
Chapter 5
5.1

5.2

1. Show that the coordinate vector for f 2 V0 in the basis {¡0,0,¡0,1, . . . ,¡0,N°1} is
(f (0), f (1), f (N °1)).
Solution: We have that f (t) =PN°1

n=0 cn¡0,n , where cn are the coordinates of f in the
basis {¡0,0,¡0,1, . . . ,¡0,N°1}. We now get that

f (k) =
N°1
X

n=0
cn¡0,n(k) = ck ,

since ¡0,n(k) = 0 when n 6= k. This shows that (f (0), f (1), f (N °1)) are the coor-
dinates of f .

2. Prove Proposition 5.12.
Solution: Since f is constant and equal to f (n) on [n,n + 1/2), and constant and
equal to f (n +1/2) on [n +1/2,n +1), we get that

h f ,¡0,ni=
ZN

0
f (t)¡0,n(t)d t =

Zn+1

n
f (t)d t

=
Zn+1/2

n
f (t)d t +

Zn+1

n+1/2
f (t)d t

=
Zn+1/2

n
f (n)d t +

Zn+1

n+1/2
f (n +1/2)d t

= f (n)/2+ f (n +1/2)/2 = (f (n)+ f (n +1/2))/2.

The orthogonal decomposition theorem gives that

projV0
f =

N°1
X

n=0
h f ,¡0,ni¡0,n =

N°1
X

n=0

f (n)+ f (n +1/2)
2

¡0,n .

Since ¡0,n is 1 on [n,n +1) and 0 elsewhere, projV0
f is the piecewise constant func-

tion which is equal to (f (n)+ f (n +1/2))/2 on [n,n +1).

55

3. In this exercise we will consider the two projections from V1 onto V0 and W0.

a. Consider the projection projV0
of V1 onto V0. Use lemma 5.11 to write

down the matrix for projV0
relative to the bases¡1 and¡0.

Solution: From lemma 5.11 it follows that

projV0
(¡1,2n) =¡0,n/

p
2

projV0
(¡1,2n+1) =¡0,n/

p
2

This means that

[projV0
(¡1,2n)]¡0

= en/
p

2

[projV0
(¡1,2n+1)]¡0

= en/
p

2.

These are the columns in the matrix for projV0
relative to the bases ¡1 and

¡0. This matrix is thus

1
p

2

0

B

B

B

B

@

1 1 0 0 0 · · · 0 0 0
0 0 1 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 1 1

1

C

C

C

C

A

.

b. Similarly, use lemma 5.11 to write down the matrix for projW0
: V1 ! W0

relative to the bases¡1 and√0.
Solution: From lemma 5.11 it follows that

projW0
(¡1,2n) =√0,n/

p
2

projW0
(¡1,2n+1) =°√0,n/

p
2

This means that

[projW0
(¡1,2n)]√0

= en/
p

2

[projW0
(¡1,2n+1)]√0

=°en/
p

2.

These are the columns in the matrix for projW0
relative to the bases ¡1 and

√0. This matrix is thus

1
p

2

0

B

B

B

B

@

1 °1 0 0 0 · · · 0 0 0
0 0 1 °1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 1 °1

1

C

C

C

C

A

.

4. Consider again the projection projV0
of V1 onto V0.

a. Explain why projV0
(¡) =¡ and projV0

(√) = 0.
Solution: Since ¡ 2 V0 we must have that projV0

(¡) = ¡. Since √ is in the
orthogonal complement of V0 in V1 we must have that projV0

(√) = 0.

56

b. Show that the matrix of projV0
relative to (¡0,√0) is given by the diagonal

matrix where the first half of the entries on the diagonal are 1, the second half
0.
Solution: The first columns in the matrix of projV0

relative to (¡0,√0) are

[projV0
(¡0,0)](¡0,√0) = [¡0,0](¡0,√0) = e0

[projV0
(¡0,1)](¡0,√0) = [¡0,1](¡0,√0) = e1

...
...

The last columns in the matrix of projV0
relative to (¡0,√0) are

[projV0
(√0,0)](¡0,√0) = [0](¡0,√0) = 0

[projV0
(√0,1)](¡0,√0) = [0](¡0,√0) = 0

...
...

It follows that the matrix of projV0
relative to (¡0,√0) is given by the diagonal

matrix where the first half of the entries on the diagonal are 1, the second half
0.

c. Show in a similar way that the projection of V1 onto W0 has a matrix rela-
tive to (¡0,√0) given by the diagonal matrix where the first half of the entries
on the diagonal are 0, the second half 1.
Solution: Follows in the same way as (b).

5. Show that

projV0
(f) =

N°1
X

n=0

µ

Zn+1

n
f (t)d t

∂

¡0,n(t) (5.1)

for any f . Show also that the first part of Proposition 5.12 follows from this.
Solution: We have that

projV0
(f) =

N°1
X

n=0

µ

ZN

0
f (t)¡0,n(t)d t

∂

¡0,n =
N°1
X

n=0

µ

Zn+1

n
f (t)d t

∂

¡0,n ,

where we have used the orthogonal decomposition formula. Note also that, if f (t) 2
V1, and fn,1 is the value f attains on [n,n + 1/2), and fn,2 is the value f attains on
[n +1/2,n +1), we have that

projV0
(f) =

N°1
X

n=0

µ

Zn+1

n
f (t)d t

∂

¡0,n(t)

=
N°1
X

n=0

µ

1
2

fn,1 +
1
2

fn,2

∂

¡0,n(t) =
N°1
X

n=0

fn,1 + fn,2

2
¡0,n(t),

which is the function which is (fn,1+ fn,2)/2 on [n,n+1). This proves the first part of
Proposition 5.12.

57

6. Show that

k
X

n

µ

Zn+1

n
f (t)d t

∂

¡0,n(t)° f k2 = h f , f i°
X

n

µ

Zn+1

n
f (t)d t

∂2

.

This, together with the previous exercise, gives us an expression for the least-squares
error for f from V0 (at least after taking square roots).
Solution: We have that

k f °projV0
(f)k2 = h f °projV0

(f), f °projV0
(f)i

= h f , f i°2h f ,projV0
(f)i+ hprojV0

(f),projV0
(f)i

Now, note that

hprojV0
(f),projV0

(f)i=
N°1
X

n=0

µ

Zn+1

n
f (t)d t

∂2

from what we just showed in Exercise 5 (use that the ¡0,n are orthonormal). This
means that the above can be written

= h f , f i°2
N°1
X

n=0

ZN

0

µ

Zn+1

n
f (s)d s

∂

¡0,n(t) f (t)d t +
N°1
X

n=0

µ

Zn+1

n
f (t)d t

∂2

= h f , f i°2
N°1
X

n=0

Zn+1

n

µ

Zn+1

n
f (s)d s

∂

f (t)d t +
N°1
X

n=0

µ

Zn+1

n
f (t)d t

∂2

= h f , f i°2
N°1
X

n=0

µ

Zn+1

n
f (t)d t

∂2

+
N°1
X

n=0

µ

Zn+1

n
f (t)d t

∂2

= h f , f i°
N°1
X

n=0

µ

Zn+1

n
f (t)d t

∂2

.

7. Show that

projW0
(f) =

N°1
X

n=0

µ

Zn+1/2

n
f (t)d t °

Zn+1

n+1/2
f (t)d t

∂

√0,n(t) (5.2)

for any f . Show also that the second part of Proposition 5.12 follows from this.
Solution: The orthogonal decomposition theorem gives that

projW0
(f) =

N°1
X

n=0
h f ,√0,ni√0,n(t) =

N°1
X

n=0

µ

ZN

0
f (t)√0,n(t)d t

∂

√0,n(t)

=
N°1
X

n=0

µ

Zn+1

n
f (t)√0,n(t)d t

∂

√0,n(t)

=
N°1
X

n=0

µ

Zn+1/2

n
f (t)d t °

Zn+1

n+1/2
f (t)d t

∂

√0,n(t),

where we used that √0,n is nonzero only on [n,n + 1), and is 1 on [n,n + 1/2), and
°1 on [n +1/2,n +1). Note also that, if f (t) 2 V1, and fn,1 is the value f attains on

58

[n,n +1/2), and fn,2 is the value f attains on [n +1/2,n +1), we have that

projW0
(f) =

N°1
X

n=0

µ

Zn+1/2

n
f (t)d t °

Zn+1

n+1/2
f (t)d t

∂

√0,n(t)

=
N°1
X

n=0

µ

1
2

fn,1 °
1
2

fn,2

∂

√0,n(t) =
N°1
X

n=0

fn,1 ° fn,2

2
√0,n(t),

which is the function which is (fn,1 ° fn,2)/2 on [n,n +1/2), and °(fn,1 ° fn,2)/2 on
[n +1/2,n +1). This proves the second part of Proposition 5.12.

8. When N is odd, the (first stage in a) DWT is defined as the change of coordinates
from (¡1,0,¡1,1, . . . ,¡1,N°1) to

(¡0,0,√0,0,¡0,1,√0,1, . . . ,¡0,(N°1)/2,√(N°1)/2,¡0,(N+1)/2).

Since all functions are assumed to have period N , we have that

¡0,(N+1)/2 =
1
p

2
(¡1,N°1 +¡1,N) = 1

p
2

(¡1,0 +¡1,N°1).

From this relation one can find the last column in the change of coordinate matrix
from ¡0 to (¡1,√1), i.e. the IDWT matrix. In particular, when N is odd, we see that
the last column in the IDWT matrix circulates to the upper right corner. In terms of
coordinates, we thus have that

c1,0 =
1
p

2
(c0,0 +w0,0 + c0,(N+1)/2) c1,N°1 =

1
p

2
c0,(N+1)/2. (5.3)

a. If N = 3, the DWT matrix equals 1p
2

0

@

1 1 1
1 °1 0
0 0 1

1

A, and the inverse of this

is 1p
2

0

@

1 1 °1
1 °1 °1
0 0 2

1

A. Explain from this that, when N is odd, the DWT matrix

can be constructed by adding a column on the form 1p
2

(°1,°1,0, . . . ,0,2) to
the DWT matrices we had for N even (in the last row zeros are also added). In
terms of the coordinates, we thus have the additional formulas

c0,0 =
1
p

2
(c1,0+c1,1°c1,N°1) w0,0 =

1
p

2
(c1,0°c1,1°c1,N°1) c0,(N+1)/2 =

1
p

2
2c1,N°1.

(5.4)

b. Explain that the DWT matrix is orthogonal if and only if N is even. Also
explain that it is only the last column which spoils the orthogonality.

59

5.3

1. Write a function IDWTKernelHaar which uses the formulas (5.3) to implement
the IDWT, similarly to how the function DWTKernelHaar implemented the DWT us-
ing the formulas (5.4).
Solution: The following code can be used:

function x = IDWTKernelHaar(x, symm, dual)
x = x/sqrt(2);
N = size(x, 1);
if mod(N,2) == 1

x(1:2, :) = [x(1, :) + x(2, :) + x(N, :); x(1, :) - x(2, :)];
else

x(1:2, :) = [x(1, :) + x(2, :); x(1, :) - x(2, :)];
end
for k = 3:2:(N-1)

x(k:(k+1), :) = [x(k, :) + x(k+1, :); x(k, :) - x(k+1, :)];
end

2. Generalize exercise 4 to the projections from Vm+1 onto Vm amd Wm .
Solution: Since ¡m,n 2 Vm we must have that T (¡m,n) = ¡m,n . Since √m,n is in the
orthogonal complement of Vm in Vm+1 we must have that T (√m,n) = 0. The first half
of the columns in the matrix of projVm

relative to (¡m ,√m) are

[projVm
(¡m,0)](¡m ,√m) = [¡m,0](¡m ,√m) = e0

[projVm
(¡m,1)](¡m ,√m) = [¡m,1](¡m ,√m) = e1

...
....

The second half of the columns are

[T (√m,0)](¡m ,√m) = [0](¡m ,√m) = 0

[T (√m,1)](¡m ,√m) = [0](¡m ,√m) = 0

...
....

Thus, as before, the matrix of projVm
relative to (¡m ,√m) is given by the diagonal

matrix where the first half of the diagonal consists of 1’s, and the second half consists
of 0’s. (c) follows in the same way.

3. Show that f (t) 2Vm if and only if g (t) = f (2t) 2Vm+1.
Solution: If f 2Vm we can write f (t) =P2m N°1

n=0 cm,n¡m,n(t). We now get

g (t) = f (2t) =
2m N°1

X

n=0
cm,n¡m,n(2t) =

2m N°1
X

n=0
cm,n2m/2¡(2m2t °n)

=
2m N°1

X

n=0
cm,n2°1/22(m+1)/2¡(2m+1t °n) =

2m N°1
X

n=0
cm,n2°1/2¡m+1,n(t).

60

This shows that g 2 Vm+1. To prove the other way, assume that g (t) = f (2t) 2 Vm+1.
This means that we can write g (t) =P2m+1N°1

n=0 cm+1,n¡m+1,n(t). We now have

f (t) = g (t/2) =
2m+1N°1

X

n=0
cm+1,n¡m+1,n(t/2) =

2m+1N°1
X

n=0
cm+1,n2(m+1)/2¡(2m t °n)

=
2m N°1

X

n=0
cm+1,n2(m+1)/2¡(2m t °n)+

2m+1N°1
X

n=2m N
cm+1,n2(m+1)/2¡(2m t °n)

=
2m N°1

X

n=0
cm+1,n2(m+1)/2¡(2m t °n)+

2m N°1
X

n=0
cm+1,n+2m N 2(m+1)/2¡(2m t °n °2m N)

=
2m N°1

X

n=0
cm+1,n2(m+1)/2¡(2m t °n)+

2m N°1
X

n=0
cm+1,n+2m N 2(m+1)/2¡(2m t °n)

=
2m N°1

X

n=0
(cm+1,n + cm+1,n+2m N)21/22m/2¡(2m t °n)

=
2m N°1

X

n=0
(cm+1,n + cm+1,n+2m N)21/2¡m,n(t) 2Vm

The thing which made this a bit difficult was that the range of the n-indices here was
outside [0,2m N°1] (which describe the legal indices in the basis Vm), so that we had
to use the periodicty of ¡.

4. Let C1,C2 . . . ,Cn be independent vector spaces, and let Ti : Ci ! Ci be linear
transformations. The direct sum of T1, T2,. . . ,Tn , written as T1 ©T2 © . . .©Tn , de-
notes the linear transformation from C1 ©C2 © · · ·©Cn to itself defined by

T1 ©T2 © . . .©Tn(c 1 +c 2 +·· ·+c n) = T1(c 1)+T2(c 2)+·· ·+Tn(c n)

when c 1 2C1, c 2 2C2, . . . , c n 2Cn . Similarly, when A1, A2, . . . , An are square matrices,
A1 © A2 © · · ·© An is defined as the block matrix where the blocks along the diagonal
are A1, A2, . . . , An , and where all other blocks are 0. Show that, if Bi is a basis for Ci
then

[T1 ©T2 © . . .©Tn](B1,B2,...,Bn) = [T1]B1 © [T2]B2 © · · ·© [Tn]Bn ,

Here two new concepts are used: a direct sum of matrices, and a direct sum of linear
transformations.
Solution: By definition, [T1]B1 © [T2]B2 © · · ·© [Tn]Bn is a block matrix where the
blocks on the diagonal are the matrices [T1]B1 , [T2]B2 , and so on. If bi are the basis
vectors in Bi , the columns in [Ti]Bi are [T (b j)]Bi . This means that [T1]B1 ©[T2]B2 ©
· · ·©[Tn]Bn has [T (b j)]Bi in the j ’th block, and 0 elsewhere. This means that we can
write it as

0© · · ·0© [T (b j)]Bi ©0 · · ·0.

On the other hand, [T1©T2© . . .©Tn](B1,B2,...,Bn) is a matrix of the same size, and

61

the corresponding column to that of the above is

[(T1 ©T2 © . . .©Tn)(0© · · ·0©b j ©0 · · ·0)](B1,B2,...,Bn)

= [0© · · ·0©T (b j)©0 · · ·0](B1,B2,...,Bn)

= 0© · · ·0© [T (b j)]Bi ©0 · · ·0.

Here b j occurs as the i ’th summand. This is clearly the same as what we computed
for the right hand side above.

5. Assume that T1 and T2 are matrices, and that the eigenvalues of T1 are equal to
those of T2. What are the eigenvalues of T1 ©T2? Can you express the eigenvectors
of T1 ©T2 in terms of those of T1 and T2?
Solution: Assume that ∏ is an eigenvalue common to both T1 and T2. Then there
exists a vector v 1 so that T1v 1 = ∏v 1, and a vector v 2 so that T2v 2 = ∏v 2. We now
have that

(T1 ©T2)(v 1 ©v 2) =
µ

T1 0
0 T2

∂µ

v 1
v 2

∂

=
µ

T1v 1
T2v 2

∂

=
µ

∏v 1
∏v 2

∂

=∏
µ

v 1
v 2

∂

=∏(v 1 ©v 2).

This shows that ∏ is an eigenvalue for ∏ also, and that v 1 © v 2 is a corresponding
eigenvector.

6. Assume that A and B are square matrices which are invertible. Show that A ©B
is invertible, and that (A©B)°1 = A°1 ©B°1.
Solution: We have that

(A©B)(A°1 ©B°1) =
µ

A 0
0 B

∂µ

A°1 0
0 B°1

∂

=
µ

A A°1 0
0 BB°1

∂

=
µ

I 0
0 I

∂

= I

where we have multiplied as block matrices. This proves that A©B is invertible, and
states what the inverse is.

7. Let A,B ,C ,D be square matrices of the same dimensions. Show that (A©B)(C ©
D) = (AC)© (BD).
Solution: We have that

(A©B)(C ©D) =
µ

A 0
0 B

∂µ

C 0
0 D

∂

=
µ

AC 0
0 BD

∂

= (AC)© (BD)

where we again have multiplied as block matrices.

62

Figure 5.1: 2 vectors x1 and x2 which seem equal, but where the DWT’s are very
different.

8. Assume that you run an m-level DWT on a vector of length r . What value of N
does this correspond to? Note that an m-level DWT performs a change of coordi-
nates from¡m to (¡0,√0,√1, . . . ,√m°2,√m°1).

9. In Figure 5.1 we have plotted the DWT’s of two vectors x1 and x2. In both vec-
tors we have 16 ones followed by 16 zeros, and this pattern repeats cyclically so that
the length of both vectors is 256. The only difference is that the second vector is
obtained by delaying the first vector with one element. You see that the two DWT’s
are very different: For the first vector we see that there is much detail present (the
second part of the plot), while for the second vector there is no detail present. At-
tempt to explain why this is the case. Based on your answer, also attempt to explain
what can happen if you change the point of discontinuity for the piecewise constant
function in Figure 5.20(a) to something else.

10. Run a 2-level DWT on the first 217 sound samples of the audio filecastanets.wav,
and plot the values of the resulting DWT-coefficients. Compare the values of the co-
efficients from V0 with those from W0 and W1.
Solution: The following code achieves this:

% Exercise 5.3.10
[x, fs] = audioread(’castanets.wav’);
newx = DWTImpl(x(1:2^17,1), 2, @DWTKernelHaar);
plot(newx(1:2^17,1))
axis([0 2^17 -1 1]);

The values from V0 corresponds to the first 1/4 values in the plot, the values from W0
corresponds to the next 1/4 values in the plot, while the values from W1 correspond
to the last 1/2 of the values in the plot.

11. In this exercise we will experiment with applying an m-level DWT to a sound
file.
Solution: The following code achieves the task

63

function playDWT(m, f, invf, lowres)
[x fs] = audioread(’castanets.wav’);
N=2^17;
x = DWTImpl(x(1:N,:), m, f);
if lowres

x((N/2^m+1):N, :) = 0;
else

x(1:(N/2^m), :) = 0;
end
x = IDWTImpl(x, m, invf);
playerobj = audioplayer(x, fs);
playblocking(playerobj);

a. Write a function playDWT which takes m, a DWT kernel, an IDWT kernel,
and a variable lowres as input, and

1. reads the audio file castanets.wav,

2. performs an m-level DWT to the first 217 sound samples of x using the
function DWTImpl with the given DWT kernel,

3. sets all wavelet coefficients representing detail to zero if lowres is true
(i.e. keep only the coordinates from¡0 in the basis (¡0,√0,√1, . . . ,√m°2,√m°1)),

4. sets all low-resolution coefficients to seros if lowres is false (i.e. zero
out the coordinates from¡0 and keep the others),

5. performs an IDWT on the resulting coefficients using the functionIDWTImpl
with the given IDWT kernel,

6. plays the resulting sound.

b. Run the function playDWTwith DWTKernelHaar and IDWTKernelHaar as
inputs, and for different values of m, when the low-resolution approximation
is chosen. For which m can you hear that the sound gets degraded? How does
it get degraded? Compare with what you heard through the function playDFT
in Example 2.30, where you performed a DFT on the sound sample instead,
and set some of the DFT coefficients to zero.
Solution: For m = 2 we clearly hear a degradation in the sound. For m = 4
and above most of the sound is unrecognizable.

c. Do the sound samples returned by playDWT lie in [°1,1]?
Solution: There is no reason to believe that sound samples returned by the
function lie in [°1,1]. you can check this by printing the maximum value in
the returned array on screen inside this method.

12. Attempt to construct a (nonzero) sound where the function playDWT form the
previous exercise does not change the sound for m = 1,2.

13. Repeat the listening experiment from Exercise 11, but this time instead keep
only wavelet coefficients from the detail spaces W0,W1, What kind of sound do
you hear? Can you recognize the original sound in what you hear?

64

14. Compute the wavelet detail coefficients analytically for the functions in Exam-
ple 5.20, i.e. compute the quantities wm,n =

RN
0 f (t)√m,n(t)d t similarly to how this

was done in Example 5.21.
Solution: Note first that, similarly to the computation in Exercise 7 in Section 5.2,
we have that

ZN

0
f (t)√m,n(t)d t = 2m/2

µ

Z(n+1/2)2°m

n2°m
f (t)d t °

Z(n+1)2°m

(n+1/2)2°m
f (t)d t

∂

.

With f (t) = 1°2|1/2° t/N | we have two possibilities: when n < N 2m°1 we have
that [n2°m , (n +1)2°m) Ω [0, N /2], so that f (t) = 2t/N , and we get

wm,n = 2m/2
µ

Z(n+1/2)2°m

n2°m
2t/N d t °

Z(n+1)2°m

(n+1/2)2°m
2t/N d t

∂

= 2m/2[t 2/N](n+1/2)2°m

n2°m °2m/2[t 2/N](n+1)2°m

(n+1/2)2°m

= 2°3m/2

N

°

2(n +1/2)2 °n2 ° (n +1)2¢=°2°3m/2°1

N
.

When n ∏ N 2m°1 we have that f (t) = 2°2t/N , and using that
RN

0 √m,n(t)d t = 0 we

must get that wm,n = 2°3m/2°1

N .
For f (t) = 1/2+ cos(2ºt/N)/2, note first that this has the same coefficients as

cos(2ºt/N)/2, since
RN

0 √m,n(t)d t = 0. We now get

wm,n = 2m/2
µ

Z(n+1/2)2°m

n2°m
cos(2ºt/N)/2d t °

Z(n+1)2°m

(n+1/2)2°m
cos(2ºt/N)/2d t

∂

= 2m/2[N sin(2ºt/N)/(4º)](n+1/2)2°m

n2°m °2m/2[N sin(2ºt/N)/(4º)](n+1)2°m

(n+1/2)2°m

= 2m/2°2N
º

°

2sin(2º(n +1/2)2°m/N)° sin(2ºn2°m/N)° sin(2º(n +1)2°m/N)
¢

.

There seems to be no more possibilities for simplification here.

15. Compute the wavelet detail coefficients analytically for the functions f (t) =
° t

N

¢k , i.e. compute the quantities wm,n =
RN

0

° t
N

¢k
√m,n(t)d t similarly to how this

was done in Example 5.21. How do these compare with the coefficients from the
Exercise 14?
Solution: We get

wm,n = 2m/2
µ

Z(n+1/2)2°m

n2°m
(t/N)k d t °

Z(n+1)2°m

(n+1/2)2°m
(t/N)k d t

∂

= 2m/2[t k+1/((k +1)N k)](n+1/2)2°m

n2°m °2m/2[t k+1/((k +1)N k)](n+1)2°m

(n+1/2)2°m

= 2°m(k+1/2)

(k +1)N k

≥

2(n +1/2)k+1 °nk+1 ° (n +1)k+1
¥

.

The leading term nk+1 will here cancel, but the others will not, so there is no room
for further simplification here.

65

16. Suppose that we have the vector x with length 210 = 1024, defined by xn = 1 for
n even, xn = °1 for n odd. What will be the result if you run a 10-level DWT on x?
Use the function DWTImpl to verify what you have found.
Hint: We defined √ by √(t) = (¡1,0(t)°¡1,1(t))/

p
2. From this connection it follows

that√9,n = (¡10,2n °¡10,2n+1)/
p

2, and thus ¡10,2n °¡10,2n+1 =
p

2√9,n . Try to couple
this identity with the alternating sign you see in x .
Solution: The vector x is the coordinate vector of the function f (t) =P1023

n=0 (°1)n¡10,n

in the basis¡10 for V10. Since¡10,2n°¡10,2n+1 =
p

2√9,n , we can write f (t) =P1023
n=0

p
2√9,n .

Since a 10-level-DWT gives as a result the coordinate vector of f in

(¡0,√0,√1,√2,√3,√4,√5,√6,√7,√8,√9),

(the DWT is nothing but the change of coordinates from¡10 to this basis), and since
f (t) = P1023

n=0

p
2√9,n , it is clear that the coordinate vector of f in this basis has

p
2

in the second part (the√9-koordinatene), and 0 elsewhere. The 10-level DWT of x

therefore gives the vector of length 1024 which is 0 on the first half, and equal to
p

2
on the second half. m = 10 is here arbitrarily chosen: The result would have been
the same for m = 1,m = 2, and so on. The following code verifies the result:

% Exercise 5.3.16
DWTImpl(repmat([1; -1],512,1), 10, @DWTKernelHaar);

17. Use the results from exercise 8 in Section 5.2 to rewrite the implementations
DWTKernelHaar and IDWTKernelHaar so that they also work in the case when N is
odd.
Solution: The following code can be used.

function x = DWTKernelHaar(x)
x = x/sqrt(2);
N = size(x, 1);
if mod(N,2) == 1

x(1:2, :) = [x(1, :) + x(2, :) - x(N, :); x(1, :) - x(2, :) - x(N, :)];
x(N, :) = 2*x(N, :);

else
x(1:2, :) = [x(1, :) + x(2, :); x(1, :) - x(2, :)];

end
for k = 3:2:(N-1)

x(k:(k+1), :) = [x(k, :) + x(k+1, :); x(k, :) - x(k+1, :)];
end

18. Show that the coordinates in ¡m after an in-place m-level DWT end up at in-
dices k2m , k = 0,1,2, Show similarly that the coordinates in√m after an in-place
m-level DWT end up at indices 2m°1 +k2m , k = 0,1,2, Find these indices in the
code for the function reorganize_coefficients.

5.4

1. Show that, for f 2V0 we have that [f]¡0
= (f (0), f (1), . . . , f (N °1)). This general-

izes the result for piecewise constant functions. Let us write f (t) = PN°1
n=0 cn¡0,n(t).

66

If k is an integer we have that

f (k) =
N°1
X

n=0
cn¡0,n(k) =

N°1
X

n=0
cn¡(k °n).

Clearly the only integer for which ¡(s) 6= 0 is s = 0 (since ¡(0) = 1), so that the only
n which contributes in the sum is n = k. This means that f (k) = ck , so that [f]¡0

=
(f (0), f (1), . . . , f (N °1)).

2. In this exercise we will show how the projection of¡1,1 onto V0 can be computed.
We will see from this that it is nonzero, and that its support is the entire [0, N]. Let
f = projV0

¡1,1, and let xn = f (n) for 0 ∑ n < N . This means that, on (n,n +1), f (t) =
xn + (xn+1 °xn)(t °n).

a. Show that
Rn+1

n f (t)2d t = (x2
n +xn xn+1 +x2

n+1)/3.
Solution: We have that

Zn+1

n
f (t)2d t =

Zn+1

n
(xn + (xn+1 °xn)(t °n))2d t =

Z1

0
(xn + (xn+1 °xn)t)2d t

=
Z1

0
(x2

n +2xn(xn+1 °xn)t + (xn+1 °xn)2t 2)d t

=
£

x2
n t +xn(xn+1 °xn)t 2 + (xn+1 °xn)2t 3/3

§1
0

= x2
n +xn(xn+1 °xn)+ (xn+1 °xn)2/3 = 1

3
(x2

n +xn xn+1 +x2
n+1).

b. Show that

Z1/2

0
(x0 + (x1 °x0)t)¡1,1(t)d t = 2

p
2
µ

1
12

x0 +
1

24
x1

∂

Z1

1/2
(x0 + (x1 °x0)t)¡1,1(t)d t = 2

p
2
µ

1
24

x0 +
1

12
x1

∂

.

Solution: We have that

Z1/2

0
(x0 + (x1 °x0)t)¡1,1(t)d t

=
Z1/2

0
(x0 + (x1 °x0)t)2

p
2td t = 2

p
2
Z1/2

0
(x0t + (x1 °x0)t 2)d t

= 2
p

2
∑

1
2

x0t 2 + 1
3

(x1 °x0)t 3
∏1/2

0
= 2

p
2
µ

1
8

x0 +
1

24
(x1 °x0))

∂

= 2
p

2
µ

1
12

x0 +
1

24
x1

∂

.

67

In the same way
Z1

1/2
(x0 + (x1 °x0)t)¡1,1(t)d t

=
Z1

1/2
(x0 + (x1 °x0)t)2

p
2(1° t)td t = 2

p
2
Z1

1/2
(x0 + (x1 °2x0)t ° (x1 °x0)t 2)td t

= 2
p

2
∑

x0t + 1
2

(x1 °2x0)t 2 ° 1
3

(x1 °x0)t 3
∏1

1/2
= 2

p
2
µ

1
2

x0 +
3
8

(x1 °2x0)° 7
24

(x1 °x0)
∂

= 2
p

2
µ

1
24

x0 +
1

12
x1

∂

.

c. Use the fact that
ZN

0
(¡1,1(t)°

N°1
X

n=0
xn¡0,n(t))2d t

=
Z1

0
¡1,1(t)2d t °2

Z1/2

0
(x0 + (x1 °x0)t)¡1,1(t)d t °2

Z1

1/2
(x0 + (x1 °x0)t)¡1,1(t)d t

+
N°1
X

n=0

Zn+1

n
(xn + (xn°1 °xn)t)2d t

and a. and b. to find an expression for k¡1,1(t)°PN°1
n=0 xn¡0,n(t)k2.

Solution: Using a. and b. we see that the above can be written as

2
3
+

N°1
X

n=0

1
3

(x2
n +xn xn+1 +x2

n+1)°2
µ

2
p

2
µ

1
12

x0 +
1

24
x1

∂

°2
p

2
µ

1
24

x0 +
1

12
x1

∂∂

= 2
3
+ 2

3

N°1
X

n=0
x2

n + 1
3

N°1
X

n=0
xn xn+1 °

p
2

2
(x0 +x1).

d. To find the minimum least squares error, we can set the gradient of the
expression in c. to zero, and thus find the expression for the projection of¡1,1
onto V0. Show that the values {xn}N°1

n=0 can be found by solving the equation
Sx = b, where S = 1

3 {1,4,1} is an N £N symmetric filter, and b is the vector
with components b0 = b1 =

p
2/2, and bk = 0 for k ∏ 2.

Solution: We see that the partial derivatives of the function in c. are

@ f
@x0

= 1
3

xN°1 +
4
3

x0 +
1
3

x1 °
p

2
2

@ f
@x1

= 1
3

x0 +
4
3

x1 +
1
3

x1 °
p

2
2

@ f
@xi

= 1
3

xi°1 +
4
3

xi +
1
3

xi+1 2 ∑ i < N °1

@ f
@xN°1

= 1
3

xN°2 +
4
3

xN°1 +
1
3

x0.

Moving the two terms
p

2
2 over to the right hand side, setting the gradient

equal to zero is the same as solving the system Sx = b which we stated.

68

e. Solve the system in d. for some values of N to verify that the projection of
¡1,1 onto V0 is nonzero, and that its support covers the entire [0, N].
Solution: The following code can be used

N = 16;
S=zeros(N);
S(1,N)=1/3; S(1,1)=4/3; S(1,2)=1/3; % First row
for k=2:(N-1)

S(k,(k-1):(k+1)) = [1/3 4/3 1/3];
end
S(N,N-1)=1/3; S(N,N)=4/3; S(N,1)=1/3; % Last row
b=zeros(N,1); b(1)=sqrt(2)/2; b(2)=sqrt(2)/2;
plot(0:(N-1),S\b) %Plots the projection

3. Show that

h¡0,n ,¡0,ni=
2
3

h¡0,n ,¡0,n±1i=
1
6

h¡0,n ,¡0,n±ki= 0 for k > 1.

As a consequence, the {¡0,n}n are neither orthogonal, nor have norm 1.
Solution: We have that

h¡0,n ,¡0,ni=
Zn+1

n°1
(1° |t °n|)2d t

=
Zn+1

n°1

°

1°2|t °n|+ (t °n)2¢d t

= 2°2+
∑

1
3

(t °n)3
∏n+1

n°1
= 2

3
.

We also have

h¡0,n ,¡0,n+1 =
Zn+1

n
(1° (t °n))(1+ (t °n °1))d t =

Z1

0
(1°u)(1+u °1)du

=
Z1

0
(t ° t 2)d t = 1

2
° 1

3
= 1

6
.

Finally, the supports of ¡0,n and ¡0,n±k are disjoint for k > 1, so that we must have
h¡0,n ,¡0,n±ki= 0 in that case.

4. The convolution of two functions defined on (°1,1) is defined by

(f § g)(x) =
Z1

°1
f (t)g (x ° t)d t .

Show that we can obtain the piecewise linear ¡ we have defined as ¡ = ¬[°1/2,1/2) §
¬[°1/2,1/2) (recall that ¬[°1/2,1/2) is the function which is 1 on [°1/2,1/2) and 0 else-
where). This gives us a nice connection between the piecewise constant scaling
function (which is similar to ¬[°1/2,1/2)) and the piecewise linear scaling function
in terms of convolution.
Solution: We have that

¬[°1/2,1/2) §¬[°1/2,1/2)(x) =
Z1

°1
¬[°1/2,1/2)(t)¬[°1/2,1/2)(x ° t)d t .

69

The integrand here is 1 when °1/2 < t < 1/2 and °1/2 < x ° t < 1/2, or in other
words when max(°1/2,°1/2+x) < t < min(1/2,1/2+x) (else it is 0). When x > 0 this
happens when °1/2+ x < t < 1/2, and when x < 0 this happens when °1/2 < t <
1/2+x. This means that

¬[°1/2,1/2) §¬[°1/2,1/2)(x) =
(

R1/2
°1/2+x d t = 1°x , x > 0

R1/2+x
°1/2 d t = 1+x , x < 0.

But this is by definition ¡.

5.5

1. In this exercise we will show that there is a unique function on the form (5.32)
which has two vanishing moments.

a. Show that, when √̂ is defined by (5.32), we have that

√̂(t) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

°Æt °Æ for °1 ∑ t < 0

(2+Æ°Ø)t °Æ for 0 ∑ t < 1/2

(Æ°Ø°2)t °Æ+2 for 1/2 ∑ t < 1

Øt °2Ø for 1 ∑ t < 2

0 for all other t

Solution: The function √̂ is a sum of the functions √=¡1,1, ¡, and ¡0,1 (i.e.
we have set n = 0 in Equation (5.32)). All these are continuous and piecewise
linear, and we can write

¡1,1(t) =

8

>

<

>

:

2t 0 ∑ t < 1/2

2°2t 1/2 ∑ t < 1

0 elsewhere

¡(t)(t) =

8

>

<

>

:

1+ t °1 ∑ t < 0

1° t 0 ∑ t < 1

0 elsewhere

¡0,1(t) =

8

>

<

>

:

t 0 ∑ t < 1

2° t 1 ∑ t < 2

0 elsewhere

.

It follows that √̂(t) =¡1,1(t)°Æ¡(t)°Ø¡1,1 is piecewise linear, and linear on
the segments [°1,0], [0,1/2], [1/2,1], [1,2].

On the segment [°1,0] only the function ¡ is seen to be nonzero, and since
¡(t) = 1+ t here, we have that √̂(t) =°Æ(1+ t) =°Æ°Æt here.

70

On the segment [0,1/2] all three functions are nonzero, and

¡1,1(t) = 2t

¡(t)(t) = 1° t

¡0,1(t) = t

on this interval. This means that √̂(t) = 2t °Æ(1° t)°Øt = (2+Æ°Ø)t °Æ on
[0,1/2].

On the segment [0,1/2] all three functions are nonzero, and

¡1,1(t) = 2°2t

¡(t)(t) = 1° t

¡0,1(t) = t

on this interval. This means that √̂(t) = 2°2t°Æ(1°t)°Øt = (Æ°Ø°2)t°Æ+2
on [1/2,1].

On the segment [1,2] only the function ¡0,1 is seen to be nonzero, and since
¡0,1(t) = 2° t here, we have that √̂(t) =°Ø(2° t) =Øt °2Ø here. For all other
values of t , √̂ is zero. This proves the formulas for √̂ on the different intervals.

b. Show that

ZN

0
√̂(t)d t = 1

2
°Æ°Ø,

ZN

0
t√̂(t)d t = 1

4
°Ø.

Solution: We can write

ZN

0
√̂(t)d t =

Z2

°1
√̂(t)d t =

Z0

°1
√̂(t)d t +

Z1/2

0
√̂(t)d t +

Z1

1/2
√̂(t)d t +

Z2

1
√̂(t)d t

=
Z0

°1
(°Æ°Æt)d t +

Z1/2

0
(2+Æ°Ø)t °Æ)d t

+
Z1

1/2
((Æ°Ø°2)t °Æ+2)d t +

Z2

1
(Øt °2Ø)d t

=
∑

°Æt ° 1
2
Æt 2

∏0

°1
+

∑

1
2

(2+Æ°Ø)t 2 °Æt
∏1/2

0

+
∑

1
2

(Æ°Ø°2)t 2 + (2°Æ)t
∏1

1/2
+

∑

1
2
Øt 2 °2Øt

∏2

1

=°Æ+ 1
2
Æ+ 1

8
(2+Æ°Ø)° 1

2
Æ+ 3

8
(Æ°Ø°2)+ 1

2
(2°Æ)+ 3

2
Ø°2Ø

= 1
2
°Æ°Ø,

RN
0 t√̂(t)d t is computed similarly, so that we in the end arrive at 1

4 °Ø.

71

c. Explain why there is a unique function on the form (5.32) which has two
vanishing moments, and that this function is given by Equation (5.34).
Solution: The equation system

1
2
°Æ°Ø= 0

1
4
°Ø= 0

has the unique solution Æ=Ø= 1
4 , which we already have found.

2. In the previous exercise we ended up with a lot of calculations to find Æ,Ø in
Equation (5.32). Let us try to make a program which does this for us, and which also
makes us able to generalize the result.

a. Define

ak =
Z1

°1
t k (1° |t |)d t , bk =

Z2

0
t k (1° |t °1|)d t , ek =

Z1

0
t k (1°2|t °1/2|)d t ,

for k ∏ 0. Explain why findingÆ,Ø so that we have two vanishing moments in
Equation 5.32 is equivalent to solving the following equation:

µ

a0 b0
a1 b1

∂µ

Æ
Ø

∂

=
µ

e0
e1

∂

Write a program which sets up and solves this system of equations, and use
this program to verify the values for Æ,Ø we previously have found.
Hint: you can integrate functions in Matlab with the function quad. As an ex-
ample, the function ¡(t), which is nonzero only on [°1,1], can be integrated
as follows:

quad(@(t)t.^k.*(1-abs(t)),-1,1)

Solution: In order for √ to have vanishing moments we must have that
R

√̂(t)d t =
R

t√̂(t)d t = 0 Substituting √̂ = √°Æ¡0,0 °Ø¡0,1 we see that, for
k = 0,1,

Z

t k °

Æ¡0,0 +Ø¡0,1
¢

d t =
Z

t k√(t)d t .

The left hand side can here be written
Z

t k °

Æ¡0,0 +Ø¡0,1
¢

d t =Æ
Z

t k¡0,0d t +Ø
Z

t k¡0,1(t)d t

=Æ
Z1

°1
t k (1° |t |)d t +Ø

Z2

0
t k (1° |t °1|)d t =Æak +Øbk .

The right hand side is
Z

t k√(t)d t =
Z

t k¡1,1(t)d t =
Z1

0
(1°2|t °1/2|)d t = ek .

72

The following program sets up the corresponding equation systems, and solves
it by finding Æ,Ø.

% Exercise 5.5.2a
A = zeros(2);
b = zeros(2, 1);
for k = 0:1

A(k + 1, :) = [quad(@(t)t.^k.*(1 - abs(t)), -1, 1)...
quad(@(t)t.^k.*(1 - abs(t - 1)), 0, 2)];

b(k + 1) = quad(@(t)t.^k.*(1 - 2*abs(t - 1/2)), 0, 1);
end
A\b;

b. The procedure where we set up a matrix equation in a. allows for gener-
alization to more vanishing moments. Define

√̂=√0,0 °Æ¡0,0 °Ø¡0,1 °∞¡0,°1 °±¡0,2. (5.5)

We would like to choose Æ,Ø,∞,± so that we have 4 vanishing moments. De-
fine also

gk =
Z0

°2
t k (1° |t +1|)d t , dk =

Z3

1
t k (1° |t °2|)d t

for k ∏ 0. Show that Æ,Ø,∞,± must solve the equation

0

B

B

@

a0 b0 g0 d0
a1 b1 g1 d1
a2 b2 g2 d2
a3 b3 g3 d3

1

C

C

A

0

B

B

@

Æ
Ø
∞
±

1

C

C

A

=

0

B

B

@

e0
e1
e2
e3

1

C

C

A

,

and solve this with your computer.
Solution: Similarly to a., Equation (5.5) gives that

Z

t k °

Æ¡0,0 +Ø¡0,1 +∞¡0,°1 +±¡0,2
¢

d t =
Z

t k√(t)d t .

The correspodning equation system is deduced exactly as in a. The following
program sets up the corresponding equation systems, and solves it by finding
Æ,Ø,∞,±.

% Exercise 5.5.2b
A = zeros(4);
b = zeros(4, 1);
for k = 0:3

A(k + 1, :) = [quad(@(t)t.^k.*(1 - abs(t)), - 1, 1)...
quad(@(t)t.^k.*(1 - abs(t - 1)), 0, 2)...
quad(@(t)t.^k.*(1 - abs(t + 1)), -2, 0)...
quad(@(t)t.^k.*(1 - abs(t - 2)), 1, 3)];

b(k + 1) = quad(@(t)t.^k.*(1 - 2*abs(t - 1/2)), 0, 1);
end
coeffs=A\b;

73

c. Plot the function defined by (5.5), which you found in b.
Hint: If t is the vector of t-values, and you write

(t >= 0).*(t <= 1).*(1-2*abs(t-0.5))

you get the points ¡1,1(t).
Solution: The function √̂ now is supported on [°2,3], and can be plotted as
follows:

% Exercise 5.5.2c
t=linspace(-2,3,100);
plot(t, (t>= 0).*(t <= 1).*(1-2*abs(t - 0.5)) ...

-coeffs(1)*(t >= -1).*(t <= 1).*(1 - abs(t))...
-coeffs(2)*(t >= 0).*(t <= 2).*(1 - abs(t - 1))...
-coeffs(3)*(t >= -2).*(t <= 0).*(1 - abs(t + 1))...
-coeffs(4)*(t >= 1).*(t <= 3).*(1 - abs(t - 2)))

d. Explain why the coordinate vector of √̂ in the basis (¡0,√0) is

[√̂](¡0,√0) = (°Æ,°Ø,°±,0, . . . ,0°∞)© (1,0, . . . ,0).

Hint: You can also compare with Equation (5.37) here. The placement of °∞
may seem a bit strange here, and has to with that ¡0,°1 is not one of the basis
functions {¡0,n}N°1

n=0 . However, we have that ¡0,°1 = ¡0,N°1, i.e. ¡(t + 1) =
¡(t ° N + 1), since we always assume that the functions we work with have
period N .

e. Sketch a more general procedure than the one you found in b., which can
be used to find wavelet bases where we have even more vanishing moments.
Solution: If we define

√̂=√0,0 °
K
X

k=0

°

Æk¡0,°k °Øk¡0,k+1
¢

,

we have 2k unknowns. These can be determined if we require 2k vanishing
moments.

3. Let ¡(t) be the function we used when we defined the Haar-wavelet.

a. Compute projV0
(f (t)), where f (t) = t 2, and where f is defined on [0, N).

b. Find constants Æ,Ø so that √̂(t) =√(t)°Æ¡0,0(t)°Ø¡0,1(t) has two van-
ishing moments, i.e. so that h√̂,1i= 0, and h√̂, ti= 0. Plot also the function √̂.
Hint: Start with computing the integrals

R

√(t)d t ,
R

t√(t)d t ,
R

¡0,0(t)d t ,
R

¡0,1(t)d t ,
and

R

t¡0,0(t)d t ,
R

t¡0,1(t)d t .

c. Express ¡ and √̂ with the help of functions from ¡1, and use this to write
down the change of coordinate matrix from (¡0,√̂0) to¡1.

74

4. It is also possible to add more vanishing moments to the Haar wavelet. Define

√̂=√0,0 °a0¡0,0 ° · · ·°ak°1¡0,k°1.

Define also cr,l =
Rl+1

l t r d t , and er =
R1

0 t r√(t)d t .

a. Show that √̂ has k vanishing moments if and only if a0, . . . , ak°1 solves the
equation

0

B

B

B

B

@

c0,0 c0,1 · · · c0,k°1
c1,0 c1,1 · · · c1,k°1

...
...

...
...

ck°1,0 ck°1,1 · · · ck°1,k°1

1

C

C

C

C

A

0

B

B

B

B

@

a0
ï¿¡a1

...
ak°1

1

C

C

C

C

A

=

0

B

B

B

B

@

e0
e1
...

ek°1

1

C

C

C

C

A

(5.6)

b. Write a functionvanishingmomshaarwhich takes k as input, solves Equa-
tion 5.6, and returns the vector a = (a0, a1, . . . , ak°1).

5. Run the function playDWT for different m for the Haar wavelet, the piecewise
linear wavelet, and the alternative piecewise linear wavelet, but listen to the detail
components W0©W1©· · ·©Wm°1 instead. Describe the sounds you hear for different
m, and try to explain why the sound seems to get louder when you increase m.
Solution: The following code can be used:

% Play detail components for the Haar wavelet
playDWT(m, @DWTKernelHaar, @IDWTKernelHaar, 0);

% Play detail components for the piecewise linear wavelet
playDWT(m, @DWTKernelpwl0, @IDWTKernelpwl0, 0);

% Play detail components for the alternative piecewise linear wavelet
playDWT(m, @DWTKernelpwl2, @IDWTKernelpwl2, 0);

75

5.6

1. Prove Theorem 5.43. Use the proof of Theorem 4.9 as a guide.
Solution: We compute

Sr x =
°

S1 S2
¢

0

B

B

B

B

B

B

B

B

B

B

B

@

x0
...

xN°2
xN°1
xN°2

...
x1

1

C

C

C

C

C

C

C

C

C

C

C

A

= S1

0

B

@

x0
...

xN°1

1

C

A

+S2

0

B

@

xN°2
...

x1

1

C

A

= S1

0

B

@

x0
...

xN°1

1

C

A

+ (S2) f

0

B

@

x1
...

xN°2

1

C

A

= S1

0

B

@

x0
...

xN°1

1

C

A

+
°

0 (S2) f 0
¢

0

B

@

x0
...

xN°1

1

C

A

= (S1 +
°

0 (S2) f 0
¢

)x ,

so that Sr = S1 +
°

0 (S2) f 0
¢

.

2. In this exercise we will establish an orthonormal basis for the symmetric exten-
sions, as defined by Definition 5.42. This parallels Theorem 4.6.

a. Explain why, if x 2 R2N°2 is a symmetric extension (according to defini-
tion 4.1), then (bx)n = zne°ºi n , where z is a real vectors which satisfies zn =
z2N°2°n
Solution: Using Theorem 4.3 with d = N °1 and with 2N °2 for N , we obtain
that

(bx)n = zne°2ºi dn/(2N°2) = zne°2ºi (N°1)n/(2N°2) = zne°ºi n ,

where z is a real vectors which satisfies zn = z2N°2°n .

b. Show that
(

e0,
Ω

1
p

2
(e i +e2N°2°i)

æN°2

n=1
,eN°1

)

(5.7)

is an orthonormal basis for the vectors on the form bx with x 2 R2N°2 a sym-
metric extension.
Solution: Clearly these vectors are an orthonormal basis for the set of vectors
where zn = z2N°2°n . The vectors from a. are obtained by multiplying these
with e°ºi n . But the orthonormality of these vectors are not affected when we
multiply with e°ºi n , so we may skip this.

76

c. Show that

1
p

2N °2
cos

µ

2º
0

2N °2
k
∂

Ω

1
p

N °1
cos

≥

2º
n

2N °2
k
¥

æN°2

n=1

1
p

2N °2
cos

µ

2º
N °1

2N °2
k
∂

(5.8)

is an orthonormal basis for the symmetric extensions in R2N°2.
Solution: We compute the IDFT for all vectors in (b). Since the IDFT is uni-
tary, this will give us an orthonormal basis for the symmetric vectors inR2N°2.
Since (FN)H¡n = en we get that

(FN)H
e0 =¡0 =

1
p

2N °2
cos

µ

2º
0

2N °2
k
∂

(FN)H
µ

1
p

2
(en +e2N°2°n)

∂

= 1
p

2

°

¡n +¡2N°2°n
¢

= 1
p

2

1
p

2N °2

≥

e2ºi kn/(2N°2) +e°2ºi kn/(2N°2)
¥

= 1
p

N °1
cos

≥

2º
n

2N °2
k
¥

(FN)H
eN°1 =¡N°1 =

1
p

2N °2
cos

µ

2º
N °1

2N °2
k
∂

.

These coincide with the vectors listed in the exercise.

d. Assume that S is symmetric. Show that the vectors listed in (5.8) are eigen-
vectors for Sr , when the vectors are viewed as vectors in RN , and that they are
linearly independent. This shows that Sr is diagonalizable.
Solution: Since S is symmetric, it preserves vectors which are symmetric
around N °1. In the frequency domain, applying S to a vector listed in (5.8)
corresponds to multiplying the vectors listed in 5.7 with the frequency re-
sponse. Since this does not introduce any more components, it is clear that
the new vector must be a multiplum of the same vector, so that these vectors
indeed are eigenvectors. But then the vectors restricted to RN are also eigen-
vectors for Sr , since this is simply S when viewed on the first N elements.
Since the vectors in R2N°2 are linearly independent, it is imemdiate that the
corresponding vectors in RN also are linearly independent, since the second
part of the vectors mirror the first part.

3. Let us explain how the matrix Sr can be diagonalized, similarly to how we previ-
ously diagonalized using the DCT. In Exercise 2 we showed that the vectors

n

cos
≥

2º
n

2N °2
k
¥oN°1

n=0
(5.9)

77

inRN is a basis of eigenvectors for Sr when S is symmetric. Sr itself is not symmetric,
however, so that this basis can not possibly be orthogonal (S is symmetric if and only
if it is orthogonally digonalizable). However, when the vectors are viewed in R2N°2

we showed in Exercise 2.c an orthogonality statement which can be written as

2N°3
X

k=0
cos

≥

2º
n1

2N °2
k
¥

cos
≥

2º
n2

2N °2
k
¥

= (N °1)£

8

>

<

>

:

2 if n1 = n2 2 {0, N °1}

1 if n1 = n2 62 {0, N °1}

0 if n1 6= n2

.

(5.10)

a. Show that

(N °1)£

8

>

<

>

:

1 if n1 = n2 2 {0, N °1}
1
2 if n1 = n2 62 {0, N °1}

0 if n1 6= n2

= 1
p

2
cos

≥

2º
n1

2N °2
·0

¥ 1
p

2
cos

≥

2º
n2

2N °2
·0

¥

+
N°2
X

k=1
cos

≥

2º
n1

2N °2
k
¥

cos
≥

2º
n2

2N °2
k
¥

+ 1
p

2
cos

≥

2º
n1

2N °2
(N °1)

¥ 1
p

2
cos

≥

2º
n2

2N °2
(N °1)

¥

.

Hint: Use that cos x = cos(2º°x) to pair the summands k and 2N °2°k.
Solution: Using that cos x = cos(2º° x) we can here pair the summands k
and 2N °2°k to obtain

2N°3
X

k=0
cos

≥

2º
n1

2N °2
k
¥

cos
≥

2º
n2

2N °2
k
¥

=cos
≥

2º
n1

2N °2
·0

¥

cos
≥

2º
n2

2N °2
·0

¥

+2
N°2
X

k=1
cos

≥

2º
n1

2N °2
k
¥

cos
≥

2º
n2

2N °2
k
¥

+cos
≥

2º
n1

2N °2
(N °1)

¥

cos
≥

2º
n2

2N °2
(N °1)

¥

.

If we divide by 2 and combine these equations we get the result.

Now, define the vector d

(I)
n as

dn,N

µ

1
p

2
cos

≥

2º
n

2N °2
·0

¥

,
n

cos
≥

2º
n

2N °2
k
¥oN°2

k=1
,

1
p

2
cos

≥

2º
n

2N °2
(N °1)

¥

∂

,

and define d (I)
0,N = d (I)

N°1,N = 1/
p

N °1, and d (I)
n,N =

p
2/(N °1) when n > 1. The or-

thogonal N £N matrix where the rows are d

(I)
n is called the DCT-I, and we will de-

note it by D (I)
N . DCT-I is also much used, just as the DCT-II of Chapter 4. The main

difference from the previous cosine vectors is that 2N has been replaced by 2N °2.

78

b. Explain that the vectors d

(I)
n are orthonormal, and that the matrix

r

2
N °1

0

B

B

B

B

B

B

@

1/
p

2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/

p
2

1

C

C

C

C

C

C

A

°

cos
°

2º n
2N°2 k

¢

¢

0

B

B

B

B

B

B

@

1/
p

2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/

p
2

1

C

C

C

C

C

C

A

is orthogonal.

c. Explain from b. that
°

cos
°

2º n
2N°2 k

¢

¢°1
can be written as

2
N °1

0

B

B

B

B

B

B

@

1/2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/2

1

C

C

C

C

C

C

A

°

cos
°

2º n
2N°2 k

¢

¢

0

B

B

B

B

B

B

@

1/2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/2

1

C

C

C

C

C

C

A

With the expression we found in c., Sr can now be diagonalized as

°

cos
°

2º n
2N°2 k

¢

¢

D
°

cos
°

2º n
2N°2 k

¢

¢°1
.

79

80

Chapter 6
6.1

1. Write down the corresponding filters G0 og G1 for Exercise 3 in Section 5.5. Plot
their frequency responses, and characterize the filters as lowpass- or highpass filters.

2. Find two symmetric filters, so that the corresponding MRA-matrix, constructed
with alternating rows from these two filters, is not a symmetric matrix.
Solution: You can set for instance H0 = {1/4,1/2,1/4}, and H1 = {1} (when you write
down the corresponding matrix you will see that A0,1 = 1/2, A1,0 = 0, so that the
matrix is not symmetric)

3. Assume that an MRA-matrix is symmetric. Are the corresponding filters H0, H1,
G0, G1 also symmetric? If not, find a counterexample.
Solution: The Haar wavelet is a counterexample.

4. Assume that one stage in a DWT is given by the MRA-matrix

H =

0

B

B

B

B

B

B

@

1/5 1/5 1/5 0 0 0 · · · 0 1/5 1/5
°1/3 1/3 °1/3 0 0 0 · · · 0 0 0
1/5 1/5 1/5 1/5 1/5 0 · · · 0 0 0

0 0 °1/3 1/3 °1/3 0 · · ·0 0 0
...

...
...

...
...

...
...

...
...

...

1

C

C

C

C

C

C

A

Write down the compact form for the corresponding filters H0, H1, and compute and
plot the frequency responses. Are the filters symmetric?
Solution: We have that H0 = 1

5 {1,1,1,1,1}, and H1 = 1
3 {°1,1,°1}. The frequency

responses are

∏H0 (!) = 1
5

e2i!+ 1
5

ei!+ 1
5
+ 1

5
e°i! 1

5
e°2i!

= 2
5

cos(2!)+ 2
5

cos!+ 1
5

∏H1 (!) =°1
3

ei!+ 1
3
° 1

3
e°i! =°2

3
cos!+ 1

3
.

81

Both filters are symmetric.

5. Assume that one stage in the IDWT is given by the MRA-matrix

G =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1/2 °1/4 0 0 · · ·
1/4 3/8 1/4 1/16 · · ·

0 °1/4 1/2 °1/4 · · ·
0 1/16 1/4 3/8 · · ·
0 0 0 °1/4 · · ·
0 0 0 1/16 · · ·
0 0 0 0 · · ·
...

...
...

...
...

0 0 0 0 · · ·
1/4 1/16 0 0 · · ·

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Write down the compact form for the filters G0,G1, and compute and plot the fre-
quency responses. Are the filters symmetric?
Solution: We have that G0 = {1/4,1/2,1/4}, and G1 = {1/16,°1/4,3/8,°1/4,1/16}.
The frequency responses are

∏G0 (!) = 1
4

ei!+ 1
2
+ 1

4
e°i!

= 1
2

cos(!)+ 1
2

∏G1 (!) = 1
16

e2i!° 1
4

ei!+ 3
8
° 1

4
e°i! 1

16
e°2i!

= 1
8

cos(2!)° 1
2

cos!+ 3
8

.

Both filters are symmetric.

6. Assume that H0 = {1/16,1/4,3/8,1/4,1/16}, and H1 = {°1/4,1/2,°1/4}. Plot the
frequency responses of H0 and H1, and verify that H0 is a lowpass filter, and that H1
is a highpass filter. Also write down the change of coordinate matrix PC1√¡1

for the
wavelet corresponding to these filters.
Solution: The frequency responses are

∏H0 (!) = 1
16

e2i!+ 1
4

ei!+ 3
8
+ 1

4
e°i! 1

16
e°2i!

= 1
8

cos(2!)+ 1
2

cos!+ 3
8

∏H1 (!) =°1
4

ei!+ 1
2
° 1

4
e°i!

=°1
2

cos(!)+ 1
2

.

The two first rows in PC1√¡1
are

µ

3/8 1/4 1/16 0 · · · 1/16 1/4
°1/4 1/2 °1/4 0 · · · 0 0

∂

82

The remaining rows are obtained by translating these in alternating order.

7. Assume that G0 = 1
3 {1,1,1}, and G1 = 1

5 {1,°1,1,°1,1}. Plot the frequency re-
sponses of G0 and G1, and verify that G0 is a lowpass filter, and that G1 is a highpass
filter. Also write down the change of coordinate matrix P¡1√C1 for the wavelet cor-
responding to these filters.
Solution: The frequency responses are

∏G0 (!) = 1
3

ei!+ 1
3
+ 1

3
e°i! = 2

3
cos!+ 1

3

∏G1 (!) = 1
5

e2i!° 1
5

ei!+ 1
5
° 1

5
e°i! 1

5
e°2i!

= 2
5

cos(2!)° 2
5

cos!+ 1
5

The two first columns in P¡1√C1 are

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1/3 °1/5
1/3 1/5

0 °1/5
0 1/5
0 0
...

...
0 0

1/3 1/5

1

C

C

C

C

C

C

C

C

C

C

C

C

A

The remaining columns are obtained by translating these in alternating order.

8. In Exercise 8 in Section 5.3 we computed the DWT of two very simple vectors x1
and x2, using the Haar wavelet.

a. Compute H0x1, H1x1, H0x2, and H1x2, where H0 and H1 are the filters
used by the Haar wavelet.

b. Compare the odd-indexed elements in H1x1 with the odd-indexed ele-
ments in H1x2. From this comparison, attempt to find an explanation to why
the two vectors have very different detail components.

9. Suppose that we run the following algorithm on the sound represented by the
vector x:

N=size(x,1);
c = (x(1:2:N, :) + x(2:2:N, :))/sqrt(2);
w = (x(1:2:N, :) - x(2:2:N, :))/sqrt(2);

newx = [c; w];
newx = newx/max(abs(newx));
playerobj=audioplayer(newx,44100);
playblocking(playerobj)

83

a. Comment the code and explain what happens. Which wavelet is used?
What do the vectors c and w represent? Describe the sound you believe you
will hear.
Solution: c and w represent the coordinates in the wavelet bases¡0 and√0.
The code runs a Haar wavelet transform. The sound is normalized so that the
sound samples lie in the range between °1 and 1, and the resulting sound is
played. The sound is split into two parts, and c represents a low-resolution
version of the sound (with half the number of samples), so that we first will
hear the sound played at double pace. After this we will hear the detail w in
the sound, also played at double pace. We should also be able to recognize
the sound from this detail.

b. Assume that we add lines in the code above which sets the elements in the
vector w to 0 before we compute the inverse operation. What will you hear if
you play the new sound you then get?
Solution: This corresponds to reconstructing a low-resolution approxima-
tion of the sound.

10. Let us return to the piecewise linear wavelet from Exercise 2 in Section 5.5.

a. With √̂ as defined as in Exercise 2 b. in Section 5.5, compute the coor-
dinates of √̂ in the basis ¡1 (i.e. [√̂]¡1

) with N = 8, i.e. compute the IDWT
of

[√̂](¡0,√0) = (°Æ,°Ø,°±,0,0,0,0,°∞)© (1,0,0,0,0,0,0,0),

which is the coordinate vector you computed in Exercise 2 d. in Section 5.5.
For this, you should use the function IDWTImpl, with the kernel of the piece-
wise linear wavelet without symmetric extension as input. Explain that this
gives you the filter coefficients of G1.
Solution: The code which can be used looks like this:

% Exercise 6.1.10a
g1=IDWTImpl([-coeffs(1);-coeffs(2);-coeffs(4);0;0;0;0;-coeffs(3);...

1; 0; 0; 0; 0; 0; 0; 0], 1, @IDWTKernelpwl0, 0);
g1 = [g1(14:16); g1(1:6)]; % Compact filter notation

Note that we have used a kernel which does not make symmetric extensions.

b. Plot the frequency response of G1.
Solution: The code can look as follows:

% Exercise 6.1.10b
omega = linspace(0,2*pi,100);
plot(omega, g1(5) + g1(6)*2*cos(omega) + g1(7)*2*cos(2*omega)...

+ g1(8)*2*cos(3*omega) + g1(9)*2*cos(4*omega))

11. Repeat the previous exercise for the Haar wavelet as in exercise 4, and plot the
corresponding frequency responses for k = 2,4,6.

84

12. In Exercise 6 in Section 3.1 we implemented a symmetric filter applied to a vec-
tor, i.e. when a periodic extension is assumed. The corresponding function was
called filterS(t, x), and used the function conv.

a. Reimplement the function filterS so that it also takes a third parameter
symm. If symm is false a periodic extension of x should be performed (i.e. fil-
tering as we have defined it, and as the previous version of filterS performs
it). If symm is true, symmetric extensions should be used (as given by Defini-
tion 5.42).
Solution: The code can look like this:

function y=filterS(t, x, symm)
tlen = length(t); N0 = (tlen - 1)/2;
N = length(x);

if symm
y = [x((N0+1):(-1):2); x; x((N-1):(-1):(N - N0));];

else
y = [x((N - N0 + 1):N); x; x(1:N0)];

end
y = conv(t, y);
y = y((2*N0+1):(length(y)-2*N0));

b. Implement functions tt DWTKernelFilters(H0, H1, G0, G1, x, symm, dual)
andIDWTKernelFilters(H0, H1, G0, G1, x, symm, dual)which com-
pute the DWT and IDWT kernels using theorems 6.3 and 6.5, respectively.
This function thus bases itself on that the filters of the wavelet are known.
The functions should call the function filterS from a.. Recall also the defi-
nition of the parameter dual from this section.
Solution: The code can look like this:

function x=DWTKernelFilters(H0, H1, G0, G1, x, symm, dual)
f0 = H0; f1 = H1;
if dual

f0 = G0; f1 = G1;
end
N = length(x);
x0 = filterS(f0, x, symm);
x1 = filterS(f1, x, symm);
x(1:2:N) = x0(1:2:N);
x(2:2:N) = x1(2:2:N);

function x=IDWTKernelFilters(H0, H1, G0, G1, x, symm, dual)
f0 = G0; f1 = G1;
if dual

f0 = H0; f1 = H1;
end
N = length(x);
x0 = x; x0(2:2:N) = 0;
x1 = x; x1(1:2:N) = 0;

85

x0 = filterS(f0, x0, symm);
x1 = filterS(f1, x1, symm);
x = x0 + x1;

With the functions defined in b. you can now define standard DWT and IDWT ker-
nels in the following way, once the filters are known.

f = @(x, symm, dual) DWTKernelFilters(H0,H1,G0,G1,x,symm,dual);
invf = @(x, symm, dual) IDWTKernelFilters(H0,H1,G0,G1,x,symm,dual);

6.2

1. Show that it is impossible to find a non-trivial FIR-filter which satisfies Equa-
tion (6.30).

2. Show that the Haar wavelet satisfies ∏H1 (!) =°∏H0 (!+º), and G0 = (H0)T , G1 =
(H1)T . The Haar wavelet can thus be considered as an alternative QMF filter bank.

6.3

1. The values Cq ,Dq can be found by calling the functions mp3ctable, mp3dtable
which can be found on the book’s webpage.

a. Use your computer to verify the connection we stated between the tables
C and D , i.e. that Di = 32Ci for all i .

b. Plot the frequency responses of the corresponding prototype filters, and
verify that they both are lowpass filters. Use the connection from Theorem (6.26)
to find the prototype filter coefficients from the Cq .

2. It is not too difficult to make implementations of the forward and reverse steps as
explained in the MP3 standard. In this exercise we will experiment with this. In your
code you can for simplicity assume that the input and output vectors to your meth-
ods all have lengths which are multiples of 32. Also, use the functions mp3ctable,
mp3dtable mentioned in the previous exercise.
Solution: The code can look as follows:

function z = mp3forwardfbt(x)
N = length(x);
z = zeros(N,1);
C = mp3ctable(); % The analysis window;
x = flipud(x);
x = [x; zeros(512-32,1)];
% The 32x64 matrix M
M = cos((2*((0:31)’)+1)*((0:63)-16)*pi/64);

start = length(x) - 511;

86

n = 1;
for n = 1:(N/32)

X = x(start:(start + 511));
Z = C.*X;
Y = zeros(64, 1);
for j = 0:7

Y = Y + Z((64*j + 1):(64*(j + 1)));
end
z((1+(n-1)*32):(n*32)) = M*Y;
start = start - 32;

end

function x = mp3reversefbt(z)
Ns = length(z)/32;
x = zeros(32*Ns, 1);
D = mp3dtable(); % The reconstruction window.
V = zeros(1024,1);
% The 64x32 matrix N
N = cos((16+((0:63)’))*(2*(0:31)+1)*pi/64);

U = zeros(512,1);
for n = 1:Ns;

V(65:1024) = V(1:(1024-64));
V(1:64) = N*z((1+(n-1)*32):(n*32));
for i = 0:7

U((i*64 + 1):(i*64 + 32)) = V((i*128 + 1):(i*128 + 32));
U((i*64 + 33):((i + 1)*64)) = V((i*128 + 97):((i+1)*128));

end
W = U.*D;
for i = 0:15

x(((n-1)*32 + 1):(n*32)) = x(((n-1)*32 + 1):(n*32)) + W((32*i + 1):(32*(i + 1)));
end

end

a. Write a function mp3forwardfbt which implements the steps in the for-
ward direction of the MP3 standard.

b. Write also a function mp3reversefbt which implements the steps in the
reverse direction.

87

88

Chapter 7
7.1

1. Let us consider the following code, which shows how the cascade algorithm can
be used to plot the scaling functions and the mother wavelet of a wavelet and its
dual wavelet with given kernels, over the interval [a,b].

function plotwaveletfunctions(invf,a,b)
% Plot scaling functions and mother wavelets (dual or not),...
% using the cascade algorithm.
nres = 10;
t=linspace(a,b,(b-a)*2^nres);

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 0);
subplot(2, 2, 1);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\phi’)

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(b - a + 1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 0);
subplot(2, 2, 2);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\psi’)

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 1);
subplot(2, 2, 3);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\phi~’)

coordsvm = zeros((b-a)*2^nres, 1);
coordsvm(b - a + 1) = 1;
coordsvm = 2^(nres/2)*IDWTImpl(coordsvm, nres, invf, 0, 1);
subplot(2, 2, 4);
plot(t,coordsvm([(b*2^nres+1):((b-a)*2^nres) 1:(b*2^nres)]))
title(’\psi~’)

89

If you now run

% Plot wavelet functions for alternative piecewise linear wavelet
plotwaveletfunctions(@IDWTKernelpwl2, -2, 6)

you will see the scaling functions and mother wavelets for the alternative piecewise
linear wavelet in Figure 7.1.

a. Explain that the input to IDWTImpl in the code above are the coordinates
of ¡0,0, √0,0, ¡̃0,0, and √̃0,0 in the basis (¡0,√0,√1,√2, · · · ,√m°1), respec-
tively.

b. In the code above, we wanted the the functions to be plotted on [a,b].
Explain from this why the coordsvm-vector have been rearranged as on the
the line where the plot-command is called.

c. In the code above, we turned off symmetric extensions (thesymm-argument
is 0). Attempt to use symmetric extensions instead, and observe the new plots
you obtain. Can you explain why these new plots do not show the correct
functions, while the previous plots are correct?

d. In the code you see that all values are scaled with the factor 2m/2 before
they are plotted. Can you think out an explanation to why this is done?

e. Use the function plotwaveletfunctions to plot all scaling functions
and mother wavelets for the Haar wavelets and the piecewise linear wavelet
also.

2. In Exercise 10 in Section 6.1 we constructed a new mother wavelet √̂ for piece-
wise linear functions by finding constants Æ,Ø,∞,± so that

√̂=√°Æ¡0,0 °Ø¡0,1 °±¡0,2 °∞¡0,N°1.

Use the cascade algorithm to plot √̂. Do this by using the wavelet kernel for the
piecewise linear wavelet (do not use the code above, since we have not implemented
kernels for this wavelet yet).
Solution: Assuming that the vector coeffs has been set as in Exercise 10 in Sec-
tion 6.1, the code can look as follows

% Exercise 7.1.2
m = 10;
t = linspace(-2, 6, 8*2^m);
coordsvm=2^(m/2)*IDWTImpl([-coeffs(1); -coeffs(2); -coeffs(4); 0;...

0; 0; 0; -coeffs(3); 1; 0; 0; 0; 0; 0;...
0; 0; zeros(8*2^m-16, 1)], ...
m, @IDWTKernelpwl0, 0);

plot(t, coordsvm([(6*2^m+1):(8*2^m) 1:(6*2^m)]))

90

3. Since the dual of a wavelet is constructed by transposing filters, one may suspect
that taking the dual is the same as taking the transpose. However, show that the
DWT, the dual DWT, the transpose of the DWT, and the transpose of the dual DWT,
can be computed as follows:

DWTImpl(x, m, DWTkernel, 1, 0); % DWT
DWTImpl(x, m, DWTkernel, 1, 1); % Dual DWT
IDWTImpl(x, m, IDWTkernel, 1, 1); % Transpose of the DWT
IDWTImpl(x, m, IDWTkernel, 1, 0); % Transpose of the dual DWT

Similar statements hold for the IDWT as well.
Solution: Assume that the kernel transformations of the DWT and the IDWT are H
and G , respectively. The formulas for the DWT and the dual DWT are obvious. For
the transpose the point is that, while the kernel transformations of the DWT and the
dual DWT are H and GT , we compose the kernel with a permutation matrix when we
compute the DWT. When we transpose, the order of the kernel and the permutation
changes, so the transpose must use an IDWT implementation instead.
The kernel for the transpose of the DWT is H T , which is the kernel of the dual IDWT.
This explains the third line.
The kernel for the transpose of the dual DWT is (GT)T =G , which is the kernel of the
IDWT. This explains the fourth line.

7.2

1. Compute the filters H0, G0 in Theorem 7.16 when N = N1 = N2 = 4, and Q1 =
Q(4), Q2 = 1. Compute also filters H1,G1 so that we have perfect reconstruction (note
that these are not unique).
Solution: We have that

∏H0 (!) =
µ

1
2

(1+cos!)
∂N1/2

Q1

µ

1
2

(1°cos!)
∂

=
µ

1
2

(1+cos!)
∂2

Q(4)
µ

1
2

(1°cos!)
∂

∏G0 (!) =
µ

1
2

(1+cos!)
∂N2/2

Q2

µ

1
2

(1°cos!)
∂

=
µ

1
2

(1+cos!)
∂2

= 1
4

µ

1+ 1
2

ei!+ 1
2

e°i!
∂2

= 1
16

(e2i!+4ei!+6+4e°i!+e°2i!).

Therefore G0 = 1
16 {1,4,6,4,1}. We do not recommend to compute H0 by hand. With

symbolic math toolbox in Matlab you can do as follows to compute H0.

syms x
expand(((1+x/2+1/(2*x))/2)^2*...

(2+8*((1-x/2-1/(2*x))/2)+20*((1-x/2-1/(2*x))/2)^2\
+40*((1-x/2-1/(2*x))/2)^3))

Here we have substitutedx for ei!, 1/x for e°i!. The first part represents
° 1

2 (1+cos!)
¢2

,
the second part represents Q(4)(u) = 2+ 8u + 20u2 + 40u3 with u = 1

2 (1° cos!) =

91

1
2

°

1° 1
2 ei!° 1

2 e°i!¢

. This gives

H0 =
1

128
{°5,20,°1,°96,70,280,70,°96,°1,20,°5}.

Using Theorem 6.16 with Æ= 1, d = 0, we get

H1 =
1

16
{1,°4,6,°4,1}

G1 =
1

128
{5,20,1,°96,°70,280,°70,°96,1,20,5}

7.3

1. In this exercise we will see how we can view the frequency responses, scaling
functions and mother wavelets for any spline wavelet.

a. Write a function which takes N1 and N2 as input, computes the filter coef-
ficients of H0 and G0 using equation (7.25), and plots the frequency responses
of G0 and H0. Recall that the frequency response can be obtained from the fil-
ter coefficients by taking a DFT. You will have use for the conv function here,
and that the frequency response (1+ cos!)/2 corresponds to the filter with
coefficients {1/4,1/2,1/4}.
Solution: The following code can be used

function plotsplinefreqresp(N1, N2)
N = (N1 + N2)/2;
h0 = computeQN(N);
for k=1:(N1/2)

h0 = conv(h0, [1/4 1/2 1/4]);
end
g0 = [1];
for k=1:(N2/2)

g0 = conv(g0, [1/4 1/2 1/4]);
end

L = 100;
h0 = [h0 zeros(1, L - length(h0))];
g0 = [g0 zeros(1, L - length(g0))];
omega = 2*pi*(0:(L-1))/L;

subplot(1,2,1);
plot(omega, abs(fft(h0)))
axis equal

subplot(1,2,2);
plot(omega, abs(fft(g0)))
axis equal

b. Recall that in Exercise 12 in Section 6.1 we implemented DWT and IDWT
kernels, which worked for any set of symmetric filters. Combine these kernels
with your computation of the filter coefficients from a., and use the function
plotwaveletfunctions to plot the corresponding scaling functions and mother
wavelets for different N1 and N2.

92

2. Show that Br (t) =§r
k=1¬[°1/2,1/2)(t) is r°2 times differentiable, and equals a poly-

nomial of degree r °1 on subintervals of the form [n,n+1]. Explain why these func-
tions can be used as basis for the spaces Vj of functions which are piecewise poly-
nomials of degree r °1 on intervals of the form [n2°m , (n +1)2°m], and r °2 times
differentiable. Br is also called the B-spline of order r .

7.4

1. Generate the plots from Figure 7.3 using the cascade algorithm. Reuse the code
from Exercise 1 in Section 7.1 in order to achieve this.

93

94

Chapter 8
8.1

1. Let H and G be MRA-matrices for a DWT/IDWT, with corresponding filters H0,
H1, G0, G1, and polyphase components H (i , j), G (i , j).

a. Show that

∏H0 (!) =∏H (0,0) (2!)+ei!∏H (0,1) (2!)

∏H1 (!) =∏H (1,1) (2!)+e°i!∏H (1,0) (2!)

∏G0 (!) =∏G(0,0) (2!)+e°i!∏G(1,0) (2!)

∏G1 (!) =∏G(1,1) (2!)+ei!∏G(0,1) (2!).

Solution: G (0,0),G (1,1) are the even-indexed filter coefficients of G0,G1, re-
spectively, so that ∏G(0,0) (2!),∏G(1,1) (2!) represents the half of ∏G0 (!),∏G1 (!),
respectively, from the even filter coefficients. G (1,0) are the odd-indexed filter
coefficients of G0. Since coefficient 0 in G (1,0) equals coefficient 1 in G0, it is
clear that e°i!∏G(1,0) (2!) represents the half of ∏G0 (!) from the odd filter co-
efficients. This proves the first formula. The second formula follows from the
same kind of reasoning.

If we transpose H (also in polyphase form), we get an MRA-matrix where the
columns are given by the filters (H0)T , (H1)T . Inserting these in the formulas
we just proved we get that

∏(H0)T (!) =∏(H (0,0))T (2!)+e°i!∏(H (0,1))T (2!)

∏(H1)T (!) =∏(H (1,1))T (2!)+ei!∏(H (1,0))T (2!).

If we conjugate these expressions we get

∏H0 (!) =∏H (0,0) (2!)+ei!∏H (0,1) (2!)

∏H1 (!) =∏H (1,1) (2!)+e°i!∏H (1,0) (2!),

and the proof is done.

95

b. In the proof of the last part of Theorem 6.17, we defered the last part,
namely that equations (8.2)-(8.3) follow from

µ

G (0,0) G (0,1)

G (1,0) G (1,1)

∂

=
µ

ÆE°d H (1,1) °ÆE°d H (0,1)

°ÆE°d H (1,0) ÆE°d H (0,0)

∂

.

Prove this based on the result from a.
Solution: The first column in the matrix on the left hand side gives the filter
G0. On the right hand side, a. states that the even-indexed columns are taken
from the filter with frequency response

∏ÆE°d H (1,1) (2!)+e°i!∏°ÆE°d H (1,0) (2!)

=Æ∏E°d (2!)
≥

∏H (1,1) (2!)°e°i!∏H (1,0) (2!)
¥

=Æe2i d!
≥

∏H (1,1) (2(!+º))+e°i (!+º)∏H (1,0) (2(!+º))
¥

=Æe2i d!∏H1 (!+º).

This shows that ∏G0 (!) = Æe2i d!∏H1 (!+º). We obtain Equation (8.2) easily
from this. Now, the second column in the matrix on the left hand side gives
the filter coefficients of G1. On the right hand side, a. states that the odd-
indexed columns are taken from the filter with frequency response

∏ÆE°d H (0,0) (2!)+ei!∏°ÆE°d H (0,1) (2!)

=Æ∏E°d (2!)
≥

∏H (0,0) (2!)°ei!∏H (0,1) (2!)
¥

=Æe2i d!
≥

∏H (0,0) (2(!+º))+ei (!+º)∏H (0,1) (2(!+º))
¥

=Æe2i d!∏H0 (!+º).

This shows that ∏G1 (!) =Æe2i d!∏H0 (!+º), which is Equation (8.3).

2. Let S be a filter. Show that

a. G
µ

I 0
S I

∂

is an MRA matrix with cfilters G̃0,G1, where

∏G̃0
(!) =∏G0 (!)+∏S (2!)e°i!∏G1 (!),

Solution: We have that
µ

G (0,0) G (0,1)

G (1,0) G (1,1)

∂µ

I 0
S I

∂

=
µ

G (0,0) +SG (0,1) G (0,1)

G (1,0) +SG (1,1) G (1,1)

∂

.

Using Exercise 1a., the even-indexed columns in this matrix are taken from
the filter with frequency response

∏G(0,0)+SG(0,1) (2!)+e°i!∏G(1,0)+SG(1,1) (2!)

=∏G(0,0) (2!)+e°i!∏G(1,0) (2!)+∏S (2!)
≥

∏G(0,1) (2!)+e°i!∏G(1,1) (2!)
¥

=∏G0 (!)+∏S (2!)e°i!
≥

∏G(1,1) (2!)+ei!∏G(0,1) (2!)
¥

=∏G0 (!)+∏S (2!)e°i!∏G1 (!).

96

b. G
µ

I S
0 I

∂

is an MRA matrix with filters G0,G̃1, where

∏G̃1
(!) =∏G1 (!)+∏S (2!)ei!∏G0 (!),

Solution: We have that
µ

G (0,0) G (0,1)

G (1,0) G (1,1)

∂µ

I S
0 I

∂

=
µ

G (0,0) SG (0,0) +G (0,1)

G (1,0) SG (1,0) +G (1,1)

∂

,

so that the odd-indexed columns in this matrix are taken from the filter with
frequency response

∏SG(1,0)+G(1,1) (2!)+ei!∏SG(0,0)+G(0,1) (2!)

=∏G(1,1) (2!)+ei!∏G(0,1) (2!)+∏S (2!)
≥

∏G(1,0) (2!)+ei!∏G(0,0) (2!)
¥

=∏G1 (!)+∏S (2!)ei!
≥

∏G(0,0) (2!)+e°i!∏G(1,0) (2!)
¥

=∏G1 (!)+∏S (2!)ei!∏G0 (!).

c.
µ

I 0
S I

∂

H is an MRA-matrix with filters H0, H̃1, where

∏H̃1
(!) =∏H1 (!)+∏S (2!)e°i!∏H0 (!).

Solution: We transpose the expression to obtain H T
µ

I ST

0 I

∂

Since H T has

filters (H0)T and (H1)T in the columns, from b. it follows that H T
µ

I ST

0 I

∂

has

columns given by (H0)T and the filter with frequency response

∏(H1)T (!)+∏ST (2!)ei!∏(H0)T (!) =∏H1 (!)+∏S (2!)e°i!∏H0 (!),

so that
µ

I 0
S I

∂

H has row filters H0 and a filter H̃1 with frequency response

∏H̃1
(!) =∏H1 (!)+∏S (2!)e°i!∏H0 (!).

d.
µ

I S
0 I

∂

H is an MRA-matrix with filters H̃0, H1, where

∏H̃0
(!) =∏H0 (!)+∏S (2!)ei!∏H1 (!).

Solution: We transpose the expression to obtain H T
µ

I 0
ST I

∂

. Since H T has

97

filters (H0)T and (H1)T in the columns, using a. we see that H T
µ

I 0
ST I

∂

has

columns given by the filter with frequency response

∏(H0)T (!)+∏ST (2!)e°i!∏(H1)T (!) =∏H0 (!)+∏S (2!)ei!∏H1 (!),

and (H1)T , so that
µ

I S
0 I

∂

H has a row filter H̃0 with frequency response

∏H̃0
(!) =∏H0 (!)+∏S (2!)ei!∏H1 (!),

and H1.

In summary, this exercise shows that one can think of the steps in the lifting factor-
ization as altering one of the filters of an MRA-matrix in alternating order.

3. Show that S is a filter of length kM if and only if the entries {Si , j }M°1
i , j=0 in the

polyphase representation of S satisfy S(i+r) mod M ,(j+r) mod M = Si , j . In other words,
S is a filter if and only if the polyphase representation of S is a “block-circulant
Toeplitz matrix”. This implies a fact that we will use: G H is a filter (and thus pro-
vides alias cancellation) if blocks in the polyphase representations repeat cyclically
as in a Toeplitz matrix (in particular when the matrix is block-diagonal with the same
block repeating on the diagonal).
Solution: If S is a filter we have that S(i+r+s1M) mod kM ,(j+r+s2M)kM = S(i+s1M) mod M ,(j+s2M) mod M ,
0 ∑ i , j < M . But since S(i+s1M) mod kM ,(j+s2M)kM = S(i , j)

s1,s2 , it follows that S((i+r) mod M ,(j+r) mod M)
s1,s2 =

S(i , j)
s1,s2 , so that S(i+r) mod M ,(j+r) mod M = Si , j .

4. Recall from Definition 6.20 that we defined a classical QMF filter bank as one
where M = 2, G0 = H0, G1 = H1, and ∏H1 (!) =∏H0 (!+º). Show that the forward and
reverse filter bank transforms of a classical QMF filter bank take the form

H =G =
µ

A °B
B A

∂

5. Recall from Definition 6.21 that we defined an alternative QMF filter bank as
one where M = 2, G0 = (H0)T , G1 = (H1)T , and ∏H1 (!) = ∏H0 (!+º). Show that the
forward and reverse filter bank transforms of an alternative QMF filter bank take the
form.

H =
µ

AT B T

°B A

∂

G =
µ

A °B T

B AT

∂

=
µ

AT B T

°B A

∂T

.

6. Consider alternative QMF filter banks where we take in an additional sign, so
that ∏H1 (!) = °∏H0 (!+º) (the Haar wavelet was an example of such a filter bank).
Show that the forward and reverse filter bank transforms now take the form

H =
µ

AT B T

B °A

∂

G =
µ

A B T

B °AT

∂

=
µ

AT B T

B °A

∂T

.

It is straightforward to check that also these satisfy the alias cancellation condition,
and that the perfect reconstruction condition also here takes the form |∏H0 (!)|2 +
|∏H0 (!+º)|2 = 2.

98

8.2

1. Assume that the filters H0, H1 of a wavelet are symmetric, and denote by S(i , j) the
polyphase components of the corresponding MRA-matrix H . Show that S(0,0) and
S(1,1) are symmetric filters, that the filter coefficients of S(1,0) has symmetry about
°1/2, and that S(0,1) has symmetry about 1/2. Also show a similar statement for the
MRA-matrix G of the inverse DWT.

2. Write functions liftingstepevensymm and liftingstepoddsymm which take
∏, a vector x , and symm as input, and apply the elementary lifting matrices (8.13), re-
spectively, to x . The parameter symm should indicate whether symmetric extensions
shall be applied. Your code should handle both when N is odd, and when N is even
(as noted previously, when symmetric extensions are not applied, we assume that N
is even). The function should not perform matrix multiplication, and apply as few
multiplications as possible.
Solution: The code can look like this:

function x=liftingstepevensymm(lambda, x, symm)
N = size(x, 1);
if ~symm

assert(mod(N,2) == 0)
end
if symm

x(1, :) = x(1, :) + 2*lambda*x(2, :); % Symmetric extension
else

x(1, :) = lambda*(x(2, :) + x(N, :)) + x(1, :);
end
x(3:2:(N-1), :) = x(3:2:(N-1), :) + lambda*(x(2:2:(N-2), :) + x(4:2:N, :)); % This saves one multiplication
if mod(N,2) == 1 % last is odd

x(N, :) = x(N, :) + 2*lambda*x(N-1, :); % Symmetric extension
end

function x=liftingstepoddsymm(lambda, x, symm)
N = size(x, 1);
if ~symm

assert(mod(N,2) == 0)
end
x(2:2:(N-1), :) = x(2:2:(N-1), :) + lambda*(x(1:2:(N-2), :) + x(3:2:N, :)); % This saves one multiplication
if mod(N,2)==0 % last is even

if symm
x(N, :) = x(N, :) + 2*lambda*x(N-1, :); % Symmetric extension

else
x(N, :) = lambda*(x(1, :) + x(N-1, :)) + x(N, :);

end
end

3. Up to now in this chapter we have obtained lifting factorizations for four dif-
ferent wavelets where the filters are symmetric. Let us now implement the kernel
transformations for these wavelets. Your functions should call the functions from
Exercise 2 in order to compute the individual lifting steps. Recall that the kernel

99

transformations should take the input vector x, symm (i.e. whether symmetric exten-
sion should be applied), and dual (i.e. whether the dual wavelet transform should
be applied) as input. You will need equations (8.9)-(8.12) here, in order to complete
the kernels for bot the transformations and the dual transformations.

a. Write the DWT and IDWT kernel transformations for the piecewise linear
wavelet. Your functions should use the lifting factorizations in (8.16). Call
your functions DWTKernelpwl0 and IDWTKernelpwl0.
Solution: The code can look like this:

function x = DWTKernelpwl0(x, symm, dual)
if dual

x = x/sqrt(2);
x = liftingstepevensymm(0.5, x, symm);

else
x = x*sqrt(2);
x = liftingstepoddsymm(-0.5, x, symm);

end

function x = IDWTKernelpwl0(x, symm, dual)
if dual

x = x*sqrt(2);
x = liftingstepevensymm(-0.5, x, symm);

else
x = x/sqrt(2);
x = liftingstepoddsymm(0.5, x, symm);

end

b. Write the DWT and IDWT kernel transformations for the alternative piece-
wise linear wavelet. The lifting factorizations are now given by (8.17) instead.
Call your functions DWTKernelpwl2 and IDWTKernelpwl2.
Solution: The code can look like this:

function x = DWTKernelpwl2(x, symm, dual)
if dual

x = x/sqrt(2);
x = liftingstepevensymm(0.5, x, symm);
x = liftingstepoddsymm(-0.25, x, symm);

else
x = x*sqrt(2);
x = liftingstepoddsymm(-0.5, x, symm);
x = liftingstepevensymm(0.25, x, symm);

end

function x = IDWTKernelpwl2(x, symm, dual)
if dual

x = x*sqrt(2);
x = liftingstepoddsymm(0.25, x, symm);

100

x = liftingstepevensymm(-0.5, x, symm);
else

x = x/sqrt(2);
x = liftingstepevensymm(-0.25, x, symm);
x = liftingstepoddsymm(0.5, x, symm);

end

c. Write the DWT and IDWT kernel transformations for the Spline 5/3 wavelet,
using the lifting factorization obtained in Example 8.16. Call your functions
DWTKernel53 and IDWTKernel53.
Solution: The code can look like this:

function x = DWTKernell53(x, symm, dual)
lambda1 = -1;
lambda2 = 0.125;
alpha = 2;
beta = 0.5;
N = size(x, 1);

if dual
x(1:2:N, :) = x(1:2:N, :)/alpha;
x(2:2:N, :) = x(2:2:N, :)/beta;
x = liftingstepevensymm(lambda2, x, symm);
x = liftingstepoddsymm(lambda1, x, symm);

else
x(1:2:N, :) = x(1:2:N, :)*alpha;
x(2:2:N, :) = x(2:2:N, :)*beta;
x = liftingstepoddsymm(-lambda2, x, symm);
x = liftingstepevensymm(-lambda1, x, symm);

end

function x = IDWTKernell53(x, symm, dual)
lambda1 = -1;
lambda2 = 0.125;
alpha = 2;
beta = 0.5;
N = size(x, 1);

if dual
x = liftingstepoddsymm(-lambda1, x, symm);
x = liftingstepevensymm(-lambda2, x, symm);
x(1:2:N, :) = x(1:2:N, :)*alpha;
x(2:2:N, :) = x(2:2:N, :)*beta;

else
x = liftingstepevensymm(lambda1, x, symm);
x = liftingstepoddsymm(lambda2, x, symm);
x(1:2:N, :) = x(1:2:N, :)/alpha;
x(2:2:N, :) = x(2:2:N, :)/beta;

end

d. Write the DWT and IDWT kernel transformations for the CDF 9/7 wavelet,
using the lifting factorization obtained in Example 8.18. Call your functions
DWTKernel97 and IDWTKernel97.
Solution: The code can look like this:

101

function x = DWTKernel97(x,symm,dual)
lambda1 = -0.586134342059950;
lambda2 = -0.668067171029734;
lambda3 = 0.070018009414994;
lambda4 = 1.200171016244178;
alpha = -1.149604398860250;
beta = -0.869864451624777;
N = size(x, 1);

if dual
x(1:2:N, :) =x(1:2:N, :)/alpha;
x(2:2:N, :)=x(2:2:N, :)/beta;
x = liftingstepevensymm(lambda4, x, symm);
x = liftingstepoddsymm(lambda3, x, symm);
x = liftingstepevensymm(lambda2, x, symm);
x = liftingstepoddsymm(lambda1, x, symm);

else
x(1:2:N, :) = x(1:2:N, :)*alpha;
x(2:2:N, :) = x(2:2:N, :)*beta;
x = liftingstepoddsymm(-lambda4, x, symm);
x = liftingstepevensymm(-lambda3, x, symm);
x = liftingstepoddsymm(-lambda2, x, symm);
x = liftingstepevensymm(-lambda1, x, symm);

end

function x = IDWTKernel97(x, symm, dual)
lambda1 = -0.586134342059950;
lambda2 = -0.668067171029734;
lambda3 = 0.070018009414994;
lambda4 = 1.200171016244178;
alpha = -1.149604398860250;
beta = -0.869864451624777;
N = size(x, 1);

if dual
x = liftingstepoddsymm(-lambda1, x, symm);
x = liftingstepevensymm(-lambda2, x, symm);
x = liftingstepoddsymm(-lambda3, x, symm);
x = liftingstepevensymm(-lambda4, x, symm);
x(1:2:N, :) = x(1:2:N, :)*alpha;
x(2:2:N, :) = x(2:2:N, :)*beta;

else
x = liftingstepevensymm(lambda1, x, symm);
x = liftingstepoddsymm(lambda2, x, symm);
x = liftingstepevensymm(lambda3, x, symm);
x = liftingstepoddsymm(lambda4, x, symm);
x(1:2:N, :) = x(1:2:N, :)/alpha;
x(2:2:N, :) = x(2:2:N, :)/beta;

end

e. In Chapter 5, we listened to the low-resolution approximations and detail
components in sound for three different wavelets, using the functionplayDWT.
Repeat these experiments with the Spline 5/3 and the CDF 9/7 wavelet, using
the new kernels we have implemented in this exercise.

102

Solution: The following code can be used for listening to the low-resolution
approximations for a given value of m.

% Play lowres approx for the Spline 5/3 wavelet
playDWT(m, @DWTKernel53, @IDWTKernel53, 1);

% Play lowres approx for the CDF 9/7 wavelet
playDWT(m, @DWTKernel97, @IDWTKernel97, 1);

f. Use the function plotwaveletfunctions from Exercise 1 in Section 7.1
to plot all scaling functions and mother wavelets for the Spline 5/3 and the
CDF 9/7 wavelets, using the kernels you have implemented.
Solution: The code can look as follows.

% Plot wavelet functions for the Spline 5/3 wavelet
plotwaveletfunctions(@IDWTKernel53, -4, 4)

% Plot wavelet functions for the CDF 9/7 wavelet
plotwaveletfunctions(@IDWTKernel97, -4, 4)

In the plot for the CDF 9/7 wavelet, it is seen that the functions and their dual
counterparts are close to being equal. This reflects the fact that this wavelet
is close to being orthogonal.

4. In this exercise we will implement the kernel transformations for orthonormal
wavelets.

a. Write functionsliftingstepeven andliftingstepoddwhich take∏1,∏2
and a vector x as input, and apply the elementary lifting matrices (8.18), re-
spectively, to x . Assume that N is even.
Solution: The code can look like this:

function x = liftingstepeven(lambda1, lambda2, x)
N = size(x, 1);
assert(mod(N,2) == 0)
x(1, :) = lambda1*x(2, :) + x(1, :) + lambda2*x(N, :);
x(3:2:(N-1), :) = lambda1*x(4:2:N, :) + x(3:2:(N-1), :) + lambda2*x(2:2:(N-2), :);

103

function x = liftingstepodd(lambda1, lambda2, x)
N = size(x, 1);
assert(mod(N,2) == 0)
x(2:2:(N-1), :) = lambda1*x(3:2:N, :) + x(2:2:(N-1), :) + lambda2*x(1:2:(N-2), :);
x(N, :) = lambda1*x(1, :) + x(N, :) + lambda2*x(N-1, :);

b. Write functions DWTKernelOrtho and IDWTKernelOrtho which take a
vector x as input, and apply the DWT and IDWT kernel transformations for
orthonormal wavelets to x . You should call the functions liftingstepeven
and liftingstepodd. As mentioned, assume that global variables lambdas,
alpha, and beta have been set, so that the lifting factorization (8.8) holds,
wherelambdas is a n£2-matrix so that the filter coefficients {∏1,∏2} or {∏1,∏2}
in the i ’th lifting step is found in row i of lambdas. Recall that the last lifting
step was even.
Solution: The code can look like this:

function x = DWTKernelOrtho(x, symm, dual)
global lambdas alpha beta
N = size(x, 1);

if dual
x(1:2:N, :) = x(1:2:N, :)/alpha;
x(2:2:N, :)=x(2:2:N, :)/beta;
for stepnr = size(lambdas,1):(-2):2

x = liftingstepodd(lambdas(stepnr,2), lambdas(stepnr,1), x);
x = liftingstepeven(lambdas(stepnr-1,2), lambdas(stepnr-1,1), x);

end

if stepnr == 3
x = liftingstepodd(lambdas(1,2), lambdas(1,1), x);

end
else

x(1:2:N, :) = x(1:2:N, :)*alpha;
x(2:2:N, :) = x(2:2:N, :)*beta;
for stepnr = size(lambdas,1):(-2):2

x = liftingstepeven(-lambdas(stepnr,1), -lambdas(stepnr,2), x);
x = liftingstepodd(-lambdas(stepnr-1,1), -lambdas(stepnr-1,2), x);

end

if stepnr == 3
x = liftingstepeven(-lambdas(1,1), -lambdas(1,2), x);

end
end

function x = IDWTKernelOrtho(x, symm, dual)
global lambdas alpha beta
N = size(x, 1);

if dual
stepnr = 1;
if mod(size(lambdas, 1), 2) == 1

104

x = liftingstepodd(-lambdas(stepnr, 2), -lambdas(stepnr, 1), x);
stepnr = stepnr + 1;

end

while stepnr < size(lambdas, 1)
x = liftingstepeven(-lambdas(stepnr, 2), -lambdas(stepnr, 1), x);
stepnr = stepnr + 1;
x = liftingstepodd(-lambdas(stepnr, 2), -lambdas(stepnr, 1), x);
stepnr = stepnr + 1;

end

x(1:2:N, :) = x(1:2:N, :)*alpha;
x(2:2:N, :) = x(2:2:N, :)*beta;

else
stepnr = 1;
if mod(size(lambdas, 1), 2) == 1

x = liftingstepeven(lambdas(stepnr, 1), lambdas(stepnr, 2), x);
stepnr = stepnr + 1;

end

while stepnr < size(lambdas, 1)
x = liftingstepodd(lambdas(stepnr, 1), lambdas(stepnr, 2), x);
stepnr = stepnr + 1;
x = liftingstepeven(lambdas(stepnr, 1), lambdas(stepnr, 2), x);
stepnr = stepnr + 1;

end

x(1:2:N, :)=x(1:2:N, :)/alpha;
x(2:2:N, :)=x(2:2:N, :)/beta;

end

c. Listen to the low-resolution approximations and detail components in
sound for orthonormal wavelets for N = 1,2,3,4, again using the function
playDWT. You need to call the function liftingfactortho in order to set
the kernel for the different values of N .
Solution: The following code can be used for listening to the low-resolution
approximations for a given value of m.

% Play lowres approx for orthonormal wavelets, filters of length 4
liftingfactortho(2);
playDWT(m, @DWTKernelOrtho, @IDWTKernelOrtho, 1);

% Play lowres approx for orthonormal wavelets, filters of length 6
liftingfactortho(3);
playDWT(m, @DWTKernelOrtho, @IDWTKernelOrtho, 1);

% Play lowres approx for orthonormal wavelets, filters of length 8
liftingfactortho(4);
playDWT(m, @DWTKernelOrtho, @IDWTKernelOrtho, 1);

105

d. Use the function plotwaveletfunctions from Exercise 1 in Section 7.1
to plot all scaling functions and mother wavelets for orthonormal wavelets
for N = 1,2,3,4. Since the wavelets are orthonormal, we should have that
¡= ¡̃, and √= √̃. In other words, you should see that the bottom plots equal
the upper plots.
Solution: The code can look as follows.

% Plot wavelet functions for orthonormal wavelets, filters length 4
liftingfactortho(2)
plotwaveletfunctions(@IDWTKernelOrtho, -4, 4)

% Plot wavelet functions for orthonormal wavelets, filters length 6
liftingfactortho(3)
plotwaveletfunctions(@IDWTKernelOrtho, -4, 4)

% Plot wavelet functions for orthonormal wavelets, filters length 8
liftingfactortho(4)
plotwaveletfunctions(@IDWTKernelOrtho, -4, 4)

5. Symmetric lifting steps in this chapter have all been on the form
µ

I ∏{1,1}
0 I

∂

and
µ

I 0
∏{1,1} I

∂

. In the next exercises, we will see that we also need to consider lifting

steps of the form

µ

I {∏2,∏1,∏1,∏2}
0 I

∂

and
µ

I 0
{∏2,∏1,∏1,∏2} I

∂

. (8.1)

Write functions liftingstepeven2symm and liftingstepodd2symm which take
∏1,∏2, a vector x and symm as input, and apply the lifting matrices (8.1), respectively,
to x . The functions should perform as few multiplications as possible. Concentrate
first on the case where symmetric extensions are made (symm=1), and then on the
case when they are not made (symm=0).
Solution: What complicates this is that there may be two rows which circulate at
the beginning and end of the matrix. The code can look as follows.

function x = liftingstepeven2symm(lambda1, lambda2, x, symm)
N = size(x, 1);
if ~symm

assert(mod(N,2) == 0)
end
if symm

x(1, :) =lambda1*2*x(2, :) + x(1, :) + lambda2*2*x(4, :); % Symmetric extension
x(3, :) = lambda1*(x(4, :) + x(2, :)) + x(3, :) + lambda2*(x(6, :) + x(2, :));
if mod(N,2)==1

106

x(N, :) = lambda1*2*x(N-1, :) + x(N, :) + lambda2*2*x(N-3, :);
x(N-2, :) = lambda1*(x(N-3, :) + x(N-1, :)) + x(N-2, :) + lambda2*(x(N-5, :) + x(N-1, :));

else
x(N-1, :) = lambda1*(x(N-2, :) + x(N, :)) + x(N-1, :) + lambda2*(x(N-4, :) + x(N-2, :));

end
x(5:2:(N-3), :) = lambda1*(x(4:2:(N-4), :) + x(6:2:(N-2), :)) + x(5:2:(N-3), :) + lambda2*(x(2:2:(N-6), :) + x(8:2:N, :));

else % N must be even
x(1, :) = lambda1*(x(2, :) + x(N, :)) + x(1, :) + lambda2*(x(4, :) + x(N-2, :));
x(3, :) = lambda1*(x(4, :) + x(2, :)) + x(3, :) + lambda2*(x(6, :) + x(N, :));
x(N-1, :) = lambda1*(x(N-2, :) + x(N, :)) + x(N-1, :) + lambda2*(x(N-4, :) + x(2, :));
x(5:2:(N-3), :) = lambda1*(x(4:2:(N-4), :) + x(6:2:(N-2), :)) + x(5:2:(N-3), :) + lambda2*(x(2:2:(N-6), :) + x(8:2:N, :));

end

function x = liftingstepodd2symm(lambda1, lambda2, x, symm)
N = size(x, 1);
if ~symm

assert(mod(N,2) == 0)
end
if symm

x(2, :) = lambda1*2*(x(1, :) + x(3, :)) + x(2, :) + lambda2*(x(5, :) + x(3, :)); % Symmetric extension
if mod(N,2) == 1

x(N-1, :) = lambda1*(x(N-2, :) + x(N, :)) + x(N-1, :) + lambda2*(x(N-4, :) + x(N-2, :));
else
x(N, :) = lambda1*2*x(N-1, :) + x(N, :) + lambda2*2*x(N-3, :);
x(N-2, :) = lambda1*(x(N-3, :) + x(N-1, :)) + x(N-2, :) + lambda2*(x(N-5, :) + x(N-1, :));

end
x(4:2:(N-3), :) = lambda1*(x(3:2:(N-4), :) + x(5:2:(N-2), :)) + x(4:2:(N-3), :) + lambda2*(x(1:2:(N-6), :) + x(7:2:N, :));
else % N must be even

x(2, :) = lambda1*(x(1, :) + x(3, :)) + x(2, :) + lambda2*(x(5, :) + x(3, :));
x(N-2, :) = lambda1*(x(N-3, :) + x(N-1, :)) + x(N-2, :) + lambda2*(x(N-5, :) + x(N-1, :));
x(N, :) = lambda1*2*x(N-1, :) + x(N, :) + lambda2*2*x(N-3, :);
x(4:2:(N-4), :) = lambda1*(x(3:2:(N-5), :) + x(5:2:(N-3), :)) + x(4:2:(N-4), :) + lambda2*(x(1:2:(N-7), :) + x(7:2:(N-1), :));

end

6. In Exercise 2 in Section 5.5 we found constants Æ,Ø,∞,± which give the coordi-
nates of √̂ in (¡1,√̂1), where √̂ had four vanishing moments, and where we worked
with the multiresolution analysis of piecewise constant functions.

a. Show that the polyphase representation of G when √̂ is used as mother
wavelet can be factored as

1
p

2

µ

I 0
{1/2,1/2} I

∂µ

I {°∞,°Æ,°Ø,°±}
0 I

∂

. (8.2)

You here need to reconstruct what you did in the lifting factorization for the
alternative piecewise linear wavelet, i.e. write

PD1√(¡1,√̂1) = PD1√(¡1,√1)P(¡1,√1)√(¡1,√̂1).

By inversion, find also a lifting factorization of H .
Solution: We have found constants Æ,Ø∞± so that

[√̂](¡0,√0) = (°Æ,°Ø,°±,0,0,0,0,°∞)© (1,0,0,0,0,0,0,0),

107

From this it is clear that

P(¡1,√1)√(¡1,√̂1) =
µ

I S2
0 I

∂

where S2 = {°∞,°Æ,°Ø,°±} This gives as before the lifting factorization

PD1√(¡1,√̂1) =
1
p

2

µ

I 0
S1 I

∂µ

I {°∞,°Æ,°Ø,°±}
0 I

∂

. (8.3)

where S1 = {1/2,1/2} as before.

b. Implement kernels DWTKernelpwl4 and IDWTKernelpwl4 for the DWT
and IDWT of this wavelet.
Solution: Note that the matrix

µ

I S2
0 I

∂

=
µ

I {°∞,°Æ,°Ø,°±}
0 I

∂

=
µ

I {°∞,°Æ,°Æ,°∞}
0 I

∂

is an even lifting step on the form given in the previous exercise (we here
used that we computed that Æ = Ø,∞ = ±). We can therefore use the func-
tion liftingstepeven2symm from the previous exercise. The valuesÆ,Ø,∞,±
can be computed with the code from Exercise 2 in Section 5.5, and the com-
puted values could be purt into the kernels. The kernels DWTKernelpwl2,
IDWTKernelpwl2 can therefore easily be changed as follows, in order to im-
plement the new kernels.

function x = DWTKernelpwl4(x, symm, dual)
alpha = 0.296875000000000;
gamma = -0.046875000000000;
if dual

x = x/sqrt(2);
x = liftingstepevensymm(0.5, x, symm);
x = liftingstepodd2symm(-alpha, -gamma, x, symm);

else
x = x*sqrt(2);
x = liftingstepoddsymm(-0.5, x, symm);
x = liftingstepeven2symm(alpha, gamma, x, symm);

end

function x = IDWTKernelpwl4(x, symm, dual)
alpha = 0.296875000000000;
gamma = -0.046875000000000;
if dual

x = x*sqrt(2);
x = liftingstepodd2symm(alpha, gamma, x, symm);
x = liftingstepevensymm(-0.5, x, symm);

else
x = x/sqrt(2);
x = liftingstepeven2symm(-alpha, -gamma, x, symm);
x = liftingstepoddsymm(0.5, x, symm);

end

108

c. Listen to the low-resolution approximations and detail components in
sound for this wavelet.
Solution: The following code can be used for listening to the low-resolution
approximations for a given value of m.

% Play lowres approx for piecewise linear wavelet, 4 van. moms.
playDWT(m, @DWTKernelpwl4, @IDWTKernelpwl4, 1);

d. Use the function plotwaveletfunctions from Exercise 1 in Section 7.1
to plot all scaling functions and mother wavelets for this wavelet.
Solution: The code can look as follows.

% Plot wavelet functions for piecewise linear wavelet, 4 van. moms.
plotwaveletfunctions(@IDWTKernelpwl4, -4, 4)

7. In Exercise 1 in Section 7.3 you should have found the filters

H0 =
1

128
{°5,20,°1,°96,70,280,70,°96,°1,20,°5} H1 =

1
16

{1,°4,6,°4,1}

G0 =
1

16
{1,4,6,4,1} G1 =

1
128

{5,20,1,°96,°70,280,°70,°96,1,20,5}.

a. Show that
µ

I ° 1
128 {5,°29,°29,5}

0 I

∂µ

I 0
°{1,1} I

∂µ

I ° 1
4 {1,1}

0 I

∂

G =
µ 1

4 0
0 4

∂

.

From this we can easily derive the lifting factorization of G .
Solution: The polyphase factorization of the IDWT is

µ 1
16 {1,6,1} 1

128 {5,1,°70,°70,1,5}
1

16 {4,4} 1
128 {20,°96,280,°96,20}

∂

.

We can first apply an even lifting step:
µ

I ° 1
4 {1,1}

0 I

∂µ 1
16 {1,6,1} 1

128 {5,1,°70,°70,1,5}
1

16 {4,4} 1
128 {20,°96,280,°96,20}

∂

=
µ 1

16 {4} 1
128 {20,°116,°116,20}

1
16 {4,4} 1

128 {20,°96,280,°96,20}

∂

.

We can now apply an odd lifting step
µ

I 0
°{1,1} I

∂µ 1
16 {4} 1

128 {20,°116,°116,20}
1

16 {4,4} 1
128 {20,°96,280,°96,20}

∂

=
µ 1

4
1

128 {20,°116,°116,20}
0 4

∂

Since
µ

I ° 1
512 {20,°116,°116,20}

0 I

∂µ 1
4

1
128 {20,°116,°116,20}

0 4

∂

=
µ 1

4 0
0 4

∂

,

it follows that
µ

I ° 1
128 {5,°29,°29,5}

0 I

∂µ

I 0
°{1,1} I

∂µ

I ° 1
4 {1,1}

0 I

∂

G =
µ 1

4 0
0 4

∂

.

109

b. Implement kernels DWTKernelN14N24 and IDWTKernelN14N24 for this
wavelet.
Solution: Again we note that we have an even lifting step on the form given in
Equation (8.1), and can therefore again use the functionliftingstepeven2symm
in the kernel transformations. Based on what we have computed, the code
can look as follows.

function x = DWTKernelN14N24(x, symm, dual)
N = size(x, 1);
if dual

x = liftingstepoddsymm(1/4, x, symm);
x = liftingstepevensymm(1, x, symm);
x = liftingstepodd2symm(-29/128, 5/128, x,symm);
x(1:2:N, :) = x(1:2:N, :)/4;
x(2:2:N, :) = x(2:2:N, :)*4;

else
x = liftingstepevensymm(-1/4, x, symm);
x = liftingstepoddsymm(-1, x, symm);
x = liftingstepeven2symm(29/128, -5/128, x, symm);
x(1:2:N, :) = x(1:2:N, :)*4;
x(2:2:N, :) = x(2:2:N, :)/4;

end

function x = IDWTKernelN14N24(x, symm, dual)
N = size(x, 1);
if dual

x(1:2:N, :) = x(1:2:N, :)*4;
x(2:2:N, :) = x(2:2:N, :)/4;
x = liftingstepodd2symm(29/128, -5/128, x, symm);
x = liftingstepevensymm(-1, x, symm);
x = liftingstepoddsymm(-1/4, x, symm);

else
x(1:2:N, :)=x(1:2:N, :)/4;
x(2:2:N, :)=x(2:2:N, :)*4;
x = liftingstepeven2symm(-29/128, 5/128, x, symm);
x = liftingstepoddsymm(1, x, symm);
x = liftingstepevensymm(1/4, x, symm);

end

c. Listen to the low-resolution approximations and detail components in
sound for this wavelet.
Solution: The following code can be used for listening to the low-resolution
approximations for a given value of m.

% Play lowres approx for the piecewise quadratic wavelet
playDWT(m, @DWTKernelN14N24, @IDWTKernelN14N24, 1);

d. Use the function plotwaveletfunctions from Exercise 1 in Section 7.1
to plot all scaling functions and mother wavelets for this wavelet.
Solution: The code can look as follows.

110

% Plot wavelet functions for the piecewise quadratic wavelet
plotwaveletfunctions(@IDWTKernelN14N24, -4, 4)

e. We can also implement the kernels of the wavelet of this exercise using
what you did in Exercise 12 in Section 6.1 (the filter coefficients are stated at
the beginning of this exercise). Use the code form Exercise 12 in Section 6.1 to
test that the implementation is correct (test on a randomly generated vector,
and use an assert statement to check whether the error is below a certain
tolerance). This test is useful, since it also can be used to test the functions
liftingstepeven2symm and liftingstepodd2symm, and that your lifting
factorization is correct.
Solution:

H0 = [-5 20 -1 -96 70 280 70 -96 -1 20 -5]/128;
H1 = [1 -4 6 -4 1]/16;
G0 = [1 4 6 4 1]/16;
G1 = [5 20 1 -96 -70 280 -70 -96 1 20 5]/128;
f = @(x, symm, dual) DWTKernelFilters(H0,H1,G0,G1,x,symm,dual);
invf = @(x, symm, dual) IDWTKernelFilters(H0,H1,G0,G1,x,symm,dual);
x = rand(32, 1);

y1 = DWTKernelN14N24(x,0,0);
y2 = f(x, 0, 0);
diff = max(abs(y1-y2));
assert(diff < 1E-13, sprintf(’bug, diff=%f’, diff))

y1 = IDWTKernelN14N24(x,0,0);
y2 = invf(x, 0, 0);
diff = max(abs(y1-y2));
assert(diff < 1E-13, sprintf(’bug, diff=%f’, diff))

8.3

1. Run the forward and then the reverse transform from Exercise 2 in Section 6.3 on
the vector (1,2,3, . . . ,8192). Verify that there seems to be a delay on 481 elements, as
promised by Therorem 8.24. Do you get the exact same result back?
Solution: The following code can be used:

% Listen to sound after forward and reverse mp3 filter bank transform
x = (1:8192)’;
x = mp3reversefbt(mp3forwardfbt(x));
plot(x)

There are some small errors from the original vector in the resulting vector, when
one compensates for the delay of 481 elements.

2. Use your computer to verify the symmetries we have stated for the symmetries
in the prototype filters, i.e. that

Ci =
(

°C512°i i 6= 64,128, . . . ,448

C512°i i = 64,128, . . . ,448.

111

Explain also that this implies that hi = h512°i for i = 1, . . . ,511. In other words, the
prototype filter has symmetry around (511+1)/2 = 256, so that it has linear phase.

3. We mentioned that we could use the lifting factorization to construct filters on
the form stated in Equation (8.20), so that the matrices on the form given by Equa-
tion (8.24), i.e.

µ

V (32°i) V (i)

°V (64°i) V (32+i)

∂

,

are invertible. Let us see what kind of lifting steps produce such matrices.

a. Show that the lifting steps
µ

I ∏E2
0 I

∂

and
µ

I 0
∏I I

∂

applied in alternating

order to a matrix on the form given by Equation (8.24), where the filters are
on the from given by Equation (8.20), again produces matrices and filters on
these forms. This explains how we can parametrize a larger number of such
matrices with the help of lifting steps.It also explain why the inverse matrix is
on the form stated in Equation (8.24) with filters on the same form, since the
inverse lifting steps are of the same type.

b. Explain that 16 numbers {∏i }16
i=1 are needed (together with what we start

with on the diagonal in the lifting construction), in order to construct filters
so that the prototype filter has 512 coefficients. Since there are 15 submatri-
ces, this gives 240 optimization variables.

Lifting gives the following strategy for finding a corresponding synthesis proto-
type filter which gives perfect reconstruction: First compute matrices V ,W which
are inverses of oneanother using lifting (using the lifting steps of this exercise en-
sures that all filters will be on the form stated in Equation (8.20)), and write

V W =
µ

V (1) V (2)

°V (3) V (4)

∂µ

W (1) °W (3)

W (2) W (4)

∂

=
µ

V (1) V (2)

°V (3) V (4)

∂µ

(W (1))T (W (2))T

°(W (3))T (W (4))T

∂T

=
µ

V (1) V (2)

°V (3) V (4)

∂µ

E15(W (1))T E15(W (2))T

°E15(W (3))T E15(W (4))T

∂T µ

E15 0
0 E15

∂

= I .

Now, the matrices U (i) = E15(W (i))T are on the form stated in Equation (8.20), and
we have that

µ

V (1) V (2)

°V (3) V (4)

∂µ

U (1) U (2)

°U (3) U (4)

∂

=
µ

E°15 0
0 E°15

∂

We can now conclude from Theorem 8.23 that if we define the synthesis prototype
filter as therein, and set c = 1,d =°15, we have that G H = 16E481°32·15 = 16E1.

112

Chapter 9
9.1

9.2

1. Black and white images can be generated from greyscale images (with values
between 0 and 255) by replacing each pixel value with the one of 0 and 255 which
is closest. Use this strategy to generate the black and white image shown in Fig-
ure 9.2(a).
Solution: The following code can be used:

% Exercise 9.2.1
Z = 255*((X(:, :, 1) + X(:, : ,2) + X(:, :, 3))/3 >= 128);

2. Generate the right image in Figure 9.9 on your own by writing code which uses
the function contrastadjust.
Solution: The following code can be used:

% Exercise 9.2.2
Z = contrastadjust(X, 0.01);

3. Let us also consider the second way we mentioned for increasing the contrast.

a. Write a function contrastadjust0 which instead uses the function from
Equation (9.1) to increase the contrast. n should be a parameter to the func-
tion.
Solution: The code could look as follows:

function Z=contrastadjust0(X,n)
Z = X/255; % Maps the pixel values to [0,1]
Z = atan(n*(Z-1/2))/(2*atan(n/2)) + 1/2;
Z = Z*255; % Maps the values back to [0,255]

113

Figure 9.1: Secret message.

b. Generate the left image in Figure 9.9 on your own by using your code from
Exercise 2, and instead calling the function contrastadjust0.
Solution: The following code can be used:

% Exercise 9.2.3
Z = contrastadjust0(X, 10);

4. In this exercise we will look at another function for increasing the contrast of a
picture.

a. Show that the function f :R!R given by

fn(x) = xn ,

for all n maps the interval [0,1] ! [0,1], and that f 0(1) !1 as n !1.

b. The color image secret.jpg,shown in Figure 9.1, contains some infor-
mation that is nearly invisible to the naked eye on most computer monitors.
Use the function f (x), to reveal the secret message.
Hint: You will first need to convert the image to a greyscale image. You can
then use the function contrastadjust as a starting point for your own pro-
gram.
Solution: The secret message is revealed in Figure 9.2.

9.3

1. Generate the right images in Figure 9.10 by writing code which calls the function
tensor_impl with appropriate filters.
Solution: The following code can be used:

114

Figure 9.2: Secret message revealed!

% Exercise 9.3.1
excerpt = 255*mapto01(sqrt(X(:,:,1).^2 + X(:,:,2).^2 + X(:,:,3).^2));
excerpt = excerpt(170:340, 170:340);

shortmolecule = @(x)convkernel(x, [1 2 1]/4);

longmolecule = @(x)convkernel(x, [1 6 15 20 15 6 1]/64);

diffxmolecule = @(x)convkernel(x, [-1 0 1]/2);

diffymolecule = @(x)convkernel(x, [1 0 -1]/2);

donothing = @(x)x;

Z1 = tensor_impl(excerpt, shortmolecule, shortmolecule);
Z2 = tensor_impl(excerpt, longmolecule, longmolecule);

2. Generate the right image in Figure 9.12 by writing code in the same way. Also
generate the images in figures 9.13, 9.14, and 9.15.
Solution: The following code can be used:

% Exercise 9.3.2
excerpt=255*mapto01(sqrt(X(:,:,1).^2+X(:,:,2).^2+X(:,:,3).^2));
excerpt=excerpt(170:340,170:340);
res1 = tensor_impl(excerpt, donothing, diffymolecule);
res2 = tensor_impl(excerpt, diffxmolecule, donothing);
resxx = tensor_impl(res1, donothing, diffymolecule);
resxy = tensor_impl(res1, diffxmolecule, donothing);
resyy = tensor_impl(res2, diffxmolecule, donothing);
Z1 = contrastadjust0(255*mapto01(res1),50); % Figure 9.10c
Z2 = sqrt(res1.^2+res2.^2); % Figure 9.11a
Z3 = 255*mapto01(Z2); % Figure 9.11b
Z4 = contrastadjust0(Z3,50); % Figure 9.11c
Z5 = contrastadjust(255*mapto01(res1),0.01); % Figure 9.12a
Z6 = contrastadjust(255*mapto01(res2),0.01); % Figure 9.12b
Z7 = contrastadjust0(255*mapto01(resxx),100); % Figure 9.13a

115

Z8 = contrastadjust0(255*mapto01(resxy),100); % Figure 9.13b
Z9 = contrastadjust0(255*mapto01(resyy),100); % Figure 9.13c

3. Let the filter S be defined by S = {°1,1}.

a. Let X be a matrix which represents the pixel values in an image. What can
you say about how the new images (S ≠ I)X og (I ≠ S)X look? What are the
interpretations of these operations?

b. Write down the 4≠4-matrix X = (1,1,1,1)≠ (0,0,1,1). Compute (S ≠ I)X
by applying the filters to the corresponding rows/columns of X as we have
learnt, and interpret the result. Do the same for (I ≠S)X .

4. Let S be the moving average filter of length 2L +1, i.e. T = 1
L {1, · · · ,1,1,1, · · · ,1

| {z }

2L+1 times

}.

What is the computational molecule of S ≠S?

5. Show that the mapping F (x , y) = x ≠ y is bi-linear, i.e. that F (Æx1 +Øx2, y) =
ÆF (x1, y)+ØF (x2, y), and F (x ,Æy 1 +Øy 2) =ÆF (x , y 1)+ØF (x , y 2).
Solution: We have that

F (Æx1 +Øx2, y) = (Æx1 +Øx2)≠ y = (Æx1 +Øx2)y

T

=Æx1 y

T +Øx2 y

T =Æ(x1 ≠ y)+Ø(x ≠ y)

=ÆF (x1, y)+ØF (x1, y).

The second statement follows similarly.

6. Attempt to find matrices S1 : RM ! RM and S2 : RN ! RN so that the following
mappings from LM ,N (R) to LM ,N (R) can be written on the form X ! S1X (S2)T =
(S1 ≠S2)X . In all the cases, it may be that no such S1, S2 can be found. If this is the
case, prove it.

a. The mapping which reverses the order of the rows in a matrix.
Solution: Multiplicaton with the matrix

S =

0

B

B

B

B

B

B

@

0 0 0 · · · 0 0 1
0 0 0 · · · 0 1 0
...

...
...

...
...

...
...

0 1 0 · · · 0 0 0
1 0 0 · · · 0 0 0

1

C

C

C

C

C

C

A

reverses the elements in a vector. This means that

((S ≠ I)(x ≠ y))i , j = ((Sx)≠ y)i , j = (Sx)i y j = xM°1°i y j = (x ≠ y)M°1°i , j .

This means that also ((S ≠ I)X)i , j = XM°1°i , j for all X , so that S ≠ I reverses
rows, and thus is a solution to a..

116

b. The mapping which reverses the order of the columns in a matrix.
Solution: Similarly one shows that I ≠S reverses columns, and is thus a so-
lution to b..

c. The mapping which transposes a matrix.
Solution: It turns out that it is impossible to find S1 and S2 so that transpos-
ing a matrix X corresponds to computing (S1 ≠S2)X . To see why, S1 and S2
would need to fulfill

(S1 ≠S2)(e i ≠e j) = (S1e i)≠ (S2e j) = e j ≠e i ,

since e j ≠e i is the transpose of e i ≠e j . This would require that S1e i = e j for
all i , j , which is impossible.

7. Let the filter S be defined by S = {1,2,1}.

a. Write down the computational molecule of S ≠S.
Solution: The computational molecule of S ≠S is

rev(1,2,1)≠ rev(1,2,1) = (1,2,1)≠ (1,2,1) =

0

@

1
2
1

1

A

°

1 2 1
¢

=

0

@

1 2 1
2 4 2
1 2 1

1

A .

b. Let us define x = (1,2,3), y = (3,2,1), z = (2,2,2), and w = (1,4,2). Com-
pute the matrix A = x ≠ y + z ≠w .
Solution: We get that

A =

0

@

1
2
3

1

A

°

3 2 1
¢

+

0

@

2
2
2

1

A

°

1 4 2
¢

=

0

@

3 2 1
6 4 2
9 6 3

1

A+

0

@

2 8 4
2 8 4
2 8 4

1

A=

0

@

5 10 5
8 12 6

11 14 7

1

A .

c. Compute (S ≠S)A by applying the filter S to every row and column in the
matrix the way we have learnt. If the matrix A was more generally an image,
what can you say about how the new image will look?
Solution: We need to compute (S ≠S)A = S AST , which corresponds to first
applying S to every column in the image, and then applying S to every row in
the resulting image. If we apply S to every column in the image we first get

the matrix S A =

0

@

29 46 23
32 48 24
35 50 25

1

A. If we apply the filter to the rows here we get

S AST =

0

@

127 144 121
136 152 128
145 160 135

1

A. Since the filter which is applied is a lowpass filter,

the new image should look a bit more smooth than the original image.

117

8. Let S = 1
4 {1,2,1} be a filter.

a. What is the effect of applying the tensor products S≠ I , I ≠S, and S≠S on
an image represented by the matrix X ?
Solution: Note forst that the filter is a smoothing filter (a lowpass filter). We
know that S ≠ I corresponds to applying S to the columns of the matrix, so
that we get the result by applying the smoothing filter to the columns of the
matrix. The result of this is that horizontal edges are smoothed. Similarly,
the tensor product I ≠S corresponds to applying S to the rows of the matrix,
so that vertical edges are smoothed. Finally, S ≠S corresponds to applying S
first to the columns of the matrix, then to the rows. The result is that both
horizontal and vertical edges are smoothed. You could also have computed
the computational molecules for S ≠ I , I ≠S, and S ≠S, by taking the tensor
product of the filter coefficients 1

4 {1,2,1} with itself. From these molecules it
is also clear that they either work on the columns, the rows, or on both rows
and columns.

b. Compute (S ≠S)(x ≠ y), where x = (4,8,8,4), y = (8,4,8,4) (i.e. both x and
y are column vectors).
Solution: A 4£4 circulant Toeplitz matrix for S is

1
4

0

B

B

@

2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2

1

C

C

A

.

From this we can quickly compute that

Sx = 1
4

0

B

B

@

2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2

1

C

C

A

0

B

B

@

4
8
8
4

1

C

C

A

=

0

B

B

@

2+2+1
4+2+1
4+2+1

ï¿¡2+2+1

1

C

C

A

=

0

B

B

@

5
7
7
5

1

C

C

A

S y = 1
4

0

B

B

@

2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2

1

C

C

A

0

B

B

@

8
4
8
4

1

C

C

A

=

0

B

B

@

4+1+1
2+2+2
4+1+1
2+2+2

1

C

C

A

=

0

B

B

@

6
6
6
6

1

C

C

A

.

From this it is clear that

(S ≠S)(x ≠ y) = (Sx)(S y)T =

0

B

B

@

5
7
7
5

1

C

C

A

°

6 6 6 6
¢

=

0

B

B

@

30 30 30 30
42 42 42 42
42 42 42 42
30 30 30 30

1

C

C

A

.

9. Suppose that we have an image given by the M £N -matrix X, and consider the
following code:

118

for n=1:N
X(1, n) = 0.25*X(N, n) + 0.5*X(1, n) + 0.25*X(2, n);
X(2:(N-1), n) = 0.25*X(1:(N-2), n) + 0.5*X(2:(N-1), n) ...

+ 0.25*X(3:N, n);
X(N, n) = 0.25*X(N-1, n) + 0.5*X(N, n) + 0.25*X(1, n);

end
for m=1:M

X(m, 1) = 0.25*X(m, M) + 0.5*X(m, 1) + 0.25*X(m, 2);
X(m, 2:(M-1)) = 0.25*X(m, 1:(M-2)) + 0.5*X(m, 2:(M-1),) ...

+ 0.25*X(m, 3:M);
X(m, M) = 0.25*X(m, M-1) + 0.5*X(m, M) + 0.25*X(m, 1);

end

Which tensor product is applied to the image? Comment what the code does, in par-
ticular the first and third line in the inner for-loop. What effect does the code have
on the image?
Solution: In the code the filter S = {1/4,1/2,1/4} is applied to the clumns and the
rows in the image. We have learnt that this corresponds to applying the tensor prod-
uct S ≠S to the image. k=1 in the outer for-loop corresponds to applying S on the
columns, k=2 corresponds to applying S on the rows. The first and last lines in the
inner for-loop are necessary since we apply S to the periodic extension of the im-
age. Since S is a smoothing filter, the effect will be that the image is smoothed verti-
cally and horizontally.

10. Let v A be an eigenvector of A with eigenvalue ∏A , and v B an eigenvector of B
with eigenvalue ∏B . Show that v A ≠ v B is an eigenvector of A ≠B with eigenvalue
∏A∏B . Explain from this why kA ≠Bk = kAkkBk, where k · k denotes the operator
norm of a matrix.

11. The Kronecker tensor product of two matrices A and B , written A≠k B , is defined
as

A≠k B =

0

B

B

B

B

@

a11B a12B · · · a1M B
a21B a22B · · · a2M B

...
...

. . .
...

ap1B ap2B · · · apM B

1

C

C

C

C

A

,

where the entries of A are ai j . The tensor product of a p £M-matrix, and a q £N -
matrix is thus a (pq)£(M N)-matrix. Note that this tensor product in particular gives
meaning for vectors: if x 2RM , y 2RN are column vectors, then x≠k

y 2RM N is also a
column vector. In this exercise we will investigate how the Kronecker tensor product
is related to tensor products as we have defined them in this section.

a. Explain that, if x 2 RM , y 2 RN are column vectors, then x ≠k
y is the col-

umn vector where the rows of x ≠ y have first been stacked into one large
row vector, and this vector transposed. The linear extension of the operation
defined by

x ≠ y 2RM ,N ! x ≠k
y 2RM N

thus stacks the rows of the input matrix into one large row vector, and trans-
poses the result.

119

b. Show that (A ≠k B)(x ≠k
y) = (Ax)≠k (B y). We can thus use any of the

defined tensor products ≠, ≠k to produce the same result, i.e. we have the
following commutative diagram,

x ≠ y

A≠B //

✏✏

(Ax)≠ (B y)

✏✏
x ≠k

y

A≠k B// (Ax)≠k (B y),

where the vertical arrows represent stacking the rows in the matrix, and trans-
posing, and the horizontal arrows represent the two tensor product linear
transformations we have defined. In particular, we can compute the tensor
product in terms of vectors, or in terms of matrices, and it is clear that the
Kronecker tensor product gives the matrix of tensor product operations.
Solution: We have that

(A≠k B)(x ≠k
y)

=

0

B

B

B

B

@

a11B a12B · · · a1M B
a21B a22B · · · a2M B

...
...

. . .
...

ap1B ap2B · · · apM B

1

C

C

C

C

A

0

B

B

B

B

@

x1 y

x2 y

...
xM y

1

C

C

C

C

A

=

0

B

B

B

B

@

(a11x1 + . . .+a1M xm)B y

(a21x1 + . . .+a2M xm)B y

...
(ap1x1 + . . .+apM xm)B y

1

C

C

C

C

A

=

0

B

B

B

B

@

(Ax)1B y

(Ax)2B y

...
(Ax)p B y

1

C

C

C

C

A

= (Ax)≠k (B y).

c. Using the Euclidean inner product on L(M , N) =RM N , i.e.

hX ,Y i=
M°1
X

i=0

N°1
X

j=0
Xi , j Yi , j .

and the correspondence in a. we can define the inner product of x1 ≠ y 1 and
x2 ≠ y 2 by

hx1 ≠ y 1, x2 ≠ y 2i= hx1 ≠k
y 1, x2 ≠k

y 2i.
Show that

hx1 ≠ y 1, x2 ≠ y 2i= hx1, x2ihy 1, y 2i.
Clearly this extends linearly to an inner product on LM ,N .
Solution: We have that

hx1 ≠ y 1, x2 ≠ y 2i=
*

0

B

@

(x1)0 y 1
...

(x1)M°1 y 1

1

C

A

,

0

B

@

(x2)0 y 2
...

(x2)M°1 y 2

1

C

A

+

=
M°1
X

i=0
(x1)i (x2)i hy 1, y 2i

= hy 1, y 2i
M°1
X

i=0
(x1)i (x2)i = hx1, x2ihy 1, y 2i.

120

d. Show that the FFT factorization can be written as
µ

FN /2 DN /2FN /2
FN /2 °DN /2FN /2

∂

=
µ

IN /2 DN /2
IN /2 °DN /2

∂

(I2 ≠k FN /2).

Also rewrite the sparse matrix factorization for the FFT from Equation (2.19)
in terms of tensor products.

9.4

1. Implement a function tensor_impl which takes a matrix X, and functions S1
and S2 as parameters, and applies S1 to the columns of X, and S2 to the rows of X.
Explain how you can use this function to implement FFT2, IFFT2, DCT2, and IDCT2.
Solution: The following code can be used:

function X = tensor_impl(X, S1, S2)
M = size(X, 1); N = size(X, 2); sz = size(X);
sz1 = sz; sz1(1) = []; sz1 = [sz1 1];
sz2 = sz; sz2(2) = []; sz2 = [sz2 1];
Y1 = zeros(sz1);
Y2 = zeros(sz2);

for n = 1:N
Y2(:, :) = X(:, n, :);
X(:, n, :) = S1(Y2);

end
for m = 1:M

Y1(:, :) = X(m, :, :);
X(m, :, :) = S2(Y1);

end

2. The following function showDCThigher applies the DCT to an image in the same
way as the JPEG standard does. The function takes a threshold parameter, and sets
DCT coefficients below this value to zero:

function showDCThigher(threshold)
img = double(imread(’lena.png’, ’png’));
zeroedout = 0;
img = tensor_impl(img, @DCTImpl8, @DCTImpl8);
thresholdmatr = (abs(img) >= threshold);
zeroedout = zeroedout + prod(size(img)) ...

- sum(sum(sum(thresholdmatr)));
img = tensor_impl(img.*thresholdmatr, @IDCTImpl8, @IDCTImpl8);
imshow(uint8(255*mapto01(img)));
fprintf(’%i percent of samples zeroed out\n’, ...

100*zeroedout/prod(size(img)));

function x = DCTImpl8(x)
N = size(x, 1);
for n = 1:8:N

x(n:(n+7), :) = DCTImpl(x(n:(n+7), :));
end

121

function x = IDCTImpl8(x)
N = size(x, 1);
for n = 1:8:N

x(n:(n+7), :) = IDCTImpl(x(n:(n+7), :));
end

a. Explain this code line by line.

b. Run showDCThigher for different threshold parameters, and check that
this reproduces the test images of this section, and prints the correct num-
bers of values which have been neglected (i.e. which are below the threshold)
on screen.

3. Suppose that we have given an image by the matrix X. Consider the following
code:

threshold = 30;
[M, N] = size(X);
for n = 1:N

X(:, n) = FFTImpl(X(:, n), @FFTKernelStandard);
end
for m = 1:M

X(m, :) = FFTImpl((X(m, :))’, @FFTKernelStandard);
end

X = X.*(abs(X) >= threshold);

for n = 1:N
X(:, n) = FFTImpl(X(:, n), @FFTKernelStandard, 0);

end
for m = 1:M

X(m, :) = FFTImpl((X(m, :))’, @FFTKernelStandard, 0);
end

Comment what the code does. Comment in particular on the meaning of the pa-
rameter threshold, and what effect this has on the image.
Solution: In the first part of the code one makes a change of coordinates with the
DFT. More precisely, this is a change of coordinates on a tensor product, as we have
defined it. In the last part the change of coordinates is performed the opposite way.
Both these change of coordinates is performed is performed the way we have de-
scribed them, first on the rows in the matrix, then on the columns. The parameter
threshold is used to neglect DFT-coefficients which are below a certain value. We
have seen that this can give various visual artefacts in the image, even though the
main contents of the image still may be visible. If we increase threshold, these
artefacts will be more dominating since we then neglect many DFT-coefficients.

122

Chapter 10
10.1

10.2

10.3

1. Implement functionsDWT2Impl andIDWT2Implwhich perform the m-level DWT2
and the IDWT2, respectively, on an image. The functions should take the same input
as DWTImpl and IDWTImpl, with the input vector replaced with a two-dimensional
object. The functions should at each stage call DWTImpl and IDWTImpl with m = 1,
and each call to these functions should alter the appropriate upper left submatrix
in the coordinate matrix. If the image has several colour components, the functions
should be applied to each colour component. There are three colour components
in the test image ’lena.png’.
Solution: The following code can be used:

function X = DWT2Impl(X, nres, f, symmarg, dualarg)
symm = 1;
if nargin >= 4

symm = symmarg;
end
dual = 0;
if nargin >= 5

dual = dualarg;
end
M = size(X, 1); N = size(X, 2); sz = size(X);
M0 = size(X, 1); N0 = size(X, 2);
sz1 = sz; sz1(1) = [];
sz2 = sz; sz2(2) = [];
for res = 0:(nres - 1)

sz2(1) = M; Y2 = zeros(sz2);
sz1(1) = N; Y1 = zeros(sz1);
if length(sz1)==1

Y1=zeros(sz1, 1); Y2=zeros(sz2, 1);
end
for n = 1:2^res:N0

123

Y2(:, :) = X(1:2^res:M0, n, :);
X(1:2^res:M0, n, :) = f(Y2, symm, dual);

end
for m = 1:2^res:M0

Y1(:, :) = X(m, 1:2^res:N0, :);
X(m, 1:2^res:N0, :) = f(Y1, symm, dual);

end
M = ceil(M/2); N = ceil(N/2);

end

X = reorganize_coefficients2(X, nres, 1);

function X=IDWT2Impl(X, nres, f, symmarg, dualarg)
symm = 1;
if nargin >= 4

symm = symmarg;
end
dual = 0;
if nargin >= 5

dual = dualarg;
end

X = reorganize_coefficients2(X, nres, 0);

M = size(X, 1); N = size(X, 2); sz = size(X);
sz1 = sz; sz1(1) = [];
sz2 = sz; sz2(2) = [];
for res = (nres - 1):(-1):0

sz1(1) = length(1:2^res:N); sz2(1) = length(1:2^res:M);
Y1 = zeros(sz1); Y2 = zeros(sz2);
if length(sz1)==1

Y1=zeros(sz1, 1); Y2=zeros(sz2, 1);
end
for n = 1:2^res:N

Y2(:, :) = X(1:2^res:M, n, :);
X(1:2^res:M, n, :) = f(Y2(:, :), symm, dual);

end
for m = 1:2^res:M

Y1(:, :) = X(m, 1:2^res:N, :);
X(m, 1:2^res:N, :) = f(Y1(:, :), symm, dual);

end
end

2. Assume that we have an image represented by the M £N -matrix X, and consider
the following code:

for n = 1:N
c = (X(1:2:M, n) + X(2:2:M, n))/sqrt(2);
w = (X(1:2:M, n) - X(2:2:M, n))/sqrt(2);
X(:, n) = [c; w];

for m = 1:M
c = (X(m, 1:2:N) + X(m, 2:2:N))/sqrt(2);
w = (X(m, 1:2:N) - X(m, 2:2:N))/sqrt(2);
X(m, :) = [c w];

124

a. Comment what the code does, and explain what you will see if you display
X as an image after the code has run.
Solution: The code runs a DWT over one level, and the Haar wavelet is used.
Inside the for-loops the DWT is applied to every row and column in the im-
age. k=1 i the for-loop corresponds to applying the DWT to the columns,
k=2 corresponds to applying the DWT to the rows. In the upper left corner
we will see a low-resolution version of the image. In the other three corners
you will see different tyoes of detail: In the upper right corner you will see
detail which corresponds to quick vertical changes, in the lower left corner
you will see detail which corresponds to quick horizontal changes, and in the
lower right corner you will see points where quick changes both vertically and
horizontally occur simultaneously.

b. The code above has an inverse transformation, which reproduce the orig-
inal image from the transformed values which we obtained. Assume that you
zero out the values in the lower left and the upper right corner of the matrix
X after the code above has run, and that you then reproduce the image by ap-
plying this inverse transformation. What changes can you then expect in the
image?
Solution: By zeroing out the two corners you remove detail which correpond
to quick horizontal and vertical changes. But since we keep the lower right
corner, we keep detail which corresponds to simultaneous changes vertically
and horizontally. The result after the inverse transformation is that most
edges have been smoothed, but we see no smoothing effect in points where
quick changes occur both horizontally and vertically. In Example 10.14, this
corresponds to that we emphasize the gridpoints in the chess pattern, mut
that we smooth out the horizontal and vertical edges in the chess pattern.

3. In this exercise we will use the filters G0 = {1,1}, G1 = {1,°1}.

a. Let X be a matrix which represents the pixel values in an image. Define
x = (1,0,1,0) and y = (0,1,0,1). Compute (G0 ≠G0)(x ≠ y).

b. For a general image X , describe how the images (G0 ≠G0)X , (G0 ≠G1)X ,
(G1 ≠G0)X , and (G1 ≠G1)X may look.

c. Assume that we run the following code on an image represented by the
matrix X:

[M, N]=size(X);
for n=1:N

c = X(1:2:M, n) + X(2:2:M, n);
w = X(1:2:M, n) - X(2:2:M, n);
X(:, n) = [c; w];

end

for m=1:M
c = X(m, 1:2:N) + X(m, 2:2:N);
w = X(m, 1:2:N) - X(m, 2:2:N);
X(m, :) = [c w];

end

125

Comment the code. Describe what will be shown in the upper left corner of
X after the code has run. Do the same for the lower left corner of the matrix.
What is the connection with the images (G0 ≠G0)X , (G0 ≠G1)X , (G1 ≠G0)X ,
and (G1 ≠G1)X ?

4. In this exercise we will experiment with applying the m-level DWT2 to an image.

a. Write a function showDWT,
Solution: The following code achieves the task:

function showDWT(m, f, invf, lowres)
img = double(imread(’lena.png’, ’png’));
img = DWT2Impl(img, m, f);
if lowres

M =size(img, 1); N = size(img, 2);
tokeep=img(1:(M/(2^m)), 1:(N/(2^m)), :);
img=zeros(size(img));
img(1:(M/(2^m)), 1:(N/(2^m)), :)=tokeep;

else
sz = size(img);
sz(1) = sz(1)/2^m; sz(2) = sz(2)/2^m;
img(1:sz(1), 1:sz(2), :) = 0;

end
img = IDWT2Impl(img, m, invf);
imshow(uint8(255*mapto01(img)));

which takes m, DWT kernel, and IDWT kernel as input, and

1. reads the image file lena.png,

2. performs an m-level DWT2 to the image samples using the function
DWT2Impl, with DWT kernel f

3. sets all wavelet coefficients representing detail to zero (i.e. keep only
wavelet coefficients from V0 ≠V0),

4. performs an IDWT2 on the resulting coefficients using the functionIDWT2Impl,
with IDWT kernel invf,

5. displays the resulting image.

b. Run the function showDWT for different values of m for the Haar wavelet.
Describe what you see for different m. degraded? Compare with what you
saw with the function showDCThigher in Exercise 2, where you performed a
DCT on the image samples instead, and set DCT coefficients below a given
threshold to zero.

c. Do the image samples returned by showDWT lie in [0,255]?
Solution: There is no reason to believe that image samples returned by the
function lie in [0,255]. You can check this by printing the maximum value in
the returned array on screen inside this method.

126

5. This exercise parallels the previous exercise, but we instead keep the detail com-
ponents in the image, and throw away the low-resolution approximation.

a. When you perform the same experiment as in the previous image for the
detail components, what kind of image do you see? Can you recognize the
original image in what you see?

b. In the code in Example 10.17, set lowres to false in the call to showDWT.
Describe the images you see for different m for the different wavelets. Try to
explain why the images seem to get clearer when you increase m.
Solution: After the replacements we get the following code.

% Show detail components for the Haar wavelet
showDWT(m, @DWTKernelHaar, @IDWTKernelHaar, 0);

% Show detail components for the Spline 5/3 wavelet
showDWT(m, @DWTKernel53, @IDWTKernel53, 0);

% Show detail components for the CDF 9/7 wavelet
showDWT(m, @DWTKernel97, @IDWTKernel97, 0);

6. In Figure 10.1 we have applied the DWT2 with the Haar wavelet to an image very
similar to the one you see in Figure 10.6. You see here, however, that there seems to
be no detail components, which is very different from Figure 10.6, even though the
images are very similar. Attempt to explain what causes this to happen.
Hint: Compare with Exercise 8 in Section 5.3.
Solution: In Figure 10.6, the borders in the chess pattern was chosen so that they
occur at odd numbers. This means that the image can not be represented exactly
in Vm°1 ≠Vm°1, so that there is detail present in the image at all the borders in the
chess pattern. In Figure 10.1, the borders in the chess pattern was chosen so that
they occur at even numbers. This means that the image can be represented exactly
in Vm°1 ≠Vm°1, so that there is no detail components present in the image.

7. Run the function from Exercise 4 with the Spline 5/3 wavelet and the CDF 9/7
wavelets instead. Look at the result using for different m, using the code from Ex-
ample 10.16. Can you see any difference from the Haar wavelet? If so, which wavelet
gives the best image quality?

10.4

1. Write code which generates the images shown in figures 10.18, 10.19, and 10.20.
Use the functions DWT2Impl and IDWT2Impl with the CDF 9/7 wavelet kernel func-
tions as input.

127

Figure 10.1: A simple image before and after one level of the DWT2. The Haar
wavelet was used.

128

