
Chapter 1
1.1

1. Compute the loudness of the Krakatoa explosion on the decibel scale, assuming
that the variation in air pressure peaked at 100 000 Pa.
Solution: Setting pref=0.00002 Pa and p=100 000 Pa in the decibel expression we get

20log10

µ

p
pref

∂

= 20log10

µ

100000
0.00002

∂

= 20log10

µ

105

2£10°5

∂

= 20log10

µ

1010

2

∂

= 20
°

10° log10 2
¢

º 194db.

2. Consider a sum of two pure tones, f (t) = A1 sin(2º∫1t)+A2 sin(2º∫2t). For which
values of A1, A2,∫1,∫2 is f periodic? What is the period of f when it is periodic?
Solution: sin(2º∫1t) has period 1/∫1, while sin(2º∫2t) has period 1/∫2. The period
is not unique, however. The first one also has period n/∫1, and the second also n/∫2,
for any n. The sum is periodic if there exist n1,n2 so that n1/∫1 = n2∫2, i.e. so that
there exists a common period between the two. This common period will also be a
period of f . This amounts to that ∫1/∫2 = n1/n2, i.e. that ∫1/∫2 is a rational number.

1.2

1. Find a function f which is Riemann-integrable on [0,T], and so that
RT

0 f (t)2d t
is infinite.

3

Solution: The function f (t) = 1p
t
= t°1/2 can be used since it has the properties

ZT

0
f (t)d t = lim

x!0+

ZT

x
t°1/2d t = lim

x!0+

£

2t 1/2§T
x

= lim
x!0+

(2T 1/2 °2x1/2) = 2T 1/2

ZT

0
f (t)2d t = lim

x!0+

ZT

x
t°1d t = lim

x!0+
[ln t]T

x

= lnT ° lim
x!0+

ln x =1.

2. Given the two Fourier spaces VN1,T1 , VN2,T2 . Find necessary and sufficient condi-
tions in order for VN1,T1 ΩVN2,T2 .
Solution: The space VN1,T1 is spanned by pure tones with frequencies 1/T1, . . . , N1/T1,
while VN2,T2 is spanned by pure tones with frequencies 1/T2, . . . , N2/T2. We must
have that the first set of frequencies is contained in the second. This is achieved if
and only if 1/T1 = k/T2 for some integer k, and also N1/T1 ∑ N2/T2. In other words,
T2/T1 must be an integer, and T2/T1 ∑ N2/N1.

3. Prove the second part of Theorem 1.21, i.e. show that if f is antisymmetric about
0 (i.e. f (°t) = ° f (t) for all t), then an = 0, i.e. the Fourier series is actually a sine-
series.

4. Find the Fourier series coefficients of the periodic functions with period T de-
fined by being f (t) = t , f (t) = t 2, and f (t) = t 3, on [0,T].
Solution: For f (t) = t we get that a0 = 1

T

RT
0 td t = T

2 . We also get

an = 2
T

ZT

0
t cos(2ºnt/T)d t

= 2
T

√

∑

T
2ºn

t sin(2ºnt/T)
∏T

0
° T

2ºn

ZT

0
sin(2ºnt/T)d t

!

= 0

bn = 2
T

ZT

0
t sin(2ºnt/T)d t

= 2
T

√

∑

° T
2ºn

t cos(2ºnt/T)
∏T

0
+ T

2ºn

ZT

0
cos(2ºnt/T)d t

!

=° T
ºn

.

The Fourier series is thus
T
2
°

X

n∏1

T
ºn

sin(2ºnt/T).

Note that this is almost a sine series, since it has a constant term, but no other co-
sine terms. If we had subtracted T /2 we would have obtained a function which is
antisymmetric, and thus a pure sine series.

4

For f (t) = t 2 we get that a0 = 1
T

RT
0 t 2d t = T 2

3 . We also get

an = 2
T

ZT

0
t 2 cos(2ºnt/T)d t

= 2
T

√

∑

T
2ºn

t 2 sin(2ºnt/T)
∏T

0
° T
ºn

ZT

0
t sin(2ºnt/T)d t

!

=
µ

° T
ºn

∂µ

° T
ºn

∂

= T 2

º2n2

bn = 2
T

ZT

0
t 2 sin(2ºnt/T)d t

= 2
T

√

∑

° T
2ºn

t 2 cos(2ºnt/T)
∏T

0
+ T
ºn

ZT

0
t cos(2ºnt/T)d t

!

=° T 2

ºn
.

Here we see that we could use the expressions for the Fourier coefficients of f (t) = t
to save some work. The Fourier series is thus

T 2

3
+

X

n∏1

µ

T 2

º2n2 cos(2ºnt/T)° T 2

ºn
sin(2ºnt/T)

∂

.

For f (t) = t 3 we get that a0 = 1
T

RT
0 t 3d t = T 3

4 . We also get

an = 2
T

ZT

0
t 3 cos(2ºnt/T)d t

= 2
T

√

∑

T
2ºn

t 3 sin(2ºnt/T)
∏T

0
° 3T

2ºn

ZT

0
t 2 sin(2ºnt/T)d t

!

=
µ

° 3T
2ºn

∂µ

° T 2

ºn

∂

= 3T 3

2º2n2

bn = 2
T

ZT

0
t 3 sin(2ºnt/T)d t

= 2
T

√

∑

° T
2ºn

t 3 cos(2ºnt/T)
∏T

0
+ 3T

2ºn

ZT

0
t 2 cos(2ºnt/T)d t

!

=° T 3

ºn
+ 3T

2ºn
T 2

º2n2 =° T 3

ºn
+ 3T 3

2º3n3 .

Also here we saved some work, by reusing the expressions for the Fourier coefficients
of f (t) = t 2. The Fourier series is thus

T 3

4
+

X

n∏1

µ

3T 3

2º2n2 cos(2ºnt/T)+
µ

° T 3

ºn
+ 3T 3

2º3n3

∂

sin(2ºnt/T)
∂

.

We see that all three Fourier series converge slowly. This is connected to the fact that
none of the functions are continuous at the borders of the periods.

5

5. Write down difference equations for finding the Fourier coefficients of f (t) =
t k+1 from those of f (t) = t k , and write a program which uses this recursion. Use the
program to verify what you computed in Exercise 4.
Solution: Let us define an,k ,bn,k as the Fourier coefficients of t k . When k > 0 and
n > 0, integration by parts gives us the following difference equations:

an,k = 2
T

ZT

0
t k cos(2ºnt/T)d t

= 2
T

√

∑

T
2ºn

t k sin(2ºnt/T)
∏T

0
° kT

2ºn

ZT

0
t k°1 sin(2ºnt/T)d t

!

=° kT
2ºn

bn,k°1

bn,k = 2
T

ZT

0
t k sin(2ºnt/T)d t

= 2
T

√

∑

° T
2ºn

t k cos(2ºnt/T)
∏T

0
+ kT

2ºn

ZT

0
t k°1 cos(2ºnt/T)d t

!

=°T k

ºn
+ kT

2ºn
an,k°1.

When n > 0, these can be used to express an,k ,bn,k in terms of an,0,bn,0, for which we

clearly have an,0 = bn,0 = 0. For n = 0 we have that a0,k = T k

k+1 for all k. The following
program computes an,k ,bn,k recursively when n > 0.

def findfouriercoeffs(n, k, T):
ank, bnk = 0, 0
if k > 0:

ankprev, bnkprev = findfouriercoeffs(n,k-1,T)
ank = -k*T*bnkprev/(2*pi*n)
bnk = -T**k/(pi*n) + k*T*ankprev/(2*pi*n)

return ank, bnk

6. Use the previous exercise to find the Fourier series for f (x) =° 1
3 x3+ 1

2 x2° 3
16 x+1

on the interval [0,1]. Plot the 9th order Fourier series for this function. You should
obtain the plots from Figure 1.5.

1.3

1. Show that the complex functions e2ºi nt/T are orthonormal.
Solution: For n1 6= n2 we have that

he2ºi n1t/T ,e2ºi n2t/T i= 1
T

ZT

0
e2ºi n1t/T e°2ºi n2t/T d t = 1

T

ZT

0
e2ºi (n1°n2)t/T d t

=
∑

T
2ºi (n1 °n2)

e2ºi (n1°n2)t/T
∏T

0

= T
2ºi (n1 °n2)

° T
2ºi (n1 °n2)

= 0.

6

When n1 = n2 the integrand computes to 1, so that ke2ºi nt/T k= 1.

2. Compute the complex Fourier series of the function f (t) = sin2(2ºt/T).
Solution: We have that

f (t) = sin2(2ºt/T) =
µ

1
2i

(e2ºi t/T °e°2ºi t/T
∂2

=°1
4

(e2ºi 2t/T °2+e°2ºi 2t/T) =°1
4

e2ºi 2t/T + 1
2
° 1

4
e°2ºi 2t/T .

This gives the Fourier series of the function (with y2 = y°2 = °1/4, y0 = 1/2). This
could also have been shown by using the trigonometric identity sin2 x = 1

2 (1°cos(2x))

first, or by computing the integral 1
T

RT
0 f (t)e°2ºi nt/T d t (but this is rather cumber-

some).

3. Repeat Exercise 4 in Section 1.2, computing the complex Fourier series instead
of the real Fourier series.

4. In this exercise we will find a connection with certain Fourier series and the rows
in Pascal’s triangle.

a. Show that both cosn(t) and sinn(t) are in VN ,2º for 1 ∑ n ∑ N .
Solution: We have that

cosn(t) =
µ

1
2

(ei t +e°i t)
∂n

sinn(t) =
µ

1
2i

(ei t °e°i t)
∂n

If we multiply out here, we get a sum of terms of the form ei kt , where °n ∑
k ∑ n. As long as n ∑ N it is clear that this is in VN ,2º.

b. Write down the N ’th order complex Fourier series for f1(t) = cos t , f2(t) =
cos2 t , og f3(t) = cos3 t .
Solution: We have that

cos(t) = 1
2

(ei t +e°i t)

cos2(t) = 1
4

(ei t +e°i t)2 = 1
4

e2i t + 1
2
+ 1

4
e°2i t

cos3(t) = 1
8

(ei t +e°i t)3 = 1
8

e3i t + 3
8

ei t + 3
8

e°i t + 1
8

e°3i t .

Therefore, for the first function the nonzero Fourier coefficients are y°1 = 1/2,
y1 = 1/2, for the second function y°2 = 1/4, y0 = 1/2, y2 = 1/4, for the third
function y°3 = 1/8, y°1 = 3/8, y1 = 3/8, y3 = 1/8.

c. In (b) you should be able to see a connection between the Fourier coef-
ficients and the three first rows in Pascal’s triangle. Formulate and prove a

7

general relationship between row n in Pascal’s triangle and the Fourier coef-
ficients of fn(t) = cosn t .
Solution: In order to find the Fourier coefficients of cosn(t) we have to mul-
tiply out the expression 1

2n (ei t + e°i t)n . The coefficients we get after this can
alos be obtained from Pascal’s triangle.

5. Compute the complex Fourier coefficients of the square wave using Equation 1.23,
i.e. repeat the calculations from Example 1.18 for the complex case. Use Theo-
rem 1.27 to verify your result.
Solution: We obtain that

yn = 1
T

ZT /2

0
e°2ºi nt/T d t ° 1

T

ZT

T /2
e°2ºi nt/T d t

=° 1
T

∑

T
2ºi n

e°2ºi nt/T
∏T /2

0
+ 1

T

∑

T
2ºi n

e°2ºi nt/T
∏T

T /2

= 1
2ºi n

≥

°e°ºi n +1+1°e°ºi n+
¥

= 1
ºi n

≥

1°e°ºi n
¥

=
(

0, if n is even;

2/(ºi n), if n is odd.
.

Instead using Theorem 1.27 together with the coefficients bn = 2(1°cos(nº)
nº we com-

puted in Example 1.18, we obtain

yn = 1
2

(an ° i bn) =°1
2

i

(

0, if n is even;

4/(nº), if n is odd.
=

(

0, if n is even;

2/(ºi n), if n is odd.

when n > 0. The case n < 0 follows similarly.

6. Repeat Exercise 5 for the triangle wave.

7. Use Equation (1.23) to compute the complex Fourier coefficients of the periodic
functions with period T defined by, respectively, f (t) = t , f (t) = t 2, and f (t) = t 3, on
[0,T]. Use Theorem 1.27 to verify your calculations from Exercise 4 in Section 1.2.
Solution: For f (t) = t we get

yn = 1
T

ZT

0
te°2ºi nt/T d t = 1

T

√

∑

° T
2ºi n

te°2ºi nt/T
∏T

0
+

ZT

0

T
2ºi n

e°2ºi nt/T d t

!

=° T
2ºi n

= T
2ºn

i .

From Exercise 4 we had bn =° T
ºn , for which Theorem 1.27 gives yn = T

2ºn i for n > 0,
which coincides with the expression we obtained. The case n < 0 follows similarly.
For f (t) = t 2 we get

yn = 1
T

ZT

0
t 2e°2ºi nt/T d t = 1

T

√

∑

° T
2ºi n

t 2e°2ºi nt/T
∏T

0
+2

ZT

0

T
2ºi n

te°2ºi nt/T d t

!

=° T 2

2ºi n
+ T 2

2º2n2 = T 2

2º2n2 + T 2

2ºn
i .

8

From Exercise 4 we had an = T 2

º2n2 and bn =° T 2

ºn , for which Theorem 1.27 gives yn =
1
2

≥

T 2

º2n2 + i T 2

ºn

¥

for n > 0, which also is seen to coincide with what we obtained. The
case n < 0 follows similarly.
For f (t) = t 3 we get

yn = 1
T

ZT

0
t 3e°2ºi nt/T d t = 1

T

√

∑

° T
2ºi n

t 3e°2ºi nt/T
∏T

0
+3

ZT

0

T
2ºi n

t 2e°2ºi nt/T d t

!

=° T 3

2ºi n
+3

T
2ºi n

(
T 2

2º2n2 + T 2

2ºn
i) = 3

T 3

4º2n2 +
µ

T 3

2ºn
°3

T 3

4º3n3

∂

i =

From Exercise 4 we had an = 3T 3

2º2n2 and bn = ° T 3

ºn + 3T 3

2º3n3 for which Theorem 1.27
gives

yn = 1
2

µ

3T 3

2º2n2 + i
µ

T 3

ºn
° 3T 3

2º3n3

∂∂

= 3T 3

4º2n2 +
µ

T 3

2ºn
° 3T 3

4º3n3

∂

i

for n > 0, which also is seen to coincide with what we obtained. The case n < 0
follows similarly.

8. In this exercise we will prove a version of Theorem 1.21 for complex Fourier co-
efficients.

a. If f is symmetric about 0, show that yn is real, and that y°n = yn .
Solution: If f is symmetric about 0 we have that bn = 0. Theorem 1.27 then
gives that yn = 1

2 an , which is real. The same theorem gives that y°n = 1
2 an =

yn .

b. If f is antisymmetric about 0, show that the yn are purely imaginary, y0 =
0, and that y°n =°yn .
Solution: If f is antisymmetric about 0 we have that an = 0. Theorem 1.27
then gives that yn = ° 1

2 bn , which is purely imaginary. The same theorem
gives that y°n = 1

2 bn =°yn .

c. Show that
PN

n=°N yne2ºi nt/T is symmetric when y°n = yn for all n, and
rewrite it as a cosine-series.
Solution: When yn = y°n we can write

y°ne2ºi (°n)t/T + yne2ºi nt/T = yn(e2ºi nt/T +e°2ºi nt/T) = 2yn cos(2ºnt/T)

This is clearly symmetric, but then also
PN

n=°N yne2ºi nt/T is symmetric since
it is a sum of symmetric functions.

d. Show that
PN

n=°N yne2ºi nt/T is antisymmetric when y0 = 0 and y°n =°yn
for all n, and rewrite it as a sine-series.
Solution: When yn =°y°n we can write

y°ne2ºi (°n)t/T + yne2ºi nt/T = yn(°e2ºi nt/T +e2ºi nt/T) = 2i yn sin(2ºnt/T)

This is clearly antisymmetric, but then also
PN

n=°N yne2ºi nt/T is antisymmet-
ric since it is a sum of antisymmetric functions, and since y0 = 0.

9

1.4

1. Define the function f with period T on [°T /2,T /2] by

f (t) =
(

1, if °T /4 ∑ t < T /4;

°1, if |T /4|∑ t < |T /2|.

f is just the square wave, shifted with T /4. Compute the Fourier coefficients of f
directly, and use Property 3 in Theorem 1.29 to verify your result.
Solution: We obtain that

yn = 1
T

ZT /4

°T /4
e°2ºi nt/T d t ° 1

T

Z°T /4

°T /2
e°2ºi nt/T d t ° 1

T

ZT /2

T /4
e°2ºi nt/T d t

=°
∑

1
2ºi n

e°2ºi nt/T
∏T /4

°T /4
+

∑

1
2ºi n

e°2ºi nt/T
∏°T /4

°T /2
+

∑

1
2ºi n

e°2ºi nt/T
∏T /2

T /4

= 1
2ºi n

≥

°e°ºi n/2 +eºi n/2 +eºi n/2 °eºi n +e°ºi n °e°ºi n/2
¥

= 1
ºn

(2sin(ºn/2)° sin(ºn)) = 2
ºn

sin(ºn/2).

The square wave defined in this exercise can be obtained by delaying our original
square wave with °T /4. Using Property 3 in Theorem 1.29 with d = °T /4 on the
complex Fourier coefficients

yn =
(

0, if n is even;

2/(ºi n), if n is odd.

which we obtained for the square wave in Exercise 5 in Section 1.3, we obtain the
Fourier coefficients

e2ºi n(T /4)/T

(

0, if n is even;

2/(ºi n), if n is odd.
=

(

0, if n is even;
2i sin(ºn/2)

ºi n , if n is odd.

=
(

0, if n is even;
2
ºn sin(ºn/2), if n is odd.

.

This verifies the result.

2. Find a function f which has the complex Fourier series

X

n odd

4
º(n +4)

e2ºi nt/T .

Hint: Attempt to use one of the properties in Theorem 1.29 on the Fourier series of
the square wave.
Solution: Since the real Fourier series of the square wave is

X

n∏1,n odd

4
ºn

sin(2ºnt/T),

10

Theorem 1.27 gives us that the complex Fourier coefficients are yn = ° 1
2 i 4

ºn = ° 2i
ºn

, and y°n = 1
2 i 4

ºn = 2i
ºn for n > 0. This means that yn = ° 2i

ºn for all n, so that the
complex Fourier series of the square wave is

°
X

n odd

2i
ºn

e2ºi nt/T .

Using Property 4 in Theorem 1.29 we get that the e°2ºi 4t/T (i.e. set d = °4) times
the square wave has its n’th Fourier coefficient equal to ° 2i

º(n+4) . Using linearity, this

means that 2i e°2ºi 4t/T times the square wave has its n’th Fourier coefficient equal
to 4

º(n+4) . We thus have that the function

f (t) =
(

2i e°2ºi 4t/T ,0 ∑ t < T /2

°2i e°2ºi 4t/T ,T /2 ∑ t < T

has the desired Fourier series.

3. Show that the complex Fourier coefficients yn of f , and the cosine-coefficients
an of f̆ are related by a2n = yn + y°n . This result is not enough to obtain the entire
Fourier series of f̆ , but at least it gives us half of it.
Solution: The 2nth complex Fourier coefficient of f̆ is

1
2T

Z2T

0
f̆ (t)e°2ºi 2nt/(2T)d t

= 1
2T

ZT

0
f (t)e°2ºi nt/T d t + 1

2T

Z2T

T
f (2T ° t)e°2ºi nt/T d t .

Substituting u = 2T ° t in the second integral we see that this is

= 1
2T

ZT

0
f (t)e°2ºi nt/T d t ° 1

2T

Z0

T
f (u)e2ºi nu/T du

= 1
2T

ZT

0
f (t)e°2ºi nt/T d t + 1

2T

ZT

0
f (t)e2ºi nt/T d t

= 1
2

yn + 1
2

y°n .

Therefore we have a2n = yn ° y°n .

11

12

Chapter 2
2.1

1. Define the following sound signal

f (t) =

8

<

:

0 0 ∑ t ∑ 4/440
2 440t°4

8 sin(2º440t) 4/440 ∑ t ∑ 12/440
2sin(2º440t) 12/440 ∑ t ∑ 20/440

This corresponds to the sound plotted in Figure 1.1(a), where the sound is unaudible
in the beginning, and increases linearly in loudness over time with a given frequency
until maximum loudness is avchieved. Write a function which generates this sound,
and listen to it.
Solution: The code for playing the sound can look like this:

Exercise 2.2.1
t1 = arange(0, 4/440.0, 1/float(fs))
t2 = arange(4/440.0, 12/440.0, 1/float(fs))
t3 = arange(12/440.0, 20/440.0, 1/float(fs))

f1 = 0*t1 # The first part of f
f2 = 2*((440*t2-4)/8)*sin(2*pi*440*t2) # The second part of f
f3 = 2*sin(2*pi*440*t3) # The third part of f
x = hstack([f1, f2, f3])
x /= abs(x).max()
play(x, fs)

Note that the sound has duration less than 0.05s, so you should only hear a very
short beep. You also need to scale the values to be within -1 and 1, since some of the
listed values are outside this range.

2. Find two constant a and b so that the function f (t) = a sin(2º440t)+b sin(2º4400t)
resembles the plot from Figure 1.1(b) as closely as possible. Generate the samples of
this sound, and listen to it.
Solution: The important thing to note here is that there are two oscillations present
in Figure 1.1(b): One slow oscillation with a higher amplitude, and one faster os-
cillation, with a lower amplitude. We see that there are 10 periods of the smaller

13

oscillation within one period of the larger oscillation, so that we should be able to
reconstruct the figure by using frequencies where one is 10 times the other, such
as 440Hz and 4400Hz. Also, we see from the figure that the amplitude of the larger
oscillation is close to 1, and close to 0.3 for the smaller oscillation. A good choice
therefore seems to be a = 1,b = 0.3. The code can look this:

Exercise 2.2.2
t = arange(0,3,1/float(fs))
x = sin(2*pi*440*t) + 0.3*sin(2*pi*4400*t)
x /= abs(x).max()
play(x, fs)

3. Let us write some code so that we can experiment with different pure sounds

a. Write a function play_pure_sound(f)which generates the samples over
a period of 3 seconds for a pure tone with frequency f , with sampling fre-
quency fs = 2.5 f (we will explain this value later).
Solution: The code can look like this:

def play_pure_sound(f):
"""
Play a pure sound with a given frequency over three seconds.
"""
fs = 44100
t = linspace(0, 3, 3*fs)
x = sin(2*pi*f*t)
play(x, fs)

b. Use the function play_pure_sound to listen to pure sounds of frequency
440Hz and 1500Hz, and verify that they are the same as the sounds you al-
ready have listened to in this section.

c. How high frequencies are you able to hear with the functionplay_pure_sound?
How low frequencies are you able to hear?

4. Write functions play_square and play_triangle which take T as input, and
which play the square wave of Example 1.11 and the triangle wave of Example 1.12,
respectively. In your code, let the samples of the waves be taken at a frequency of
44100 samples per second. Verify that you generate the same sounds as you played
in these examples when you set T = 1

440 .
Solution: The code can look like this:

def play_square(T):
length=3
fs = 44100
samplesperperiod = fs*T
oneperiod = hstack([ones((samplesperperiod/2),dtype=float),\

-ones((samplesperperiod/2),dtype=float)])
x = tile(oneperiod,length/T)
play(x, fs)

14

def play_triangle(T):
length = 3
fs = 44100
samplesperperiod = fs*T
oneperiod = hstack([linspace(-1, 1, samplesperperiod/2), \

linspace(1, -1, samplesperperiod/2)])
x = tile(oneperiod, length/T)
play(x, fs)

5. Let us write programs so that we can listen to the Fourier approximations of the
square wave and the triangle wave.

a. Write functions play_square_fourier and play_triangle_fourier
which take T and N as input, and which play the order N Fourier approxima-
tion of the square wave and the triangle wave, respectively, for three seconds.
Verify that you can generate the sounds you played in examples 1.18 and 1.19.
Solution: The code can look like this:

def play_square_fourier(T, N):
length = 3
fs = 44100
t = linspace(0, length, fs*length)
x = zeros(t.size)
for n in range(1,N+1,2):

x += sin(2*pi*n*t/T)/n
x *= 4/pi
x /= abs(x).max()
play(x, fs)

def play_triangle_fourier(T, N):
length = 3
fs = 44100
t = linspace(0, length, fs*length)
x = zeros(t.size)
for n in range(1,N+1,2):

x -= cos(2*pi*n*t/T)/n**2
x *= 8/(pi**2)
x /= abs(x).max()
play(x,fs)

b. For these Fourier approximations, how high must you choose N for them
to be indistuingishable from the square/triangle waves themselves? Also de-
scribe how the characteristics of the sound changes when n increases.

6. In this exercise we will experiment as in the first examples of this section.

15

a. Write a function play_with_different_fs which takes sound samples
and a sampling rate as input, and plays the sound samples of with the same
sample rate as the original file, then with twice the sample rate, and then
half the sample rate. You should start with reading the file into a matrix (as
explained in this section). When applied to the sample audio file, are the
sounds the same as those you heard in Example 2.5?
Solution: The code can look like this:

def play_with_different_fs(x, fs):
play(x, fs)
raw_input(’PRESS ENTER TO CONTINUE.’)
play(x, 2*fs)
raw_input(’PRESS ENTER TO CONTINUE.’)
play(x, fs/2)

b. Write a function play_reverse which takes sound data and a sample
rate as input, and plays the sound samples backwards. When you run the
code on our sample audio file, is the sound the same as the one you heard in
Example 2.7?
Solution: The code can look like this:

def play_reverse(x, fs):
"""
Play the sound backwards.
"""
N = shape(x)[0]
play(x[(N-1)::(-1), :], fs)

c. Write the new sound samples from b. to a new wav-file, as described
above, and listen to it with your favourite mediaplayer.

7. In this exercise, we will experiment with adding noise to a signal.

a. Write a function play_with_noise which takes sound data, sampling
rate, and the damping constant c as input, and plays the sound samples with
noise added as described above. Your code should add noise to both chan-
nels of the sound, and scale the sound samples so that they are between °1
and 1.
Solution: The code can look like this:

def play_with_noise(x, fs, c=0.1):
"""
Play the sound with noise added. c represents the noise level,
a number between 0 and 1.
"""
z = x + c*(2*random.rand(shape(x))-1)
z /= abs(z).max()
play(z, fs)

16

b. With your program, generate the two sounds played in Example 2.9, and
verify that they are the same as those you heard.

c. Listen to the sound samples with noise added for different values of c. For
which range of c is the noise audible?

2.2

1. Compute F4x when x = (2,3,4,5).
Solution: As in Example 2.19 we get

F4

0

B

B

@

2
3
4
5

1

C

C

A

= 1
2

0

B

B

@

1 1 1 1
1 °i °1 i
1 °1 1 °1
1 i °1 °i

1

C

C

A

0

B

B

@

2
3
4
5

1

C

C

A

= 1
2

0

B

B

@

2+3+4+5
2°3i °4+5i
2°3+4°5

2+3i °4°5i

1

C

C

A

=

0

B

B

@

7
°1+ i
°1

°1° i

1

C

C

A

.

2. As in Example 2.19, state the exact cartesian form of the Fourier matrix for the
cases N = 6, N = 8, and N = 12.
Solution: For N = 6 the entries are on the form 1p

6
e°2ºi nk/6 = 1p

6
e°ºi nk/3. This

means that the entries in the Fourier matrix are the numbers 1p
6

e°ºi /3 = 1p
6

(1/2°
i
p

3/2), 1p
6

e°2ºi /3 = 1p
6

(°1/2° i
p

3/2), and so on. The matrix is thus

F6 =
1
p

6

0

B

B

B

B

B

B

B

@

1 1 1 1 1 1
1 1/2° i

p
3/2 °1/2° i

p
3/2 °1 °1/2+ i

p
3/2 1/2+ i

p
2/2

1 °1/2° i
p

3/2 °1/2+ i
p

3/2 1 °1/2° i
p

3/2 +1/2° i
p

3/2
1 °1 1 °1 1 °1
1 °1/2+ i

p
3/2 °1/2° i

p
3/2 1 °1/2+ i

p
3/2 °1/2° i

p
3/2

1 1/2+ i
p

2/2 °1/2+ i
p

3/2 °1 °1/2° i
p

3/2 1/2° i
p

3/2

1

C

C

C

C

C

C

C

A

The cases N = 8 and N = 12 follow similarly, but are even more tedious. For N = 8 the
entries are 1p

8
eºi nk/4, which can be expressed exactly since we can express exactly

any sines and cosines of a multiple of º/4. For N = 12 we get the base angle º/6, for
which we also have exact values for sines and cosines for all multiples.

3. We have a real vector x with length N , and define the vector z by delaying all ele-
ments in x with 5 cyclically, i.e. z5 = x0, z6 = x1,. . . ,zN°1 = xN°6, and z0 = xN°5,. . . ,z4 =
xN°1. For a given n, if |(FN x)n | = 2, what is then |(FN z)n |? Justify the answer.
Solution: z is the vector x delayed with d = 5 samples, and then Property 3 of Theo-
rem 2.21 gives us that (FN z)n = e°2ºi 5k/N (FN x)n . In particular |(FN z)n | = |(FN x)n | =
2, since |e°2ºi 5k/N | = 1.

17

4. Given a real vector x of length 8 where (F8(x))2 = 2° i , what is (F8(x))6?
Solution: By Theorem 2.21 we know that (FN (x))N°n = (FN (x))n when x is a real
vector. If we set N = 8 and n = 2 we get that (F8(x))6 = (F8(x))2 = 2° i = 2+ i .

5. Let x be the vector of length N where xk = cos2(2ºk/N). What is then FN x?
Solution: The idea is to express x as a linear combination of the Fourier basis vec-
tors ¡n , and use that FN¡n = en . We have that

cos2(2ºk/N) =
µ

1
2

≥

e2ºi k/N +e°2ºi kn/N
¥

∂2

= 1
4

e2ºi 2k/N + 1
2
+ 1

4
e°2ºi 2k/N = 1

4
e2ºi 2k/N + 1

2
+ 1

4
e2ºi (N°2)k/N

=
p

N
µ

1
4
¡2 +

1
2
¡0 +

1
4
¡N°2

∂

.

We here used the periodicity of e2ºi kn/N , i.e. that e°2ºi 2k/N = e2ºi (N°2)k/N . Since FN
is linear and FN (¡n) = en , we have that

FN (x) =
p

N
µ

1
4

e2 +
1
2

e0 +
1
4

eN°2

∂

=
p

N (1/2,0,1/4,0, . . . ,0,1/4,0) .

6. Let x be the vector with entries xk = ck . Show that the DFT of x is given by the
vector with components

yn = 1° cN

1° ce°2ºi n/N

for n = 0, . . . , N °1.
Solution: We get

yn =
N°1
X

k=0
ck e°2ºi nk/N =

N°1
X

k=0
(ce°2ºi n/N)k

= 1° (ce°2ºi n/N)N

1° ce°2ºi n/N
= 1° cN

1° ce°2ºi n/N
.

7. If x is complex, Write the DFT in terms of the DFT on real sequences. Hint: Split
into real and imaginary parts, and use linearity of the DFT.

8. Extend the code for the function DFTImpl in Example 2.20 so that

1. The function also takes a second parameter called forward. If this is true
the DFT is applied. If it is false, the IDFT is applied. If this parameter is not
present, then the forward transform should be assumed.

2. If the input x is two-dimensional (i.e. a matrix), the DFT/IDFT should be ap-
plied to each column of x. This ensures that, in the case of sound, the FFT is
applied to each channel in the sound when the enrire sound is used as input,
as we are used to when applying different operations to sound.

Also, write documentation for the code.
Solution: The code can look like this:

18

def DFTImpl(x, forward=True):
"""
Compute the DFT of the vector x using standard matrix
multiplication. To avoid out of memory situations, we do not
allocate the entire DFT matrix, only one row of it at a time.
Note that this function differs from the FFT in that it includes
the normalizing factor 1/sqrt(N). The DFT is computed along axis
0. If there is another axis, the DFT is computed for each element
in this as well.

x: a vector
forward: Whether or not this is forward (i.e. DFT)
or reverse (i.e. IDFT)
"""
y = zeros_like(x).astype(complex)
N = len(x)
sign = -(2*forward - 1)
if ndim(x) == 1:

for n in xrange(N):
D = exp(sign*2*pi*n*1j*arange(float(N))/N)
y[n] = dot(D, x)

else:
for n in range(N):

D = exp(sign*2*pi*n*1j*arange(float(N))/N)
for s2 in xrange(shape(x)[1]):

y[n,s2] = dot(D,x[:, s2])
if sign == 1:

y /= float(N)
return y

9. Assume that N is even.

a. Show that, if xk+N /2 = xk for all 0 ∑ k < N /2, then yn = 0 when n is odd.
Solution: We have that

yn = 1
p

N

√

N /2°1
X

k=0
xk e°2ºi kn/N +

N°1
X

k=N /2
xk e°2ºi kn/N

!

= 1
p

N

√

N /2°1
X

k=0
xk e°2ºi kn/N +

N /2°1
X

k=0
xk e°2ºi (k+N /2)n/N

!

= 1
p

N

N /2°1
X

k=0
xk (e°2ºi kn/N + (°1)ne°2ºi kn/N)

= (1+ (°1)n)
1

p
N

N /2°1
X

k=0
xk e°2ºi kn/N

If n is odd, we see that yn = 0.

b. Show that, if xk+N /2 =°xk for all 0 ∑ k < N /2, then yn = 0 when n is even.
Solution: The proof is the same as in a., except for a sign change.

c. Show also the converse statements in a. and b..
Solution: Clearly the set of vectors which satisfies xk+N /2 = ±xk is a vector

19

space V of dimension N /2. The set of vectors where every second compo-
nent is zero is also a vector space of dimension N /2, let us denote this by W .
We have shown that FN (V) Ω W , but since FN is unitary, FN (V) also has di-
mension N /2, so that FN (V) = W . This shows that when every second yn is
0, we must have that xk+N /2 =±xk , and the proof is done.

d. Also show the following:
Solution: In the proofs above, compute the IDFT instead.

1. xn = 0 for all odd n if and only if yk+N /2 = yk for all 0 ∑ k < N /2.

2. xn = 0 for all even n if and only if yk+N /2 =°yk for all 0 ∑ k < N /2.

10. Let x1, x2 be real vectors, and set x = x1 + i x2. Use Theorem 2.21 to show that

(FN (x1))k = 1
2

≥

(FN (x))k + (FN (x))N°k

¥

(FN (x2))k = 1
2i

≥

(FN (x))k ° (FN (x))N°k

¥

This shows that we can compute two DFT’s on real data from one DFT on complex
data, and 2N extra additions.
Solution: We have that

(FN (x))k = (FN (x1 + i x2))k = (FN (x1))k + i (FN (x2))k

(FN (x))N°k = (FN (x1))N°k + i (FN (x2))N°k = (FN (x1))k + i (FN (x2))k ,

where we have used Property 1 of Theorem 2.21. If we take the complex conjugate
in the last equation, we are left with the two equations

(FN (x))k = (FN (x1))k + i (FN (x2))k

(FN (x))N°k = (FN (x1))k ° i (FN (x2))k .

If we add these we get

(FN (x1))k = 1
2

≥

(FN (x))k + (FN (x))N°k

¥

,

which is the first equation. If we instead subtract the equations we get

(FN (x2))k = 1
2i

≥

(FN (x))k ° (FN (x))N°k

¥

,

which is the second equation

2.3

1. Explain what the code below does, line by line:

20

Exercise 2.3.1
x = x[0:2**17]
y = fft.fft(x)
y[(2**17/4):(3*2**17/4)] = 0
newx = abs(fft.ifft(y))
newx /= abs(newx).max()
play(newx, fs)

Comment in particular why we adjust the sound samples by dividing with the maxi-
mum value of the sound samples. What changes in the sound do you expect to hear?
Solution: First a sound file is read. We then restrict to the first 212 sound samples,
perform a DFT, zero out the frequencies which correspond to DFT-indices between
210 and 212°210°1, and perform an IDFT. Finally we scale the sound samples so that
these lie between °1 and 1, which is the range we demand for the sound samples,
and play the new sound.

2. In the code from the previous exercise it turns out that fs = 44100Hz. Which
frequencies in the sound file will be changed on the line where we zero out some of
the DFT coefficients?
Solution: As we have seen, DFT index n corresponds to frequency∫= n fs /N . Above
N = 217, so that we get the connection∫= n fs /N = n£44100/217. We zeroed the DFT
indices above n = 215, so that frequencies above ∫= 215 £44100/217 = 11025H z are
affected.

3. Implement code where you do the following:

1. at the top you define the function f (x) = cos6(x), and M = 3,

2. compute the unique interpolant from VM ,T (i.e. by taking N = 2M +1 samples
over one period), as guaranteed by Theorem 2.24,

3. plot the interpolant againts f over one period.

Finally run the code also for M = 4, M = 5, and M = 6. Explain why the plots coincide
for M = 6, but not for M < 6. Does increasing M above M = 6 have any effect on the
plots?
Solution: The code can look as follows.

from scitools.std import *

f = lambda t:cos(t)**6
M = 5
T = 2*pi
N = 2*M + 1
t = linspace(0, T, 100)
x = f(linspace(0, T - T/float(N), N))
y = fft.fft(x)/N
s = real(y[0])*ones(len(t))
for k in range(1,(N+1)/2):

s += 2*real(y[k]*exp(2*pi*1j*k*t/float(T)))
plot(t, s, ’r’, t, f(t), ’g’)
legend(’Interpolant from V_{M,T}’,’f’)
raw_input(’Press any key to terminate’)

21

2.4

1. Recall that, in exercise 8 in section 2.2, we extended the direct DFT implementa-
tion so that it accepted a second parameter telling us if the forward or reverse trans-
form should be applied. Extend the general function and the standard kernel in the
same way. Again, the forward transform should be used if the forward parameter
is not present. Assume also that the kernel accepts only one-dimensional data, and
that the general function applies the kernel to each column in the input if the input
is two-dimensional (so that the FFT can be applied to all channels in a sound with
only one call). The signatures for our methods should thus be changed as follows:

def FFTImpl(x, FFTKernel, forward = True):
def FFTKernelStandard(x, forward):

It should be straightforward to make the modifications for the reverse transform by
consulting the second part of Theorem 2.36. For simplicity, let FFTImpl take care
of the additional division with N we need to do in case of the IDFT. In the following
we will assume these signatures for the FFT implementation and the corresponding
kernels.
Solution: The functions can be implemented as follows:

def FFTImpl(x, FFTKernel, forward = True):
"""
Compute the FFT or IFFT of the vector x. Note that this function
differs from the DFT in that the normalizing factor 1/sqrt(N) is
not included. The FFT is computed along axis 0. If there is
another axis, the FFT is computed for each element in this as
well. This function calls a kernel for computing the FFT. The
kernel assumes that the input has been bit-reversed, and contains
only one axis. This function is where the actual bit reversal and
the splitting of the axes take place.

x: a vector
FFTKernel: can be any of FFTKernelStandard, FFTKernelNonrec, and
FFTKernelSplitradix. The kernel assumes that the input has been
bit-reversed, and contains only one axis.
forward: Whether the FFT or the IFFT is applied
"""
if ndim(x) == 1:

bitreverse(x)
FFTKernel(x, forward)

else:
bitreversearr(x)
for s2 in xrange(shape(x)[1]):

FFTKernel(x[:, s2], forward)
if not forward:

x /= len(x)

def FFTKernelStandard(x, forward):
"""
Compute the FFT of x, using a standard FFT algorithm.

22

x: a bit-reversed version of the input. Should have only one axis
forward: Whether the FFT or the IFFT is applied
"""
N = len(x)
sign = -1
if not forward:

sign = 1
if N > 1:

xe, xo = x[0:(N/2)], x[(N/2):]
FFTKernelStandard(xe, forward)
FFTKernelStandard(xo, forward)
D = exp(sign*2*pi*1j*arange(float(N/2))/N)
xo *= D
x[:] = concatenate([xe + xo, xe - xo])

2. In this exercise we will compare execution times for the different methods for
computing the DFT.

a. Write code which compares the execution times for an N -point DFT for
the following three cases: Direct implementation of the DFT (as in Exam-
ple 2.20), the FFT implementation used in this chapter, and the built-in fft-
function. Your code should use the sample audio file castanets.wav, apply
the different DFT implementations to the first N = 2r samples of the file for
r = 3 to r = 15, store the execution times in a vector, and plot these. You can
use the function time() in the time module to measure the execution time.

b. A problem for large N is that there is such a big difference in the exe-
cution times between the two implementations. We can address this by us-
ing a loglog-plot instead. Plot N against execution times using the function
loglog. How should the fact that the number of arithmetic operations are
8N 2 and 5N log2 N be reflected in the plot?
Solution: The two different curves you see should have a derivative approx-
imately equal to one and two, respectively.

c. It seems that the built-in FFT is much faster than our own FFT implemen-
tation, even though they may use similar algorithms. Try to explain what can
be the cause of this.
Solution: There may be several reasons for this. One is that Python code
runs slowly when compared to native code, which is much used in the built-
in FFT. Also, the built-in fft has been subject to much more optimization
than we have covered here.

3. Let x1 = (1,3,5,7) and x2 = (2,4,6,8). Compute DFT4x1 and DFT4x2. Explain
how you can compute DFT8(1,2,3,4,5,6,7,8) based on these computations (you
don’t need to perform the actual computation). What are the benefits of this ap-
proach?

23

Solution: We get

DFT4x1 =

0

B

B

@

1 1 1 1
1 °i °1 i
1 °1 1 °1
1 i °1 °i

1

C

C

A

0

B

B

@

1
3
5
7

1

C

C

A

=

0

B

B

@

16
°4+4i
°4

°4°4i

1

C

C

A

DFT4x2 =

0

B

B

@

1 1 1 1
1 °i °1 i
1 °1 1 °1
1 i °1 °i

1

C

C

A

0

B

B

@

2
4
6
8

1

C

C

A

=

0

B

B

@

20
°4+4i
°4

°4°4i

1

C

C

A

In the FFT-algorithm we split the computation of DFT4(x) into the computation of
DFT2(x

(e)) and DFT2(x

(o)), where x(e) and x(o) are vectors of length 4 with even-
indexed and odd-indexed components, respectively. In this case we have x

(e) =
(1,3,5,7) and x

(o) = (2,4,6,8). In other words, the FFT-algorithm uses the FFT-computations
we first made, so that we can save computation. The benefit of using the FFT-
algorithm is that we save computations, so that we end up with O(5N log2 N) real
arithmetic operations.

4. When N is composite, there are a couple of results we can state regarding polyphase
components.

a. Assume that N = N1N2, and that x 2 RN satisfies xk+r N1 = xk for all k,r ,
i.e. x has period N1. Show that yn = 0 for all n which are not multiplums of
N2.
Solution: We have that x

(p) is a constant vector of length N2 for 0 ∑ p < N1.
But then the DFT of all the x

(p) has zero outside entry zero. Multiplying with
e°2ºi kn/N does not affect this. The last N2 °1 rows are thus zero before the
final DFT is applied, so that these rows are zero also after this final DFT. After
assembling the polyphase components again we have that yr N2 are the only
nonzero DFT-coefficients.

b. Assume that N = N1N2, and that x

(p) = 0 for p 6= 0. Show that the polyphase
components y

(p) of y = DFTN x are constant vectors for all p.

5. When we wrote down the difference equation for the number of multiplications
in the FFT algorithm, you could argue that some multiplications were not counted.
Which multiplications in the FFT algorithm were not counted when writing down
this difference equation? Do you have a suggestion to why these multiplications
were not counted?
Solution: When we compute e°2ºi n/N , we do some multiplications/divisions in
the exponent. These are not counted because they do not depend on x , and may
therefore be precomputed.

6. (Adapting the FFT algorithm to real data, first approach). There was an error
in this exercise.

24

7. (Adapting the FFT algorithm to real data, second approach). In this exercise we
will look at a second approach to how we can adapt an FFT algorithm to real input
x . We will now instead rewrite Equation (2.14) for indices n and N /2°n as

yn = (DFTN /2x

(e))n +e°2ºi n/N (DFTN /2x

(o))n

yN /2°n = (DFTN /2x

(e))N /2°n +e°2ºi (N /2°n)/N (DFTN /2x

(o))N /2°n

= (DFTN /2x

(e))N /2°n °e2ºi n/N (DFTN /2x

(o))n

= (DFTN /2x

(e))n °e°2ºi n/N (DFTN /2x

(o))n .

We see here that, if we have computed the terms in yn (which needs an additional 4
real multiplications, since e°2ºi n/N and (DFTN /2x

(o))n are complex), no further mul-
tiplications are needed in order to compute yN /2°n , since its compression simply
conjugates these terms before adding them. Again yN /2 must be handled explicity
with this approach. For this we can use the formula

yN /2 = (DFTN /2x

(e))0 ° (DN /2DFTN /2x

(o))0

instead.

a. Conclude from this that an FFT algorithm adapted to real data at each
step requires N /4 complex additions and N /2 additions. Conclude from this
as before that an algorithm based on real data requires MN = O(N log2 N)
multiplications and AN = O

° 3
2 N log2 N

¢

additions (i.e. again we obtain half
the operation count of complext input).

b. Find an IFFT algorithm adapted to vectors y which have conjugate sym-
metry, which has the same operation count we found above.
Hint: Consider the vectors yn + yN /2°n and e2ºi n/N (yn ° yN /2°n). From the
equations above, how can these be used in an IFFT?

8 (Non-recursive FFT algorithm). Use factorization (2.19) to write a kernel func-
tion FFTKernelNonrec for a non-recursive FFT implementation. In your code, per-
form the matrix multiplications in factorization (2.19) from right to left in an (outer)
for-loop. For each matrix loop through the different blocks on the diagonal in an
(inner) for-loop. Make sure you have the right number of blocks on the diagonal,

each block being on the form
µ

I DN /2k

I °DN /2k

∂

. It may be a good idea to start by im-

plementing multiplication with such a simple matrix first as these are the building
blocks in the algorithm (aslo attempt to do this so that everything is computed in-
place). Also compare the execution times with our original FFT algorithm, as we did
in Exercise 2, and try to explain what you see in this comparison.
Solution: The algorithm for the nonecursive FFT can look as follows

def FFTKernelNonrec(x, forward):
"""
Compute the FFT of x, using a non-recursive FFT algorithm.

25

x: a bit-reversed version of the input. Should have only one axis
forward: Whether the FFT or the IFFT is applied
"""
N = len(x)
sign = -1
if not forward:

sign = 1
D = exp(sign*2*pi*1j*arange(float(N/2))/N)
nextN = 1
while nextN < N:

k = 0
while k < N:

xe, xo = x[k:(k + nextN)], x[(k + nextN):(k + 2*nextN)]
xo *= D[0::(N/(2*nextN))]
x[k:(k+2*nextN)] = concatenate([xe + xo, xe - xo])
k += 2*nextN

nextN *= 2

If you add the nonrecursive algorithm to the code from Exercise 2, you will see that
the non-recursive algorithm performs much better. There may be several reasons
for this. First of all, there are no recursive function calls. Secondly, the values in the
matrices DN /2 are constructed once and for all with the non-recursive algorithm.
Code which compares execution times for the original FFT algorithm, our nonre-
cursive implementation, and the split-radix algorithm of the next exercise, can look
as follows:

Exercise 2.4.8
x0, fs = audioread(’castanets.wav’)

kvals = arange(3,16)
slowtime = zeros(len(kvals))
fasttime = zeros(len(kvals))
fastesttime = zeros(len(kvals))
N = 2**kvals
for k in kvals:

x = x0[0:2**k].astype(complex)

start = time()
FFTImpl(x, FFTKernelStandard)
slowtime[k - kvals[0]] = time() - start

start = time()
FFTImpl(x, FFTKernelNonrec)
fasttime[k - kvals[0]] = time() - start

start = time()
FFTImpl(x, FFTKernelSplitradix)
fastesttime[k - kvals[0]] = time() - start

plot(kvals, slowtime, ’ro-’, \
kvals, fasttime, ’bo-’, \
kvals, fastesttime, ’go-’)

grid(’on’)
title(’time usage of the DFT methods’)
legend(’Standard FFT algorithm’, \

’Non-recursive FFT’, \
’Split radix FFT’)

xlabel(’log_2 N’)

26

ylabel(’time used [s]’)

9 (The Split-radix FFT algorithm). In this exercise we will develop a variant of the
FFT algorithm called the split-radix FFT algorithm, which until recently held the
record for the lowest operation count for any FFT algorithm.

We start by splitting the rightmost DFTN /2 in Equation (2.18) by using Equa-
tion (2.18) again, to obtain

DFTN x =

0

B

B

@

DFTN /2 DN /2

µ

DFTN /4 DN /4DFTN /4
DFTN /4 °DN /4DFTN /4

∂

DFTN /2 °DN /2

µ

DFTN /4 DN /4DFTN /4
DFTN /4 °DN /4DFTN /4

∂

1

C

C

A

0

@

x

(e)

x

(oe)

x

(oo)

1

A . (2.1)

The term radix describes how an FFT is split into FFT’s of smaller sizes, i.e. how
the sum in an FFT is split into smaller sums. The FFT algorithm we started this
section with is called a radix 2 algorithm, since it splits an FFT of length N into FFT’s
of length N /2. If an algorithm instead splits into FFT’s of length N /4, it is called a
radix 4 FFT algorithm. The algorithm we go through here is called the split radix
algorithm, since it uses FFT’s of both length N /2 and N /4.
Solution: The code for the split-radix algorithm can look as follows

def FFTKernelSplitradix(x, forward):
"""
Compute the FFT of x, using the split-radix FFT algorithm.

x: a bit-reversed version of the input. Should have only one axis
forward: Whether the FFT or the IFFT is applied
"""
N = len(x)
sign = -1
if not forward:

sign = 1
if N == 2:

x[:] = [x[0] + x[1], x[0] - x[1]]
elif N > 2:

xe, xo1, xo2 = x[0:(N/2)], x[(N/2):(3*N/4)], x[(3*N/4):N]
FFTKernelSplitradix(xe, forward)
FFTKernelSplitradix(xo1, forward)
FFTKernelSplitradix(xo2, forward)
G = exp(sign*2*pi*1j*arange(float(N/4))/N)
H = G*exp(sign*2*pi*1j*arange(float(N/4))/(N/2))
xo1 *= G
xo2 *= H
xo = concatenate([xo1 + xo2, -sign*1j*(xo2 - xo1)])
x[:] = concatenate([xe + xo, xe - xo])

a. Let GN /4 be the (N /4)£ (N /4) diagonal matrix with e°2ºi n/N on the diag-

onal. Show that DN /2 =
µ

GN /4 0
0 °iGN /4

∂

.

27

b. Let HN /4 be the (N /4)£ (N /4) diagonal matrix GD/4DN /4. Verify the fol-
lowing rewriting of Equation (2.1):

DFTN x =

0

B

B

@

DFTN /2

µ

GN /4DFTN /4 HN /4DFTN /4
°iGN /4DFTN /4 i HN /4DFTN /4

∂

DFTN /2

µ

°GN /4DFTN /4 °HN /4DFTN /4
iGN /4DFTN /4 °i HN /4DFTN /4

∂

1

C

C

A

0

@

x

(e)

x

(oe)

x

(oo)

1

A

=

0

B

B

@

I 0 GN /4 HN /4
0 I °iGN /4 i HN /4
I 0 °GN /4 °HN /4
0 I iGN /4 °i HN /4

1

C

C

A

0

@

DFTN /2 0 0
0 DFTN /4 0
0 0 DFTN /4

1

A

0

@

x

(e)

x

(oe)

x

(oo)

1

A

=

0

B

B

@

DFTN /2x

(e) +
µ

GN /4DFTN /4x

(oe) +HN /4DFTN /4x

(oo)

i
°

HN /4DFTN /4x

(oe) °GN /4DFTN /4x

(oo)¢

∂

DFTN /2x

(e) °
µ

GN /4DFTN /4x

(oe) +HN /4DFTN /4x

(oo)

i
°

HN /4DFTN /4x

(oe) °GN /4DFTN /4x

(oo)¢

∂

1

C

C

A

c. Explain from the above expression why, once the three FFT’s above have
been computed, the rest can be computed with N /2 complex multiplications,
and 2£N /4+N = 3N /2 complex additions. This is equivalent to 2N real mul-
tiplications and N +3N = 4N real additions.
Hint: It is important that GN /4DFTN /4x

(oe) and HN /4DFTN /4x

(oo) are com-
puted first, and the sum and difference of these two afterwards.

d. Due to what we just showed, our new algorithm leads to real multiplica-
tion and addition counts which satisfy

MN = MN /2 +2MN /4 +2N AN = AN /2 +2AN /4 +4N

Find the general solutions to these difference equations and conclude from
these that MN =O

° 4
3 N log2 N

¢

, and AN =O
° 8

3 N log2 N
¢

. The operation count
is thus O

°

4N log2 N
¢

, which is a reduction of N log2 N from the FFT algo-
rithm.

e. Write an FFT kernel function FFTKernelSplitradix for the split-radix
algorithm (again this should handle both the forward and reverse transforms).
Are there more or less recursive function calls in this function than in the orig-
inal FFT algorithm? Also compare the execution times with our original FFT
algorithm, as we did in Exercise 2. Try to explain what you see in this com-
parison.
Solution: If you add the split-radix FFT algorithm also to the code from Exer-
cise 2, you will see that it performs better than the FFT algorithm, but worse
than the non-recursive algorithm. That it performs better than the FFT algo-
rithm is as expected, since it has a reduced number of arithmetic operations,
and also a smaller number of recursive calls. It is not surprising that the non-
recursive function performs better, since only that function omits recursive
calls, and computes the values in the diagonal matrices once and for all.

28

By carefully examining the algorithm we have developed, one can reduce the oper-
ation count to 4N log2 N °6N +8. This does not reduce the order of the algorithm,
but for small N (which often is the case in applications) this reduces the number
of operations considerably, since 6N is large compared to 4N log2 N for small N . In
addition to having a lower number of operations than the FFT algorithm of Theo-
rem 2.34, a bigger percentage of the operations are additions for our new algorithm:
there are now twice as many additions than multiplications. Since multiplications
may be more time-consuming than additions (depending on how the CPU com-
putes floating-point arithmetic), this can be a big advantage.

10. In this exercise we will make some considerations which will help us explain
the code for bit-reversal. This is perhaps not a mathematically challenging exer-
cise, but neverthesless a good exercise in how to think when developing an efficient
algorithm. We will use the notation i for an index, and j for its bit-reverse. If we
bit-reverse k bits, we will write N = 2k for the number of possible indices.

a. Consider the following code

j = 0
for i in range(N-1):

print j
m = N/2
while (m >= 1 and j >= m):

j -= m
m /= 2

j += m

Explain that the code prints all numbers in [0, N °1] in bit-reversed order (i.e.
j). Verify this by running the program, and writing down the bits for all num-
bers for, say N = 16. In particular explain the decrements and increments
made to the variable j . The code above thus produces pairs of numbers (i , j),
where j is the bit-reverse of i . As can be seen, bitreverse applies similar
code, and then swaps the values xi and x j in x , as it should.
Solution: Note that, if the bit representation of i ends with 01. . .1

| {z }

n

, then i +1

has a bit representation which ends with 10. . .0
| {z }

n

, with the remaining first bits

unaltered. Clearly the bit-reverse of i then starts with 1. . .1
| {z }

n

0 and the bit-

reverse of i +1 starts with 10. . .0
| {z }

n

. We see that the bit reverse of i +1 can be

obtained from the bit-reverse of i by replacing the first consecutive set of ones
by zeros, and the following zero by one. This is performed by the line above
where j is decreased by m: Decreasing j by N /2 when j ∏ N /2 changes the
first bit from 1 to 0, and similarly for the next n bits. The line where j is in-
creased with m changes bit number n +1 from 0 to 1.

Since bit-reverse is its own inverse (i.e. P 2 = I), it can be performed by swapping
elements i and j . One way to secure that bit-reverse is done only once, is to perform
it only when j > i . You see that bitreverse includes this check.

29

b. Explain that N ° j °1 is the bit-reverse of N °i °1. Due to this, when i , j <
N /2, we have that N ° i °1, N ° j ° l ∏ N /2, and that bitreversal can swap
them. Moreover, all swaps where i , j ∏ N /2 can be performed immdiately
when pairs where i , j < N /2 are encountered. Explain also that j < N /2 if
and only if i is even. In the code you can see that the swaps (i , j) and (N ° i °
1, N ° j °1) are performed together when i is even, due to this.
Solution: Clearly N ° i ° 1 has a bit representation obtained by changing
every bit in i . That N ° j °1 is the bit-reverse of N ° i °1 follows immediately
from this. If i is even, the least significant bit is 0. After bit-reversal, this
becomes the most significant bit, and the most significant bit of j is 0 which
is the case if and only if j < N /2.

c. Assume that i < N /2 is odd. Explain that j ∏ N /2, so that j > i . This says
that when i < N /2 is odd, we can always swap i and j (this is the last swap
performed in the code). All swaps where 0 ∑ j < N /2 and N /2 ∑ j < N can be
performed in this way.
Solution: If i < N /2 is odd, then the least significant bit is 1. This means that
the most significant bit of j is 1, so that j ∏ N /2, so that j > i .

In bitreversal, you can see that the bit-reversal of 2r and 2r +1 are handled to-
gether (i.e. i is increased with 2 in the for-loop). The effect of this is that the number
of if-tests can be reduced, due to the observations from b) and c).

30

Chapter 3
3.1

1. Assume that the filter S is defined by the formula

zn = 1
4

xn+1 +
1
4

xn + 1
4

xn°1 +
1
4

xn°2.

Write down the filter coefficients tk , and the matrix for S when N = 8.
Solution: Here we have that t°1 = 1/4, t0 = 1/4, t1 = 1/4, and t2 = 1/4. We now get
that s0 = t0 = 1/4, s1 = t1 = 1/4, and s2 = t2 = 1/4 (first formula), and sN°1 = s7 =
t°1 = 1/4 (second formula). This means that the matrix of S is

S = 1
4

0

B

B

B

B

B

B

B

B

B

B

B

@

1 1 0 0 0 0 1 1
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1

1

C

C

C

C

C

C

C

C

C

C

C

A

.

2. Given the circulant Toeplitz matrix

S =

0

B

B

@

1 2 0 0
0 1 2 0
0 0 1 2
2 0 0 1

1

C

C

A

,

write down the filter coefficients tk .

3. Assume that S is a circulant Toeplitz matrix so that only

S0,0, . . . ,S0,F and S0,N°E , . . . ,S0,N°1

are nonzero on the first row, where E , F are given numbers. When implementing
this filter on a computer we need to make sure that the vector indices lie in [0, N °1].

31

Show that zn = (Sx)n can be split into the following different formulas, depending
on n, to achieve this:

a. 0 ∑ n < E :

zn =
n°1
X

k=0
S0,N+k°n xk +

F+n
X

k=n
S0,k°n xk +

N°1
X

k=N°1°E+n
S0,k°n xk . (3.1)

b. E ∑ n < N °F :

zn =
n+F
X

k=n°E
S0,k°n xk . (3.2)

c. N °F ∑ n < N :

zn =
n°(N°F)

X

k=0
S0,k°n xk +

n°1
X

k=n°E
S0,N+k°n xk +

N°1
X

k=n
S0,k°n xk . (3.3)

From these three formulas we can write down a full implementation of the filter.
This implementation is often more useful than writing down the entire matrix S,
since we save computation when many of the matrix entries are zero.

3.2

1. In Example 2.7 we looked at time reversal as an operation on digital sound. In
RN this can be defined as the linear mapping which sends the vector ek to eN°1°k
for all 0 ∑ k ∑ N °1.

a. Write down the matrix for the time reversal linear mapping, and explain
from this why time reversal is not a digital filter.
Solution: The matrix for time reversal is the matrix

0

B

B

B

B

B

B

@

0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
...

0 1 · · · 0 0
1 0 · · · 0 0

1

C

C

C

C

C

C

A

This is not a circulant Toeplitz matrix, since all diagonals assume the values
0 and 1, so that they are not constant on each diagonal. Time reversal is thus
not a digital filter.

b. Prove directly that time reversal is not a time-invariant operation.
Solution: Let S denote time reversal. Clearly Se1 = eN°2. If S was time-
invariant we would have that Se0 = eN°3, where we have delayed the input
and output. But this clearly is not the case, since by definition Se0 = eN°1.

2. Let S be a digital filter. Show that S is symmetric if and only if the frequency
response satisfies sk = sN°k for all k.

32

3. Consider the matrix

S =

0

B

B

@

4 1 3 1
1 4 1 3
3 1 4 1
1 3 1 4

1

C

C

A

.

a. Compute the eigenvalues and eigenvectors of S using the results of this
section. You should only need to perform one DFT in order to achieve this.
Solution: The eigenvalues of S are 1,5,9, and are found by computing a DFT
of the first column (and multiplying by

p
N = 2). The eigenvectors are the

Fourier basis vectors. 1 has multiplicity 2.

b. Verify the result from a. by computing the eigenvectors and eigenvalues
the way you taught in your first course in linear algebra. This should be a
much more tedious task.

c. Use a computer to compute the eigenvectors and eigenvalues of S also.
For some reason some of the eigenvectors seem to be different from the Fourier
basis vectors, which you would expect from the theory in this section. Try to
find an explanation for this.
Solution: The computer uses some numeric algorithm to find the eigenvec-
tors. However, eigenvectors may not be unique, so you have no control on
which eigenvectors it actually selects. In particular, here the eigenspace for
∏ = 1 has dimension 2, so that any linear combination of the two eigenvec-
tors from this eigenspace also is an eigenvector. Here it seems that a linear
combination is chosen which is different from a Fourier basis vector.

4. Assume that S1 and S2 are two circulant Toeplitz matrices.

a. How can you express the eigenvalues of S1+S2 in terms of the eigenvalues
of S1 and S2?
Solution: If we write S1 = F H

N D1FN and S2 = F H
N D2FN we get

S1 +S2 = F H
N (D1 +D2)FN S1S2 = F H

N D1FN F H
N D2FN = F H

N D1D2FN

This means that the eigenvalues of S1 +S2 are the sum of the eigenvalues of
S1 and S2. The actual eigenvalues which are added are dictated by the index
of the frequency response, i.e. ∏S1+S2,n =∏S1,n +∏S2,n .

b. How can you express the eigenvalues of S1S2 in terms of the eigenvalues
of S1 and S2?
Solution: As above we have that S1S2 = F H

N D1FN F H
N D2FN = F H

N D1D2FN ,
and the same reasoning gives that the eigenvalues of S1S2 are the product of
the eigenvalues of S1 and S2. The actual eigenvalues which are multiplied are
dictated by the index of the frequency response, i.e. ∏S1S2,n =∏S1,n∏S2,n .

c. If A and B are general matrices, can you find a formula which expresses
the eigenvalues of A+B and AB in terms of those of A and B? If not, can you

33

find a counterexample to what you found in a. and b.?
Solution: In general there is no reason to believe that there is a formula for
the eigenvalues for the sum or product of two matrices, based on eigenvalues
of the individual matrices. However, the same type of argument as for filters
can be used in all cases where the eigenvectors are equal.

5. Consider the linear mapping S which keeps every second component in RN , i.e.
S(e2k) = e2k , and S(e2k°1) = 0. Is S a digital filter?
Solution: The matrix for the operation which keeps every second component is

0

B

B

B

B

B

B

@

1 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 0

1

C

C

C

C

C

C

A

,

where 1 and 0 are repeated in alternating order along the main diagonal. Since the
matrix is not constant on the main diagonal, it is not a circulant Toeplitz matrix, and
hence not a filter.

3.3

1. Let again S be the filter defined by the equation

zn = 1
4

xn+1 +
1
4

xn + 1
4

xn°1 +
1
4

xn°2,

as in Exercise 1 in Section 3.1. Compute and plot (the magnitude of) ∏S (!).
Solution: The frequency response is

∏S (!) = 1
4

(ei!+1+e°i!+e°2i!) = ei!(1°e°4i!)

4(1°e°i!)
= 1

4
e°i!/2 sin(2!)

sin(!/2)
.

2. A filter S is defined by the equation

zn = 1
3

(xn +3xn°1 +3xn°2 +xn°3).

a. Compute and plot the (magnitude of the continuous) frequency response
of the filter, i.e. |∏S (!)|. Is the filter a lowpass filter or a highpass filter?
Solution: The filter coefficients are t0 = t3 = 1/3, t1 = t2 = 1. We have that

∏S (!) =
X

k
tk e°i k! = 1

3
(1+3e°i!+3e°2i!+e°3i!)

= 2
3

e°3i!/2 1
2

(e3i!/2 +3ei!/2 +3e°i!/2 +e°3i!/2)

= 2
3

e°3i!/2(cos(3!/2)+3cos(!/2)).

34

From this expression it is easy to plot the frequency response, but since this is
complex, we have to plot the magnitude, i.e. |∏S (!)| = 2

3 |cos(3!/2)+3cos(!/2)|.
We also see that ∏S (0) = 2

3 , and that ∏S (º) = 0, so that the filter is a lowpass
filter.

b. Find an expression for the vector frequency response ∏S,2. What is Sx

when x is the vector of length N with components e2ºi 2k/N ?
Solution: If we use the connection between the vector frequency response
and the continuous frequency response we get

∏S,2 =∏S (2º2/N) = 2
3

e°6ºi /N (cos(6º/N)+3cos(2º/N)).

Alternatively you can here compute that the first column in the circulant
Toeplitz matrix for S is given by s0 = t1, s2 = t2, s3 = t3, and s4 = t4, and insert
this in the definition of the vector frequency response,∏S,2 =

PN°1
k=0 sk e°2ºi 2k/N .

We know that e2ºi 2k/N is an eigenvector for S since S is a filter, and that ∏S,2
is the corresponding eigenvalue. We therefore get that

Sx =∏S,2x = 2
3

e°6ºi /N (cos(6º/N)+3cos(2º/N))x .

3. A filter S1 is defined by the equation

zn = 1
16

(xn+2 +4xn+1 +6xn +4xn°1 +xn°2).

a. Write down an 8£8 circulant Toeplitz matrix which corresponds to apply-
ing S1 on a periodic signal with period N = 8.
Solution: Since clearly t°2 = t2 = 1/16, t°1 = t1 = 1/4, and t0 = 6/16, the first
column s in the circulant Toeplitz matrix is given by s0 = t0 = 6/16, s1 = t1 =
4/16, s2 = t2 = 1/16, sN°2 = t°2 = 1/16, sN°1 = t°1 = 4/16. An 8£ 8 circu-
lant Toeplitz matrix which corresponds to applying S1 to a periodic signal of
length N = 8 is therefore

1
16

0

B

B

B

B

B

B

B

B

B

B

B

@

6 4 1 0 0 0 1 4
4 6 4 1 0 0 0 1
1 4 6 4 1 0 0 0
0 1 4 6 4 1 0 0
0 0 1 4 6 4 1 0
0 0 0 1 4 6 4 1
1 0 0 0 1 4 6 4
4 1 0 0 0 1 4 6

1

C

C

C

C

C

C

C

C

C

C

C

A

.

b. Compute and plot (the continuous) frequency response of the filter. Is the
filter a lowpass filter or a highpass filter?
Solution: The frequency response is

∏S1 (!) = 1
16

(e2i!+4ei!+6+4e°i!+e°2i!) =
µ

1
2

(ei!/2 +e°i!/2)
∂4

= cos4(!/2),

35

where we recognized (1,4,6,4,1) as a row in Pascal’s triangle, so that we could
write the expression as a power. From this expression it is easy to plot the fre-
quency response, and it is clear that the filter is a lowpass filter, since ∏S1 (0) =
1, ∏S1 (º) = 0.

c. Another filter S2 has (continuous) frequency response ∏S2 (!) = (ei!+2+
e°i!)/4. Write down the filter coefficients for the filter S1S2.
Solution: We have that

∏S2 (!) = (ei!+2+e°i!)/4 =
µ

1
2

(ei!/2 +e°i!/2)
∂2

= cos2(!/2).

We then get that

∏S1S2 (!) =∏S1 (!)∏S2 (!) = cos4(!/2)cos2(!/2) = cos6(!/2)

=
µ

1
2

(ei!/2 +e°i!/2)
∂6

= 1
64

(e3i!+6e2i!+15ei!+20+15e°i!+6e°2i!+e°3i!),

where we have used that, since we have a sixth power, the values can be ob-
tained from fra a row in Pascal’s triangle also here. It is now clear that

S1S2 =
1

64
{1,6,15,20,15,6,1}.

You could also have argumented here by taking the convolution of 1
16 (1,4,6,4,1)

with 1
4 (1,2,1).

4. Assume that the filters S1 and S2 have the frequency responses ∏S1 (!) = 2 +
4cos(!), ∏S2 (!) = 3sin(2!).

a. Compute and plot the frequency response of the filter S1S2.

b. Write down the filter coefficients tk and the impulse response s for the
filter S1S2.

5. The Hanning window is defined by wn = 1°cos(2ºn/(N °1)). Compute and plot
the window coefficients and the continuous frequency response of this window for
N = 32, and compare with the window coefficients and the frequency responses for
the rectangular- and the Hamming window.

3.4

1. Compute and plot the continuous frequency response of the filter S = {1/4,1/2,1/4}.
Where does the frequency response achieve its maximum and minimum value, and
what are these values?
Solution: We have that ∏S (!) = 1

2 (1+ cos!). This clearly has the maximum point
(0,1), and the minimum point (º,0).

36

2. Plot the continuous frequency response of the filter T = {1/4,°1/2,1/4}. Where
does the frequency response achieve its maximum and minimum value, and what
are these values? Can you write down a connection between this frequency response
and that from Exercise 1?
Solution: We have that |∏T (!)| = 1

2 (1°cos!). This clearly has the maximum point
(º,1), and the minimum point (0,0). The connection between the frequency re-
sponses is that ∏T (!) =∏S (!+º).

3. Define the filter S by S = {1,2,3,4,5,6}. Write down the matrix for S when N = 8.
Plot (the magnitude of) ∏S (!), and indicate the values ∏S,n for N = 8 in this plot.
Solution: Here we have that s0 = t0 = 3, s1 = t1 = 4, s2 = t2 = 5, and s3 = t3 = 6 (first
formula), and sN°2 = t°2 = 1, sN°1 = t°1 = 2 (second formula). This means that the
matrix of S is

S =

0

B

B

B

B

B

B

B

B

B

B

B

@

3 2 1 0 0 6 5 4
4 3 2 1 0 0 6 5
5 4 3 2 1 0 0 6
6 5 4 3 2 1 0 0
0 6 5 4 3 2 1 0
0 0 6 5 4 3 2 1
1 0 0 6 5 4 3 2
2 1 0 0 6 5 4 3

1

C

C

C

C

C

C

C

C

C

C

C

A

The frequency response is

∏S (!) = e2i!+2ei!+3+4e°i!+5e°2i!+6e°3i!.

4. Given the circulant Toeplitz matrix

S = 1
5

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1 1 · · · 1
1 1 1 · · · 0
0 1 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
1 0 0 · · · 1
1 1 0 · · · 1
1 1 1 · · · 1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

Write down the compact notation for this filter. Compute and plot (the magnitude)
of ∏S (!).
Solution: The filter coefficients are t0 = s0 = 1/5, t1 = s1 = 1/5 (first formula), and
t°1 = sN°1 = 1/5, t°2 = sN°2 = 1/5, t°3 = sN°3 = 1/5 (second formula). All other tk
are zero. This means that the filter can be written as 1

5 {1,1,1,1,1}, using our compact
notation.

5. Assume that S = {1,c,c2, . . . ,ck }. Compute and plot ∏S (!) when k = 4 and k = 8.
How does the choice of k influence the frequency response? How does the choice of

37

c influence the frequency response?
Solution: The frequency response is

k
X

s=0
cs e°i s! = 1° ck+1e°i (k+1)!

1° ce°i!
.

It is straightforward to compute the limit as !! 0 as ck (k +1). This means that as
we increase k or c, this limit also increases. The value of k also dictates oscillations
in the frequency response, since the numerator oscillates fastest. When c = 1, k
dictates how often the frequency response hits 0.

6. Compute the convolution of {1,2,1} with itself. interpret the result in terms of
two polynomials.

7. Assume that t consists of the 2L + 1 nonzero filter coefficients of a symmetric
filter (i.e. tL+k = tL°k for all k).

t § x . In this exercise we will find out how to keep to track of the length and the
start and end indices when we convolve two sequences.

a. Let x be zero outside xa , . . . , xa+N°1, and y be zero outside yb , . . . , yb+M°1.
Show that z = x § y is zero outside za+b , . . . , za+b+M+N°2. Explain why this
means that l (x § y) = l (x)+ l (y) for general vectors.

b. Find expressions for the start- and end indices kmi n ,kmax for x § y , in
terms of those of x and y .

8. Implement a function convimpl(x,y) which from input vectors of dimension
N and M , respectively, returns an output vector of dimension N +M °1, as dictated
by Equation (??). Compare your function together with the built-in conv-function
to verify that they give the same results.

9. Show that if S = {t0, . . . , tF } and x 2 RN , then S
µ

x

0F

∂

= t § x . Thus if we add zeros

in a vector, filtering and convolution are the same.

3.5

1. Let Ed1 and Ed2 be two time delay filters. Show that Ed1 Ed2 = Ed1+d2 (i.e. that the
composition of two time delays again is a time delay) in two different ways

a. Give a direct argument which uses no computations.

b. By using Property 3 in Theorem 2.21, i.e. by using a property for the Dis-
crete Fourier Transform.

2. In this exercise, we will experiment with adding echo to a signal.

38

a. Write a function play_with_echo which takes the sound samples, the
sample rate, a damping constant c, and a delay d as input, and plays the
sound samples with an echo added, as described in Example 3.31. Recall that
you have to ensure that the sound samples lie in [°1,1].
Solution: The code can look like this:

def play_with_echo(x, fs, c, d):
"""
Play the sound with an echo added.

x: the vector of sound samples
fs: the sample rate
c:the strength of the echo
d: the delay of the echo in samples.
"""
N,nchannels = shape(x)
z = zeros((N,nchannels))
z[0:d] = x[0:d]
z[d:N] = x[d:N] + c*x[0:(N-d)]
z /= abs(z).max()
play(z, fs)

b. Generate the sound from Example 3.31, and verify that it is the same as
the one you heard there.

c. Listen to the sound samples for different values of d and c. For which
range of d is the echo distinguisible from the sound itself? How low can you
choose c in order to still hear the echo?

3. Consider the two filters S1 = {1,0, . . . ,0,c} and S2 = {1,0, . . . ,0,°c}. Both of these
can be interpreted as filters which add an echo. Show that 1

2 (S1+S2) = I . What is the
interpretation of this relation in terms of echos?
Solution: The sum of two digital filters is again a digital filter, and the first column
in the sum can be obtained by summing the first columns in the two matrices. This
means that the filter coefficients in 1

2 (S1+S2) can be obtained by summing the filter
coefficients of S1 and S2, and we obtain

1
2

°

{1,0, . . . ,0,c}+ {1,0, . . . ,0,°c}
¢

= {1}.

This means that 1
2 (S1 + S2) = I , since I is the unique filter with e0 as first column.

The interpretation in terms of echos is that the echo from S2 cancels that from S1.

4. In this exercise, we will experiment with increasing and reducing the treble and
bass in a signal as in examples 3.38 and 3.41.

a. Write functionsplay_with_reduced_treble andplay_with_reduced_bass
which take a data vector, sampling rate, and k as input, and which reduce
bass and treble, respectively, in the ways described above, and plays the re-
sult, when row number 2k in Pascal’ triangle is used to construct the filters.
Use the function conv to help you to find the values in Pascal’s triangle.
Solution: The code can look like this:

39

def play_with_reduced_bass(x, fs, k):
t = [1.]
for kval in range(k):

t = convolve(t, [1/2., -1/2.])
N,nchannels=shape(x)
z = convolve(t, x[:, 0])
play(z,fs)

def play_with_reduced_treble(x, fs, k):
t = [1.]
for kval in range(k):

t = convolve(t, [1/2., 1/2.])
N,nchannels=shape(x)
z = convolve(t, x[:, 0])
play(z,fs)

b. Generate the sounds you heard in examples 3.38 and 3.41, and verify that
they are the same.

c. In your code, it will not be necessary to scale the values after reducing the
treble, i.e. the values are already between °1 and 1. Explain why this is the
case.

d. How high must k be in order for you to hear difference from the actual
sound? How high can you choose k and still recognize the sound at all?

5. Consider again Example 3.35. Find an expression for a filter so that only frequen-
cies so that |!°º| <!c are kept, i.e. the filter should only keep angular frequencies
close to º (i.e. here we construct a highpass filter).

6. In this exercise we will investigate how we can combine lowpass and highpass
filters to produce other filters

a. Assume that S1 and S2 are lowpass filters. What kind of filter is S1S2? What
if both S1 and S2 are highpass filters?

b. Assume that one of S1,S2 is a highpass filter, and that the other is a low-
pass filter. What kind of filter S1S2 in this case?

7. A filter S1 has the frequency response 1
2 (1+cos!), and another filter has the fre-

quency response 1
2 (1+cos(2!)).

a. Is S1S2 a lowpass filter, or a highpass filter?

b. What does the filter S1S2 do with angular frequencies close to !=º/2.

c. Find the filter coefficients of S1S2.
Hint: Use Theorem 3.21 to compute the frequency response of S1S2 first.

40

d. Write down the matrix of the filter S1S2 for N = 8.

8. An operation describing some transfer of data in a system is defined as the com-
position of the following three filters:

• First a time delay filter with delay d1 = 2, due to internal transfer of data in the
system,

• then the treble-reducing filter T = {1/4,1/2,1/4},

• finally a time delay filter with delay d2 = 4 due to internal transfer of the fil-
tered data.

We denote by T2 = Ed2 T Ed1 = E4T E2 the operation which applies these filters in
succession.

a. Explain why T2 also is a digital filter. What is (the magnitude of) the fre-
quency response of Ed1 ? What is the connection between (the magnitude of)
the frequency response of T and T2?

b. Show that T2 = {0,0,0,0,0,1/4,1/2,1/4}.
Hint: Use the expressions (Ed1 x)n = xn°d1 , (T x)n = 1

4 xn+1 + 1
2 xn + 1

4 xn°1,
(Ed2 x)n = xn°d2 , and compute first (Ed1 x)n , then (T Ed1 x)n , and finally (T2x)n =
(Ed2 T Ed1 x)n . From the last expression you should be able to read out the fil-
ter coefficients.

c. Assume that N = 8. Write down the 8£8-circulant Toeplitz matrix for the
filter T2.

9. In Example 3.37, we mentioned that the filters used in the MP3-standard were
constructed from a lowpass prototype filter by multiplying the filter coefficients with
a complex exponential. Clearly this means that the new frequency response is a shift
of the old one. The disadvantage is, however, that the new filter coefficients are com-
plex. It is possible to address this problem as follows. Assume that tk are the filter co-
efficients of a filter S1, and that S2 is the filter with filter coefficients cos(2ºkn/N)tk ,
where n 2N. Show that

∏S2 (!) = 1
2

(∏S1 (!°2ºn/N)+∏S1 (!+2ºn/N)).

In other words, when we multiply (modulate) the filter coefficients with a cosine,
the new frequency response can be obtained by shifting the old frequency response
with 2ºn/N in both directions, and taking the average of the two.
Solution: We have that

∏S2 (!) =
X

k
cos(2ºkn/N)tk e°i k! = 1

2

X

k
(e2ºi kn/N +e°2ºi kn/N)tk e°i k!

= 1
2

√

X

k
tk e°i k(!°2ºn/N) +

X

k
tk e°i k(!+2ºn/N)

!

= 1
2

(∏S1 (!°2ºn/N)+∏S1 (!+2ºn/N)).

41

10. a. Explain what the code below does, line by line.

x, fs = audioread(’castanets.wav’)
N, nchannels = shape(x)
z = zeros((N, nchannels))
for n in range(1,N-1):

z[n] = 2*x[n+1] + 4*x[n] + 2*x[n-1]
z[0] = 2*x[1] + 4*x[0] + 2*x[N-1]
z[N-1] = 2*x[0] + 4*x[N-1] + 2*x[N-2]
z = z/abs(z).max()
play(z, fs)

Comment in particular on what happens in the three lines directly after the
for-loop, and why we do this. What kind of changes in the sound do you ex-
pect to hear?
Solution: In the code a filter is run on the sound samples from the file
castanets.wav. Finally the new sound is played. In the first two lines af-
ter the for-loop, the first and the last sound samples in the filtered sound
are computed, under the assumption that the sound has been extended to a
periodic sound with period N. After this, the sound is normalized so that the
sound samples lie in the range between °1 and 1. In this case the filter is a
lowpass-filter (as we show in b.), so that we can expect that that the treble in
the sound is reduced.

b. Write down the compact filter notation for the filter which is used in the
code, and write down a 5£5 circulant Toeplitz matrix which corresponds to
this filter. Plot the (continuous) frequency response. Is the filter a lowpass- or
a highpass filter?
Solution: Compact filter notation for the filter which is run is {2,4,2}. A 5£5
circulant Toeplitz matrix becomes

0

B

B

B

B

@

4 2 0 0 2
2 4 2 0 0
0 2 4 2 0
0 0 2 4 2
2 0 0 2 4

1

C

C

C

C

A

.

The frequency response is ∏S (!) = 2ei!+4+2e°i! = 4+4cos!. It is clear that
this gives a lowpass filter.

c. Another filter is given by the circulant Toeplitz matrix

0

B

B

B

B

@

4 °2 0 0 °2
°2 4 °2 0 0

0 °2 4 °2 0
0 0 °2 4 °2

°2 0 0 °2 4

1

C

C

C

C

A

.

Express a connection between the frequency responses of this filter and the
filter from b. Is the new filter a lowpass- or a highpass filter?

42

Solution: The frequency response for the new filter is

°2ei!+4°2e°i! = 4°4cos!= 4+4cos(!+º) =∏S (!+º),

where S is the filter from the first part of the exercise. The new filter therefore
becomes a highpass filter, since to add º to ! corresponds to swapping the
frequencies 0 andº. We could also here refered to Observation 3.40, where we
stated that adding an alternating sign in the filter coefficients turns a lowpass
filter into a highpass filter and vice versa.

3.6

1. A filter is defined by demanding that zn+2 ° zn+1 + zn = xn+1 °xn .

a. Compute and plot the frequency response of the filter.

b. Use a computer to compute the output when the input vector is x = (1,2, . . . ,10).
In order to do this you should write down two 10£10-circulant Toeplitz ma-
trices.

3.7

1. Write a function filterdftimpl, which takes the filter coefficients t and the
value k0 from this section, computes the optimal M , and implements the filter as
here.

2. Factor the filter S = {1,5,10,6} into a product of two filters, one with two filter
coefficients, and one with three filter coefficients.

43

44

Chapter 4
4.1

1. Consider the matrix

S = 1
3

0

B

B

B

B

B

B

B

@

2 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 2

1

C

C

C

C

C

C

C

A

a. Compute the eigenvalues and eigenvectors of S using the results of this
section. You should only need to perform one DFT or one DCT in order to
achieve this.

b. Use a computer to compute the eigenvectors and eigenvalues of S also.
What are the differences from what you found in a.?

c. Find a filter T so that S = Tr . What kind of filter is T ?

2. Consider the averaging filter S = { 1
4 , 1

2 , 1
4 }. Write down the matrix Sr for the case

when N = 4.
Solution: First we obtain the matrix S as

0

B

B

B

B

B

B

B

B

B

B

B

@

1
2

1
4 0 0 0 0 0 1

4
1
4

1
2

1
4 0 0 0 0 0

0 1
4

1
2

1
4 0 0 0 0

0 0 1
4

1
2

1
4 0 0 0

0 0 0 1
4

1
2

1
4 0 0

0 0 0 0 1
4

1
2

1
4 0

0 0 0 0 0 1
4

1
2

1
4

1
4 0 0 0 0 0 1

4
1
2

1

C

C

C

C

C

C

C

C

C

C

C

A

45

where we have drawn the boundaries between the blocks S1, S2, S3, S4. From this
we see that

S1 =

0

B

B

@

1
2

1
4 0 0

1
4

1
2

1
4 0

0 1
4

1
2

1
4

0 0 1
4

1
2

1

C

C

A

S2 =

0

B

B

@

0 0 0 1
4

0 0 0 0
0 0 0 0
1
4 0 0 0

1

C

C

A

(S2) f =

0

B

B

@

1
4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

4

1

C

C

A

.

From this we get

Sr = S1 + (S2) f =

0

B

B

@

3
4

1
4 0 0

1
4

1
2

1
4 0

0 1
4

1
2

1
4

0 0 1
4

3
4

1

C

C

A

.

3. As in Example 4.15, state the exact cartesian form of the DCT matrix for the case
N = 3.
Solution: We first see that d0,3 =

q

1
3 and dk,3 =

q

2
3 for k = 1,2. We also have that

cos
µ

2º
n

2N

µ

k + 1
2

∂∂

= cos
µ

º
n
3

µ

k + 1
2

∂∂

,

so that the DCT matrix can be written as

DCT3 =

0

B

B

B

@

q

1
3

q

1
3

q

1
3

q

2
3 cos

°

º
3

1
2

¢

q

2
3 cos

°

º
3

3
2

¢

q

2
3 cos

°

º
3

5
2

¢

q

2
3 cos

° 2º
3

1
2

¢

q

2
3 cos

° 2º
3

3
2

¢

q

2
3 cos

° 2º
3

5
2

¢

1

C

C

C

A

=

0

B

B

B

@

q

1
3

q

1
3

q

1
3

q

2
3 cos(º/6)

q

2
3 cos(º/2)

q

2
3 cos(5º/6)

q

2
3 cos(º/3)

q

2
3 cos(º)

q

2
3 cos(5º/3)

1

C

C

C

A

=

0

B

B

B

@

q

1
3

q

1
3

q

1
3

q

2
3 (
p

3/2+ i /2) 0
q

2
3 (°

p
3/2+ i /2)

q

2
3 (1/2+

p
3i /2) °

q

2
3

q

2
3 (1/2°

p
3i /2)

1

C

C

C

A

4. Show that the vectors
Ω

cos
µ

2º
n+ 1

2
2N

°

k + 1
2

¢

∂æN°1

n=0
inRN are orthogonal, with lengths

p
N /2. This means that the matrix with entries

q

2
N cos

µ

2º
n+ 1

2
2N

°

k + 1
2

¢

∂

is orthogo-

nal. Since this matrix also is symmetric, it is its own inverse. This is the DCT-IV,
which we denote by DCT(IV)

N . Although we will not consider this, the DCT-IV also has
an efficient implementation. Hint: Compare with the orthogonal vectors d n , used
in the DCT.
Solution: We can write

cos

√

2º
n + 1

2

2N

µ

k + 1
2

∂

!

= cos
µ

2º
2n +1

4N

µ

k + 1
2

∂∂

.

46

If we consider these as vectors of length 2N , we recognize these as the unit vectors
d 2n+1 in the 2N -dimensional DCT, divided by the factor dn =

p
2/(2N) =

p
1/N , so

that these vectors have length
p

N . To see that these vectors are orthogonal when
we restrict to the first N elements we use property 6.35 as follows:

N±n1,n2 =
2N°1
X

k=0
cos

√

2º
n1 + 1

2

2N

µ

k + 1
2

∂

!

cos

√

2º
n2 + 1

2

2N

µ

k + 1
2

∂

!

=
N°1
X

k=0
cos

√

2º
n1 + 1

2

2N

µ

k + 1
2

∂

!

cos

√

2º
n2 + 1

2

2N

µ

k + 1
2

∂

!

+
2N°1
X

k=N
cos

√

2º
n1 + 1

2

2N

µ

k + 1
2

∂

!

cos

√

2º
n2 + 1

2

2N

µ

k + 1
2

∂

!

=
N°1
X

k=0
cos

√

2º
n1 + 1

2

2N

µ

k + 1
2

∂

!

cos

√

2º
n2 + 1

2

2N

µ

k + 1
2

∂

!

+
N°1
X

k=0
cos

√

2º
n1 + 1

2

2N

µ

k + 1
2

∂

!

cos

√

2º
n2 + 1

2

2N

µ

k + 1
2

∂

!

=2
N°1
X

k=0
cos

√

2º
n1 + 1

2

2N

µ

k + 1
2

∂

!

cos

√

2º
n2 + 1

2

2N

µ

k + 1
2

∂

!

.

This shows that
N°1
X

k=0
cos

√

2º
n1 + 1

2

2N

µ

k + 1
2

∂

!

cos

√

2º
n2 + 1

2

2N

µ

k + 1
2

∂

!

= N
2
±n1,n2 ,

so that the vectors are orthogonal with lengths
p

N /2.

5. The MDCT is defined as the N£(2N)-matrix M with elements Mn,k = cos(2º(n+
1/2)(k+1/2+N /2)/(2N)). This exercise will take you through the details of the trans-
formation which corresponds to multiplication with this matrix. The MDCT is very
useful, and is also used in the MP3 standard and in more recent standards.

a. Show that

M =
r

N
2

DCT(IV)
N

µ

0 A
B 0

∂

where A and B are the (N /2)£N -matrices

A =

0

B

B

B

B

@

· · · · · · 0 °1 °1 0 · · · · · ·
...

...
...

...
...

...
...

...
0 °1 · · · · · · · · · · · · °1 0
°1 0 · · · · · · · · · · · · 0 °1

1

C

C

C

C

A

=
≥

°I f
N /2 °IN /2

¥

B =

0

B

B

B

B

@

1 0 · · · · · · · · · · · · 0 °1
0 1 · · · · · · · · · · · · °1 0
...

...
...

...
...

...
...

...
· · · · · · 0 1 °1 0 · · · · · ·

1

C

C

C

C

A

=
≥

IN /2 °I f
N /2

¥

.

47

Due to this expression, any algorihtm for the DCT-IV can be used to compute
the MDCT.
Solution: Clearly, columns 0, . . . , N /2°1 of the MDCT are columns N /2, . . . , N°
1 of the DCT-IV. For the remaining columns, note first that, for 0 ∑ k < N , the
properties

cos(2º(n +1/2)((2N °1°k)+1/2)/(2N)) =°cos(2º(n +1/2)(k +1/2)/(2N))

cos(2º(n +1/2)((k +2N)+1/2)/(2N)) =°cos(2º(n +1/2)(k +1/2)/(2N))

are easy to verify. From the first property it follows that columns N /2, . . . ,3N /2°
1 of the MDCT are columns N°1, N°2, . . . ,0 of the DCT-IV, with a sign change
(they occur in opposite order). From the second property, it follows that
columns 3N /2, . . . ,2N °1 of the MDCT are columns 0, . . . , N /2°1 of the DCT-
IV, with a sign change. This means that, if y is a vector of length 2N , the MDCT
of y can be written as

r

N
2

DCT(IV)
N

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

°y3N /2 ° y3N /2°1
°y3N /2+1 ° y3N /2°2

...
°y2N°1 ° yN

y0 ° yN°1
y1 ° yN /2+1

...
yN /2°1 ° yN /2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

The factor
q

N
2 was added since

q

2
N was added in front of the cosine-matrix

in order to make DCT(IV)
N orthogonal. The result now follows by noting that

we can write
µ

0 A
B 0

∂

y for the vector on the right hand side, with A and B as

defined in the text of the exercise.

b. The MDCT is not invertible, since it is not a square matrix. We will show
here that it still can be used in connection with invertible transformations.
We first define the IMDCT as the matrix M T /N . Transposing the matrix ex-
pression we obtained in a. gives

1
p

2N

µ

0 B T

AT 0

∂

DCT(IV)
N

for the IMDCT, which thus also has an efficient implementation. Show that if

x0 = (x0, . . . , xN°1) x1 = (xN , . . . , x2N°1) x2 = (x2N , . . . , x3N°1)

and

y0,1 = M
µ

x0
x1

∂

y1,2 = M
µ

x1
x2

∂

48

(i.e. we compute two MDCT’s where half of the data overlap), then

x1 = {IMDCT(y0,1)}2N°1
k=N + {IMDCT(y1,2)}N°1

k=0 .

Even though the MDCT itself is not invertible, the input can still be recovered
from overlapping MDCT’s.
Solution: Applying the MDCT first, and then the IMDCT, gives us the matrix

1
2

µ

0 B T

AT 0

∂µ

0 A
B 0

∂

= 1
2

µ

B T B 0
0 AT A

∂

Note that

AT A =
√

IN /2 I f
N /2

I f
N /2 IN /2

!

B T B =
√

IN /2 °I f
N /2

°I f
N /2 IN /2

!

.

Inserting this in the above gives

1
2

0

B

B

B

B

@

IN /2 °I f
N /2 0 0

°I f
N /2 IN /2 0 0

0 0 IN /2 I f
N /2

0 0 I f
N /2 IN /2

1

C

C

C

C

A

= 1
2

√

IN ° I f
N 0

0 IN + I f
N

!

.

Assume now that we have computed the MDCT of
µ

x0
x1

∂

= (x0, . . . , x2N°1), and

of
µ

x1
x2

∂

= (xN , . . . , x3N°1). Performing the IMDCT on these two thus gives

1
2

µ

x0 °x

rev
0

x1 +x

rev
1

∂

and
1
2

µ

x1 °x

rev
1

x2 +x

rev
2

∂

Adding the second component of the first and the first component of the sec-
ond gives x1, which proves the result.

4.2

1. Recall that in Exercise 3 in Section 3.1 we wrote down formulas for the out-
put of a filter. Using the results of this section these formulas can be be written
in a way which reduces the number of arithmetic operations. Assume that S =
t°E , . . . , t0, . . . , tE is a symmetric filter. Use Equation (4.7) to show that zn = (Sx)n
in this case can be split into the following different formulas, depending on n:

a. 0 ∑ n < E :

zn = t0xn +
n
X

k=1
tk (xn+k +xn°k)+

E
X

k=n+1
tk (xn+k +xn°k+N). (4.1)

49

b. E ∑ n < N °E :

zn = t0xn +
E
X

k=1
tk (xn+k +xn°k). (4.2)

c. N °E ∑ n < N :

zn = t0xn +
N°1°n

X

k=1
tk (xn+k +xn°k)+

E
X

k=N°1°n+1
tk (xn+k°N +xn°k). (4.3)

2. Assume that S = t°E , . . . , t0, . . . , tE is a symmetric filter. Write a function filterS
which takes a symmetric vector t and a vector x as input, and returns z = Sx , using
the formulas from Exercise 1.
Solution: The code can look like this:

def filterS(t,x):
N = len(x)
y = zeros(N)
E = (len(t)+1)/2
t = t[(E-1):]

n = 0
while n<E:

y[n]= t[0]*x[n]
for k in range(1, n + 1):

y[n] = y[n] + t[k]*(x[n + k]+x[n - k])
for k in range(n + 1, E + 1):

y[n] = y[n] + t[k]*(x[n + k]+x[n - k + N])
n = n + 1

while n < (N-E):
y[n]= t[0]*x[n]
for k in range(1, E+1):

y[n] = y[n] + t[k]*(x[n + k]+x[n - k])
n = n + 1

while n<N:
y[n] = t[0]*x[n]
for k in range(1,N - n):

y[n] = y[n] + t[k]*(x[n+k]+x[n-k])
for k in range(N - n, E + 1):

y[n] = y[n] + t[k]*(x[n+k-N]+x[n-k])
n = n + 1

return y

3. Reimplement the function filterS from the previous exercise so that it instead
performs the filtering using the function numpy.convolve. This gives a much nicer
implementation, where there is no need to split the implementation into the differ-
ent formulas stated in Exercise 1.
Solution: The code can look like this:

def filterS(t, x):
tlen = len(t)
N0 = (tlen - 1)/2
N = len(x)
y = concatenate([x[(N - N0):], x, x[:N0]])
y = convolve(t, y)
y = y[(2*N0):(length(y)-2*N0)]

50

4. Repeat Exercise 4 in Section 2.1 by reimplementing the functionsplay_with_reduced_treble
and play_with_reduced_bass using the function filterS from the previous ex-
ercise. The resulting sound files should sound the same, since the only difference
is that we have modified the way we handle the beginning and end portion of the
sound samples.

4.3

1. In this exercise we will take a look at a small trick which reduces the number of
additional multiplications we need for DCT algorithm from Theorem 4.23. This ex-
ercise does not reduce the order of the DCT algorithms, but we will see in Exercise 2
how the result can be used to achieve this.

a. Assume that x is a real signal. Equation (4.9), which said that

yn = cos
≥

º
n

2N

¥

<((DFTN x

(1))n)+ sin
≥

º
n

2N

¥

=((DFTN x

(1))n)

yN°n = sin
≥

º
n

2N

¥

<((DFTN x

(1))n)°cos
≥

º
n

2N

¥

=((DFTN x

(1))n)

for the n’th and N °n’th coefficient of the DCT. This can also be rewritten as

yn =
°

<((DFTN x

(1))n)+=((DFTN x

(1))n)
¢

cos
≥

º
n

2N

¥

°=((DFTN x

(1))n)(cos
≥

º
n

2N

¥

° sin
≥

º
n

2N

¥

)

yN°n =°
°

<((DFTN x

(1))n)+=((DFTN x

(1))n)
¢

cos
≥

º
n

2N

¥

+<((DFTN x

(1))n)(sin
≥

º
n

2N

¥

+cos
≥

º
n

2N

¥

).

Explain that the first two equations require 4 multiplications to compute yn
and yN°n , and that the last two equations require 3 multiplications to com-
pute yn and yN°n .

b. Explain why the trick in a. reduces the number of additional multiplica-
tions in a DCT, from 2N to 3N /2.

c. Explain why the trick in a. can be used to reduce the number of additional
multiplications in an IDCT with the same number.
Hint: match the expression eºi n/(2N)(yn°i yN°n) you encountered in the IDCT
with the rewriting you did in b.

d. Show that the penalty of the trick we here have used to reduce the number
of multiplications, is an increase in the number of additional additions from
N to 3N /2. Why can this trick still be useful?

2. (An efficient joint implementation of the DCT and the FFT). In this exercise we
will explain another joint implementation of the DFT and the DCT, which has the

51

benefit of a low multiplication count, at the expense of a higher addition count. It
also has the benefit that it is specialized to real vectors, with a very structured im-
plementation (this is not always the case for the quickest FFT implementations. Not
surprisingly, one often sacrifices clarity of code when one pursues higher computa-
tional speed). a. of this exercise can be skipped, as it is difficult and quite technical.
For further details of the algorithm the reader is refered to [?].

a. Let y = DFTN x be the N -point DFT of the real vector x . Show that

<(yn) =

8

<

:

<((DFTN /2x

(e))n)+ (CN /4z)n 0 ∑ n ∑ N /4°1
<((DFTN /2x

(e))n) n = N /4
<((DFTN /2x

(e))n)° (CN /4z)N /2°n N /4+1 ∑ n ∑ N /2°1
(4.4)

=(yn) =

8

<

:

=((DFTN /2x

(e))n) n = 0
=((DFTN /2x

(e))n)+ (CN /4w)N /4°n 1 ∑ n ∑ N /4°1
=((DFTN /2x

(e))n)+ (CN /4w)n°N /4 N /4 ∑ n ∑ N /2°1
(4.5)

where x

(e) is as defined in Theorem 2.34, where z , w 2RN /4 defined by

zk = x2k+1 +xN°2k°1 0 ∑ k ∑ N /4°1,

wk = (°1)k (xN°2k°1 °x2k+1) 0 ∑ k ∑ N /4°1,

Explain from this how you can make an algorithm which reduces an FFT of
length N to an FFT of length N /2 (on x

(e)), and two DCT’s of length N /4 (on
z and w). We will call this algorithm the revised FFT algorithm.
Solution: Taking real and imaginary parts in Equation (2.14) for the FFT
algorithm we obtain

<(yn) =<
°

(DFTN /2x

(e))n +<((DN /2DFTN /2x

(o))n
¢

=(yn) ==
°

(DFTN /2x

(e))n +=((DN /2DFTN /2x

(o))n
¢

,

These equations explain the first terms<((DFTN /2x

(e))n) and=((DFTN /2x

(e))n)
on the right hand sides in equations (4.4) and (4.5). It remains to rewrite
<

°

(DN /2DFTN /2x

(o))n
¢

and=
°

(DN /2DFTN /2x

(o))n
¢

so that the remaining terms
on the right hand sides can be seen. Let us first consider the equation for the

52

real part with 0 ∑ n ∑ N /4°1. In this case we can write

<((DN /2DFTN /2x

(o))n)

=<
√

e°2ºi n/N
N /2°1
X

k=0
(x

(o))k e°2ºi nk/(N /2)

!

=<
√

N /2°1
X

k=0
(x

(o))k e°2ºi n(k+ 1
2)/(N /2)

!

=
N /2°1
X

k=0
(x

(o))k cos

√

2º
n(k + 1

2)

N /2

!

=
N /4°1
X

k=0
(x

(o))k cos

√

2º
n(k + 1

2)

N /2

!

+
N /4°1
X

k=0
(x

(o))N /2°1°k cos

√

2º
n(N /2°1°k + 1

2)

N /2

!

=
N /4°1
X

k=0
((x

(o))k + (x

(o))N /2°1°k)cos

√

2º
n

°

k + 1
2

¢

N /2

!

=
N /4°1
X

k=0
zk cos

√

2º
n

°

k + 1
2

¢

N /2

!

,

where we have used that cos is periodic with period 2º, that cos is symmetric,
and where z is the vector defined in the text of the theorem. When 0 ∑ n ∑
N /4°1 this can also be written as

N /4°1
X

k=0
(CN /4)n,k zk = (CN /4z)n ,

This proves the first formula in Equation 4.4.

For N /4+1 ∑ n ∑ N /2°1, everything above is valid, except for that cos(2ºn(k+
1/2)/(N /2)) are not entries in the matrix CN /4, since n is outside the legal
range of the indices. However, N /2°n is now a legal index in CN /4, and using
that

cos

√

2º
n(k + 1

2)

N /2

!

=°cos

√

2º

° N
2 °n

¢°

k + 1
2

¢

N /2

!

,

we arrive at°(CN /4z)N /2°n instead, and this proves the third formula in Equa-
tion 4.4. For the case n = N

4 all the cosine entries in the sum are zero, and this
completes the proof of Equation (4.4).

For the imaginary part, using that sin is periodic with period 2º, and that sin
is anti-symmetric, analogous calculations as above give

=((DN /2DFTN /2x

(o))n) =
N /4°1
X

k=0
((x

(o))N /2°1°k ° (x

(o))k)sin

√

2º
n

°

k + 1
2

¢

N /2

!

.

(4.6)

53

Using that

sin

√

2º
n(k + 1

2)

N /2

!

= cos

√

º

2
°2º

n(k + 1
2)

N /2

!

= cos

√

2º
(N /4°n)(k + 1

2)

N /2
°kº

!

= (°1)k cos

√

2º
(N /4°n)(k + 1

2)

N /2

!

,

Equation 4.6 can be rewritten as

N /4°1
X

k=0
((x

(o))N /2°1°k ° (x

(o))k)(°1)k cos

√

2º
(N /4°n)(k + 1

2)

N /2

!

=
N /4°1
X

k=0
wk cos

√

2º
(N /4°n)(k + 1

2)

N /2

!

,

where w is the vector defined as in the text of the theorem. When n = 0
this is 0 since all the cosines entries are zero. When 1 ∑ n ∑ N /4 this is
(CN /4w)N /4°n , since cos(2º(N /4°n)(k + 1/2)/(N /2)) are entries in the ma-
trix CN /4. This proves the second formula in Equation 4.5.

For N /4 ∑ n ∑ N /2 ° 1 we can use that cos(2º(N /4 ° n)(k + 1/2)/(N /2)) =
cos(2º(n °N /4)(k +1/2)/(N /2)), which is an entry in the matrix DCTN /4 as
well, so that we get (CN /4z)n°N /4. This also proves the third formula in Equa-
tion (4.5), and the proof is done.

a. says nothing about the coefficients yn for n > N
2 . These are obtained in the same

way as before through symmetry. a. also says nothing about yN /2. This can be ob-
tained with the same formula as in Theorem 2.34.
Let us now compute the number of arithmetic operations our revised algorithm
needs. Denote by the number of real multiplications needed by the revised N -point
FFT algorithm

b. Explain from the algorithm in a. that

MN = 2(MN /4 +3N /8)+MN /2 AN = 2(AN /4 +3N /8)+ AN /2 +3N /2 (4.7)

HINT: 3N /8 should come from the extra additions/multiplications (see Exer-
cise 1) you need to compute when you run the algorithm from Theorem 4.23
for CN /4. Note also that the equations in a. require no extra multiplications,
but that there are xix equations involved, each needing N /4 additions, so that
we need 6N /4 = 3N /2 extra additions.

c. Explain why xr = M2r is the solution to the difference equation

xr+2 °xr+1 °2xr = 3£2r ,

and that xr = A2r is the solution to

xr+2 °xr+1 °2xr = 9£2r .

and show that the general solution to these are xr = 1
2 r 2r +C 2r +D(°1)r for

multiplications, and xr = 3
2 r 2r +C 2r +D(°1)r for additions.

54

d. Explain why, regardless of initial conditions to the difference equations,
MN =O

° 1
2 N log2 N

¢

and AN =O
° 3

2 N log2 N
¢

both for the revised FFT and the
revised DCT. The total number of operations is thus O(2N log2 N), i.e. half the
operation count of the split-radix algorithm. The orders of these algorithms
are thus the same, since we here have adapted to read data.

e. Explain that, if you had not employed the trick from Exercise 1, we would
instead have obtained MN =O

° 2
3 log2 N

¢

, and AN =O
° 4

3 log2 N
¢

, which equal
the orders for the number of multiplications/additions for the split-radix al-
gorithm. In particular, the order of the operation count remains the same,
but the trick from Exercise 1 turned a bigger percentage of the arithmetic op-
erations into additions.

The algorithm we here have developed thus is constructed from the beginning to
apply for real data only. Another advantage of the new algorithm is that it can be
used to compute both the DCT and the DFT.

3. We did not write down corresponding algorithms for the revised IFFT and IDCT
algorithms. We will consider this in this exercise.

a. Using equations (4.4)-(4.5), show that

<(yn)°<(yN /2°n) = 2(CN /4z)n

=(yn)+=(yN /2°n) = 2(CN /4w)N /4°n

for 1 ∑ n ∑ N /4°1. Explain how one can compute z and w from this using
two IDCT’s of length N /4.

b. Using equations (4.4)-(4.5), show that

<(yn)+<(yN /2°n) =<((DFTN /2x

(e))n)

=(yn)°=(yN /2°n) ==((DFTN /2x

(e))n),

and explain how one can compute x

(e) from this using an IFFT of length N /2.

55

