits Vm ⊗ Vm into a direct sum
of four tensor product vector spaces which deserve individual names.

Definition 12.8. We define the following tensor product spaces:

1. The space W (0,1)
m spanned by {φm,n1 ⊗ ψm,n2}n1,n2 ,

2. The space W (1,0)
m spanned by {ψm,n1 ⊗ φm,n2}n1,n2 ,

3. The space W (1,1)
m spanned by {ψm,n1 ⊗ ψm,n2}n1,n2 .

The splitting of Vm ⊗ Vm into a direct sum of vector spaces can now be
summed up as

Vm ⊗ Vm = (Vm−1 ⊗ Vm−1)⊕W (0,1)
m−1 ⊕W (1,0)

m−1 ⊕W (1,1)
m−1 . (12.4)

Also in the setting of tensor products we refer to Vm−1 ⊗ Vm−1 as the space of
low-resolution approximations. The remaining parts, W (0,1)

m−1 ⊕W (1,0)
m−1 ⊕W (1,1)

m−1 ,
is refered to as the detail space. Note that the coordinate matrix of

2m−1
N�

n1,n2=0

(cm−1,n1,n2(φm−1,n1 ⊗ φm−1,n2) + w(0,1)
m−1,n1,n2

(φm−1,n1 ⊗ ψm−1,n2)+

w(1,0)
m−1,n1,n2

(ψm−1,n1 ⊗ φm−1,n2) + w(1,1)
m−1,n1,n2

(ψm−1,n1 ⊗ ψm−1,n2))

(12.5)
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in the basis (φ
m−1 ⊕ψ

m−1)⊗ (φ
m−1 ⊕ψ

m−1) is




cm−1,0,0 · · · w(0,1)
m−1,0,0 · · ·

...
...

...
...

w(1,0)
m−1,0,0 · · · w(1,1)

m−1,0,0 · · ·
...

...
...

...




. (12.6)

We see that the coordinate matrix is split into four submatrices:

• The cm−1-values, i.e. the coordinates for Vm−1 ⊕Vm−1. This is the upper
left corner in (12.6), and is also called the 00-subband.

• The w(0,1)
m−1-values, i.e. the coordinates for W (0,1)

m−1 . This is the upper right
corner in (12.6).

• The w(1,0)
m−1-values, i.e. the coordinates for W (1,0)

m−1 . This is the lower left
corner in (12.6).

• The w(1,1)
m−1-values, i.e. the coordinates for W (1,1)

m−1 . This is the lower right
corner in (12.6).

The w(i,j)
m−1-values are as in the one-dimensional situation often refered to as

wavelet coefficients. Let us consider the Haar wavelet as an example.

Example 12.9. If Vm is the vector space of piecewise constant functions on any
interval of the form [k2−m, (k + 1)2−m) (as in the piecewise constant wavelet),
Vm ⊗Vm is the vector space of functions in two variables which are constant on
any square of the form [k12−m, (k1 + 1)2−m) × [k22−m, (k2 + 1)2−m). Clearly
φm,k1 ⊗φm,k2 is constant on such a square and 0 elsewhere, and these functions
are a basis for Vm ⊗ Vm.

Let us compute the orthogonal projection of φ1,k1 ⊗ φ1,k2 onto V0 ⊗ V0.
Since the Haar wavelet is orthonormal, the basis functions in (12.4) are or-
thonormal, and we can thus use the orthogonal decomposition formula to find
this projection. Clearly φ1,k1 ⊗ φ1,k2 has different support from all except one
of φ0,n1 ⊗ φ0,n2 . Since

�φ1,k1 ⊗ φ1,k2 , φ0,n1 ⊗ φ0,n2� = 1/2

when the supports intersect, we obtain

proj
V0⊗V0

φ1,k1⊗φ1,k2 =






1
2 (φ0,k1/2 ⊗ φ0,k2/2) when k1, k2 are even
1
2 (φ0,k1/2 ⊗ φ0,(k2−1)/2) when k1 is even, k2 is odd
1
2 (φ0,(k1−1)/2 ⊗ φ0,k2/2) when k1 is odd, k2 is even
1
2 (φ0,(k1−1)/2 ⊗ φ0,(k2−1)/2) when k1, k2 are odd

So, in this case there were 4 different formulas, since there were 4 different
combinations of even/odd. Let us also compute the projection onto the orthog-
onal complement of V0 ⊗ V0 in V1 ⊗ V1, and let us express this in terms of the
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φ0,n, ψ0,n, like we did in the one-variable case. Also here there are 4 different
formulas. When k1, k2 are both even we obtain

φ1,k1 ⊗ φ1,k2 − proj
V0⊗V0

(φ1,k1 ⊗ φ1,k2)

= φ1,k1 ⊗ φ1,k2 −
1

2
(φ0,k1/2 ⊗ φ0,k2/2)

=

�
1√
2
(φ0,k1/2 + ψ0,k1/2)

�
⊗
�

1√
2
(φ0,k2/2 + ψ0,k2/2)

�
− 1

2
(φ0,k1/2 ⊗ φ0,k2/2)

=
1

2
(φ0,k1/2 ⊗ φ0,k2/2) +

1

2
(φ0,k1/2 ⊗ ψ0,k2/2)

+
1

2
(ψ0,k1/2 ⊗ φ0,k2/2) +

1

2
(ψ0,k1/2 ⊗ ψ0,k2/2)−

1

2
(φ0,k1/2 ⊗ φ0,k2/2)

=
1

2
(φ0,k1/2 ⊗ ψ0,k2/2) +

1

2
(ψ0,k1/2 ⊗ φ0,k2/2) +

1

2
(ψ0,k1/2 ⊗ ψ0,k2/2).

Here we have used the relation φ1,ki
= 1√

2
(φ0,ki/2+ψ0,ki/2), which we have from

our first analysis of the Haar wavelet. Checking the other possibilities we find
similar formulas for the projection onto the orthogonal complement of V0 ⊗ V0

in V1 ⊗ V1 when either k1 or k2 is odd. In all cases, the formulas use the basis
functions for W (0,1)

0 , W (1,0)
0 , W (1,1)

0 . These functions are shown in Figure 12.1,
together with the function φ⊗ φ ∈ V0 ⊗ V0. ♣
Example 12.10. If we instead use any of the wavelets for piecewise linear
functions, the wavelet basis functions are not orthogonal anymore, just as in
the one-dimensional case. The new basis functions are shown in Figure 12.2 for
the alternative piecewise linear wavelet. ♣

An immediate corollary of Theorem 12.6 is the following:

Corollary 12.11. Let

Am = P(φ
m−1⊕ψ

m−1)←φ
m

Bm = Pφ
m
←(φ

m−1⊕ψ
m−1)

be the stages in the DWT and the IDWT, and let

X = (cm,i,j)i,j Y =

�
(cm−1,i,j)i,j (w(0,1)

m−1,i,j)i,j
(w(1,0)

m−1,i,j)i,j (w(1,1)
m−1,i,j)i,j

�
(12.7)

be the coordinate matrices in φ
m
⊗φ

m
, and (φ

m−1⊕ψ
m−1)⊗(φ

m−1⊕ψ
m−1),

respectively. Then

Y = AmXAT

m
(12.8)

X = BmY BT

m
(12.9)

By the m-level two-dimensional DWT/IDWT (or DWT2/IDWT2) we mean
the change of coordinates where this is repeated m times as in a DWT/IDWT.
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(d) The function ψ ⊗ ψ

Figure 12.1: The basis functions for (V0⊗V0)⊕W (0,1)
0 ⊕W (1,0)

0 ⊕W (1,1)
0 for the

Haar wavelet.
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(d) The function ψ ⊗ ψ

Figure 12.2: The basis functions for (V0⊗V0)⊕W (0,1)
0 ⊕W (1,0)

0 ⊕W (1,1)
0 for the

alternative piecewise linear wavelet.
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(a) Before the first
stage is performed

(b) The four types of
coordinates after the
first stage

(c) The seven types of
coordinates after the
second stage

Figure 12.3: Illustration of the different coordinates in a two level DWT2.

Each stage in DWT2 and IDWT2 can now be implemented by substituting
the matrices Am, Bm above into Theorem 11.15. This implementation can reuse
an efficient implementation of the one-dimensional DWT/IDWT. When using
many levels of the DWT2, the next stage is applied only to the upper left corner
of the matrix, just as the DWT at the next stage only is applied to the first
part of the coordinates. At each stage, the upper left corner of the coordinate
matrix (which gets smaller at each iteration), is split into four equally big parts.
This is illustrated in Figure 12.3, where the different types of coordinates which
appear in the first two stages in a DWT2 are indicated. It is also instructive to
see what information the different types of coordinates in an image represent.
If we discard a given type of coordinates, we will illustrate this by coloring the
corresponding region black. If we perform a two-level DWT2, i.e. we start
with a coordinate matrix in the basis φ2 ⊗ φ2, Figure 12.4 illustrates first the
collection of all coordinates, and then the resulting collection of coordinates
after removing subbands at the first level successively. The subbands which
have been removed are indicated with a black colour. Figure 12.5 illustrates in
the same way incremental removal of the subbands at the second level.

Let us make some experiments with images using the wavelets we have con-
sidered 1. Our theory is applied to images in the following way: We visualize
the pixels in the image as coordinates in the basis φ

m
⊗φ

m
(so that the image

has size (2mM)× (2mN)), and perform change of coordinates with the DWT2.
We can then, just as we did for sound, and for the DCT/DFT-values in images,
either set the the part from the W (i,j)

k
-spaces (the detail) to zero, or the part

from V0 ⊗ V0 (the M ×N -low-resolution approximation) to zero, depending on
whether we want to inspect the detail or the low-resolution approximation in
the image. Finally we apply the IDWT2 to end up with coordinates in φ

m
⊗φ

m

again, and display the image with pixel values being these coordinates.

Example 12.12 (Applying the Haar wavelet to a very simple example image).
Let us return to the interpretation of the different corners in the image after

1Note also that Matlab has a wavelet toolbox which could be used for these purposes, but
we will not go into the usage of this.
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Figure 12.4: Graphical representation of neglecting the wavelet coefficients at
the first level. After applying DWT2, the wavelet coefficients are split into four
parts, as shown in the first figure. In the following figures we have removed
coefficients from W (1,1)

1 , W (1,0)
1 , and W (0,1)

1 , in that order.

Figure 12.5: Graphical representation of neglecting the wavelet coefficients at
the second level. After applying the second stage in DWT2, the wavelet coeffi-
cients from the upper left corner are also split into four parts, as shown in the
first figure. In the following figures we have removed coefficients from W (1,1)

2 ,
W (1,0)

2 , and W (0,1)
2 , in that order.
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application of the DWT2. Since the first half of the coordinates in a DWT are
outputs from the lowpass filter H0, the upper half of the matrix has been subject
to a lowpass filter to the columns. Similarly, the left half of the matrix has been
subject to the same lowpass filter to the rows. Due to this, the following names
are given.

• The upper left corner is called the LL-subband,

• The upper right corner is called the LH-subband,

• The lower left corner is called the HL-subband,

• The lower right corner is called the HH-subband.

The two letters indicate the kind of filters which have been applied (L=lowpass,
H=highpass). The first filter indicates the filter which is applied to the columns,
the second indicates which is applied to the rows. The order is therefore impor-
tant. The name subband comes from the interpretation of these filters as being
selective on a certain frequency band.

Let us apply the Haar wavelet to a sample image with a simple chess pattern,
as shown in Figure 12.6(a). The lowpass filter of the Haar wavelet was essentially
a smoothing filter with two elements. Also, as we have seen, the highpass filter
essentially computes an approximation to the partial derivative. Therefore, after
the DWT2 we should see the following:

• In the upper left corner, the image is smoothed both in the vertical and
horizontal direction.

• In the upper right corner, the image is smoothed in the horizontal di-
rection, and edges (points with abrupt changes) in the vertical direction
should be visible.

• In the lower left corner, the image is smoothed in the vertical direction,
and edges in the horizontal direction should be visible.

• In the lower right corner, only points where we have abrupt changes in
both directions should be visible.

The sample image is chosen so that all these effect are easily seen, as shown in
Figure 12.6(b) and (c). In particular, only vertical edges are visible in the upper
right corner at the expected places in the chess pattern, and only horizontal
edges are visible in the lower left corner. Finally, only the grid points in the
image display abrupt changes in value in both direction, so that only these are
visible in the lower right corner. Note that the values after DWT2 may not lie
in the legal range of pixel values. The figure above has taken this into account.
♣

Example 12.13 (Creating thumbnail images). Let us apply the Haar wavelet
to our sample image. In Exercise 2 you will be asked to implement a function
which computes DWT2 for the Haar wavelet. After the DWT2, the upper left
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(a) Original image (b) m = 1 (c) m = 2

Figure 12.6: A simple image before and after application of the DWT2. The
Haar wavelet was used.

(a) (b) (c) (d)

Figure 12.7: The corresponding thumbnail images for the Image of Lena, ob-
tained with a DWT of 1, 2, 3, and 4 levels.

submatrices represent the low-resolution approximations from Vm−1 ⊗ Vm−1,
Vm−2 ⊗ Vm−2, and so on. We can now use the following code to store the
low-resolution approximation for m = 1:

img = double(imread(’lena.png’,’png’));

[l1,l2]=size(img);

x=DWT2HaarImpl(img,1);

x=x(1:(l1/2),1:(l2/2));

imwrite(uint8(x),’mm1thumbnail.jpg’,’jpg’);

In Figure 12.7 the results are shown up to 4 resolutions. In Figure 12.8 we have
also shown the entire result after a 1- and 2-stage DWT2 on the image. The
first two thumbnail images can be seen as the the upper left corners of the first
two images. The other corners represent detail. ♣

Example 12.14 (Detail and low-resolution approximations with the Haar wavelet).
In Exercise 3 you will be asked to implement a function showDWTlowerHaar

which displays the low-resolution approximations to our test image for the Haar
wavelet, using functions we implement in the exercises. Let us take a closer
look at the images generated. Above we viewed the low-resolution approxima-
tion as a smaller image. Let us compare with the image resulting from setting

312



(a) m = 1 (b) m = 2

Figure 12.8: The corresponding image resulting from a wavelet transform with
the Haar-wavelet.

the wavelet detail coefficients to zero, and viewing the result as an image of the
same size. In particular, let us neglect the wavelet coefficients as pictured in
Figure 12.4 and Figure 12.5. Since the Haar wavelet has few vanishing moments,
we should expect that the lower order resolution approximations from V0 are
worse when m increase. Figure 12.9 confirms this for the lower order resolu-
tion approximations. Alternatively, we should see that the higher order detail
spaces contain more information. In Exercise 4 you will be asked to implement a
function showDWTlowerdifferenceHaar which displays the detail components
in the image for a given resolution m for the Haar wavelet. The new images
when this function is used are shown in Figure 12.10. The black colour indicates
values which are close to 0. In other words, most of the coefficients are close to
0, which reflects one of the properties of the wavelet. ♣

Example 12.15 (The Spline 5/3 wavelet and removing bands in the detail
spaces). In Exercise 6 you will be asked to implement functions showDWTlower53
and showDWTlower97 which display the low-resolution approximations to our
image test file lena.png, for the Spline 5/3 and CDF 9/7 wavelets (these call
functions we also implement in the exercises). With these functions we can dis-
play the result for all the wavelets we have considered up to now, in succession,
and at a given resolution, with the following code:

function showDWTall(m)

disp(’Haar wavelet’);

showDWTlowerHaar(m);

disp(’5/3 wavelet’);

showDWTlower53(m);

disp(’9/7 wavelet’);

showDWTlower97(m);

The call to showDWTlowerHaar first displays the result, using the Haar wavelet.
The code then moves on to the function showDWTlower53 which uses the Spline
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(a) 1 level neglected (b) 2 levels neglected

(c) 3 levels neglected (d) 4 levels neglected

Figure 12.9: Image of Lena, with higher levels of detail neglected for the Haar
wavelet.
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(a) Detail from 1 level (b) Detail from 2 levels

(c) Detail from 3 levels (d) Detail from 4 levels

Figure 12.10: The corresponding detail for the images in Figure 12.9, with the
Haar wavelet.
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(a) The image unaltered

(b) Resulting image af-
ter neglecting detail in
W (1,1)

1 , as illustrated in
Figure 12.4(b)

(c) Resulting image after
neglecting also detail in
W (1,0)

1 , as illustrated in Fig-
ure 12.4(c).

(d) Resulting image after
neglecting also detail in
W (0,1)

1 , as illustrated in Fig-
ure 12.4(d).

Figure 12.11: Image of Lena, with various bands of detail at the first level
neglected. The Spline 5/3 wavelet was used.

5/3 wavelet, and the function showDWTlower97 which uses the CDF 9/7 wavelet.
In the show-functions, the image is first read from file, and then code of the
following form is called to neglect m levels of detail:

img=DWT2Impl53(img,m);

tokeep=img(1:(l1/2^m),1:(l2/2^m))

img=zeros(size(img));

img(1:(l1/2^m),1:(l2/2^m))=tokeep(1:(l1/2^m),1:(l2/2^m));

img=IDWT2Impl53(img,m);

Here the Spline 5/3 wavelet was used, and the image had size l1 × l2. We can
repeat this for various number of levels m, and compare the different images.
We can also neglect only parts of the detail, since it at each level is grouped
into three bands (W (1,1)

m , W (1,0)
m , W (0,1)

m ), contrary to the one-dimensional case.
Let us use the Spline 5/3 wavelet. The resulting images when the bands on the
first level indicated in Figure 12.4 are removed are shown in Figure 12.11. The
resulting images when the bands on the second level indicated in Figure 12.5
are removed are shown in Figure 12.12. The image is seen still to resemble the
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(a) Resulting image after
also neglecting detail in
W (1,1)

2 , as illustrated in Fig-
ure 12.12(a).

(b) Resulting image after
also neglecting detail in
W (1,0)

2 , as illustrated in Fig-
ure 12.12(b).

(c) Resulting image after
also neglecting detail in
W (0,1)

2 , as illustrated in Fig-
ure 12.12(c).

Figure 12.12: Image of Lena, with various bands of detail at the second level
neglected. The Spline 5/3 wavelet was used.

original one, even after two levels of wavelets coefficients have been neglected.
This in itself is good for compression purposes, since we may achieve compression
simply by dropping the given coefficients. However, if we continue to neglect
more levels of coefficients, the result will look poorer. In Figure 12.13 we have
also shown the resulting image after the third and fourth level of detail have
been neglected. Although we still can see details in the image, the quality in
the image is definitely poorer. Although the quality is poorer when we neglect
levels of wavelet coefficients, all information is kept if we additionally include
the detail/bands. In Figure 12.14, we have shown the corresponding detail for
Figure 12.11(d), Figure 12.12(c), and Figure 12.13. Clearly, more detail can be
seen in the image when more of the detail is included. ♣

Example 12.16. Let us repeat the previous example for the CDF 9/7 wavelet,
using the function showDWTlower97 you implemented in Exercise 6. We should
now see improved images when we discared the detail in the images. Figure 12.15
confirms this for the lower resolution spaces, while Figure 12.16 confirms this
for the higher order detail spaces. ♣

As mentioned, the procedure developed in this section for applying a wavelet
transform to an image with the help of the tensor product construction, is
adopted in the JPEG2000 standard. This lossy (can also be used as lossless)
image format was developed by the Joint Photographic Experts Group and
published in 2000. After significant processing of the wavelet coefficients, the
final coding with JPEG2000 uses an advanced version of arithmetic coding.
At the cost of increased encoding and decoding times, JPEG2000 leads to as
much as 20 % improvement in compression ratios for medium compression rates,
possibly more for high or low compression rates. The artefacts are less visible
than in JPEG and appear at higher compression rates. Although a number of
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(a) 3 levels neglected (b) 4 levels neglected

Figure 12.13: Image of Lena, with higher levels of detail neglected. The Spline
5/3 wavelet was used.

(a) Detail from 1 level (b) Detail from 2 levels

(c) Detail from 3 levels (d) Detail from 4 levels

Figure 12.14: The corresponding detail for the image of Lena. The Spline 5/3
wavelet was used.
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(a) 1 level neglected (b) 2 levels neglected

(c) 3 levels neglected (d) 4 levels neglected

Figure 12.15: Image of Lena, with higher levels of detail neglected. The CDF
9/7 wavelet was used.
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(a) Detail from 1 level (b) Detail from 2 levels

(c) Detail from 3 levels (d) Detail from 4 levels

Figure 12.16: The corresponding detail for the image of Lena. The CDF 9/7
wavelet was used.
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components in JPEG2000 are patented, the patent holders have agreed that the
core software should be available free of charge, and JPEG2000 is part of most
Linux distributions. However, there appear to be some further, rather obscure,
patents that have not been licensed, and this may be the reason why JPEG2000
is not used more. The extension of JPEG2000 files is .jp2.

Exercises for Section 12.1
Note that there are three colour components in the test image ’lena.png’. In the
following exercises you must therefore run the DWT and IDWT2 on all three
components.

1. In this exercise we will use the filters G0 = {1, 1}, G1 = {1,−1}.

a. Let X be a matrix which represents the pixel values in an image.
Define x = (1, 0, 1, 0) and y = (0, 1, 0, 1). Compute (G0 ⊗G0)(x⊗ y).

b. For a general image X, describe how the images (G0 ⊗G0)X, (G0 ⊗
G1)X, (G1 ⊗G0)X, and (G1 ⊗G1)X may look.

c. Assume that we run the following code on an image represented by
the matrix X:

[l1,l2]=size(X);

for s=1:l2

c=(X(1:2:(l1-1),s)+X(1:l1,s));

w=(X(1:2:(l1-1),s)-X(1:l1,s));

X(1:l1,s)=[c w];

end

X=X’;

for s=1:l1

c=(X(1:2:(l2-1),s)+X(1:l2,s));

w=(X(1:2:(l2-1),s)-X(1:l2,s));

X(1:l2,s)=[c w];;

end

X=X’;

Comment the code. Describe what will be shown in the upper left corner
of X after the code has run. Do the same for the lower left corner of the
matrix. What is the connection with the images (G0⊗G0)X, (G0⊗G1)X,
(G1 ⊗G0)X, and (G1 ⊗G1)X?
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2. Implement functions

function xnew=DWT2HaarImpl(x,m)

function x=IDWT2HaarImpl(xnew,m)

which implements DWT2 and IDWT2 for the Haar-wavelet. Your functions
should call the functions DWTHaarImpl and IDWTHaarImpl from Section 5.3.

3. In this exercise we will experiment with applying an m-level DWT to a sound
file.

a. Write a function

function showDWTlowerHaar(m)

which

1. reads the image file lena.png,
2. performs an m-level DWT2 to the image samples using the function

DWT2HaarImpl,
3. sets all wavelet coefficients representing detail to zero (i.e. keep only

wavelet coefficients from V0 ⊗ V0),
4. performs an IDWT2 on the resulting coefficients using the function

IDWT2HaarImpl,
5. displays the resuting image.

b. Run the function showDWTlowerHaar for different values of m. De-
scribe what you see for different m. degraded? Compare with what you
saw with the function showDCThigher in Exercise 2, where you performed
a DCT on the image samples instead, and set DCT coefficients below a
given threshold to zero.

c. Do the image samples returned by showDWTlowerHaar lie in [0, 255]?

4. Repeat Exercise 3, but this time instead keep only wavelet coefficients from
the detail spaces. Call the new function showDWTlowerdifferenceHaar. What
kind of image do you see? Can you recognize the original image in what you
see?

5. In this exercise we will implement DTW2 for the CDF 9/7 wavelet.
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a. Implement functions

function Xnew=DWT2Impl53(X,m)

function X=IDWT2Impl53(Xnew,m)

where DWT2Impl53 performs the m-level DWT2 on the image given by
X, and IDWT2Impl53 performs the m-level IDWT2, when the Spline 5/3
wavelet is used. The functions should at each stage call DWTImpl53 and
IDWTImpl53 with m = 1, which you implemented in Exercise 2, and each
call to these functions should alter the appropriate upper left submatrix
in the coordinate matrix, in the way we have described in this chapter.

b. Implement functions

function Xnew=DWT2Impl97(X,m)

function X=IDWT2Impl97(Xnew,m)

which does for the CDF 9/7 wavelet, what the functions in (a) did for
the Spline 5/3 wavelet. The same comments apply here, but you should
instead call the functions DWTImpl97 and IDWTImpl97, which you imple-
mented in Exercise 3.

6. Write functions

function showDWTlower53(m)

function showDWTlower97(m)

which reimplements the function showDWTlowerHaar from Exercise 3 when the
Spline 5/3 wavelet and the CDF 9/7 wavelet are used instead. Look at the result
using the different wavelets we have encountered and for different m, using the
code from Example 12.14. Can you see any difference from the Haar wavelet?
If so, which wavelet gives the best image quality?
7. In this exercise we will change the code in Example 12.14 so that it instead
only shows the contribution from the detail spaces.

a. Reimplement the functions you made in Exercise 6 so that they instead
show the contribution from the detail spaces. Call the new functions
showDWTlowerdifference53 and showDWTlowerdifference97.

b. In Exercise 4 we implemented a function showDWTlowerdifferenceHaar

for looking at the detail/error when the Haar wavelet is used. In the
function showDWTall from Example 12.14, replace showDWTlowerHaar,
showDWTlower53, and showDWTlower97, with showDWTlowerdifferenceHaar,
showDWTlowerdifference53, and showDWTlowerdifference97. Describe
the images you see for different m. Try to explain why the images seem
to get clearer when you increase m.
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Figure 12.17: A typical fingerprint image.

12.2 An application to the FBI standard for com-
pression of fingerprint images

In the beginning of the 1990s, the FBI realized that it had a major problem
when it came to their archive of fingerprint images. With more than 200 million
fingerprint records, their digital storage exploded in size, so that some compres-
sion strategy needed to be employed. Several strategies were tried, for instance
the widely adopted JPEG standard. The problem with JPEG had to do with
the blocking artefacts, which we saw in Section 11.2. Among other strategies,
FBI chose a wavelet-based strategy due to its nice properties. The particu-
lar way wavelets are applied in this strategy is called Wavelet transform/scalar
quantization (WSQ).

Fingerprint images are a very specific type of images, as seen in Figure 12.17.
They differ from natural images by having a large number of abrupt changes.
One may ask whether other wavelets than the ones we have used up to now are
more suitable for compressing such images. After all, the technique of vanishing
moments we have used for constructing wavelets are most suitable when the
images display some degree of regularity (such as most natural images do).
Extensive tests were undertaken to compare different wavelets, and the CDF 9/7
wavelet used by JPEG2000 turned out to perform very well, also for fingerprint
images. One advantage with the choice of this wavelet for the FBI standard is
that one then can exploit existing wavelet transformations from the JPEG2000
standard.

Besides the choice of wavelet, one can also ask other questions in the quest to
compress fingerprint images: What number of levels is optimal in the application
of the DWT2? And, while the levels in a DWT2 (see Figure 12.3) have an
interpretation as change of coordinates, one can apply a DWT2 to the other
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subbands as well. This can not be interpreted as a change of coordinates, but
if we assume that these subbands have the same characteristics as the original
image, the DWT2 will also help us with compression when applied to them. Let
us illustrate how the FBI standard applies the DWT2 to the different subbands.
After one stage of the DWT2, we get the image shown in Figure 12.18(a). If
we after this also apply a DWT2 to the bands where highpass filters have been
applied, we get the following illustrations of the new subbands:

If we apply all these, we get the following subband structure:

If we also apply the second stage in a DWT2 we arrive at

The resulting image is shown in Figure 12.18(b). Now the FBI standard applies a
DWT2 in three of the four resulting subbands, to arrive at the subband structure

The resulting image is shown in Figure 12.18(c). In all the remaining subbands,
the DWT2 is now again applied:
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(a) After one stage of the DWT2 (b) After applying another stage of DWT2 to
all bands

(c) After one stage of the DWT (d) After one stage of the DWT

Figure 12.18: The fingerprint image after several DWT’s
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(a) Subband decomposition (b) Resulting image

Figure 12.19: The wavelet subband decomposition with the resulting image, as
employed by the FBI

The resulting image is shown in Figure 12.18(d). Finally, a DWT2 is again
applied, but this time only to the upper left corner. In Figure 12.19 the resulting
subband decomposition is shown, together with the resulting image. When
establishing the standard for compression of fingerprint images, the FBI chose
this subband decomposition. In Figure 12.20 we also show the corresponding
low resolution approximation and detail. As can be seen from the subband
decomposition, the low-resolution approximation is simply the approximation
after a five stage DWT2.

The original JPEG2000 standard did not give the possibility for this type
of subband decomposition. This has been added to a later extension of the
standard, which makes the two standards more compatible. IN FBI’s system,
there are also other important parts besides the actual compression strategy,
such as fingerprint pattern matching: In order to match a fingerprint quickly
with the records in the database, several characteristics of the fingerprints are
stored, such as the number of lines in the fingerprint, and points where the lines
split or join. When the database is indexed with this information, one may not
need to decompress all images in the database to perform matching. We will
not go into details on this here.
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(a) Low resolution approximation (b) Detail

Figure 12.20: The low-resolution approximation and the detail obtained by the
FBI standard for compression of fingerprint images, when applied to our sample
fingerprint image.

Exercises for Section 12.2
1. Write code which generates the images shown in figures 12.18, 12.19, and 12.20.
Use the functions DWT2Impl97 and IDWT2Impl97 from Exercise 12.1. 5 to achieve
this.

12.3 Summary
We extended the tensor product construction to functions by defining the tensor
product of functions as a function in two variables. We explained with some
examples that this made the tensor product formalism useful for approximation
of functions in several variables. We extended the wavelet transform to the
tensor product setting, so that it too could be applied to images. We also
performed several experiments on our test image, such as creating low-resolution
images and neglecting wavelet coefficients. We also used different wavelets, such
as the Haar wavelet, the Spline 5/3 wavelet, and the CDF 9/7 wavelet. The
experiments confirmed what we previously have proved, that wavelets with many
vanishing moments are better suited for compression purposes.

The specification of the JPGE2000 standard can be found in [1]. In [14],
most details of this theory is covered, in particular details on how the wavelet
coefficients are coded (which is not covered here).

One particular application of wavelets in image processing is the compres-
sion of fingerprint images. The standard which describes how this should be
performed can be found in [5]. In [2], the theory is described.
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