
12.4 Solutions

Section 1.1
1 Setting pref=0.00002 Pa and p=100 000 Pa in the decibel expression we get

20 log10

�
p

pref

�
= 20 log10

�
100000

0.00002

�
= 20 log10

�
105

2× 10−5

�

= 20 log10

�
1010

2

�
= 20 (10− log10 2) ≈ 194db.

Section 1.2
1 sin(2πν1t) has period 1/ν1, while sin(2πν2t) has period 1/ν2. The period is
not unique, however. The first one also has period n/ν1, and the second also
n/ν2, for any n. The sum is periodic if there exist n1, n2 so that n1/ν1 = n2ν2.
Then this value will be a common period of the two functions, which also will
be a period of f . This amounts to that ν1/ν2 = n1/n2, i.e. that ν1/ν2 is a
rational number.

Section 1.3
1 The function f(t) = 1√

t
= t−1/2 can be used since it has the properties

�
T

0
f(t)dt = lim

x→0+

�
T

x

t−1/2dt = lim
x→0+

�
2t1/2

�T
x

= lim
x→0+

(2T 1/2 − 2x1/2) = 2T 1/2

�
T

0
f(t)2dt = lim

x→0+

�
T

x

t−1dt = lim
x→0+

[ln t]T
x

= lnT − lim
x→0+

lnx = ∞.

Section 1.4
2 For f(t) = t we get that a0 = 1

T

�
T

0 tdt = T

2 . We also get

an =
2

T

�
T

0
t cos(2πnt/T)dt

=
2

T

��
T

2πn
t sin(2πnt/T)

�T

0

− T

2πn

�
T

0
sin(2πnt/T)dt

�
= 0

bn =
2

T

�
T

0
t sin(2πnt/T)dt

=
2

T

��
− T

2πn
t cos(2πnt/T)

�T

0

+
T

2πn

�
T

0
cos(2πnt/T)dt

�
= − T

πn
.

329

The Fourier series is thus
T

2
−

�

n≥1

T

πn
sin(2πnt/T).

Note that this is almost a sine series, since it has a constant term, but no other
cosine terms. If we had subtracted T/2 we would have obtained a function
which is antisymmetric, and thus a pure sine series.

For f(t) = t2 we get that a0 = 1
T

�
T

0 t2dt = T
2

3 . We also get

an =
2

T

�
T

0
t2 cos(2πnt/T)dt

=
2

T

��
T

2πn
t2 sin(2πnt/T)

�T

0

− T

πn

�
T

0
t sin(2πnt/T)dt

�

=

�
− T

πn

��
− T

πn

�
=

T 2

π2n2

bn =
2

T

�
T

0
t2 sin(2πnt/T)dt

=
2

T

��
− T

2πn
t2 cos(2πnt/T)

�T

0

+
T

πn

�
T

0
t cos(2πnt/T)dt

�

= −T 2

πn
.

Here we see that we could use the expressions for the Fourier coefficients of
f(t) = t to save some work. The Fourier series is thus

T 2

3
+

�

n≥1

�
T 2

π2n2
cos(2πnt/T)− T 2

πn
sin(2πnt/T)

�
.

For f(t) = t3 we get that a0 = 1
T

�
T

0 t3dt = T
3

4 . We also get

an =
2

T

�
T

0
t3 cos(2πnt/T)dt

=
2

T

��
T

2πn
t3 sin(2πnt/T)

�T

0

− 3T

2πn

�
T

0
t2 sin(2πnt/T)dt

�

=

�
− 3T

2πn

��
−T 2

πn

�
=

3T 3

2π2n2

bn =
2

T

�
T

0
t3 sin(2πnt/T)dt

=
2

T

��
− T

2πn
t3 cos(2πnt/T)

�T

0

+
3T

2πn

�
T

0
t2 cos(2πnt/T)dt

�

= −T 3

πn
+

3T

2πn

T 2

π2n2
= −T 3

πn
+

3T 3

2π3n3
.

330

Also here we saved some work, by reusing the expressions for the Fourier coef-
ficients of f(t) = t2. The Fourier series is thus

T 3

4
+

�

n≥1

�
3T 3

2π2n2
cos(2πnt/T) +

�
−T 3

πn
+

3T 3

2π3n3

�
sin(2πnt/T)

�
.

We see that all three Fourier series converge slowly. This is connected to the
fact that none of the functions are continuous at the borders of the periods.

3 Let us define an,k, bn,k as the Fourier coefficients of tk. When k > 0 and
n > 0, integration by parts gives us the following difference equations:

an,k =
2

T

�
T

0
tk cos(2πnt/T)dt

=
2

T

��
T

2πn
tk sin(2πnt/T)

�T

0

− kT

2πn

�
T

0
tk−1 sin(2πnt/T)dt

�

= − kT

2πn
bn,k−1

bn,k =
2

T

�
T

0
tk sin(2πnt/T)dt

=
2

T

��
− T

2πn
tk cos(2πnt/T)

�T

0

+
kT

2πn

�
T

0
tk−1 cos(2πnt/T)dt

�

= −T k

πn
+

kT

2πn
an,k−1.

When n > 0, these can be used to express an,k, bn,k in terms of an,0, bn,0, for
which we clearly have an,0 = bn,0 = 0. For n = 0 we have that a0,k = T

k

k+1 for
all k. The following program computes an,k, bn,k recursively when n > 0.

function [ank,bnk]=findfouriercoeffs(n,k,T)

ank=0; bnk=0;

if k>0

[ankprev,bnkprev]=findfouriercoeffs(n,k-1,T)

ank=-k*T*bnkprev/(2*pi*n);

bnk=-T^k/(pi*n) + k*T*ankprev/(2*pi*n);

end

331

Section 1.5
1 For n1 �= n2 we have that

�e2πin1t/T , e2πin2t/T � = 1

T

�
T

0
e2πin1t/T e−2πin2t/T dt =

1

T

�
T

0
e2πi(n1−n2)t/T dt

=

�
T

2πi(n1 − n2)
e2πi(n1−n2)t/T

�T

0

=
T

2πi(n1 − n2)
− T

2πi(n1 − n2)
= 0.

When n1 = n2 the integrand computes to 1, so that �e2πint/T � = 1.

3

a We have that

cosn(t) =

�
1

2
(eit + e−it)

�n

sinn(t) =

�
1

2i
(eit − e−it)

�n

If we multiply out here, we get a sum of terms of the form eikt, where −n ≤
k ≤ n. As long as n ≤ N it is clear that this is in VN,2π.

b We have that

cos(t) =
1

2
(eit + e−it)

cos2(t) =
1

4
(eit + e−it)2 =

1

4
e2it +

1

2
+

1

4
e−2it

cos3(t) =
1

8
(eit + e−it)3 =

1

8
e3it +

3

8
eit +

3

8
e−it +

1

8
e−3it.

Therefore, for the first function the nonzero Fourier coefficients are y−1 = 1/2,
y1 = 1/2, for the second function y−2 = 1/4, y0 = 1/2, y2 = 1/4, for the third
function y−3 = 1/8, y−1 = 3/8, y1 = 3/8, y3 = 1/8.

c In order to find the Fourier coefficients of cosn(t) we have to multiply out
the expression 1

2n (e
it + e−it)n. The coefficients we get after this can alos be

obtained from Pascal’s triangle.

332

4 We obtain that

yn =
1

T

�
T/2

0
e−2πint/T dt− 1

T

�
T

T/2
e−2πint/T dt

= − 1

T

�
T

2πin
e−2πint/T

�T/2

0

+
1

T

�
T

2πin
e−2πint/T

�T

T/2

=
1

2πin

�
−e−πin + 1 + 1− e−πin+

�

=
1

πin

�
1− e−πin

�
=

�
0, if n is even;
2/(πin), if n is odd.

.

Instead using Theorem 1.26 together with the coefficients bn = 2(1−cos(nπ)
nπ

we
computed in Example 1.18, we obtain

yn =
1

2
(an − ibn) = −1

2
i

�
0, if n is even;
4/(nπ), if n is odd.

=

�
0, if n is even;
2/(πin), if n is odd.

when n > 0. The case n < 0 follows similarly.

6 For f(t) = t we get

yn =
1

T

�
T

0
te−2πint/T dt =

1

T

��
− T

2πin
te−2πint/T

�T

0

+

�
T

0

T

2πin
e−2πint/T dt

�

= − T

2πin
=

T

2πn
i.

From Exercise 2 we had bn = − T

πn
, for which Theorem 1.26 gives yn = T

2πn i for
n > 0, which coincides with the expression we obtained. The case n < 0 follows
similarly.
For f(t) = t2 we get

yn =
1

T

�
T

0
t2e−2πint/T dt =

1

T

��
− T

2πin
t2e−2πint/T

�T

0

+ 2

�
T

0

T

2πin
te−2πint/T dt

�

= − T 2

2πin
+

T 2

2π2n2
=

T 2

2π2n2
+

T 2

2πn
i.

From Exercise 2 we had an = T
2

π2n2 and bn = −T
2

πn
, for which Theorem 1.26

gives yn = 1
2

�
T

2

π2n2 + iT
2

πn

�
for n > 0, which also is seen to coincide with what

we obtained. The case n < 0 follows similarly.
For f(t) = t3 we get

yn =
1

T

�
T

0
t3e−2πint/T dt =

1

T

��
− T

2πin
t3e−2πint/T

�T

0

+ 3

�
T

0

T

2πin
t2e−2πint/T dt

�

= − T 3

2πin
+ 3

T

2πin
(

T 2

2π2n2
+

T 2

2πn
i) = 3

T 3

4π2n2
+

�
T 3

2πn
− 3

T 3

4π3n3

�
i =

333

From Exercise 2 we had an = 3T 3

2π2n2 and bn = −T
3

πn
+ 3T 3

2π3n3 for which Theo-
rem 1.26 gives

yn =
1

2

�
3T 3

2π2n2
+ i

�
T 3

πn
− 3T 3

2π3n3

��
=

3T 3

4π2n2
+

�
T 3

2πn
− 3T 3

4π3n3

�
i

for n > 0, which also is seen to coincide with what we obtained. The case n < 0
follows similarly.

7

a If f is symmetric about 0 we have that bn = 0. Theorem 1.26 then gives
that yn = 1

2an, which is real. The same theorem gives that y−n = 1
2an = yn.

b If f is antisymmetric about 0 we have that an = 0. Theorem 1.26 then
gives that yn = − 1

2bn, which is purely imaginary. The same theorem gives that
y−n = 1

2bn = −yn.

c When yn = y−n we can write

y−ne
2πi(−n)t/T + yne

2πint/T = yn(e
2πint/T + e−2πint/T) = 2yn cos(2πnt/T)

This is clearly symmetric, but then also
�

N

n=−N
yne2πint/T is symmetric since

it is a sum of symmetric functions.

d When yn = −y−n we can write

y−ne
2πi(−n)t/T + yne

2πint/T = yn(−e2πint/T + e2πint/T) = 2iyn sin(2πnt/T)

This is clearly antisymmetric, but then also
�

N

n=−N
yne2πint/T is antisymmetric

since it is a sum of antisymmetric functions, and since y0 = 0.

Section 1.6
1 The 2nth complex Fourier coefficient of f̆ is

1

2T

� 2T

0
f̆(t)e−2πi2nt/(2T)dt

=
1

2T

�
T

0
f(t)e−2πint/T dt+

1

2T

� 2T

T

f(2T − t)e−2πint/T dt.

Substituting u = 2T − t in the second integral we see that this is

=
1

2T

�
T

0
f(t)e−2πint/T dt− 1

2T

� 0

T

f(u)e2πinu/T du

=
1

2T

�
T

0
f(t)e−2πint/T dt+

1

2T

�
T

0
f(t)e2πint/T dt

=
1

2
yn +

1

2
y−n.

Therefore we have a2n = yn − y−n.

334

Section 1.7
1 We obtain that

yn =
1

T

�
T/4

−T/4
e−2πint/T dt− 1

T

� −T/4

−T/2
e−2πint/T dt− 1

T

�
T/2

T/4
e−2πint/T dt

= −
�

1

2πin
e−2πint/T

�T/4

−T/4

+

�
1

2πin
e−2πint/T

�−T/4

−T/2

+

�
1

2πin
e−2πint/T

�T/2

T/4

=
1

2πin

�
−e−πin/2 + eπin/2 + eπin/2 − eπin + e−πin − e−πin/2

�

=
1

πn
(2 sin(πn/2)− sin(πn)) =

2

πn
sin(πn/2).

The square wave defined in this exercise can be obtained by delaying our original
square wave with −T/4. Using Property 3 in Theorem 1.36 with d = −T/4

on the complex Fourier coefficients yn =

�
0, if n is even;
2/(πin), if n is odd.

which we

obtained for the square wave in Exercise 1.5.4, we obtain the Fourier coefficients

e2πin(T/4)/T

�
0, if n is even;
2/(πin), if n is odd.

=

�
0, if n is even;
2i sin(πn/2)

πin
, if n is odd.

=

�
0, if n is even;
2
πn

sin(πn/2), if n is odd.
.

This verifies the result.

2 Since the real Fourier series of the square wave is
�

n≥1,n odd

4

πn
sin(2πnt/T),

Theorem 1.26 gives us that the complex Fourier coefficients are yn = − 1
2 i

4
πn

=
− 2i

πn
, and y−n = 1

2 i
4
πn

= 2i
πn

for n > 0. This means that yn = − 2i
πn

for all n,
so that the complex Fourier series of the square wave is

−
�

n odd

2i

πn
e2πint/T .

Using Property 4 in Theorem 1.36 we get that the e−2πi4t/T (i.e. set d = −4)
times the square wave has its n’th Fourier coefficient equal to − 2i

π(n+4) . Using
linearity, this means that 2ie−2πi4t/T times the square wave has its n’th Fourier
coefficient equal to 4

π(n+4) . We thus have that the function

f(t) =

�
2ie−2πi4t/T , 0 ≤ t < T/2

−2ie−2πi4t/T , T/2 ≤ t < T

has the desired Fourier series.

335

Section 2.2
1 The code for playing the sound can look like this:

fs=44100;

T=1/440;

t=0:(1/fs):3;

S=2*(t>=4*T).*min((t-4*T)/(8*T),1).*sin(2*pi*440*t);

S=S/max(abs(S));

playerobj=audioplayer(S,fs);

playblocking(playerobj);

2 The important thing to note here is that there are two oscillations present
in Figure 1.1(b): One slow oscillation with a higher amplitude, and one faster
oscillation, with a lower amplitude. We see that there are 10 periods of the
smaller oscillation within one period of the larger oscillation, so that we should
be able to reconstruct the figure by using frequencies where one is 10 times
the other, such as 440Hz and 4400Hz. Also, we see from the figure that the
amplitude of the larger oscillation is close to 1, and close to 0.3 for the smaller
oscillation. A good choice therefore seems to be a = 1, b = 0.3. The code can
look this: The code can look like this:

fs=44100;

T=1/440;

t=0:(1/fs):3;

S=sin(2*pi*440*t)+0.3*sin(2*pi*4400*t);

S=S/max(abs(S));

playerobj=audioplayer(S,fs);

playblocking(playerobj);

3

a The code can look like this:

function playpuresound(f)

fs=44100;

t=0:(1/fs):3;

sd=sin(2*pi*f*t);

playerobj=audioplayer(sd,fs);

playblocking(playerobj)

4 The code can look like this:

function playsquare(T)

% Play a square wave with period T over 3 seconds

fs=44100;

samplesperperiod=round(fs*T);

336

oneperiod=[ones(1,round(samplesperperiod/2)) ...

-ones(1,round(samplesperperiod/2))];

allsamples=zeros(1,floor(3/T)*length(oneperiod));

for k=1:floor(3/T)

allsamples(((k-1)*length(oneperiod)+1):k*length(oneperiod))=oneperiod;

end

playerobj=audioplayer(allsamples,fs);

playblocking(playerobj)

function playtriangle(T)

% Play a triangle wave with period T over 3 seconds

fs=44100;

samplesperperiod=round(fs*T);

oneperiod=[linspace(-1,1,round(samplesperperiod/2)) ...

linspace(1,-1,round(samplesperperiod/2))];

allsamples=zeros(1,floor(3/T)*length(oneperiod));

for k=1:floor(3/T)

allsamples(((k-1)*length(oneperiod)+1):k*length(oneperiod))=oneperiod;

end

playerobj=audioplayer(allsamples,fs);

playblocking(playerobj)

5

a The code can look like this:

function playsquaretrunk(T,N)

fs=44100;

t=0:(1/fs):3;

sd=zeros(1,length(t));

n=1;

while n<=N

sd = sd + (4/(n*pi))*sin(2*pi*n*t/T);

n=n+2;

end

playerobj=audioplayer(sd,fs);

playblocking(playerobj)

function playtriangletrunk(T,N)

fs=44100;

t=0:(1/fs):3;

sd=zeros(1,length(t));

n=1;

while n<=N

sd = sd - (8/(n^2*pî 2))*cos(2*pi*n*t/T);

337

n=n+2;

end

playerobj=audioplayer(sd,fs);

playblocking(playerobj)

6

a The code can look like this:

function playdifferentfs()

[S fs]=wavread(’castanets.wav’);

playerobj=audioplayer(S,fs);

playblocking(playerobj);

playerobj=audioplayer(S,2*fs);

playblocking(playerobj);

playerobj=audioplayer(S,fs/2);

playblocking(playerobj);

b The code can look like this:

function playreverse()

[S fs]=wavread(’castanets.wav’);

sz=size(S,1);

playerobj=audioplayer(S(sz:(-1):1,:),fs);

playblocking(playerobj);

7

a The code can look like this:

function playnoise(c)

[S fs]=wavread(’castanets.wav’);

sz=size(S,1);

newS=S+c*(2*rand(sz,2)-1);

newS=newS/max(max(abs(newS)));

playerobj=audioplayer(newS,fs);

playblocking(playerobj);

338

Section 2.4
1 As in Example 2.19 we get

F4

2
3
4
5

 =
1

2

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

2
3
4
5

=
1

2

2 + 3 + 4 + 5
2− 3i− 4 + 5i
2− 3 + 4− 5
2 + 3i− 4− 5i

 =

7
−1 + i
−1

−1− i

 .

2 For N = 6 the entries are on the form 1√
6
e−2πink/6 = 1√

6
e−πink/3. This means

that the entries in the Fourier matrix are the numbers 1√
6
e−πi/3 = 1√

6
(1/2 −

i
√
3/2), 1√

6
e−2πi/3 = 1√

6
(−1/2− i

√
3/2), and so on. The matrix is thus

F6 =
1√
6

1 1 1 1 1 1
1 1/2− i

√
3/2 −1/2− i

√
3/2 −1 −1/2 + i

√
3/2 1/2 + i

√
2/2

1 −1/2− i
√
3/2 −1/2 + i

√
3/2 1 −1/2− i

√
3/2 +1/2− i

√
3/2

1 −1 1 −1 1 −1
1 −1/2 + i

√
3/2 −1/2− i

√
3/2 1 −1/2 + i

√
3/2 −1/2− i

√
3/2

1 1/2 + i
√
2/2 −1/2 + i

√
3/2 −1 −1/2− i

√
3/2 1/2− i

√
3/2

The cases N = 8 and N = 12 follow similarly, but are even more tedious. For
N = 8 the entries are 1√

8
eπink/4, which can be expressed exactly since we can

express exactly any sines and cosines of a multiple of π/4. For N = 12 we get
the base angle π/6, for which we also have exact values for sines and cosines for
all multiples.

4 By Theorem 2.21 we know that (FN (x))N−n = (FN (x))n when x is a real
vector. If we set N = 8 and n = 2 we get that (F8(x))6 = (F8(x))2 = 2− i =
2 + i.

5 We get

yn =
1√
N

N−1�

k=0

cke−2πink/N =
1√
N

N−1�

k=0

(ce−2πin/N)k

=
1√
N

1− (ce−2πin/N)N

1− ce−2πin/N
=

1√
N

1− cN

1− ce−2πin/N
.

7 The code can look like this

function x=IDFTImpl(y)

N=length(y);

FN=zeros(N);

339

for k=1:N

FN(k,:)=exp(2*pi*1i*(k-1)*(0:(N-1))/N)/sqrt(N);

end

x=FN*y;

8 We have that

(FN (x))k = (FN (x1 + ix2))k = (FN (x1))k + i(FN (x2))k

(FN (x))N−k = (FN (x1))N−k + i(FN (x2))N−k = (FN (x1))k + i(FN (x2))k,

where we have used Property 1 of Theorem 2.21. If we take the complex conju-
gate in the last equation, we are left with the two equations

(FN (x))k = (FN (x1))k + i(FN (x2))k

(FN (x))N−k = (FN (x1))k − i(FN (x2))k.

If we add these we get

(FN (x1))k =
1

2

�
(FN (x))k + (FN (x))N−k

�
,

which is the first equation. If we instead subtract the equations we get

(FN (x2))k =
1

2i

�
(FN (x))k − (FN (x))N−k

�
,

which is the second equation

Section 2.9
1

a We get

F4x1 =
1

2

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

1
3
5
7

 =

8
−2 + 2i

−2
−2− 2i

F4x2 =
1

2

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

2
4
6
8

 =

10
−2 + 2i

−2
−2− 2i

b In the FFT-algorithm we split the computation of F4(x) into the compu-
tation of F2(x(e)) and F2(x(o)), where x(e) and x(o) are vectors of length 4 with
even-indexed and odd-indexed components, respectively. In this case we have
x(e) = (1, 3, 5, 7) and x(o) = (2, 4, 6, 8). In other words, the FFT-algorithm uses
the FFT-computations we did in i a., so that we can save computation. The
benefit of using the FFT-algorithm is that we save computation (the algorithm
is of order O(2N log2 N)).

340

2

a By inserting N = 2r and xr = M2r in MN = 2MN/2 + 2N we get first
xr = 2xr−1 + 2 · 2r. Inserting r + 1 for r we get xr+1 − 2xr = 4 · 2r.

b The homogeneous equation xr+1−2xr = 0 has the general solution (xh)r =
C2r. For a particular solution to the equation xr+1−2xr = 4 ·2r, we should try
(xp)r = Ar2r (since 2 is a root in the homogeneous equation), and we get that
A = 2, so that (xp)r = 2r2r, and the general solution to the difference equation
is xr = 2r2r + C2r.

c We get that

MN = M2r = 2r2r + C2r = 2N log2 N + CN = O(2N log2 N),

since the first terms dominates in this expression, in particular, it does not
matter what C is (although we can find C from x0 = 0, since a DFT for N = 1
requires no multiplications).

3 When we compute e−2πin/N , we do some multiplications in the exponent.
These are not counted because the multilication do not depend on x, and may
therefore be precomputed. We also have a multiplication with 1√

2
. These are

typically not counted because one often defines a DFT so that this multiplication
is absorbed in the definition.

5

a From the formula we see that the first third of the Fourier cofficients can
be written

yn =
1√
3

�
FN/3x1 +DN/3FN/3x2 +D2

N/3FN/3x3

�
.

where DN/3 is defined in the same way as DN/2, but as a (N/3)×(N/3)-matrix,
and where x1,x2,x3 denotes the splitting of x into vectors for the corresponding
indices.

341

b The second third of the Fourier cofficients can be written

yN/3+n =
1√
N

N−1�

k=0

xke
−2πi(N/3+n)k/N

=
1√
N

N/3−1�

k=0

x3ke
−2πi(N/3+n)3k/N +

1√
N

N/3−1�

k=0

x3k+1e
−2πi(N/3+n)(3k+1)/N

+
1√
N

N/3−1�

k=0

x3k+2e
−2πi(N/3+n)(3k+2)/N

=
1√
N

N/3−1�

k=0

x3ke
−2πin3k/N +

1√
N

e−2πi(N/3+n)/N
N/3−1�

k=0

x3k+1e
−2πin3k/N

+
1√
N

e−2πi(N/3+n)2/N
N/3−1�

k=0

x3k+2e
−2πin3k/N

=
1√
3

�
FN/3x1 + e−2πi/3DN/3FN/3x2 + e−2πi2/3D2

N/3FN/3x3

�
.

The third part of the Fourier coefficients can be written

y2N/3+n =
1√
N

N−1�

k=0

xke
−2πi(2N/3+n)k/N

=
1√
N

N/3−1�

k=0

x3ke
−2πi(2N/3+n)3k/N +

1√
N

N/3−1�

k=0

x3k+1e
−2πi(2N/3+n)(3k+1)/N

+
1√
N

N/3−1�

k=0

x3k+2e
−2πi(2N/3+n)(3k+2)/N

=
1√
N

N/3−1�

k=0

x3ke
−2πin3k/N +

1√
N

e−2πi(2N/3+n)/N
N/3−1�

k=0

x3k+1e
−2πin3k/N

+
1√
N

e−2πi(2N/3+n)2/N
N/3−1�

k=0

x3k+2e
−2πin3k/N

=
1√
3

�
FN/3x1 + e−2πi2/3DN/3FN/3x2 + e−2πi4/3D2

N/3FN/3x3

�

=
1√
3

�
FN/3x1 + e−2πi2/3DN/3FN/3x2 +D2

N/3FN/3x3

�

We get a similar factorization as in Theorem 2.34, but with the block matrix
replaced by

1√
3

FN/3 DN/3FN/3 D2

N/3FN/3

FN/3 e−2πi/3DN/3FN/3 e−2πi2/3D2
N/3FN/3

FN/3 e−2πi2/3DN/3FN/3 D2
N/3FN/3

 .

342

c We see that MN = 3MN/3 + 2N when we count complex multiplications,
so that MN = 3MN/3 + 8N when we count real multiplications. We get a
difference equation of the form xr+1 = 3xr + 24 · 3r. A particular solution to
this is (xp)r = 8r3r. Solving as above we get MN = O(8N log3 N). log3 N can
be written on the form c log2 N for a constant c, this is on the form O(c log2 N)
for some c.

d It is clear that this procedure can be developed also for numbers divisible
by 5, 7, and so on (the number of blocks in the block matrix increase, though). In
particular, we can develop a procedure for any factorization into prime numbers.

Section 3.1
1 Here we have that t−1 = 1/4, t0 = 1/4, t1 = 1/4, and t2 = 1/4. We now
get that s0 = t0 = 1/4, s1 = t1 = 1/4, and s2 = t2 = 1/4 (first formula), and
sN−1 = s7 = t−1 = 1/4 (second formula). This means that the matrix of S is

S =
1

4

1 1 0 0 0 0 1 1
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1

.

Section 3.2
3

a The eigenvalues of S are 1, 5, 9, and are found by computing a DFT of the
first column (and multiplying by

√
N = 2). The eigenvectors are the Fourier

basis vectors. 1 has multiplicity 2.

c Matlab uses some numeric algorithm to find the eigenvectors. However,
eigenvectors may not be unique, so you have no control on which eigenvectors
Matlab actually selects. In particular, here the eigenspace for λ = 1 has di-
mension 2, so that any linear combination of the two eigenvectors from this
eigenspace also is an eigenvector. Here it seems that Matlab has chosen a linear
combination which is different from a Fourier basis vector.

4

a If we write S1 = FH

N
D1FN and S2 = FH

N
D2FN we get

S1 + S2 = FH

N
(D1 +D2)FNS1S2 = FH

N
D1FNFH

N
D2FN = FH

N
D1D2FN

This means that the eigenvalues of S1 +S2 are the sum of the eigenvalues of S1

and S2. The actual eigenvalues which are added are dictated by the index of
the frequency response, i.e. λS1+S2,n = λS1,n + λS2,n.

343

b As above we have that S1S2 = FH

N
D1FNFH

N
D2FN = FH

N
D1D2FN , and

the same reasoning gives that the eigenvalues of S1S2 are the product of the
eigenvalues of S1 and S2. The actual eigenvalues which are multiplied are dic-
tated by the index of the frequency response, i.e. λS1S2,n = λS1,nλS2,n.

c In general there is no reason to believe that there is a formula for the
eigenvalues for the sum or product of two matrices, based on eigenvalues of the
individual matrices. However, the same type of argument as for filters can be
used in all cases where the eigenvectors are equal.

5 The matrix for the operation which keeps every second component is

1 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 0

,

where 1 and 0 are repeated in alternating order along the main diagonal. Since
the matrix is not constant on the main diagonal, it is not a circulant Toeplitz
matrix, and hence not a filter.

Section 3.3
1 The frequency response is

λS(ω) =
1

4
(eiω + 1 + e−iω + e−2iω) =

eiω(1− e−4iω)

4(1− e−iω)
=

1

4
e−iω/2 sin(2ω)

sin(ω/2)
.

Section 3.4
1 We have that λS(ω) = 1

2 (1 + cosω). This clearly has the maximum point
(0, 1), and the minimum point (π, 0).

2 We have that |λT (ω)| = 1
2 (1 − cosω). This clearly has the maximum point

(π, 1), and the minimum point (0, 0). The connection between the frequency
responses is that λT (ω) = λS(ω + π).

3 Here we have that s0 = t0 = 3, s1 = t1 = 4, s2 = t2 = 5, and s3 = t3 = 6
(first formula), and sN−2 = t−2 = 1, sN−1 = t−1 = 2 (second formula). This
means that the matrix of S is

S =

3 2 1 0 0 6 5 4
4 3 2 1 0 0 6 5
5 4 3 2 1 0 0 6
6 5 4 3 2 1 0 0
0 6 5 4 3 2 1 0
0 0 6 5 4 3 2 1
1 0 0 6 5 4 3 2
2 1 0 0 6 5 4 3

344

The frequency response is

λS(ω) = e2iω + 2eiω + 3 + 4e−iω + 5e−2iω + 6e−3iω.

4 The filter coefficients are t0 = s0 = 1/5, t1 = s1 = 1/5 (first formula), and
t−1 = sN−1 = 1/5, t−2 = sN−2 = 1/5, t−3 = sN−3 = 1/5 (second formula). All
other tk are zero. This means that the filter can be written as 1

5{1, 1, 1, 1, 1},
using our compact notation.

5 The frequency response is

k�

s=0

cse−isω =
1− ck+1e−i(k+1)ω

1− ce−iω
.

It is straightforward to compute the limit as ω → 0 as ck(k + 1). This means
that as we increase k or c, this limit also increases. The value of k also dictates
oscillations in the frequency response, since the numerator oscillates fastest.
When c = 1, k dictates how often the frequency response hits 0.

Section 3.5
2

a The code can look like this:

function playwithecho(c,d)

[S fs]=wavread(’castanets.wav’);

N=size(S,1);

S((d+1):N,:)=S((d+1):N,:)+c*S(1:(N-d),:); % Add echo

S(:,1)=S(:,1)/max(max(abs(S(:,1)))); % Scale so that sound values are

S(:,2)=S(:,2)/max(max(abs(S(:,2)))); % within [-1,1].

playerobj=audioplayer(S,fs);

playblocking(playerobj);

3 The sum of two digital filters is again a digital filter, and the first column
in the sum can be obtained by summing the first columns in the two matrices.
This means that the filter coefficients in 1

2 (S1+S2) can be obtained by summing
the filter coefficients of S1 and S2, and we obtain

1

2
({1, 0, . . . , 0, c}+ {1, 0, . . . , 0,−c}) = {1}.

This means that 1
2 (S1 + S2) = I, since I is the unique filter with e0 as first

column. The interpretation in terms of echos is that the echo from S2 cancels
that from S1.

4

345

a The code can look like this:

function reducebass(k)

c=[1/2 1/2];

for z=1:(2*k-1)

c=conv(c,[1/2 1/2]);

end

c=(-1).^(0:(2*k)).*c;

[S fs]=wavread(’castanets.wav’);

N=size(S,1);

y=zeros(N,2);

y(1:k,:)=S(1:k,:);

for t=(k+1):(N-k)

for j=1:(2*k+1)

y(t,:)=y(t,:)+c(j)*S(t+k+1-j,:);

end

end

y((N-k+1):N,:)=S((N-k+1):N,:);

y=y/max(max(abs(y)));

playerobj=audioplayer(y,fs);

playblocking(playerobj);

function reducetreble(k)

c=[1/2 1/2];

for z=1:(2*k-1)

c=conv(c,[1/2 1/2]);

end

[S fs]=wavread(’castanets.wav’);

N=size(S,1);

y=zeros(N,2);

y(1:k,:)=S(1:k,:);

for t=(k+1):(N-k)

for j=1:(2*k+1)

y(t,:)=y(t,:)+c(j)*S(t+k+1-j,:);

end

end

y((N-k+1):N,:)=S((N-k+1):N,:);

playerobj=audioplayer(y,fs);

playblocking(playerobj);

9

346

a In the code a filter is run on the sound samples from the file castanets.wav.
Finally the new sound is played. In the first two lines after the for-loop, the
first and the last sound samples in teh filteres sound are computed, under the
assumption that the sound has been extended to a periodic sound with period
N. After this, the sound is normalized so that the sound samples lie in the range
between −1 and 1. In this case the filter is a lowpass-filter (as we show in b.),
so that we can expect that that the treble in the sound is reduced.

b Compact filter notation for the filter which is run is {2, 4, 2}. A 5 × 5
circulant Toeplitz matrix becomes

4 2 0 0 2
2 4 2 0 0
0 2 4 2 0
0 0 2 4 2
2 0 0 2 4

.

The frequency response is λS(ω) = 2eiω + 4 + 2e−iω = 4 + 4 cosω. It is clear
that this gives a lowpass filter.

c The frequency response for the new filter is

−2eiω + 4− 2e−iω = 4− 4 cosω = 4 + 4 cos(ω + π) = λS(ω + π),

where S is the filter from the first part of the exercise. The new filter therefore
becomes a highpass filter, since to add π to ω corresponds to swapping the
frequencies 0 and π. We could also here refered to Observation 3.39, where we
stated that adding an alternating sign in the filter coefficients turns a lowpass
filter into a highpass filter and vice versa.

Section 3.6
1

a The matrix for time reversal is the matrix

0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
...

0 1 · · · 0 0
1 0 · · · 0 0

This is not a circulant Toeplitz matrix, since all diagonals assume the values 0
and 1, so that they are not constant on each diagonal. Time reversal is thus not
a digital filter.

b Let S denote time reversal. Clearly Se1 = eN−2. If S was time-invariant
we would have that Se0 = eN−3, where we have delayed the input and output.
But this clearly is not the case, since by definition Se0 = eN−1.

347

Section 3.7

Section 3.8

Section 4.1
2 The code can look like this:

function y=filterS(t,x)

N=length(x);

y=zeros(length(x),1);

E=length(t)-1;

n=0;

while n<E

y(n+1)= t(1)*x(n+1);

for k=1:n

y(n+1) = y(n+1) + t(k+1)*(x(n+k+1)+x(n-k+1));

end

for k=(n+1):E

y(n+1) = y(n+1) + t(k+1)*(x(n+k+1)+x(n-k+N+1));

end

n=n+1;

end

while n<(N-E)

y(n+1)= t(1)*x(n+1);

for k=1:E

y(n+1) = y(n+1)+ t(k+1)*(x(n+k+1)+x(n-k+1));

end

n=n+1;

end

while n<N

y(n+1) = t(1)*x(n+1);

for k=1:(N-1-n)

y(n+1) = y(n+1) + t(k+1)*(x(n+k+1)+x(n-k+1));

end

for k=(N-1-n+1):E

y(n+1) = y(n+1) + t(k+1)*(x(n+k-N+1)+x(n-k+1));

end

n=n+1;

end

4 We have that

H cos

�
2π

n(k + 1/2)π

2N

�
=

1

2
He−2πin(k+1/2)/(2N) +

1

2
He2πin(k+1/2)/(2N)

=
1

2
e−πin/(2N)He−πink/N +

1

2
eπin/(2N)Heπink/N .

348

Her He−πink/N is the filter where the frequency response of H is delayed by
πn/N , while the delay goes the opposite way for Heπink/N . This shows that
Hn has the stated center frequencies.

Section 4.2

Section 4.3

2 We first see that d0,3 =
�

1
3 and dk,3 =

�
2
3 for k = 1, 2. We also have that

cos

�
2π

n

2N

�
k +

1

2

��
= cos

�
π
n

3

�
k +

1

2

��
,

so that the DCT matrix can be written as

D3 =

�
1
3

�
1
3

�
1
3�

2
3 cos

�
π

3
1
2

� �
2
3 cos

�
π

3
3
2

� �
2
3 cos

�
π

3
5
2

�
�

2
3 cos

�
2π
3

1
2

� �
2
3 cos

�
2π
3

3
2

� �
2
3 cos

�
2π
3

5
2

�

=

�
1
3

�
1
3

�
1
3�

2
3 cos(π/6)

�
2
3 cos(π/2)

�
2
3 cos(5π/6)�

2
3 cos(π/3)

�
2
3 cos(π)

�
2
3 cos(5π/3)

=

�
1
3

�
1
3

�
1
3�

2
3 (
√
3/2 + i/2) 0

�
2
3 (−

√
3/2 + i/2)�

2
3 (1/2 +

√
3i/2) −

�
2
3

�
2
3 (1/2−

√
3i/2)

Section 4.4

Section 5.2
1 We have that f(t) =

�
N−1
n=0 cnφ0,n, where cn are the coordinates of f in the

basis {φ0,0,φ0,1, . . . ,φ0,N−1}. We now get that

f(k) =
N−1�

n=0

cnφ0,n(k) = ck,

since φ0,n(k) = 0 when n �= k. This shows that (f(0), f(1),f(N − 1)) are
the coordinates of f .

2

a From lemma 5.9 it follows that

proj
V0
(φ1,2n) = φ0,n/

√
2

proj
V0
(φ1,2n+1) = φ0,n/

√
2

349

This means that

[proj
V0
(φ1,2n)]φ0

= en/
√
2

[proj
V0
(φ1,2n+1)]φ0

= en/
√
2.

These are the columns in the matrix for proj
V0

relative to the bases φ1 and φ0.
This matrix is thus

1√
2

1 1 0 0 0 · · · 0 0 0
0 0 1 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 1 1

.

b From lemma 5.12 it follows that

proj
W0

(φ1,2n) = ψ0,n/
√
2

proj
W0

(φ1,2n+1) = −ψ0,n/
√
2

This means that

[proj
W0

(φ1,2n)]ψ0
= en/

√
2

[proj
W0

(φ1,2n+1)]ψ0
= −en/

√
2.

These are the columns in the matrix for proj
W0

relative to the bases φ1 and ψ0.
This matrix is thus

1√
2

1 −1 0 0 0 · · · 0 0 0
0 0 1 −1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 1 −1

.

3

a Since φ ∈ V0 we must have that proj
V0
(φ) = φ. Since ψ is in the orthogonal

complement of V0 in V1 we must have that proj
V0
(ψ) = 0.

b The first columns in the matrix of proj
V0

relative to (φ0,ψ0) are

[proj
V0
(φ0,0)](φ0,ψ0) = [φ0,0](φ0,ψ0) = e0

[proj
V0
(φ0,1)](φ0,ψ0) = [φ0,1](φ0,ψ0) = e1

...
...

The last columns in the matrix of proj
V0

relative to (φ0,ψ0) are

[proj
V0
(ψ0,0)](φ0,ψ0) = [0](φ0,ψ0) = 0

[proj
V0
(ψ0,1)](φ0,ψ0) = [0](φ0,ψ0) = 0

...
...

350

It follows that the matrix of proj
V0

relative to (φ0,ψ0) is given by the diagonal
matrix where the first half of the entries on the diagonal are 1, the second half
0.

c Follows in the same way as (b).

4 We have that

proj
V0
(f) =

N−1�

n=0

��
N

0
f(t)φ0,n(t)dt

�
φ0,n =

N−1�

n=0

��
n+1

n

f(t)dt

�
φ0,n,

where we have used the orthogonal decomposition formula. Note also that, if
f(t) ∈ V1, and fn,1 is the value f attains on [n, n + 1/2), and fn,2 is the value
f attains on [n+ 1/2, n+ 1), we have that

proj
V0
(f) =

N−1�

n=0

��
n+1

n

f(t)dt

�
φ0,n(t)

=
N−1�

n=0

�
1

2
fn,1 +

1

2
fn,2

�
φ0,n(t) =

N−1�

n=0

fn,1 + fn,2
2

φ0,n(t),

which is the function which is (fn,1 + fn,2)/2 on [n, n+1). This proves the first
part of Proposition 5.13.

5 We have that

�f − proj
V0
(f)�2 = �f − proj

V0
(f), f − proj

V0
(f)�

= �f, f� − 2�f, proj
V0
(f)�+ �proj

V0
(f), proj

V0
(f)�

Now, note that

�proj
V0
(f), proj

V0
(f)� =

N−1�

n=0

��
n+1

n

f(t)dt

�2

from what we just showed in Exercise 4 (use that the φ0,n are orthonormal).
This means that the above can be written

= �f, f� − 2
N−1�

n=0

�
N

0

��
n+1

n

f(s)ds

�
φ0,n(t)f(t)dt+

N−1�

n=0

��
n+1

n

f(t)dt

�2

= �f, f� − 2
N−1�

n=0

�
n+1

n

��
n+1

n

f(s)ds

�
f(t)dt+

N−1�

n=0

��
n+1

n

f(t)dt

�2

= �f, f� − 2
N−1�

n=0

��
n+1

n

f(t)dt

�2

+
N−1�

n=0

��
n+1

n

f(t)dt

�2

= �f, f� −
N−1�

n=0

��
n+1

n

f(t)dt

�2

.

351

6 The orthogonal decomposition theorem gives that

proj
W0

(f) =
N−1�

n=0

�f,ψ0,n�ψ0,n(t) =
N−1�

n=0

��
N

0
f(t)ψ0,n(t)dt

�
ψ0,n(t)

=
N−1�

n=0

��
n+1

n

f(t)ψ0,n(t)dt

�
ψ0,n(t)

=
N−1�

n=0

��
n+1/2

n

f(t)dt−
�

n+1

n+1/2
f(t)dt

�
ψ0,n(t),

where we used that ψ0,n is nonzero only on [n, n+ 1), and is 1 on [n, n+ 1/2),
and −1 on [n + 1/2, n + 1). Note also that, if f(t) ∈ V1, and fn,1 is the value
f attains on [n, n+ 1/2), and fn,2 is the value f attains on [n+ 1/2, n+ 1), we
have that

proj
W0

(f) =
N−1�

n=0

��
n+1/2

n

f(t)dt−
�

n+1

n+1/2
f(t)dt

�
ψ0,n(t)

=
N−1�

n=0

�
1

2
fn,1 −

1

2
fn,2

�
ψ0,n(t) =

N−1�

n=0

fn,1 − fn,2
2

ψ0,n(t),

which is the function which is (fn,1−fn,2)/2 on [n, n+1/2), and −(fn,1−fn,2)/2
on [n+ 1/2, n+ 1). This proves the second part of Proposition 5.13.

Section 5.3
1 Since φm,n ∈ Vm we must have that T (φm,n) = φm,n. Since ψm,n is in the
orthogonal complement of Vm in Vm+1 we must have that T (ψm,n) = 0. The
first half of the columns in the matrix of proj

Vm
relative to (φ

m
,ψ

m
) are

[proj
Vm

(φm,0)](φ
m
,ψ

m
) = [φm,0](φ

m
,ψ

m
) = e0

[proj
Vm

(φm,1)](φ
m
,ψ

m
) = [φm,1](φ

m
,ψ

m
) = e1

...
....

The second half of the columns are

[T (ψm,0)](φ
m
,ψ

m
) = [0](φ

m
,ψ

m
) = 0

[T (ψm,1)](φ
m
,ψ

m
) = [0](φ

m
,ψ

m
) = 0

...
....

Thus, as before, the matrix of proj
Vm

relative to (φ
m
,ψ

m
) is given by the

diagonal matrix where the first half of the diagonal consists of 1’s, and the
second half consists of 0’s. (c) follows in the same way.

352

2 If f ∈ Vm we can write f(t) =
�2mN−1

n=0 cm,nφm,n(t). We now get

g(t) = f(2t) =
2mN−1�

n=0

cm,nφm,n(2t) =
2mN−1�

n=0

cm,n2
m/2φ(2m2t− n)

=
2mN−1�

n=0

cm,n2
−1/22(m+1)/2φ(2m+1t− n) =

2mN−1�

n=0

cm,n2
−1/2φm+1,n(t).

This shows that g ∈ Vm+1. To prove the other way, assume that g(t) = f(2t) ∈
Vm+1. This means that we can write g(t) =

�2m+1
N−1

n=0 cm+1,nφm+1,n(t). We
now have

f(t) = g(t/2) =
2m+1

N−1�

n=0

cm+1,nφm+1,n(t/2) =
2m+1

N−1�

n=0

cm+1,n2
(m+1)/2φ(2mt− n)

=
2mN−1�

n=0

cm+1,n2
(m+1)/2φ(2mt− n) +

2m+1
N−1�

n=2mN

cm+1,n2
(m+1)/2φ(2mt− n)

=
2mN−1�

n=0

cm+1,n2
(m+1)/2φ(2mt− n) +

2mN−1�

n=0

cm+1,n+2mN2(m+1)/2φ(2mt− n− 2mN)

=
2mN−1�

n=0

cm+1,n2
(m+1)/2φ(2mt− n) +

2mN−1�

n=0

cm+1,n+2mN2(m+1)/2φ(2mt− n)

=
2mN−1�

n=0

(cm+1,n + cm+1,n+2mN)21/22m/2φ(2mt− n)

=
2mN−1�

n=0

(cm+1,n + cm+1,n+2mN)21/2φm,n(t) ∈ Vm

The thing which made this a bit difficult was that the range of the n-indices
here was outside [0, 2mN − 1] (which describe the legal indices in the basis Vm),
so that we had to use the periodicty of φ.

3 By definition, [T1]B1 ⊕ [T2]B2 ⊕ · · ·⊕ [Tn]Bn
is a block matrix where the blocks

on the diagonal are the matrices [T1]B1 , [T2]B2 , and so on. If bi are the basis
vectors in Bi, the columns in [Ti]Bi

are [T (bj)]Bi
. This means that [T1]B1 ⊕

[T2]B2 ⊕ · · · ⊕ [Tn]Bn
has [T (bj)]Bi

in the j’th block, and 0 elsewhere. This
means that we can write it as

0⊕ · · ·0⊕ [T (bj)]Bi
⊕ 0 · · ·0.

On the other hand, [T1 ⊕ T2 ⊕ . . .⊕ Tn]B1⊕B2⊕...⊕Bn
is a matrix of the same

size, and the corresponding column to that of the above is

[(T1 ⊕ T2 ⊕ . . .⊕ Tn)(0⊕ · · ·0⊕ bj ⊕ 0 · · ·0)]B1⊕B2⊕...⊕Bn

= [0⊕ · · ·0⊕ T (bj)⊕ 0 · · ·0]B1⊕B2⊕...⊕Bn

= 0⊕ · · ·0⊕ [T (bj)]Bi
⊕ 0 · · ·0.

353

Here bj occurs as the i’th summand. This is clearly the same as what we
computed for the right hand side above.

4 Assume that λ is an eigenvalue common to both T1 and T2. Then there exists
a vector v1 so that T1v1 = λv1, and a vector v2 so that T2v2 = λv2. We now
have that

(T1 ⊕ T2)(v1 ⊕ v2) =

�
T1 0
0 T2

��
v1

v2

�

=

�
T1v1

T2v2

�
=

�
λv1

λv2

�

= λ

�
v1

v2

�
= λ(v1 ⊕ v2).

This shows that λ is an eigenvalue for λ also, and that v1⊕v2 is a corresponding
eigenvector.

5 We have that

(A⊕B)(A−1 ⊕B−1) =

�
A 0
0 B

��
A−1 0
0 B−1

�

=

�
AA−1 0

0 BB−1

�
=

�
I 0
0 I

�
= I

where we have multiplied as block matrices. This proves that A⊕B is invertible,
and states what the inverse is.

6 We have that

(A⊕B)(C ⊕D) =

�
A 0
0 B

��
C 0
0 D

�
=

�
AC 0
0 BD

�
= (AC)⊕ (BD)

where we again have multiplied as block matrices.

8 The following code achieves this:

[S,fs]=wavread(’castanets.wav’);

newx=DWTHaarImpl(S(1:2^17,1),2);

plot(0:(2^17-1),newx(1:2^17,1))

axis([0 2^17 -1 1]);

The values from V0 corresponds to the first 1/4 values in the plot, the values
from W0 corresponds to the next 1/4 values in the plot, while the values from
W1 correspond to the last 1/2 of the values in the plot.

9

a The following code achieves the task

354

function playDWTlower(m)

[S fs]=wavread(’castanets’);

newx=DWTHaarImpl(S(1:2^17,1),m);

len=length(newx);

newx((len/2^m+1):length(newx))=zeros(length(newx)-len/2^m,1);

newx=IDWTHaarImpl(newx,m);

playerobj=audioplayer(newx,fs);

playblocking(playerobj);

b For m = 2 we clearly hear a degradation in the sound. For m = 4 and
above most of the sound is unrecognizable.

c There is no reason to believe that sound samples returned by the function
lie in [−1, 1]. you can check this by printing the maximum value in the returned
array on screen inside this method.

11 The following code can be used

function playDWTlowerdifference(m)

[S fs]=wavread(’castanets’);

newx=DWTHaarImpl(S(1:2^17,1),m);

len=length(newx);

newx(1:(len/2^m))=zeros(len/2^m,1);

newx=IDWTHaarImpl(newx,m);

playerobj=audioplayer(newx,fs);

playblocking(playerobj);

12 Note first that, similarly to the computation in Exercise 5.6, we have that

�
N

0
f(t)ψm,n(t)dt = 2m/2

�� (n+1/2)2−m

n2−m

f(t)dt−
� (n+1)2−m

(n+1/2)2−m

f(t)dt

�
.

With f(t) = 1 − 2|1/2 − t/N | we have two possibilities: when n < N2m−1

we have that [n2−m, (n+ 1)2−m) ⊂ [0, N/2], so that f(t) = 2t/N , and we get

wm,n = 2m/2

�� (n+1/2)2−m

n2−m

2t/Ndt−
� (n+1)2−m

(n+1/2)2−m

2t/Ndt

�

= 2m/2[t2/N](n+1/2)2−m

n2−m − 2m/2[t2/N](n+1)2−m

(n+1/2)2−m

=
2−3m/2

N

�
2(n+ 1/2)2 − n2 − (n+ 1)2

�
= −2−3m/2−1

N
.

When n ≥ N2m−1 we have that f(t) = 2−2t/N , and using that
�
N

0 ψm,n(t)dt =

0 we must get that wm,n = 2−3m/2−1

N
.

355

For f(t) = 1/2+ cos(2πt/N)/2, note first that this has the same coefficients
as cos(2πt/N)/2, since

�
N

0 ψm,n(t)dt = 0. We now get

wm,n = 2m/2

�� (n+1/2)2−m

n2−m

cos(2πt/N)/2dt−
� (n+1)2−m

(n+1/2)2−m

cos(2πt/N)/2dt

�

= 2m/2[N sin(2πt/N)/(4π)](n+1/2)2−m

n2−m − 2m/2[N sin(2πt/N)/(4π)](n+1)2−m

(n+1/2)2−m

=
2m/2−2N

π

�
2 sin(2π(n+ 1/2)2−m/N)− sin(2πn2−m/N)− sin(2π(n+ 1)2−m/N)

�
.

There seems to be no more possibilities for simplification here.

13 We get

wm,n = 2m/2

�� (n+1/2)2−m

n2−m

(t/N)kdt−
� (n+1)2−m

(n+1/2)2−m

(t/N)kdt

�

= 2m/2[tk+1/((k + 1)Nk)](n+1/2)2−m

n2−m − 2m/2[tk+1/((k + 1)Nk)](n+1)2−m

(n+1/2)2−m

=
2−m(k+1/2)

(k + 1)Nk

�
2(n+ 1/2)k+1 − nk+1 − (n+ 1)k+1

�
.

The leading term nk+1 will here cancel, but the others will not, so there is no
room for further simplification here.

14 When we run the 10-level DWT we make a change of coordinates from V10

to V0 ⊕ W0 ⊕ · · · ⊕ W9. This means that we must look at the function which
has x as coordinates in V10. It is clear that this is the function defined on [0, 1)
which is 210/2 = 25 on [0, 1/2)], and 0 elsewhere. It is clear that this is the
function 252−1/2φ1,0 = 252−1/22−1/2(φ+ ψ) = 24(φ+ ψ). This has coordinates
(24, 24, 0, 0, . . . , 0) in V0⊕W0⊕ · · ·⊕W9 (V0 and W0 are here one-dimensional).

Section 6.1
1 Let us write f(t) =

�
N−1
n=0 cnφ0,n(t). If k is an integer we have that

f(k) =
N−1�

n=0

cnφ0,n(k) =
N−1�

n=0

cnφ(k − n).

Clearly the only integer for which φ(s) �= 0 is s = 0 (since φ(0) = 1), so that
the only n which contributes in the sum is n = k. This means that f(k) = ck,
so that [f]φ0

= (f(0), f(1), . . . , f(N − 1)).

356

2 We have that

�φ0,n,φ0,n� =
�

n+1

n−1
(1− |t− n|)2dt

=

�
n+1

n−1

�
1− 2|t− n|+ (t− n)2

�
dt

= 2− 2 +

�
1

3
(t− n)3

�n+1

n−1

=
2

3
.

We also have

�φ0,n,φ0,n+1 =

�
n+1

n

(1− (t− n))(1 + (t− n− 1))dt =

� 1

0
(1− u)(1 + u− 1)du

=

� 1

0
(t− t2)dt =

1

2
− 1

3
=

1

6
.

Finally, the supports of φ0,n and φ0,n±k are disjoint for k > 1, so that we must
have �φ0,n,φ0,n±k� = 0 in that case.

3 We have that

χ[−1/2,1/2) ∗ χ[−1/2,1/2)(x) =

� ∞

−∞
χ[−1/2,1/2)(t)χ[−1/2,1/2)(x− t)dt.

The integrand here is 1 when −1/2 < t < 1/2 and −1/2 < x − t < 1/2, or
in other words when max(−1/2,−1/2 + x) < t < min(1/2, 1/2 + x) (else it is
0). When x > 0 this happens when −1/2 + x < t < 1/2, and when x < 0 this
happens when −1/2 < t < 1/2 + x. This means that

χ[−1/2,1/2) ∗ χ[−1/2,1/2)(x) =

�� 1/2
−1/2+x

dt = 1− x , x > 0
� 1/2+x

−1/2 dt = 1 + x , x < 0.

But this is by definition φ.

Section 6.3
1

a The function ψ̂ is a sum of the functions ψ = φ1,1, φ, and φ0,1 (i.e. we
have set n = 0 in Equation (6.14)). All these are continuous and piecewise

357

linear, and we can write

φ1,1(t) =

2t 0 ≤ t < 1/2

2− 2t 1/2 ≤ t < 1

0 elsewhere

φ(t)(t) =

1 + t −1 ≤ t < 0

1− t 0 ≤ t < 1

0 elsewhere

φ0,1(t) =

t 0 ≤ t < 1

2− t 1 ≤ t < 2

0 elsewhere
.

It follows that ψ̂(t) = φ1,1(t) − αφ(t) − βφ1,1 is piecewise linear, and linear on
the segments [−1, 0], [0, 1/2], [1/2, 1], [1, 2].

On the segment [−1, 0] only the function φ is seen to be nonzero, and since
φ(t) = 1 + t here, we have that ψ̂(t) = −α(1 + t) = −α− αt here.

On the segment [0, 1/2] all three functions are nonzero, and

φ1,1(t) = 2t

φ(t)(t) = 1− t

φ0,1(t) = t

on this interval. This means that ψ̂(t) = 2t− α(1− t)− βt = (2 + α− β)t− α
on [0, 1/2].

On the segment [0, 1/2] all three functions are nonzero, and

φ1,1(t) = 2− 2t

φ(t)(t) = 1− t

φ0,1(t) = t

on this interval. This means that ψ̂(t) = 2−2t−α(1−t)−βt = (α−β−2)t−α+2
on [1/2, 1].

On the segment [1, 2] only the function φ0,1 is seen to be nonzero, and since
φ0,1(t) = 2− t here, we have that ψ̂(t) = −β(2− t) = βt−2β here. For all other
values of t, ψ̂ is zero. This proves the formulas for ψ̂ on the different intervals.

358

b We can write
�

N

0
ψ̂(t)dt =

� 2

−1
ψ̂(t)dt =

� 0

−1
ψ̂(t)dt+

� 1/2

0
ψ̂(t)dt+

� 1

1/2
ψ̂(t)dt+

� 2

1
ψ̂(t)dt

=

� 0

−1
(−α− αt)dt+

� 1/2

0
(2 + α− β)t− α)dt

+

� 1

1/2
((α− β − 2)t− α+ 2)dt+

� 2

1
(βt− 2β)dt

=

�
−αt− 1

2
αt2

�0

−1

+

�
1

2
(2 + α− β)t2 − αt

�1/2

0

+

�
1

2
(α− β − 2)t2 + (2− α)t

�1

1/2

+

�
1

2
βt2 − 2βt

�2

1

= −α+
1

2
α+

1

8
(2 + α− β)− 1

2
α+

3

8
(α− β − 2) +

1

2
(2− α) +

3

2
β − 2β

=
1

2
− α− β,

�
N

0 tψ̂(t)dt is computed similarly, so that we in the end arrive at 1
4 − β.

c The equation system
1

2
− α− β = 0

1

4
− β = 0

has the unique solution α = β = 1
4 , which we already have found.

2

a In order for ψ to have vanishing moments we must have that
�
ψ̂(t)dt =�

tψ̂(t)dt = 0 Substituting ψ̂ = ψ − αφ0,0 − βφ0,1 we see that, for k = 0, 1,
�

tk (αφ0,0 + βφ0,1) dt =

�
tkψ(t)dt.

The left hand side can here be written
�

tk (αφ0,0 + βφ0,1) dt = α

�
tkφ0,0dt+ β

�
tkφ0,1(t)dt

= α

� 1

−1
tk(1− |t|)dt+ β

� 2

0
tk(1− |t− 1|)dt = αak + βbk.

The right hand side is
�

tkψ(t)dt =

�
tkφ1,1(t)dt =

� 1

0
(1− 2|t− 1/2|)dt = ek.

The following program sets up the corresponding equation systems, and solves
it by finding α,β.

359

A=zeros(2);

b=zeros(2,1);

for k=0:1

A(k+1,:) = [quad(@(t)t.^k.*(1-abs(t)),-1,1)...

quad(@(t)t.^k.*(1-abs(t-1)),0,2)];

b(k+1)=quad(@(t)t.^k.*(1-2*abs(t-1/2)),0,1);

end

A\b

b Similarly to a., Equation (6.20) gives that
�

tk (αφ0,0 + βφ0,1 + γφ0,−1 + δφ0,2) dt =

�
tkψ(t)dt.

The correspodning equation system is deduced exactly as in a. The following
program sets up the corresponding equation systems, and solves it by finding
α,β, γ, δ.

A=zeros(4);

b=zeros(4,1);

for k=0:3

A(k+1,:) = [quad(@(t)t.^k.*(1-abs(t)),-1,1)...

quad(@(t)t.^k.*(1-abs(t-1)),0,2)...

quad(@(t)t.^k.*(1-abs(t+1)),-2,0)...

quad(@(t)t.^k.*(1-abs(t-2)),1,3)];

b(k+1)=quad(@(t)t.^k.*(1-2*abs(t-1/2)),0,1);

end

coeffs=A\b

c The function ψ̂ now is supported on [−2, 3], and can be plotted as follows:

t=linspace(-2,3,100);

plot(t, (t>=0).*(t<=1).*(1-2*abs(t-0.5)) ...

-coeffs(1)*(t>=-1).*(t<=1).*(1-abs(t))...

-coeffs(2)*(t>=0).*(t<=2).*(1-abs(t-1))...

-coeffs(3)*(t>=-2).*(t<=0).*(1-abs(t+1))...

-coeffs(4)*(t>=1).*(t<=3).*(1-abs(t-2)))

e If we define

ψ̂ = ψ0,0 −
K�

k=0

(αkφ0,−k − βkφ0,k+1) ,

we have 2k unknowns. These can be determined if we require 2k vanishing
moments.

360

Section 7.1
2 You can set for instance H0 = {1/4, 1/2, 1/4}, and H1 = {1} (when you write
down the corresponding matrix you will see that A0,1 = 1/2, A1,0 = 0, so that
the matrix is not symmetric)

3 The Haar wavelet is a counterexample!

Section 7.3
1 As before we obtain that

�
1,

�
cos

�
2π

n

2N − 2
k

��N−2

n=1

, (−1)k
�

is an orthogonal basis of eigenvectors, which also can be written
�
cos

�
2π

n

2N − 2
k

��N−1

n=0

.

Section 7.4
1

a We have that H0 = 1
5{1, 1, 1, 1, 1}, and H1 = 1

3{−1, 1,−1}. The frequency
responses are

λH0(ω) =
1

5
e2iω +

1

5
eiω +

1

5
+

1

5
e−iω

1

5
e−2iω

=
2

5
cos(2ω) +

2

5
cosω +

1

5

λH1(ω) = −1

3
eiω +

1

3
− 1

3
e−iω = −2

3
cosω +

1

3
.

Both filters are symmetric, and we have that h0=(1/5, 1/5, 1/5, 1/5, 1/5), and
h1=(−1/3, 1/3,−1/3).

b We have that G0 = {1/4, 1/2, 1/4}, and G1 = {1/16,−1/4, 3/8,−1/4, 1/16}.
The frequency responses are

λG0(ω) =
1

4
eiω +

1

2
+

1

4
e−iω

=
1

2
cos(ω) +

1

2

λG1(ω) =
1

16
e2iω − 1

4
eiω +

3

8
− 1

4
e−iω

1

16
e−2iω

=
1

8
cos(2ω)− 1

2
cosω +

3

8
.

Both filters are symmetric, and we have that g0=(1/4, 1/2, 1/4), and g1=(1/16,−1/4, 3/8,−1/4, 1/16).

361

2

a We have that H0 = {1/16, 1/4, 3/8, 1/4, 1/16}, and H1 = {−1/4, 1/2,−1/4}.
The frequency responses are

λH0(ω) =
1

16
e2iω +

1

4
eiω +

3

8
+

1

4
e−iω

1

16
e−2iω

=
1

8
cos(2ω) +

1

2
cosω +

3

8

λH1(ω) = −1

4
eiω +

1

2
− 1

4
e−iω

= −1

2
cos(ω) +

1

2
.

The two first rows in PC1←φ1
are

�
3/8 1/4 1/16 0 · · · 1/16 1/4
−1/4 1/2 −1/4 0 · · · 0 0

�

The remaining rows are obtained by translating these in alternating order.

b We have that G0 = 1
3{1, 1, 1}, and G1 = 1

5{1,−1, 1,−1, 1}. The frequency
responses are

λG0(ω) =
1

3
eiω +

1

3
+

1

3
e−iω =

2

3
cosω +

1

3

λG1(ω) =
1

5
e2iω − 1

5
eiω +

1

5
− 1

5
e−iω

1

5
e−2iω

=
2

5
cos(2ω)− 2

5
cosω +

1

5

The two first columns in Pφ1←C1 are

1/3 −1/5
1/3 1/5
0 −1/5
0 1/5
0 0
...

...
0 0

1/3 1/5

The remaining columns are obtained by translating these in alternating order.

3 The following code can be used:

function playDWTfilterslower(m,h0,h1,g0,g1)

[S fs]=wavread(’castanets’);

newx=DWTImpl(h0,h1,S(1:2^17,1),m);

362

len=length(newx);

newx((len/2^m+1):length(newx))=zeros(length(newx)-len/2^m,1);

newx=IDWTImpl(g0,g1,newx,m);

playerobj=audioplayer(newx,fs);

playblocking(playerobj);

4

a The following code can be used:

function playDWTfilterslowerdifference(m,h0,h1,g0,g1)

[S fs]=wavread(’castanets’);

newx=DWTImpl(h0,h1,S(1:2^17,1),m);

len=length(newx);

newx(1:(len/2^m))=zeros(len/2^m,1);

newx=IDWTImpl(g0,g1,newx,m);

playerobj=audioplayer(newx,fs);

playblocking(playerobj);

b After the replacements in the function playDWTall, we get code which
looks like this

function playDWTalldifference(m)

disp(’Haar wavelet’);

playDWTlowerdifference(m);

disp(’Wavelet for piecewise linear functions’);

playDWTfilterslowerdifference(m,sqrt(2)*[1],...

sqrt(2)*[-1/2 1 -1/2],...

[1/2 1 1/2]/sqrt(2),...

[1]/sqrt(2));

disp(’Wavelet for piecewise linear functions, alternative version’);

playDWTfilterslowerdifference(m,...

sqrt(2)*[-1/8 1/4 3/4 1/4 -1/8],...

sqrt(2)*[-1/2 1 -1/2],...

[1/2 1 1/2]/sqrt(2),...

[-1/8 -1/4 3/4 -1/4 -1/8]/sqrt(2));

5

a The code which can be used looks like this:

newx=IDWTImpl([1/2 1 1/2]/sqrt(2),[1]/sqrt(2),...

[-coeffs(1); -coeffs(2); -coeffs(4); 0; 0; 0; 0; ...

-coeffs(3); 1; 0; 0; 0; 0; 0; 0; 0],1);

363

b The code which can be used looks like this:

g1=[newx((length(newx)-2):length(newx))’ newx(1:6)’] % compact filter notation

g0=[1/2 1 1/2]/sqrt(2);

omega=linspace(0,2*pi,100);

plot(omega,g1(5)+g1(6)*2*cos(omega)+g1(7)*2*cos(2*omega)...

+g1(8)*2*cos(3*omega)+g1(9)*2*cos(4*omega))

c The code which can be used looks like this:

alpha=1/(g0(2)*g1(5)+2*g0(3)*g1(6));

h0=alpha*(-1).^(1:(length(g1))).*g1;

h1=alpha*(-1).^(0:(length(g0)-1)).*g0;

d The code which can be used looks like this:

for m=1:4

m

playDWTfilterslower(m,h0,h1,g0,g1);

playDWTfilterslowerdifference(m,h0,h1,g0,g1);

end

7

a c and w represent the coordinates in the wavelet bases φ0 and ψ0. The
code runs a Haar wavelet transform. The sound is normalized so that the sound
samples lie in the range between −1 and 1, and the resulting sound is played.
The sound is split into two parts, and c represents a low-resolution version of
the sound (with half the number of samples), so that we first will hear the sound
played at double pace. After this we will hear the detail w in the sound, also
played at double pace. We should also be able to recognize the sound from this
detail.

b This corresponds to reconstructing a low-resolution approximation of the
sound.

Section 8.3

Section 8.5

Section 8.6

Section 9.2
2 The code can look like this:

364

function xnew=DWTImpl53(x,m)

lambda1=-1;

lambda2=0.125;

alpha=0.5;

beta=2;

for mres=1:m

len=length(x)/2^(mres-1);

x(1:2:(len-1))=x(1:2:(len-1))/alpha;

x(2:2:len)=x(2:2:len)/beta;

x(1:len)=liftingstepapplyB(-lambda2,x(1:len));

x(1:len)=liftingstepapplyA(-lambda1,x(1:len));

% Reorganize the coefficients

l=x(1:2:(len-1));

h=x(2:2:len);

x(1:len)=[l h];

end

xnew=x;

function x=IDWTImpl53(xnew,m)

lambda1=-1;

lambda2=0.125;

alpha=0.5;

beta=2;

for mres=m:(-1):1

len=length(xnew)/2^(mres-1);

% Reorganize the coefficients first

l=xnew(1:(len/2));

h=xnew((len/2+1):len);

xnew(1:2:(len-1))=l;

xnew(2:2:len)=h;

xnew(1:len)=liftingstepapplyA(lambda1,xnew(1:len));

xnew(1:len)=liftingstepapplyB(lambda2,xnew(1:len));

xnew(1:2:(len-1))=xnew(1:2:(len-1))*alpha;

xnew(2:2:len)=xnew(2:2:len)*beta;

end

x=xnew;

3 The code can look like this:

function xnew=DWTImpl97(x,m)

365

lambda1=-0.586134342059950;

lambda2=-0.668067171029734;

lambda3=0.070018009414994;

lambda4=1.200171016244178;

alpha=0.869864451624777;

beta=1.149604398860250;

for mres=1:m

len=length(x)/2^(mres-1);

x(1:2:(len-1))=x(1:2:(len-1))/alpha;

x(2:2:len)=x(2:2:len)/beta;

x(1:len)=liftingstepapplyB(-lambda4,x(1:len));

x(1:len)=liftingstepapplyA(-lambda3,x(1:len));

x(1:len)=liftingstepapplyB(-lambda2,x(1:len));

x(1:len)=liftingstepapplyA(-lambda1,x(1:len));

% Reorganize the coefficients

l=x(1:2:(len-1));

h=x(2:2:len);

x(1:len)=[l h];

end

xnew=x;

function x=IDWTImpl97(xnew,m)

lambda1=-0.586134342059950;

lambda2=-0.668067171029734;

lambda3=0.070018009414994;

lambda4=1.200171016244178;

alpha=0.869864451624777;

beta=1.149604398860250;

for mres=m:(-1):1

len=length(xnew)/2^(mres-1);

% Reorganize the coefficients first

l=xnew(1:(len/2));

h=xnew((len/2+1):len);

xnew(1:2:(len-1))=l;

xnew(2:2:len)=h;

xnew(1:len)=liftingstepapplyA(lambda1,xnew(1:len));

xnew(1:len)=liftingstepapplyB(lambda2,xnew(1:len));

xnew(1:len)=liftingstepapplyA(lambda3,xnew(1:len));

xnew(1:len)=liftingstepapplyB(lambda4,xnew(1:len));

xnew(1:2:(len-1))=xnew(1:2:(len-1))*alpha;

xnew(2:2:len)=xnew(2:2:len)*beta;

366

Figure 12.21: Secret message revealed!

end

x=xnew;

Section 10.2
1 The following code can be used:

255*((img(:,:,1)+img(:,:,2)+img(:,:,3))/3>=128

2 The following code can be used:

imwrite(uint8(contrastadjust(img,0.01)),’contrast4.png’,’png’);

3

a The code could look as follows:

function newimg=contrastadjust0(img,n)

newimg = img/255; % Maps the pixel values to [0,1]

newimg = atan(n*(newimg-1/2))/(2*atan(n/2)) + 1/2;

newimg = newimg*255; % Maps the values back to [0,255]

b The following code can be used:

imwrite(uint8(contrastadjust0(img,10)),’contrast3.png’,’png’);

4

b The secret message is revealed in Figure 12.21.

5 The following code can be used:

367

excerpt=255*mapto01(sqrt(img(:,:,1).^2+img(:,:,2).^2+img(:,:,3).^2));

excerpt=excerpt(170:340,170:340);

imwrite(uint8(excerpt),’ggl2part.png’,’png’);

imwrite(uint8(smooth(excerpt,[1 2 1; 2 4 2; 1 2 1]/16)),’smooth1.png’,’png’);

newmolecule=conv([1 3 3 1],[1 3 3 1]);

newmolecule=newmolecule’*newmolecule/4096;

imwrite(uint8(smooth(excerpt,newmolecule)),’smooth2.png’,’png’);

6 The following code can be used:

excerpt=255*mapto01(sqrt(img(:,:,1).^2+img(:,:,2).^2+img(:,:,3).^2));

excerpt=excerpt(170:340,170:340);

res=smooth(excerpt,[0 0 0; -1 0 1; 0 0 0]/2);

imwrite(uint8(contrastadjust0(255*mapto01(res),50)),’px31.png’,’png’);

res1=res;

res2=smooth(excerpt,[0 -1 0; 0 0 0; 0 1 0]/2);

grad=sqrt(res1.^2+res2.^2);

imwrite(uint8(grad),’grad1.png’,’png’);

imwrite(uint8(255*mapto01(grad)),’grad2.png’,’png’);

imwrite(uint8(contrastadjust0(255*mapto01(grad),50)),’grad.png’,’png’);

imwrite(uint8(contrastadjust(255*mapto01(res1),0.01)),’px3.png’,’png’);

imwrite(uint8(contrastadjust(255*mapto01(res2),0.01)),’py.png’,’png’);

resxx=smooth(res1,[0 0 0; -1 0 1; 0 0 0]/2);

resxy=smooth(res1,[0 -1 0; 0 0 0; 0 1 0]/2);

resyy=smooth(res2,[0 -1 0; 0 0 0; 0 1 0]/2);

imwrite(uint8(contrastadjust0(255*mapto01(resxx),100)),’dxx.png’,’png’);

imwrite(uint8(contrastadjust0(255*mapto01(resxy),100)),’dxy.png’,’png’);

imwrite(uint8(contrastadjust0(255*mapto01(resyy),100)),’dyy.png’,’png’);

Section 11.1
2 We have that the computational molecule of I ⊗ T is

rev(1)⊗ rev(1/2, 0,−1/2) = (1)⊗ (−1/2, 0, 1/2)

=

0
1
0

�
−1/2 0 1/2

�
=

1

2

0 0 0
−1 0 1
0 0 0

This is seen to coincide with the molecule from Equation 10.7 in Example 10.19.

368

3 We have that the computational molecule of T ⊗ T is

rev(1/2, 0,−1/2)⊗ rev(1/2, 0,−1/2)

= (−1/2, 0, 1/2)⊗ (−1/2, 0, 1/2)

=

−1/2
0
1/2

�
−1/2 0 1/2

�
=

1

4

1 0 −1
0 0 0
−1 0 1

This is seen to coincide with the molecule from Equation 10.10 in Example 10.19.

6 We have that

F (αx1 + βx2,y) = (αx1 + βx2)⊗ y = (αx1 + βx2)y
T

= αx1y
T + βx2y

T = α(x1 ⊗ y) + β(x⊗ y)

= αF (x1,y) + βF (x1,y).

The second statement follows similarly.

7

a Multiplicaton with the matrix

T =

0 0 0 · · · 0 0 1
0 0 0 · · · 0 1 0
...

...
...

...
...

...
...

0 1 0 · · · 0 0 0
1 0 0 · · · 0 0 0

reverses the elements in a vector. This means that

((T ⊗ I)(x⊗ y))i,j = ((Tx)⊗ y)i,j = (Tx)iyj = xM−1−iyj = (x⊗ y)M−1−i,j .

This means that also ((T ⊗ I)X)i,j = XM−1−i,j for all X, so that T ⊗ I reverses
rows, and thus is a solution to a..

b Similarly one shows that I ⊗T reverses columns, and is thus a solution to
b..

c It turns out that it is impossible to find S and T so that transposing a
matrix X corresponds to computing (S ⊗ T)X. To see why, S and T would
need to fulfill

(S ⊗ T)(ei ⊗ ej) = (Sei)⊗ (Tej) = ej ⊗ ei,

since ej ⊗ ei is the transpose of ei ⊗ ej . This would require that Sei = ej for
all i, j, which is impossible.

9

369

a The computational molecule of T ⊗ T is

rev(1, 2, 1)⊗ rev(1, 2, 1) = (1, 2, 1)⊗ (1, 2, 1) =

1
2
1

�
1 2 1

�
=

1 2 1
2 4 2
1 2 1

 .

b We get that

A =

1
2
3

�
3 2 1

�
+

2
2
2

�
1 4 2

�

=

3 2 1
6 4 2
9 6 3

+

2 8 4
2 8 4
2 8 4

 =

5 10 5
8 12 6
11 14 7

 .

c We need to compute (T ⊗ T)A = TATT , which corresponds to first ap-
plying T to every column in the image, and then applying T to every row in
the resulting image. If we apply T to every column in the image we first get

the matrix TA =

29 46 23
32 48 24
35 50 25

. If we apply the filter to the rows here we

get TATT =

127 144 121
136 152 128
145 160 135

. Since the filter which is applied is a lowpass

filter, the new image should look a bit more smooth than the original image.

Section 11.2
1 The following code can be used:

function newX=FFT2Impl(X)

for k=1:2

for s=1:size(X,2)

X(:,s)=FFTImpl(X(:,s));

end

X=X’;

end

newX=X;

function newX=IFFT2Impl(X)

for k=1:2

for s=1:size(X,2)

X(:,s)=IFFTImpl(X(:,s));

end

X=X’;

end

newX=X;

370

function newX=DCT2Impl(X)

for k=1:2

for s=1:size(X,2)

X(:,s)=DCTImpl(X(:,s));

end

X=X’;

end

newX=X;

function newX=IDCT2Impl(X)

for k=1:2

for s=1:size(X,2)

X(:,s)=IDCTImpl(X(:,s));

end

X=X’;

end

newX=X;

2 The following code can be used:

function newX=transform2jpeg(X)

numblocksx=size(X,1)/8;

numblocksy=size(X,2)/8;

for bx=0:(numblocksx-1)

for by=0:(numblocksy-1)

X((1+8*bx):8*(bx+1),(1+8*by):8*(by+1))=...

DCT2Impl(X((1+8*bx):8*(bx+1),(1+8*by):8*(by+1)));

end

end

newX=X;

function X=transform2invjpeg(newX)

numblocksx=size(newX,1)/8;

numblocksy=size(newX,2)/8;

for bx=0:(numblocksx-1)

for by=0:(numblocksy-1)

newX((1+8*bx):8*(bx+1),(1+8*by):8*(by+1))=...

IDCT2Impl(newX((1+8*bx):8*(bx+1),(1+8*by):8*(by+1)));

end

end

X=newX;

3 In the first part of the code one makes a change of coordinates with the DFT.
More precisely, this is a change of coordinates on a tensor product, as we have

371

defined it. In the last part the change of coordinates is performed the opposite
way. Both these change of coordinates is performed is performed the way we
have described them, first on the rows in the matrix, then on the columns.
The parameter threshold is used to neglect DFT-coefficients which are below
a certain value. We have seen that this can give various visual artefacts in
the image, even though the main contents of the image still may be visible. If
we increase threshold, these artefacts will be more dominating since we then
neglect many DFT-coefficients.

Section 12.1
2 The following code can be used:

function Xnew=DWT2HaarImpl(X,m)

for mres=1:m

l1=size(X,1)/2^(mres-1);

l2=size(X,2)/2^(mres-1);

for s=1:l2

X(1:l1,s)=DWTHaarImpl(X(1:l1,s),1);

end

X=X’;

for s=1:l1

X(1:l2,s)=DWTHaarImpl(X(1:l2,s),1);

end

X=X’;

end

Xnew=X;

function X=IDWT2HaarImpl(Xnew,m)

for mres=m:(-1):1

l1=size(Xnew,1)/2^(mres-1);

l2=size(Xnew,2)/2^(mres-1);

for s=1:l2

Xnew(1:l1,s)=IDWTHaarImpl(Xnew(1:l1,s),1);

end

Xnew=Xnew’;

for s=1:l1

Xnew(1:l2,s)=IDWTHaarImpl(Xnew(1:l2,s),1);

end

Xnew=Xnew’;

end

X=Xnew;

3

372

a The following code achieves the task:

function showDWTlowerHaar(m)

img=double(imread(’lena.png’,’png’));

for k=1:3

img(:,:,k)=DWT2HaarImpl(img(:,:,k),m);

end

[l1,l2,l3]=size(img);

tokeep=img(1:(l1/(2^m)),1:(l2/(2^m)),:);

img=zeros(size(img));

img(1:(l1/(2^m)),1:(l2/(2^m)),:)=tokeep;

for k=1:3

img(:,:,k)=IDWT2HaarImpl(img(:,:,k),m);

end

imshow(uint8(255*mapto01(img)));

c There is no reason to believe that image samples returned by the function
lie in [0, 255]. You can check this by printing the maximum value in the returned
array on screen inside this method.

4 The following code can be used

function showDWTlowerdifferenceHaar(m)

img=double(imread(’lena.png’,’png’));

for k=1:3

img(:,:,k)=DWT2HaarImpl(img(:,:,k),m);

end

[l1,l2,l3]=size(img);

img(1:(l1/2^m),1:(l2/2^m),:)=zeros(l1/2^m,l1/2^m,3);

for k=1:3

img(:,:,k)=IDWT2HaarImpl(img(:,:,k),m);

end

imshow(uint8(255*mapto01(img)));

5

a The following code can be used:

function Xnew=DWT2Impl53(X,m)

for mres=1:m

l1=size(X,1)/2^(mres-1);

l2=size(X,2)/2^(mres-1);

for s=1:l2

X(1:l1,s)=DWTImpl53(X(1:l1,s),1);

end

X=X’;

373

for s=1:l1

X(1:l2,s)=DWTImpl53(X(1:l2,s),1);

end

X=X’;

end

Xnew=X;

function X=IDWT2Impl53(Xnew,m)

for mres=m:(-1):1

l1=size(Xnew,1)/2^(mres-1);

l2=size(Xnew,2)/2^(mres-1);

for s=1:l2

Xnew(1:l1,s)=IDWTImpl53(Xnew(1:l1,s),1);

end

Xnew=Xnew’;

for s=1:l1

Xnew(1:l2,s)=IDWTImpl53(Xnew(1:l2,s),1);

end

Xnew=Xnew’;

end

X=Xnew;

b The following code can be used:

function Xnew=DWT2Impl97(X,m)

for mres=1:m

l1=size(X,1)/2^(mres-1);

l2=size(X,2)/2^(mres-1);

for s=1:l2

X(1:l1,s)=DWTImpl97(X(1:l1,s),1);

end

X=X’;

for s=1:l1

X(1:l2,s)=DWTImpl97(X(1:l2,s),1);

end

X=X’;

end

Xnew=X;

function X=IDWT2Impl97(Xnew,m)

for mres=m:(-1):1

l1=size(Xnew,1)/2^(mres-1);

374

l2=size(Xnew,2)/2^(mres-1);

for s=1:l2

Xnew(1:l1,s)=IDWTImpl97(Xnew(1:l1,s),1);

end

Xnew=Xnew’;

for s=1:l1

Xnew(1:l2,s)=IDWTImpl97(Xnew(1:l2,s),1);

end

Xnew=Xnew’;

end

X=Xnew;

6 The following code can be used:

function showDWTlower53(m)

img=double(imread(’lena.png’,’png’));

for k=1:3

img(:,:,k)=DWT2Impl53(img(:,:,k),m);

end

[l1,l2,l3]=size(img);

tokeep=img(1:(l1/(2^m)),1:(l2/(2^m)),:);

img=zeros(size(img));

img(1:(l1/(2^m)),1:(l2/(2^m)),:)=tokeep;

for k=1:3

img(:,:,k)=IDWT2Impl53(img(:,:,k),m);

end

imshow(uint8(255*mapto01(img)));

function showDWTlower97(m)

img=double(imread(’lena.png’,’png’));

for k=1:3

img(:,:,k)=DWT2Impl97(img(:,:,k),m);

end

[l1,l2,l3]=size(img);

tokeep=img(1:(l1/(2^m)),1:(l2/(2^m)),:);

img=zeros(size(img));

img(1:(l1/(2^m)),1:(l2/(2^m)),:)=tokeep;

for k=1:3

img(:,:,k)=IDWT2Impl97(img(:,:,k),m);

end

imshow(uint8(255*mapto01(img)));

7

a The following code can be used:

375

function showDWTlowerdifference53(m)

img=double(imread(’lena.png’,’png’));

for k=1:3

img(:,:,k)=DWT2Impl53(img(:,:,k),m);

end

[l1,l2,l3]=size(img);

img(1:(l1/2^m),1:(l2/2^m),:)=zeros(l1/2^m,l1/2^m,3);

for k=1:3

img(:,:,k)=IDWT2Impl53(img(:,:,k),m);

end

imshow(uint8(255*mapto01(img)));

function showDWTlowerdifference97(m)

img=double(imread(’lena.png’,’png’));

for k=1:3

img(:,:,k)=DWT2Impl97(img(:,:,k),m);

end

[l1,l2,l3]=size(img);

img(1:(l1/2^m),1:(l2/2^m),:)=zeros(l1/2^m,l1/2^m,3);

for k=1:3

img(:,:,k)=IDWT2Impl97(img(:,:,k),m);

end

imshow(uint8(255*mapto01(img)));

b After the replacements in the function showDWTall, we get code which
looks like this

function showDWTalldifference(m)

disp(’Haar wavelet’);

showDWTlowerdifferenceHaar(m);

disp(’5/3 wavelet’);

showDWTlowerdifference53(m);

disp(’9/7 wavelet’);

showDWTlowerdifference97(m);

Section 12.2

376

Nomenclature

x̆ Symmetric extension of a vector

x̂ DFT of the vector x

λS Continuous requency response of a filter

λS,n Vector frequency response of a filter

ω Angular frequency

⊕ Direct sum

⊗ Tensor product

x(e) Vector of even samples

x(o) Vector of odd samples

φ
m

Wavelet basis, before transform

Ed Filter which delays with d samples

FN N ×N -DCT matrix

FN N ×N -Fourier matrix

O(f(x)) Order of a function

O(N) Order of an algorithm

Sf Matrix with the columns reversed

VN,T N ’th order Fourier space

W (0,1)
m Resolution m Complementary wavelet space, LH

W (1,0)
m Resolution m Complementary wavelet space, HL

W (1,1)
m Resolution m Complementary wavelet space, HH

Cm Wavelet basis, after transform, reordered

377

DN = {d0,d1, · · · ,dN−1} N -point DCT basis for RN

DN,T Order N Fourier basis for VN,T

EN = {e0, e1, · · · , eN−1} Standard basis for RN

FN,T Order N complex Fourier basis for VN,T

378

Mathematics index

AD conversion, 47
algebra, 87
analysis, 20

equations, 20
angular frequency, 94

bandpass filter, 107
bit rate, 47
block, 285
block diagonal matrices, 204
block matrix, 75

change of coordinates
in tensor product, 297

Complex Fourier coefficients, 29
continuous sound, 8
convolution

sequences, 101
vectors, 100

coordinate matrix, 296

DCT basis, 137
DCT coefficients, 137
DCT matrix, 137
detail space, 163
DFT coefficients, 56
digital

sound, 8, 46
digital filter, 86
Direct sum

canonical basis, 170
linear transformations, 180

direct sum
vector spaces, 163

Dirichlet conditions, 21
Discrete Cosine transform, 137
Discrete Wavelet Transform, 171

elementary lifting matrix
even type, 249
odd type, 249

error-resilient, 285

FFT factorization, 76

filter coefficients, 84
Fourier analysis, 17
Fourier coefficients, 19
Fourier domain, 20
Fourier matrix, 56
Fourier series, 18
Fourier space, 18
Fourier transform

discrete, 56
frequency domain, 20
frequency response

continuous, 94
vector, 86

Haar wavelet, 172
highpass filter, 107

ideal highpass filter, 107
ideal lowpass filter, 107
IDFT, 58
impulse response, 90
interpolating polynomial, 69
interpolation formula, 72

ideal
periodic functions, 72

Inverse Discrete Wavelet Transform,
171

least square error, 18
length, 100
lifting factorization, 251
linear phase

digital filters, 132
lowpass filter, 107
LTI filters, 119

mother wavelets, 166
MRA-matrix, 205
multiresolution analysis, 177
multiresolution model, 155

Order N complex Fourier basis for
VN,T , 28

Order N Fourier basis for VN,T , 20

379

Order of a function, 78
Order of an algorithm, 78

Parallel computing
with the DCT, 147
with the DWT, 285
with the FFT, 79
with the revised FFT, 151

perfect reconstruction system, 211
pure digital tones, 55

samples, 47
sampling, 47

frequency, 47
period, 47
rate, 47

scaling function, 159, 177
separable extension, 303
sound channel, 49
square wave, 15
subband

HH, 306
HL, 306
LH, 306
LL, 307

symmetric extension, 65
synthesis, 20

equation, 20
vectors, 57

tensor product, 287
of function spaces, 303
of functions, 303
of matrices, 289
of vectors, 289

tile, 285
time domain, 20
time-invariant, 119
Toeplitz matrix, 83

circulant, 83
triangle wave, 15

Wavelet basis, after transform, re-
ordered, 204

Wavelet basis, before transform, 204
wavelet coefficients, 171

380

Index for MATLAB commands

audioplayer, 49

conv, 101, 116

dct, 141
double, 268

fft, 77

idct, 141
ifft, 77
imageview, 269
imread, 268
imwrite, 268

play, 48
playblocking, 48

rand, 52

uint8, 268

wavread, 49
wavwrite, 49

381

Bibliography

[1] ISO/IEC FDIS 15444-1. JPEG2000 Part 1 final draft international stan-
dard, 2000.

[2] C. M. Brislawn. Fingerprints go digital. Notices of the AMS, 42(11):1278–
1283, 1995.

[3] B. A. Cipra. The best of the 20th century: Editors name top 10 algorithms.
SIAM News, 33(4). http://www.uta.edu/faculty/rcli/TopTen/topten.pdf.

[4] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation
of complex fourier series. Math. Comput., 19:297Ð301, 1965.

[5] FBI. WSQ gray-scale fingerprint image compression specification. Techni-
cal report, IAFIS-IC, 1993.

[6] M. W. Frazier. An Introduction to Wavelets Through Linear Algebra.
Springer, 1999.

[7] ISI/IEC. Information technology - coding of moving pictures and associated
audio for digital storage media at up to about 1.5 mbit/s. Technical report,
ISO/IEC, 1993.

[8] D. C. Lay. linear algebra and its applications (4th edition). Addison Wesley,
2011.

[9] P. Noll. MPEG digital audio coding. IEEE Signal processing magazine,
pages 59–81, September 1997.

[10] D. Pan. A tutorial on MPEG/audio compression. IEEE Multimedia, pages
60–74, Summer 1995.

[11] W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression
Standard. Van Nostrand Reihnold, 1993.

[12] J. G. Proakis and D. G. Manolakis. Digital Signal Processing. Principles,
algorithms, and applications. Fourth edition. Pearson, 2007.

[13] J. H. Rothweiler. Polyphase quadrature filters - a new subband coding
technique. ICASSP 83, Boston, pages 1280–1283, 1983.

382

[14] D. S. Taubman and M. W. Marcellin. JPEG2000. Image compression.
Fundamentals, standards and practice. Kluwer Academic Publishers, 2002.

383

