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Preface

These lecture notes have been written for the course MAT-INF2360. They deal with
the third part of that course, and is about nonlinear optimization. Just as the first
parts of MAT-INF2360, this third part also has its roots in linear algebra. In addition,
it has stronger connection than the previous parts to multivariate calculus, as taught
in MAT1110.

Notation

We will follow multivariate calculus and linear algebra notation as you know it from
MAT1110 and MAT1120. In particular, vectors will be in boldface (x , y , etc.), while
matrices will be in uppercase (A, B , etc.). The zero vector, or the zero matrix, is de-
noted by 0. All vectors stated will be assumed to be column vectors. A row vector will
always be written as xT , where x is a (column) vector Vector-valued functions will be
in uppercase boldface (F , G , etc.). Functions are written using both uppercase and
lowercase. Uppercase is often used for the component functions of a vector-valued
function.
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Chapter 1
The basics and applications

The problem of minimizing a function of several variables, possibly subject to con-
straints on these variables, is what optimization is about. So the main problem is
easy to state! And, more importantly, such problems arise in many applications in
natural science, engineering, economics and business as well as in mathematics it-
self.

Nonlinear optimization differs from Fourier analysis and wavelet theory in that
classical multivariate analysis also is an important ingredient. A recommended book
on this, used here at the University of Oslo, is [8] (in Norwegian). It contains a signif-
icant amount of fixed point theory, nonlinear equations, and optimization.

There are many excellent books on nonlinear optimization (or nonlinear pro-
gramming, as it is also called). Some of these books that have influenced these notes
are [1, 2, 9, 5, 13, 11]. These are all recommended books for those who want to go
deeper into the subject. These lecture notes are particularly influenced by the pre-
sentations in [1, 2].

Optimization has its mathematical foundation in linear algebra and multivariate
calculus. In analysis the area of convexity is especially important. For the brief pre-
sentation of convexity given here the author’s own lecture notes [4] (originally from
2001), and the very nice book [14], have been useful sources. But, of course, anyone
who wants to learn convexity should study the work by R.T. Rockafellar, see e.g. the
classic text [12].

Linear optimization (LP, linear programming) is a special case of nonlinear opti-
mization, but we do not discuss this in any detail here. The reason for this is that we,
at the University of Oslo, have a separate course in linear optimization which covers
many parts of that subject in some detail.

This first chapter introduces some of the basic concepts in optimization and
discusses some applications. Many of the ideas and results that you will find in
these lecture notes may be extended to more general linear spaces, even infinite-
dimensional. However, to keep life a bit easier and still cover most applications, we
will only be working in Rn .
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Due to its character this chapter is a “proof-free zone”, but in the remaining text
we usually give full proofs of the main results.

Notation: For z ∈Rn and δ> 0 define the (closed) ball B̄(z ;ε) = {x ∈Rn : ‖x −z‖ ≤
ε}. It consists of all points with distance at most ε from z . Similarly, define the open
ball B(z ;ε) = {x ∈ Rn : ‖x − z‖ < ε}. A neighborhood of z is a set N containing B(z ;ε)
for some ε> 0. Vectors are treated as column vectors and they are identified with the
corresponding n-tuple, denoted by x = (x1, x2, . . . , xn). A statement like

P (x) (x ∈ H)

means that the statement P (x) is true for all x ∈ H .

1.1 The basic concepts

Optimization deals with finding optimal solutions! So we need to define what this
is.

Let f : Rn → R be a real-valued function in n variables. The function value is
written as f (x), for x ∈ Rn , or f (x1, x2, . . . , xn). This is the function we want to min-
imize (or maximize) and it is often called the objective functionobjective function.
Let x∗ ∈Rn . Then x∗ is a local minimumminimum (or local minimizer) of f if there
is an ε> 0 such that

f (x∗) ≤ f (x) for all x ∈ B(x∗;ε).

So, no point “sufficiently near” x∗ has smaller f -value than x∗. A local max-
imummaximum is defined similarly, but with the inequality reversed. A stronger
notion is that x∗ is a global minimum of f which means that

f (x∗) ≤ f (x) for all x ∈Rn .

A global maximum satisfies the opposite inequality.
The definition of local minimum has a “variational character”; it concerns the

behavior of f near x∗. Due to this it is perhaps natural that Taylor’s formula, which
gives an approximation of f in such a neighborhood, becomes a main tool for char-
acterizing and finding local minima. We present Taylor’s formula, in different ver-
sions, in Section 1.3.

An extension of the notion of minimum and maximum is for constrained prob-
lems where we want, for instance, to minimize f (x) over all x lying in a given set C .
Then x∗ ∈ C is a local minimum of f over the set C , or subject to x ∈ C as we shall
say, provided no point in C in some neighborhood of x∗ has smaller f -value than
x∗. A similar extension holds for global minimum over C , and for maxima.
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Example 1.1. To make these things concrete, consider an example from plane ge-
ometry. Consider the point set C = {(x1, x2) : x1 ≥ 0 x2 ≥ 0, x1 + x2 ≤ 1} in the plane.
We want to find a point x = (x1, x2) ∈ C which is closest possible to the point a =
(3,2). This can be formulated as the minimization problem

minimize (x1 −3)2 + (x2 −2)2

subject to
x1 +x2 ≤ 1

x1 ≥ 0, x2 ≥ 0.

The function we want to minimize is f (x) = (x1 −3)2 + (x2 −2)2 which is a quadratic
function. This is the square of the distance between x and a; and minimizing the
distance or the square of the distance is equivalent (why?). A minimum here is x∗ =
(1,0), as can be seen from a simple geometric argument where we draw the normal
from (3,2) to the line x1+x2 = 1. If we instead minimize f over R2, the unique global
minimum is clearly x∗ = a = (3,2). It is also useful, and not too hard, to find these
minima analytically. ♣

In optimization one considers minimization and maximization problems. As

max{ f (x) : x ∈ S} =−min{− f (x) : x ∈ S}

it is clear how to convert a maximization problem into a minimization problem (or
vise versa). This transformation may, however, change the properties of the function
you work with. For instance, if f is convex (definitions come later!), then − f is not
convex (unless f is linear), so rewriting between minimization and maximization
may take you out of a class of “good problems”. Note that a minimum or maximum
may not exist. A main tool one uses to establish that optimal solutions really exist
is the extreme value theorem as stated next. You may want to look these notions up
in [8].

Theorem 1.2. Let C be a subset of Rn which is closed and bounded, and let f :
C → R be a continuous function. Then f attains both its (global) minimum and
maximum, so these are points x1, x2 ∈C with

f (x1) ≤ f (x) ≤ f (x2) (x ∈C ).

1.2 Some applications

It is useful to see some application areas for optimization. They are many, and here
we mention a few in some detail. The methods we will learn later will be applied to
these examples.
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1.2.1 Portfolio optimization

The following optimization problem was introduced by Markowitz in order to find
an optimal portfolio in a financial market; he later received the Nobel prize in eco-
nomics1 (in 1990) for his contributions in this area:

minimize α
∑

i , j≤n ci j xi x j −∑n
j=1µ j x j

subject to ∑n
j=1 x j = 1

x j ≥ 0 ( j ≤ n).

The model may be understood as follows. The decision variables are x1, x2, . . . , xn

where xi is the fraction of a total investment that is made in (say) stock i . Thus
one has available a set of stocks in different companies (Statoil, IBM, Apple etc.) or
bonds. The fractions xi must be nonnegative (so we consider no short sale) and add
up to 1. The function f to be minimized is

f (x) =α ∑
i , j≤n

ci j xi x j −
n∑

j=1
µ j x j .

It can be explained in terms of random variables. Let R j be the return on stock j , this
is a random variable, and let µ j = ER j be the expectation of R j . So if X denotes the
random variable X = ∑n

j=1 x j R j , which is the return on our portfolio (= mix among

investments), then EX =∑n
j=1µ j x j which is the second term in f . The minus sign in

front explains that we really want to maximize the expected return. The first term in
f is there because just looking at expected return is too simple. We want to spread
our investments to reduce the risk. The first term in f is the variance of X multiplied
by a weight factor α; the constant ci j is the covariance of Ri and R j , defined by

ci j = E(Ri −µi )(R j −µ j ).

ci i is also called the variance of Ri .
So f is a weighted difference of variance and expected return. This is what we

want to minimize. The optimization problem is to minimize a quadratic function
subject to linear constraints. We shall discuss theory and methods for such prob-
lems later.

In order to use such a model one needs to find good values for all the parameters
µ j and ci j ; this is done using historical data from the stock markets. The weight
parameter α is often varied and the optimization problem is solved for each such
“interesting” value. This makes it possible to find a so-called efficient frontier of
expectation versus variance for optimal solutions.

The Markowitz model is a useful tool for financial investments, and now exten-
sions and variations of the model exist, e.g., by using different ways of measuring
risk. All such models involve a balance between risk and expected return.

1The precise term is “Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel”
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1.2.2 Fitting a model

In many applications one has a mathematical model of some phenomenon where
the model has some parameters. These parameters represent a flexibility of the
model, and they may be adjusted so that the model explains the phenomenon best
possible.

To be more specific consider a model

y = Fα(x)

for some function Fα : Rm → R. Here α = (α1,α2, . . . ,αn) ∈ Rn is a parameter vector
(so we may have several parameters). Perhaps there are natural constraints on the
parameter, say α ∈ A for a given set A in Rn .

For instance, consider

y =α1 cos x1 +xα2
2

so here n = m = 2, α = (α1,α2) and Fα(x) = α1 cos x1 + xα2
2 where (say) α1 ∈ R and

α2 ∈ [1,2].

The general model may also be thought of as

y = Fα(x)+error

since it is usually a simplification of the system one considers. In statistics one spec-
ifies this error term as a random variable with some (partially) known distribution.
Sometimes one calls y the dependent variable and x the explaining variable. The
goal is to understand how y depends on x .

To proceed, assume we are given a number of observations of the phenomenon
given by points

(x i , y i ) (i = 1,2, . . . ,m).

meaning that one has observed y i corresponding to x = x i . We have m such obser-
vations. Usually (but not always) we have m ≥ n. The model fit problem is to adjust
the parameter α so that the model fits the given data as good as possible. This leads
to the optimization problem

minimize
m∑

i=1
(y i −Fα(x i ))2 subject to α ∈ A.

The optimization variable is the parameter α. Here the model error is quadratic
(corresponding to the Euclidean norm), but other norms are also used.

This optimization problem above is a constrained nonlinear optimization prob-
lem. When the function Fα depends linearly on α, which often is the case in prac-
tice, the problem becomes the classical least squares approximation problem which
is treated in basic linear algebra courses. The solution is then characterized by a
certain linear system of equations, the so-called normal equations.
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1.2.3 Maximum likelihood

A very important problem in statistics, arising in many applications, is parameter
estimation and, in particular, maximum likelihood estimation. It leads to optimiza-
tion.

Let Y be a “continuous” real-valued random variable with probability densisty
px (y). Here x is a parameter (often one uses other symbols for the parameter, like
ξ, θ etc.). For instance, if Y is a normal (Gaussian) variable with expectation x and

variance 1, then px (y) = 1p
2π

e−(y−x)2/2 and

P(a ≤ Y ≤ b) =
∫ b

a

1p
2π

e−(y−x)2/2d y

where P denotes probability.
Assume Y is the outcome of an experiment, and that we have observed Y = y

(so y is a known real number or a vector, if several observations were made). On
the basis of y we want to estimate the value of the parameter x which “explains”
best possible our observation Y = y . We have now available the probability density
px (·). The function x → px (y), for fixed y , is called the likelihood function. It gives
the “probability mass” in y as a function of the parameter x. The maximum likeli-
hoodmaximum likelihood problem is to find a parameter value x which maximizes
the likelihood, i.e., which maximizes the probability of getting precisely y . This is an
optimization problem

max
x

px (y)

where y is fixed and the optimization variable is x. We may here add a constraint
on x, say x ∈C for some set C , which may incorporate possible knowledge of x and
assure that px (y) is positive for x ∈C . Often it is easier to solve the equivalent opti-
mization problem of maximizing the logarithm of the likelihood function

max
x

ln px (y)

This is a nonlinear optimization problem. Often, in statistics, there are several pa-
rameters, so x ∈Rn for some n, and we need to solve a nonlinear optimization prob-
lem in several variables, possibly with constraints on these variables. If the likeli-
hood function, or its logarithm, is a concave function, we have (after multiplying by
−1) a convex optimization problem. Such problems are easier to solve than general
optimization problems. This will be discussed later.

As a specific example assume we have the linear statistical model

y = Ax +w

where A is a given m ×n matrix, x ∈ Rn is an unknown parameter, w ∈ Rm is a ran-
dom variable (the “noise”), and y ∈Rn is the observed quantity. We assume that the
components of w , i.e., w1, w2, . . . , wm are independent and identically distributed
with common density function p on R. This leads to the likelihood function

px (y) =
m∏

i=1
p(yi −ai x)
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where ai is the i ’th row in A. Taking the logarithm we obtain the maximum likeli-
hood problem

max
m∑

i=1
ln p(yi −ai x).

In many applications of statistics is is central to solve this optimization problem
numerically.
Example 1.3. Let us take a look at a model take from physics for desintegration of
muons. The angle θ in electron radiation for desintegration of muons has a proba-
bility density

p(x;α) = 1+αx

2
(1.1)

for x ∈ [−1,1], where x = cosθ, and whereα is an unknown parameter in [−1,1]. Our
goal is to estimateα from n measurements x = (x1, . . . , xn). In this case the likelihood
function, which we seek to maximize, takes the form g (α) = ∏n

i=1 p(xi ;α). Taking
logarithms and multiplying by −1, our problem is to minimize

f (α) =− ln g (α) =− ln

(
n∏

i=1
p(xi ;α)

)
=−

n∑
i=1

ln((1+αxi )/2). (1.2)

We compute

f ′(α) =−
n∑

i=1

xi /2

(1+αxi )/2
=−

n∑
i=1

xi

1+αxi

f ′′(α) =
n∑

i=1

x2
i

(1+αxi )2

We see that f ′′(α) ≥ 0, so that f is convex. As explained, this will make the problem
easier to solve using numerical methods. If we try to solve f ′(α) = 0 we will run
into problems, however. We see, however, that f ′(α) → 0 when α→±∞, and since

xi
1+αxi

= 1
1/xi+α , we must have that f ′(α) → ∞ when α → −1/xi from below, and

f ′(α) → −∞ when α → −1/xi from above. It is therefore clear that f has exactly
one minimum in every interval of the form [−1/xi ,−1/xi+1] when we list the xi in
increasing order. It is not for sure that there is a minimum within [−1,1] at all. If all
measurements have the same sign we are guaranteed to find no such point. In this
case the minimum must be one of the end points in the interval. We will later look
into numerical method for finding this minimum. ♣

1.2.4 Optimal control problems

Recall that a discrete dynamical system is an equation

x t+1 = ht (x t ) (t = 0,1, . . .)

where x t ∈Rn , x0 is the initial solution, and ht is a given function for each t . We here
think of t as time and x t is the state of the process at time t . For instance, let n = 1
and consider ht (x) = ax (t = 0,1, . . .) for some a ∈ R. Then the solution is x t = at x0.
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Another example is when A is an n ×n matrix, x t ∈ Rn and ht (x) = Ax for each t .
Then the solution is x t = At x0. For the more general situation, where the system
functions ht may be different, it may be difficult to find an explicit solution for x t .
Numerically, however, we compute x t simply in a for-loop by computing x0, then
x1 = f1(x0) and then x2 = f2(x1) etc.

Now, consider a dynamical system where we may “control” the system in each
time step. We restrict the attention to a finite time span, t = 0,1, . . . ,T . A proper
model is then

x t+1 = ht (x t ,u t ) (t = 0,1, . . . ,T −1)

where x t is the state of the system at time t and the new variable u t is the control at
time t . We assume x t ∈Rn and u t ∈Rm for each t (but these things also work if these
vectors lie in spaces of different dimensions). Thus, when we choose the controls
u0,u1, . . . ,uT−1 and x0 is known, the sequence {x t } of states is uniquely determined.
Next, assume there are given functions ft : Rn ×Rm → R that we call cost functions.
We think of ft (x t ,u t ) as the “cost” at time t when the system is in state x t and we
choose control u t . The optimal controloptimal control problem is

minimize fT (xT )+∑T−1
t=0 ft (x t ,u t )

subject to
x t+1 = ht (x t ,u t ) (t = 0,1, . . . ,T −1)

(1.3)

where the control is the sequence (u0,u1, . . . ,uT−1) to be determined. This prob-
lem arises an many applications, in engineering, finance, economics etc. We now
rewrite this problem. First, let u = (u1,u2, . . . ,uT ) ∈ RN where N = T n. Since, as we
noted, x t is uniquely determined by u, there is a function v t such that x t = v t (u)
(t = 1,2, . . . ,T ); x0 is given. Therefore the total cost may be written

fT (xT )+
T−1∑
t=0

ft (x t ,u t ) = fT (v T (u))+
T−1∑
t=0

ft (v t (u),u t ) := f (u)

which is a function of u. Thus, we see that the optimal control problem may be
transformed to the unconstrained optimization problem

min
u∈RN

f (u)

Sometimes there may be constraints on the control variables, for instance that they
each lie in some interval, and then the transformation above results in a constrained
optimization problem.

1.2.5 Linear optimization

This is not an application, but rather a special case of the general nonlinear opti-
mization problem where all functions are linear. A linear optimizationlinear opti-
mization problem, also called linear programming, has the form
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minimize c T x
subject to

Ax = b, x ≥ 0.
(1.4)

Here A is an m ×n matrix, b ∈ Rm and x ≥ 0 means that xi ≥ 0 for each i ≤ n.
So in linear optimization one minimizes (or maximizes) a linear function subject
to linear equations and nonnegativity on the variables. Actually, one can show any
problem with constraints that are linear equations and/or linear inequalities may
be transformed into the form above. Such problems have a wide range of applica-
tion in science, engineering, economics, business etc. Applications include portfolio
optimization and many planning problems for e.g. production, transportation etc.
Some of these problems are of a combinatorial nature, but linear optimization is a
main tool here as well.

We shall not treat linear optimization in detail here since this is the topic of a
separate course, INF-MAT3370 Linear optimization. In that course one presents
some powerful methods for such problems, the simplex algorithm and interior point
methods. In addition one considers applications in network flow models and game
theory.

1.3 Multivariate calculus and linear algebra

We first recall some useful facts from linear algebra.
The spectral theorem says that if A is a real symmetric matrix, then there is an

orthogonal matrix P (i.e., its columns are orthonormal) and a diagonal matrix D
such that

A = PDP T .

The diagonal of D contains the eigenvalues of A, and A has an orthonormal set of
eigenvectors (the columns of P ).

A real symmetric matrix is positive semidefinitepositive semidefinite2 if xT Ax ≥ 0
for all x ∈Rn . The following statements are equivalent

(i) A is positive semidefinite,
(ii) all eigenvalues of A are nonnegative,
(iii) A =W T W for some matrix W .

Similarly, a real symmetric matrix is positive definitepositive definite if xT Ax > 0 for
all nonzero x ∈Rn . The following statements are equivalent

(i) A is positive definite,
(ii) all eigenvalues of A are positive,
(iii) A =W T W for some invertible matrix W .

Every positive definite matrix is therefore invertible.

2See Section 7.2 in [7]
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We also recall some central facts from multivariate calculus. They will be used
repeatedly in these notes. Let f : Rn → R be a real-valued function defined on Rn .
The gradientgradient of f at x is the n-tuple

∇ f (x) =
(
∂ f (x)

∂x1
,
∂ f (x)

∂x2
, . . . ,

∂ f (x)

∂xn

)
.

We will always identify an n-tuple with the corresponding column vector3. Of course,
the gradient only exists if all the partial derivatives exist. Second order information
is contained in a matrix: assuming f has second order partial derivatives we define
the Hessian matrixHessian matrix4 ∇2 f (x) as the n×nï¿½matrix whose (i , j )’th entry
is

∂2 f (x)

∂xi∂x j
.

If these second order partial derivatives are continuous, then we may switch the
order in the derivations, and ∇2 f (x) is a symmetric matrix.

For vector-valued functions we also need the derivative. Consider the vector-
valued function F given by

F (x) =


F1(x)
F2(x)

...
Fn(x)


so Fi :Rn →R is the i th component function of F . F ′ denotes the Jacobi matrixJacobi
matrix5, or simply the derivative, of F

F ′(x) =


∂F1(x)
∂x1

∂F1(x)
∂x2

· · · ∂F1(x)
∂xn

∂F2(x)
∂x1

∂F2(x)
∂x2

· · · ∂F1(x)
∂xn

...
∂Fn (x)
∂x1

∂Fn (x)
∂x2

· · · ∂Fn (x)
∂xn


The i th row of this matrix is therefore the gradient of Fi , now viewed as a row vector.

Next we recall Taylor’s theorems from multivariate calculus 6:

Theorem 1.4 (First order Taylor theorem). Let f : Rn → R be a function having
continuous partial derivatives in some ball B(x ;r ). Then, for each h ∈ Rn with
‖h‖ < r there is some t ∈ (0,1) such that

f (x +h) = f (x)+∇ f (x + th)T h.

The next one is known as Taylor’s formula, or the second order Taylor’s theorem7:

3This is somewhat different from [8], since the gradient there is always considered as a row vector
4See Section 5.9 in [8]
5See Section 2.6 in [8]
6This theorem is also the mean value theorem of functions in several variables, see Section 5.5 in [8]
7See Section 5.9 in [8]
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Theorem 1.5 (Second order Taylor theorem). Let f : Rn → R be a function hav-
ing second order partial derivatives that are continuous in some ball B(x ;r ).
Then, for each h ∈Rn with ‖h‖ < r there is some t ∈ (0,1) such that

f (x +h) = f (x)+∇ f (x)T h + 1

2
hT ∇2 f (x + th)h.

This may be shown by considering the one-variable function g (t ) = f (x+th) and
applying the chain rule and Taylor’s formula in one variable.

There is another version of the second order Taylor theorem in which the Hes-
sian is evaluated in x and, as a result, we get an error term. This theorem shows how
f may be approximated by a quadratic polynomial in n variables8:

Theorem 1.6 (Second order Taylor theorem, version 2). Let f : Rn → R be a
function having second order partial derivatives that are continuous in some ball
B(x ;r ). Then there is a function ε :Rn →R such that, for each h ∈Rn with ‖h‖ < r ,

f (x +h) = f (x)+∇ f (x)T h + 1

2
hT ∇2 f (x)h +ε(h)‖h‖2.

Here ε(y) → 0 when y → 0.

The very useful approximations we get from Taylor’ theorems can thus be sum-
marized as follows:

Taylor approximations:
First order: f (x +h) = f (x)+∇ f (x)T h +O(‖h‖)

≈ f (x)+∇ f (x)T h.
Second order: f (x +h) = f (x)+∇ f (x)T h + 1

2 hT ∇2 f (x)h +O(‖h‖2)
≈ f (x)+∇ f (x)T h + 1

2 hT ∇2 f (x)h.

We introduce notation for these approximations

T 1
f (x ; x +h) = f (x)+∇ f (x)T h

T 2
f (x ; x +h) = f (x)+∇ f (x)T h + 1

2 hT ∇2 f (x)h

As we shall see, one can get a lot of optimization out of these approximations!
We also need a Taylor theorem for vector-valued functions, which follows by ap-

plying Taylor’ theorem above to each component function:

8See Section 5.9 in [8]
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Theorem 1.7 (First order Taylor theorem for vector-valued functions). Let F :
Rn → Rm be a vector-valued function which is continuously differentiable in a
neighborhood N of x . Then

F (x +h) = F (x)+F ′(x)h +O(‖h‖)

when x +h ∈ N .

Finally, if F : Rn → Rm and G : Rk → Rn we define the composition H = F ◦G as
the function H : Rk → Rm by H(x) = F (G(x)). Then, under natural differentiability
assumption the following chain rulechain rule9 holds:

H ′(x) = F ′(G(x))G ′(x).

Here the right-hand side is a product of two matrices, the respective Jacobi matrices
evaluated in the right points.

Finally, we discuss some notions concerning the convergence of sequences.

Definition 1.8 (Linear convergence). We say that a sequence {xk }∞k=1 converges
to x∗ linearlylinear convergence (or that the convergence speed in linear) if there
is a γ< 1 such that

‖xk+1 −x∗‖ ≤ γ‖xk −x∗‖ (k = 0,1, . . .).

A faster convergence rate is superlinear convergencesuperlinear convergence which
means that

lim
k→∞

‖xk+1 −x∗‖/‖xk −x∗‖ = 0

A special type of superlinear convergence is quadratic convergence where

‖xk+1 −x∗‖ ≤ γ‖xk −x∗‖2 (k = 0,1, . . .)

for some γ< 1.

Exercises for Chapter 1

1. Give an example of a function f :R→R with 10 global minima.

2. Consider the function f (x) = x sin(1/x) defined for x > 0. Find its local minima.
What about global minimum?

3. Let f : X → R+ be a function (with nonnegative function values). Explain why it
is equivalent to minimize f over x ∈ X or minimize f 2(x) over X .

9See Section 2.7 in [8]
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4. In Example 1.2.3 we mentioned that optimizing the function px (y) is equivalent
to optimizing the function ln px (y). Explain why maximizing/minimizing g is the
same as maximizing/minimizing ln g for any positive function g .

5. Consider f : R2 → R given by f (x) = (x1 −3)2 + (x2 −2)2. How would you explain
to anyone that x∗ = (3, 2) is a minimum point?

6. The level sets of a function f : R2 → R are sets of the form Lα = x ∈ R2 : f (x) =α}.
Let f (x) = 1

4 (x1 −1)2 + (x2 −3)2. Draw the level sets in the plane for α= 10,5,1,0.1.

7. The sublevel set of a function f : Rn → R is the set Sα( f ) = {x ∈ R2 : f (x) ≤ α},
where α ∈R. Assume that inf{ f (x) : x ∈Rn} = η exists.

a. What happens to the sublevel sets Sα as α decreases? Give an example.

b. Show that if f is continuous and there is an x ′ such that withα= f (x ′) the
sublevel set Sα( f ) is bounded, then f attains its minimum.

8. Consider the portfolio optimization problem in Subsection 1.2.1.

a. Assume that ci j = 0 for each i 6= j . Find, analytically, an optimal solution.
Describe the set of all optimal solutions.

b. Consider the special case where n = 2. Solve the problem (hint: eliminate
one variable) and discuss how minimum point depends on α.

9. Later in these notes we will need the expression for the gradient of functions
which are expressed in terms of matrices.

a. Let f :Rn →R be defined by f (x) = q T x = xT q , where q is a vector. Show
that ∇ f (x) = q , and that ∇2 f (x) = 0.

b. Let f : Rn → R be the quadratic function f (x) = (1/2)xT Ax , where A is
symmetric. Show that ∇ f (x) = Ax , and that ∇2 f (x) = A.

c. Show that, with f defined as in b., but with A not symmetric, we obtain
that ∇ f (x) = 1

2 (A+ AT )x , and ∇2 f = 1
2 (A+ AT ). Verify that these formulas are

compatibe with what you found in b. when A is symmetric.

10. Consider f (x) = f (x1, x2) = x2
1+3x1x2−5x2

2+3. Determine the first order Taylor
approximation to f at each of the points (0,0) and (2,1).

11. Let A =
(
1 2
2 8

)
. Show that A is positive definite. (Try to give two different

proofs.)

12. Show that if A is positive definite, then its inverse is also positive definite.

13
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Chapter 2
A crash course in convexity

Convexity is a branch of mathematical analysis dealing with convex sets and convex
functions. It also represents a foundation for optimization.

We just summarize concepts and some results. For proofs one may consult [4]
or [14], see also [1].

2.1 Convex sets

A set C ⊆ Rn is called convex if (1−λ)x +λy ∈ C whenever x , y ∈ C and 0 ≤ λ ≤ 1.
Geometrically, this means that C contains the line segment between each pair of
points in C , so, loosely speaking, a convex set contains no “holes”.

For instance, the ball B(a;δ) = {x ∈ Rn : ‖x −a‖ ≤ δ} is a convex set. Let us show
this. Recall the triangle inequality which says that ‖u + v‖ ≤ ‖u‖+ ‖v‖ whenever
u, v ∈Rn . Let x , y ∈ B(a;δ) and λ ∈ [0,1]. Then

‖((1−λ)x +λy)−a‖ = ‖(1−λ)(x −a)+λ(y −a)‖
≤ ‖(1−λ)(x −a)‖+‖λ(y −a)‖
= (1−λ)‖x −a‖+λ‖y −a‖
≤ (1−λ)δ+λδ= δ.

Therefore B(a;δ) is convex.
Every linear subspace is also a convex set, as well as the translate of every sub-

space (which is called an affine set). Some other examples of convex sets in R2 are
shown in Figure 2.1. We will come back to why each of these sets are convex later.
Another important property is that the intersection of a family of convex sets is a
convex set.

By a linear system we mean a finite system of linear equations and/or linear in-
equalities involving n variables. For example

x1 +x2 = 3, x1 ≥ 0, x2 ≥ 0
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(c) The area x4 + y4 ≤ 1

Figure 2.1: Examples of some convex sets.

is a linear system in the variables x1, x2. The solution set is the set of points (x1,3−x1)
where 0 ≤ x1 ≤ 3. The set of solutions of a linear system is called a polyhedron. These
sets often occur in optimization. Thus, a polyhedron has the form

P = {x ∈Rn : Ax ≤ b}

where A ∈Rm,n and b ∈Rm (m is arbitrary, but finite) and ≤ means componentwise
inequality. There are simple techniques for rewriting any linear system in the form
Ax ≤ b.

Proposition 2.1. Every polyhedron is a convex set.

Proof: Assume that P is the polyhedron given by all points where Ax ≤ b. Assume
that x and y lie in P , so that Ax ≤ b, and Ay ≤ b. We then have that

A(λx + (1−λ)y) =λAx + (1−λ)Ay ≤λb + (1−λ)b = b.

This shows that λAx + (1−λ)Ay also lies in P , so that P is convex.
The square from Figure 2.1(a) is defined by the inequalities −1 ≤ x, y ≤ 1. It is

therefore a polyhedron, and therefore convex. The next result shows that convex
sets are preserved under linear maps.

Proposition 2.2. If T :Rn →Rm is a linear transformation, and C ⊆Rn is a convex
set, then the image T (C ) of this set is also convex.

2.2 Convex functions

The notion of a convex function also makes sense for real-valued functions of several
variables. Consider a real-valued function f : C → R where C ⊆ Rn is a convex set.
We say that f is convex provided that

f ((1−λ)x +λy) ≤ (1−λ) f (x)+λ f (y) (x , y ∈C , 0 ≤λ≤ 1) (2.1)
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(This inequality holds for all x , y and λ as specified). Due to the convexity of C ,
the point (1−λ)x +λy lies in C , so the inequality is well-defined. The geometrical
interpretation in one dimension is that whenever you take two points on the graph
of f , say (x, f (x)) and (y, f (y)), the graph of f restricted to the line segment [x, y]
lies below the line segment in Rn+1 between the two chosen points. A function g is
called concave if −g is convex.

For every linear function we have that f ((1−λ)x +λy) = (1−λ) f (x)+λ f (y), so
that every linear function is convex. Some other examples of convex functions in n
variables are

• f (x) = L(x)+αwhere L is a linear function from Rn into R (a linear functional)
and α is a real number. In fact, for such functions we have that f ((1−λ)x +
λy) = (1−λ) f (x)+λ f (y), just as for linear functions. Functions on the form
f (x) = L(x)+α are called affine functions, and may be written on the form
f (x) = c T x +α for a suitable vector c .

• f (x) = ‖x‖ (Euclidean norm). That this is convex can be proved by writing
‖(1−λ)x +λy‖ ≤ ‖(1−λ)x‖+‖λy‖ = (1−λ)‖x‖+λ‖y‖. In fact, the same argu-
ment can be used to show that every norm defines a convex function. Such an
example is the l1-norm, also called the sum norm, defined by ‖x‖1 =∑n

j=1 |x j |.

• f (x) = e
∑n

j=1 x j (see Exercise 13).

• f (x) = eh(x) where h :Rn →R is a convex function (exercise 6).

• f (x) = maxi gi (x) where gi : Rn → R is an affine function (i ≤ m). This means
that the pointwise maximum of affine functions is a convex function. Note
that such convex functions are typically not differentiable everywhere. A more
general result is that the pointwise supremum of an arbitrary family of affine
functions (or even convex functions) is convex. This is a very useful fact in
convexity and its applications.

The following result is an exercise to prove, and it gives a method for proving
convexity of a function.

Proposition 2.3. Assume that f : Rn → R is convex and H : Rm → Rn is affine.
Then the composition f ◦H is convex, where ( f ◦H)(x) := f (H(x)).

The next result is often used, and is called Jensen’s inequality.. It can be proved
using induction.

Theorem 2.4 (Jensen’s inequality). Let f : C → R be a convex function defined
on a convex set C ⊆ Rn . If x1, x2 . . . , xr ∈ C and λ1, . . . ,λr ≥ 0 satisfy

∑r
j=1λ j = 1,

then

f (
r∑

j=1
λ j x j ) ≤

r∑
j=1

λ j f (x j ). (2.2)
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A point of the form
∑r

j=1λ j x j , where the λ j ’s are nonnegative and sum to 1, is

called a convex combination of the points x1, x2 . . . , xr . One can show that a set is
convex if and only if it contains all convex combinations of its points.

Finally, one connection between convex sets and convex functions is the follow-
ing fact whose proof is an exercise.

Proposition 2.5. Let C ⊆ Rn be a convex set and consider a convex function f :
C →R. Let α ∈R. Then the “sublevel” set

{x ∈C : f (x) ≤α}

is a convex set.

2.3 Properties of convex functions

A convex function may not be differentiable in every point. However, one can show
that a convex function always has one-sided directional derivatives at any point. But
what about continuity?

Theorem 2.6. Let f : C → R be a convex function defined on an open convex set
C ⊆Rn . Then f is continuous on C .

Proof: Prove this here.
However, a convex function may be discontinuous in points on the boundary of

its domain. For instance, the function f : [0,1] →R given by f (0) = 1 and f (x) = 0 for
x ∈ (0,1] is convex, but discontinuous at x = 0. Next we give a useful technique for
checking that a function is convex.

Theorem 2.7. Let f be a real-valued function defined on an open convex set C ⊆
Rn and assume that f has continuous second-order partial derivatives on C .

Then f is convex if and only if the Hessian matrix ∇2 f (x) is positive semidefi-
nite for each x ∈C .

Example 2.8. Using Theorem 2.7 it is straightforward to prove that the remaining
sets from Figure 2.1 are convex. They can be written as sublevel sets of the functions

f (x, y) = x2

4 + y2, and f (x, y) = x4+ y4. For the first of these the level sets are ellipses,
and are shown in Figure 2.2, together with f itself. One can quickly verify that the
Hessian matrices of these functions are positive semidefinite. It follows from Propo-
sition 2.5 that the corresponding sets are convex. ♣

An important class of convex functions consists of (certain) quadratic functions.
Let A ∈Rn×n be a symmetric matrix which is positive semidefinite and consider the
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Figure 2.2: A function and its level curves.

quadratic function f :Rn →R given by

f (x) = (1/2) xT Ax −bT x = (1/2)
∑
i , j

ai j xi x j −
n∑

j=1
b j x j .

(If A = 0, then the function is linear, and it may be strange to call it quadratic. But we
still do this, for simplicity.) Then (Exercise 9 in Chapter 1.3) the Hessian matrix of f
is A, i.e., ∇2 f (x) = A for each x ∈Rn . Therefore, by Theorem 2.7 is a convex function.

We remark that sometimes it may be easy to check that a symmetric matrix A is
positive semidefinite. A (real) symmetric n ×n matrix A is called diagonally domi-
nant if |ai i | ≥ ∑

j 6=i |ai j | for i = 1, . . . ,n. These matrices arise in many applications,
e.g. splines and differential equations. It can be shown that every symmetric diago-
nally dominant matrix is positive semidefinite. For a simple proof of this fact using
convexity, see [3]. Thus, we get a simple criterion for convexity of a function: check
if the Hessian matrix ∇2 f (x) is diagonally dominant for each x . Be careful here: this
matrix may be positive semidefinite without being diagonally dominant!

We now look at differentiability properties of convex functions.

Theorem 2.9. Let f be a real-valued convex function defined on an open convex
set C ⊆ Rn . Assume that all the partial derivatives ∂ f (x)/∂x1, . . . ,∂ f (x)/∂xn exist
at a point x ∈C . Then f is differentiable at x .

A convex function may not be differentiable everywhere, but it is differentiable
“almost everywhere”. More precisely, for a convex function defined on an open con-
vex set inRn , the set of points for which f is not differentiable has Lebesgue measure
zero. We do not go into further details on this here, but refer to e.g. [5] for a proof
and a discussion.
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Another characterization of convex functions that involves the gradient may now
be presented.

Theorem 2.10. Let f : C →Rbe a differentiable function defined on an open con-
vex set C ⊆Rn . Then the following conditions are equivalent:

(i ) f is convex.
(i i ) f (x) ≥ f (x0)+∇ f (x0)T (x −x0) for all x , x0 ∈C .
(i i i ) (∇ f (x)−∇ f (x0))T (x −x0) ≥ 0 for all x , x0 ∈C .

This theorem is important. Property (ii) says that the first-order Taylor approxi-
mation of f at x0 (which is the right-hand side of the inequality) always underesti-
mates f . This result has interesting consequences for optimization as we shall see
later.

Exercises for Chapter 2

1. We recall that A ∩B consists of all points which lie both in A and B . Show that
A∩B is convex when A and B are.

2. Suppose that f is a convex function defined on R which also is positive. Show
that g (x) = ( f (x))n also is convex.

3. (Trial Exam UIO V2012) Assume that f , g are convex, positive, and increasing
functions, both two times differentiable and defined onR. Show that h(x) = f (x)g (x)
is convex.
Hint: Look at the second derivative of h(x).

4. Show that the previous result also holds for any f , g which are convex, positive,
and increasing functions (i.e. they need not be differentiable).

5. (Exam UIO V2012)

a. Let f and g both be two times (continuously) differentiable functions de-
fined on R. Suppose also that f and g are convex, and that f is increasing.
Show that h(x) = f (g (x)) is convex. This states that, in particular the func-
tion f (x) = eh(x) (which we previsously just stated as convex without proof),
is convex.
Hint: Compute the second derivative of h(x), and consider its sign.

b. Construct two convex functions f , g so that h(x) = f (g (x)) is not convex.

6. Let f be a convex function defined on C ⊂Rn . Show that g (x) = e f (x) also is con-
vex (i.e. the result from the previous exercise holds also when f is not differentiable).

7. Let S = {(x, y, z) : z ≥ x2+ y2} ⊂R3. Sketch the set and verify that it is a convex set.

8. Let f : S →R be a differentiable function, where S is an open set in R. Check that
f is convex if and only if f ′′(x) ≥ 0 for all x ∈ S.

9. Prove Proposition 2.3.

10. Prove Proposition 2.5.
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11. Explain how you can write the LP problem max {c T x : Ax ≥ b, B x = d , x ≥ 0} as
an LP problem of the form

max{c T x : H x ≤ h, x ≥ 0}

for suitable matrix H and vector h.

12. Let x1, . . . , x t ∈Rn and let C be the set of vectors of the form

t∑
j=1

λ j x j

where λ j ≥ 0 for each j = 1, . . . , t , and
∑t

j=1λ j = 1. Show that C is convex. Make a

sketch of such a set in R3.

13. Show that f (x) = e
∑n

j=1 x j is a convex function.

14. Assume that f and g are convex functions defined on an interval I . Which of
the following functions are convex or concave?

a. λ f where λ ∈R,

b. min{ f , g },

c. | f |.

15. Let f : [a,b] →R be a convex function. Show that

max{ f (x) : x ∈ [a,b]} = max{ f (a), f (b)}

i.e., a convex function defined on closed real interval attains its maximum in one of
the endpoints.

16. (Trial Exam UIO V2012) Show that max{ f , g } is a convex function when f and g
are convex (we define max{ f , g } by max{ f , g }(x) = max( f (x), g (x)))).

17. Let f : 〈0,∞〉→R and define the function g : 〈0,∞〉→R by g (x) = x f (1/x). Why
is the function x → xe1/x convex?

18. Let C ⊆ Rn be a convex set and consider the distance function dC defined by
dC (x) = inf{‖x − y‖ : y ∈C }. Show that dC is a convex function.
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Chapter 3
Nonlinear equations

A basic mathematical problem is to solve a system of equations in several unknowns
(variables). There are numerical methods that can solve such equations, at least
within a small error tolerance. We shall briefly discuss such methods here; for fur-
ther details, see [6, 11].

3.1 Equations and fixed points

In linear algebra one works a lot with linear equations in several variables, and Gaus-
sian elimination is a central method for solving such equations. There are also other
faster methods, so-called iterative methods, for linear equations. But what about
nonlinear equations? For instance, consider the system in two variables x1 and x2:

x2
1 −x1x−3

2 +cos x1 = 1
5x4

1 +2x3
1 − tan(x1x8

2) = 3

Clearly, such equations can be very hard to solve. The general problem is to solve
the equation

F (x) = 0 (3.1)

for a given function F :Rn →Rn . If F (x) = 0 we call x a root of F (or of the equation).
The example above is equivalent to finding roots in F (x) = (F1(x),F2(x)) where

F1(x) = x2
1 −x1x−3

2 +cos x1 −1
F2(x) = 5x4

1 +2x3
1 − tan(x1x8

2)−3

In particular, if F (x) = Ax−b where A is an n×n matrix and b ∈Rn , then we are back
to linear equations (a square system). More generally one may consider equations
G(x) = 0 where G :Rn →Rm , but we here only discuss the case m = n.

Often the problem F (x) = 0 has the following form, or may be rewritten to it:

K (x) = x . (3.2)
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for some function K :Rn →Rn . This corresponds to the special choice F (x) = K (x)−
x . A point x ∈ Rn such that x = K (x) is called a fixed point of the function K . In
finding such a fixed point it is tempting to use the following iterative method: choose
a starting point x0 and repeat the following iteration

xk+1 = K (xk ) for k = 1,2, . . . (3.3)

This is called a fixed-point iteration. We note that if K is continuous and this pro-
cedure converges to some point x∗, then x∗ must be a fixed point. The fixed-point
iteration is an extremely simple algorithm, and very easy to implement. Perhaps sur-
prisingly, it also works very well for many such problems. Let ε > 0 denote a small
error tolerance used for stopping the process, e.g. 10−6.

Fixed-point algorithm:
1. Choose an initial point x0, let x = x0 and err = 1.
2. while err > ε do

(i) Compute x1 = K (x)
(ii) Compute err = ‖x1 −x‖
(iii) Update x := x1

When does the fixed-point iteration work? Let ‖ · ‖ be a fixed norm, e.g. the
Eulidean norm, on Rn . We say that the function K :Rn →Rn is a contraction if there
is a constant 0 ≤ c < 1 such that

‖K (x)−K (y)‖ ≤ c‖x − y‖ (x , y ∈Rn).

We also say that K is c-Lipschitz in this case. The following theorem is called the
Banach contraction principle. It also holds in Banach spaces, i.e., complete normed
vector spaces (possibly infinite-dimensional).

Theorem 3.1. Assume that K is c-Lipschitz with 0 < c < 1. Then K has a unique
fixed point x∗. For any starting point x0 the fixed-point iteration (3.3) generates a
sequence {xk }∞k=0 that converges to x∗. Moreover

‖xk+1 −x∗‖ ≤ c‖xk −x∗‖ for k = 0,1, . . . (3.4)

so that
‖xk −x∗‖ ≤ ck‖x0 −x∗‖.

Proof: First, note that if both x and y are fixed points of K , then

‖x − y‖ = ‖K (x)−K (y)‖ ≤ c‖x − y‖

24



which means that x = y (as c < 1); therefore K has at most one fixed point. Next, we
compute

‖xk+1 −xk‖ = ‖K (xk )−K (xk−1)‖ ≤ c‖xk −xk−1‖ = ·· · ≤ ck‖x1 −x0‖
so

‖xm −x0‖ = ‖∑m−1
k=0 (xk+1 −xk )‖ ≤∑m−1

k=0 ‖xk+1 −xk‖
≤ (

∑n−1
k=0 ck )‖x1 −x0‖ ≤ (1/(1− c))‖x1 −x0‖

From this we derive that {xk } is a Cauchy sequence; as we have

‖x s+m −x s‖ = ‖K (x s+m−1)−K (x s−1)‖ ≤ c‖x s+m−1 −x s−1‖ = ·· ·
≤ c s‖xm −x0‖ ≤ (c s /(1− c))‖x1 −x0‖.

and 0 < c < 1. Any Cauchy sequence in Rn has a limit point, so xm → x∗ for some
x∗ ∈Rn . We now prove that the limit point x∗ is a (actually, the) fixed point:

‖x∗−K (x∗)‖ ≤ ‖x∗−xm‖+‖xm −K (x∗)‖
= ‖x∗−xm‖+‖K (xm−1)−K (x∗)‖
≤ ‖x∗−xm‖+c‖xm−1 −x∗‖

and letting m →∞ here gives ‖x∗−K (x∗)‖ ≤ 0 so x∗ = K (x∗) as desired.
Finally,

‖xk+1 −x∗‖ = ‖K (xk )−K (x∗)‖ ≤ c‖xk −x∗‖ ≤ ck+1‖x0 −x∗‖
which completes the proof.

We see that xk → x∗ linearly, and that Equation (3.4) gives an estimate on the
convergence speed.

3.2 Newton’s method

We return to the main problem (3.1). Our goal is to present Newton’s method, a
highly efficient iterative method for solving this equation. The method constructs a
sequence

x0, x1, x2, . . .

in Rn which, hopefully, converges to a root x∗ of F , so F (x∗) = 0. The idea is to
linearize F at the current iterate xk and choose the next iterate xk+1 as a zero of this
linearized function. The first order Taylor approximation of F at xk is

T 1
F (xk ; x) = F (xk )+F ′(xk )(x −xk ).

We solve T 1
F (xk ; x) = 0 for x and define the next iterate as xk+1 = x . This gives

xk+1 = xk −F ′(xk )−1F (xk ) (3.5)

which leads to Newton’s method. One here assumes that the derivative F ′ is known
analytically. Note that we do not (and hardly ever do!) compute the inverse of the
matrix F ′.
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Newton’s method for nonlinear equations:
1. Choose an initial point x0.
2. For k = 0,1, . . . do

(i) Find the direction p by solving F ′(xk )p =−F (xk )
(ii) Update: xk+1 = xk +p

In the main step, which is to compute p , one needs to solve an n ×n linear sys-
tem of equations where the coefficient matrix is the Jacobi matrix of F , evaluated
at xk . In MAT1110 [8] we implemented the following code for Newton’s method for
nonlinear equations:

function x=newtonmult(x0,F,J)
% Performs Newtons method in many variables
% x: column vector which contains the start point
% F: computes the values of F
% J: computes the Jacobi matrix
epsilon=0.0000001; N=30; n=0;
x=x0;
while norm(F(x)) > epsilon && n<=N
x=x-J(x)\F(x);
fval = F(x);
%fprintf(’itnr=%2d x=[%13.10f,%13.10f] F(x)=[%13.10f,%13.10f]\n’,...
% n,x(1),x(2),fval(1),fval(2))
n = n + 1;

end

This code also terminates after a given number of iterations, and when a given ac-
curacy is obtained. Note that this function should work for any function F , since it
is a parameter to the function.

The convergence of Newton’s method may be analyzed using fixed point theory
since one may view Newton’s method as a fixed point iteration. Observe that the
Newton iteration (3.5) may be written

xk+1 =G(xk )

where G is the function
G(x) = x −F ′(x)−1F (x)

From this it is possible to show that if the starting point is sufficiently close to the
root, then Newton’s method will converge to this root at a linear convergence rate.
With more clever arguments one may show that the convergence rate of Newton’s
method is even faster: it has superlinear convergence. Actually, for many functions
one even has quadratic convergence rate. The proof of the following convergence
theorem relies purely on Taylor’s theorem.
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Theorem 3.2. Assume that Newton’s method with initial point x0 produces a se-
quence {xk }∞k=0 which converges to a solution x∗ of (3.1). Then the convergence
rate is superlinear.

Proof: From Taylor’s theorem for vector-valued functions, Theorem 1.7, in the
point xk we have

0 = F (x∗) = F (xk + (x∗−xk )) = F (xk )+F ′(xk )(x∗−xk )+O(‖xk −x∗‖)

Multiplying this equation by F ′(xk )−1 (which is assumed to exist!) gives

xk −x∗−F ′(xk )−1F (xk ) =O(‖xk −x∗‖)

Combining this with the Newton iteration xk+1 = xk −F ′(xk )−1F (xk ) we get

xk+1 −x∗ =O(‖xk −x∗‖).

So
lim

k→∞
‖xk+1 −x∗‖/‖xk −x∗‖ = 0

This shows the superlinear convergence.
The previous result is interesting, but it does not say how near to the root the

starting point need to be in order to get convergence. This is the next topic. Let
F : U → Rn where U is an open, convex set in Rn . Consider the conditions on the
derivative F ′

(i ) ‖F ′(x)−F ′(y)‖ ≤ L‖x − y‖ for all x , y ∈U
(i i ) ‖F ′(x0)‖ ≤ K for some x0 ∈U

(3.6)

where K and L are some constants. Here ‖F ′(x0)‖ denotes the operator norm of the
square matrix F ′(x0) which is defined as

‖F ′(x0)‖ = sup
‖x‖=1

‖F ′(x0)x‖

and it measures how much the operator F ′(x0) may increase the size of vectors. The
following convergence result for Newton’s method is known as Kantorovich’ theorem.

Theorem 3.3 (Kantorovich’ theorem). Let F : U → Rn be a differentiable func-
tion satisfying (3.6). Assume that B̄(x0;1/(K L)) ⊆U and that

‖F ′(x0)−1F (x0)‖ ≤ 1/(2K L).

Then F ′(x) is invertible for all x ∈ B(x0;1/(K L)) and Newton’s method with ini-
tial point x0 will produce a sequence {xk }∞k=0 contained in B(x0;1/(K L)) and
limk→∞ xk = x∗ for some limit point x∗ ∈ B̄(x0;1/(K L)) with

F (x∗) = 0.
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A proof of this theorem is quite long (but not very difficult to understand) [8].

One disadvantage with Newton’s method is that one needs to know the Jacobi
matrix F ′ explicitly. For complicated functions, or functions being the output of a
simulation, the derivative may be hard or impossible to find. The quasi-Newton
method, also called the secant-method, is then a good alternative. The idea is to
approximate F ′(xk ) by some matrix Bk and to compute the new search direction
from

Bk p =−F (xk )

A practical method for finding these approximations B1,B2, . . . is Broyden’s method.
Provided that the previous iteration gave xk , with Broyden’s method we compute
xk+1 by following the search direction, define sk = xk+1 − xk and y k = F (xk+1)−
F (xk ), and compute Bk+1 from Bk by the formula

Bk+1 = Bk + (1/sT
k sk )(y k −Bk sk )sT

k . (3.7)

It can be shown that Bk approximates the Jacobi matrix F ′(xk ) well in each iteration.
Moreover, the update given in (3.7) can be done efficiently (it is a rank one update of
Bk ).

Algorithm: Broyden’s method:
1. Choose an initial point x0, and an initial B0.
2. For k = 0,1, . . . do

(i) Find direction pk by solving Bk p =−F (xk )
(ii) Use line search (see Section 4.2) along direction pk to find αk

(iii) Update: xk+1 := xk +αk pk
sk := xk+1 −xk

y k := F (xk+1)−F (xk )
compute Bk+1 from (3.7).

Note that this algorithm also computes an α through what we call a line search,
to attempt to find the optimal distance to follow the search direction. We do not
here specify how this line search can be performed. Also, we do not specify how
the initial values can be chosen. For B0, any approximation of the Jacobian of F
at x0 can be used, using a numerical differentiation method of your own choosing.
One can show that Broyden’s method, under certain assumptions, also converges
superlinearly, see [11].

Exercises for Chapter 3

1. Show that the problem of solving nonlinear equations (3.1) may be transformed
into a nonlinear optimization problem. (Hint: Square each component function
and sum these up!)
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2. Let T : R→ R be given by T (x) = (3/2)(x − x3). Draw the graph of this function,
and determine its fixed points. Let x∗ denote the largest fixed point. Find, using your
graph, an interval I containing x∗ such that the fixed point algorithm with an initial
point in I will guaranteed converge towards x∗. Then try the fixed point algorithm
with starting point x0 =

p
5/3.

3. Let α ∈ R+ be fixed, and consider f (x) = x2 −α. Then the zeros are ±pα. Write
down the Newton’s iteration for this problem. Let α= 2 and compute the first three
iterates in Newton’s method when x0 = 1.

4. For any vector norm ‖ · ‖ on Rn , we can more generally define a corresponding
operator norm for n ×n matrices by

‖A‖ = sup
‖x‖=1

‖Ax‖.

a. Explain why this supremum is attained.

In the rest of this exercise we will use the vector norm ‖x‖ = ‖x‖1 =∑n
j=1 |x j | on Rn .

b. For n = 2, draw the sublevel set {x ∈R2 : ‖x‖1 ≤ 1}.

c. Show that f (x) = ‖Ax‖ is convex for any n, and show that the maximum
of f on the set {x : ‖x‖ = 1} is attained in a point x on the form ±ek .
Hint: For the second statement, use Jensen’s inequality with x j =±e j (Theo-
rem 2.4).

d. Show that, for any n×n-matrix A, ‖A‖ = supk
∑n

i=1 |ai k |, where ai j are the
entries of A (i.e. the biggest sum of absolute values in a column).

5. Consider a linear map T :Rn →Rm given by T (x) = Ax where A is an n×n matrix.
When is T a contraction w.r.t. the vector norm ‖ ·‖1?

6. Test the function newtonmult on the equations given initially in Section 3.1.

7. In this exercise we will implement Broyden’s method with Matlab.

a. Given a value x0, implement a function which computes an estimate of
F ′(x0) by estimating the partial derivatives of F , using a numerical differenti-
ation method and step size of you own choosing.

b. Implement a function

function x=broyden(x0,F)

which returns an estimate of a zero of F using Broyden’s method. Your method
should set B0 to be the matrix obtained from the function in a. Just indicate
where line search along the search direction should be performed in your
function, without implementing it. The function should work as newtonmult
in that it terminates after a given number of iterations, or after precision of a
given accuracy has been obtained.
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Chapter 4
Unconstrained optimization

How can we know whether a given point x∗ is a minimum, local or global, of some
given function f :Rn →R? And how can we find such a point x∗?

These are, of course, some main questions in optimization. In order to give good
answers to these questions we need optimality conditions. They provide tests for
optimality, and serve as the basis for algorithms. We here focus on differentiable
functions; the corresponding results for the nondifferentiable case are more difficult
(but they exist, and are based on convexity, see [5, 13]).

For unconstrained problems it is not difficult to find powerful optimality condi-
tions from Taylor’s theorem for functions in several variables.

4.1 Optimality conditions

In order to establish optimality conditions in unconstrained optimization, Taylor’s
theorem is the starting point, see Section 1.3. We only consider mini-mization prob-
lems, as maximization problems are turned into minimization problems by multi-
plying the function f by −1.

First we look at some necessary optimality conditions.

Theorem 4.1. Assume that f :Rn →R has continuous partial derivatives, and as-
sume that x∗ is a local minimum of f . Then

∇ f (x∗) = 0. (4.1)

If, moreover, f has continuous second order partial derivatives, then ∇2 f (x∗) is
positive semidefinite.

Proof: Assume that x∗ is a local minimum of f and that ∇ f (x∗) 6= 0. Let h =
−α∇ f (x∗) where α > 0. Then ∇ f (x∗)T h = −α‖∇ f (x∗)‖2 < 0 and by continuity of
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the partial derivatives of f , ∇ f (x)T h < 0 for all x in some neighborhood of x∗. From
Theorem 1.4 (first order Taylor) we obtain

f (x∗+h)− f (x∗) =∇ f (x∗+ th)T h (4.2)

for some t ∈ (0,1) (depending on α). By choosing α small enough, the right-hand
side of (4.2) is negative (as just said), and so f (x∗+h) < f (x∗), contradicting that x∗
is a local minimum. This proves that ∇ f (x∗) = 0.

To prove the second statement, we get from Theorem 1.5 (second order Taylor)

f (x∗+h) = f (x∗)+∇ f (x∗)T h + 1

2
hT ∇2 f (x∗+ th)h

= f (x∗)+ 1

2
hT ∇2 f (x + th)h (4.3)

If ∇2 f (x∗) is not positive semidefinite, there is an h such that hT ∇2 f (x∗)h < 0 and,
by continuity of the second order partial derivatives, hT ∇2 f (x)h < 0 for all x in some
neighborhood of x∗. But then (4.3) gives f (x∗+h)− f (x∗) < 0; a contradiction. This
proves that ∇2 f (x) is positive semidefinite.

The two necessary optimality conditions in Theorem 4.1 are called the first-order
and the second-order conditions, respectively. The first-order condition says that
the gradient must be zero at x∗, and such a point if often called a stationary point.
The second-order condition may be interpreted by f being "convex locally" at x∗,
although this is not a precise term. A stationary point which is neither a local min-
imum or a local maximum is called a saddle point. So, every neighborhood of a
saddle point contains points with larger and points with smaller f -value.

Theorem 4.1 gives a connection to nonlinear equations. In order to find a sta-
tionary point we may solve ∇ f (x) = 0, which is a n×n (usually nonlinear) system of
equations. (The system is linear whenever f is a quadratic function.) One may solve
this equation, for instance, by Newton’s method and thereby get a candidate for a
local minimum. Sometimes this approach works well, in particular if f has a unique
local minimum and we have an initial point "sufficiently close". However, there are
other better methods which we discuss later.

It is important to point out that any algorithm for finding a minimum of f has to
be able to find a stationary point. Therefore algorithms in this area are typically iter-
ative and move to gradually better points where the norm of the gradient becomes
smaller, and eventually almost equal to zero.
Example 4.2. Consider a convex quadratic function

f (x) = (1/2) xT Ax −bT x

where A is the (symmetric) Hessian matrix is (constant equal to) A and this matrix
is positive semidefinite. Then ∇ f (x) = Ax −b so the first-order necessary optimality
condition is

Ax = b

which is a linear system of equations. If f is strictly convex, which happens when A
is positive definite, then A is invertible and the unique solution is x∗ = A−1b. Thus,
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there is only one candidate for a local (and global) minimum, namely x∗ = A−1b. Ac-
tually, this is indeed a unique global minimum, but to verify this we need a suitable
argument. One way is to use convexity (with results presented later) or an alternative
is to use sufficient optimality conditions which we discuss next. The linear system
Ax = b, when A is positive definite, may be solved by several methods. A popular,
and very fast, method is the conjugate gradient method. This method, and related
methods, are discussed in detail in the course INF-MAT4360 Numerical linear alge-
bra [10]. ♣

In order to present a sufficient optimality condition we need a result from linear
algebra. Recall from linear algebra that a symmetric positive definite matrix has only
real eigenvalues and all these are positive.

Lemma 4.3. Let A be an n ×n symmetric positive definite matrix, and let λn > 0
denote its smallest eigenvalue. Then

hT Ah ≥λn‖h‖2 (h ∈Rn).

Proof: By the spectral theorem there is an orthogonal matrix P (containing the
orthonormal eigenvectors as its columns) such that

A = PDP T

where D is the diagonal matrix with the eigenvalues λ1, . . . ,λn on the diagonal. Let
h ∈Rn and define y = P T h. Then ‖y‖ = ‖h‖ and

hT Ah = hT PDP T h = y T D y =
n∑

j=1
λi y2

i ≥λn

n∑
i=1

y2
i =λn‖y‖2 =λn‖h‖2.

Next we consider sufficient optimality conditions in the general differentiable
case. These conditions are used to prove that a candidate point (say, found by an
algorithm) is really a local minimum.

Theorem 4.4. Assume that f : Rn → R has continuous second order partial
derivatives in some neighborhood of a point x∗. Assume that ∇ f (x∗) = 0 and
∇2 f (x∗) is positive definite. Then x∗ is a local minimum of f .

Proof: From Theorem 1.6 (second order Taylor) and Lemma 4.3 we get

f (x∗+h) = f (x∗)+∇ f (x∗)T h + 1
2 hT ∇2 f (x∗)h +ε(h)‖h‖2

≥ f (x∗)+ 1
2λn‖h‖2 +ε(h)‖h‖2

where λn > 0 is the smallest eigenvalue of ∇2 f (x∗). Dividing here by ‖h‖2 gives

( f (x∗+h)− f (x∗))/|h‖2 = 1

2
λn +ε(h)
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Since limh→0 ε(h) = 0, there is an r such that for ‖h‖ < r , |ε(h)| < λn/4. This implies
that

( f (x∗+h)− f (x∗))/|h‖2 ≥λn/4

for all h with ‖h‖ < r . This proves that x∗ is a local minimum of f .
We remark that the proof of the previous theorem actually shows that x∗ is a

strict local minimum of f meaning that f (x∗) is strictly smaller than f (x) for all
other points x in some neighborhood of x∗. Note the difference between the neces-
sary and the sufficient optimality conditions: a necessary condition is that ∇2 f (x) is
positive semidefinite, while a part of the sufficient condition is the stronger property
that ∇2 f (x) is positive definite.

Let us see what happens when we work with a convex function.

Theorem 4.5. Let f :Rn →R be a convex function. Then a local minimum is also
a global minimum. If, in addition, f is differentiable, then a point x∗ is a local
(and then global) minimum of f if and only if

∇ f (x∗) = 0.

Proof: Let x1 be a local minimum. If x1 is not a global minimum, there is an
x2 6= x1 with f (x2) < f (x1). Then for 0 <λ< 1

f ((1−λ)x1 +λx2) ≤ (1−λ) f (x1)+λ f (x2) < f (x1)

and this contradicts that f (x) ≥ f (x1) for all x in a neighborhood of x∗. Therefore x1

must be a global minimum.
Assume f is convex and differentiable. Due to Theorem 4.1 we only need to

show that if ∇ f (x∗) = 0, then x∗ is a local and global minimum. So assume that
∇ f (x∗) = 0. Then, from Theorem 2.10 we have

f (x) ≥ f (x∗)+∇ f (x∗)T (x −x∗)

for all x ∈Rn . If ∇ f (x∗) = 0, this directly shows that x∗ is a global minimum.

4.2 Methods

Algorithms for unconstrained optimization are iterative methods that generate a se-
quence of points with gradually smaller values on the function f which is to be min-
imized. There are two main types of algorithms in unconstrained optimization:

• Line search methods: Here one first chooses a search direction d k from the
current point xk , using information about the function f . Then one chooses
a step length αk so that the new point

xk+1 = xk +αk d k
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has a small, perhaps smallest possible, value on the halfline {xk +αd k :α≥ 0}.
αk describes how far one should go along the search direction. The problem of
choosing αk is a one-dimensional optimization problem. Sometimes we can
find αk exactly, and in such cases we refer to the method as exact line search.
In cases where αk can not be found analytically, algorithms can be used to
approximate how we can get close to the minimum on the halfline. Such a
method is also refered to as inexact line search.

• Trust region methods: In these methods one chooses an approximation f̂k to
the function in some neighborhood of the current point xk . The function f̂k is
simpler than f and one minimizes f̂k (in the mentioned neighborhood) and
let the next iterate xk+1 be this minimizer.

These types are typically both based on quadratic approximation of f , but they
differ in the order in which one chooses search direction and step size. In the fol-
lowing we only discuss the first type, the line search methods.

A very natural choice for search direction at a point xk is the negative gradient,
d k = −∇ f (xk ). Recall that the direction of maximum increase of a (differentiable)
function f at a point x is ∇ f (x), and the direction of maximum decrease is −∇ f (x).
To verify this, Taylor’s theorem gives

f (x +h) = f (x)+∇ f (x)T h + 1

2
hT ∇2 f (x + th)h.

So, for small h, the first order term dominates and we would like to make this term
small. By the Cauchy-Schwarz inequality1

∇ f (x)T h ≥−‖∇ f (x)‖‖h‖
and equality holds for h =−α∇ f (x) for someα≥ 0. In general, we call h a descent di-
rection at x if ∇ f (x)T h < 0. Thus, if we move in a descent direction from x and make
a sufficiently small step, the new point has a smaller f -value. With this background
we shall in the following focus on gradient methods given by

xk+1 = xk +αk d k (4.4)

where the direction d k satisfies

∇ f (xk )T d k < 0 (4.5)

There are two gradient methods we shall discuss:

• If we choose the search direction d k = −∇ f (xk ), we get the steepest descent
method

xk+1 = xk −αk∇ f (xk ).

In each step it moves in the direction of the negative gradient. Sometimes this
gives slow convergence, so other methods have been developed where other
choices of direction d k are made.

1The Cauchy-Schwarz’ inequality says: |u ·v | ≤ ‖u‖‖v‖ for u, v ∈Rn .
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• An important method is Newton’s method

xk+1 = xk −αk (∇2 f (xk ))−1∇ f (xk ). (4.6)

This is the gradient method with d k = −(∇2 f (xk ))−1∇ f (xk ); this vector d k is
called the Newton step. The so-called pure Newton method is when one simply
chooses step sizeαk = 1 for each k. We then also say that we take a full Newton
step. To interpret this method consider the second order Taylor approximation
of f in xk

f (xk +h) ≈ f (xk )+∇ f (xk )T h + (1/2)hT ∇2 f (xk )h

If we minimize this quadratic function w.r.t. h, assuming ∇2 f (xk ) is positive
definite, we get (see Exercise 8)

h =−(∇2 f (xk ))−1∇ f (xk )

which explains the Newton step.

In the following we follow the presentation in [1]. In a gradient method we need
to choose the step length. This is the one-dimensional optimization problem

min{ f (x +αd ) :α≥ 0}.

Sometimes (maybe not too often) we may solve this problem exactly. Most practical
methods try some candidate α’s and pick the one with smallest f -value. Note that it
is not necessary to compute the exact minimum (this may take too much time). The
main thing is to assure that we get a sufficiently large decrease in f without making
a too small step.

A popular method for choosing the step size is backtracking line search.:

Definition 4.6 (Backtracking line search). The method of backtracking line
search for choosing a step size is defined as follows: We assume that (in advance)
we have chosen parameters s ≤ 1, a reduction factor β satisfying 0 < β < 1, and
0 <σ< 1 (typically this is chosen very small, e.g. σ= 10−3). We define the integer

mk = min{m : m ≥ 0, f (xk )− f (xk +βm sd k ) ≥−σβm s∇ f (xk )T d k }. (4.7)

The step size is then defined to be αk =βmk s. The inequality

f (xk )− f (xk +βm sd k ) ≥−σβm s∇ f (xk )T d k (4.8)

is also called the stopping condition of backtracking line search.

The parameter s fixes the search for step size to lie within the interval [0, s]. This
can be important: for instance, we can set s so small that the initial step size we try
is within the domain of definition for f . The natural thing would be to choose s = 1:
if the stopping condition then applies immediately, thenαk = 1. If Newton’s method
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is used this corresponds to using the pure Newton step, i.e. a full Newton step is
chosen.

According to [1] β is usually chosen in [1/10,1/2]. In the literature one may find
a lot more information about step size rules and how they may be adjusted to the
methods for finding search direction, see [1], [11].

Now, we return to the choice of search direction in the gradient method (4.4).
A main question is whether it generates a sequence {xk }∞k=1 which converges to a
stationary point x∗, i.e., where ∇ f (x∗) = 0. It turns out that this may not be the
case; one needs to be careful about the choice of d k to assure this convergence.
The problem is that if d k tends to be nearly orthogonal to ∇ f (xk ) one may get into
trouble. For this reason one introduces the following notion:

Definition 4.7 (Gradient related). {d k } is called gradient related to {xk } if
for any subsequence {xkp }∞p=1 of {xk } converging to a nonstationary point,
then the corresponding subsequence {d kp }∞p=1 of {d k } is bounded and

limsupp→∞∇ f (xk )T d k < 0.

What this condition assures is that ‖d k‖ is not too small or large compared to
‖∇ f (xk )‖ and that the angle between the vectors d k and ∇ f (xk ) is not too close to
90◦. The proof of the following theorem may be found in [1].

Theorem 4.8. Let {xk }∞k=0 be generated by the gradient method (4.4), where
{d k }∞k=0 is gradient related to {xk }∞k=0 and the step size αk is chosen using back-
tracking line search. Then every limit point of {xk }∞k=0 is a stationary point.

We remark that in Theorem 4.8 the same conclusion holds if we use exact mini-
mization as step size rule, i.e., f (xk +αd k ) is minimized exactly with respect to α.

A very important property of a numerical algorithm is its convergence speed.
Let us consider the steepest descent method first. It turns out that the convergence
speed for this algorithm is very well explained by its performance on minimizing a
quadratic function, so therefore the following result is important. In this theorem A
is a symmetric positive definite matrix with eigenvalues λ1 ≥λ2 ≥ ·· · ≥λn > 0.

Theorem 4.9. If the steepest descent method xk+1 = xk −αk∇ f (xk ) using exact
line search is applied to the quadratic function f (x) = xT Ax where A is positive
definite, then (the minimum value is 0 and)

f (xk+1) ≤ mA f (xk )

where mA = ((λ1 −λn)/(λ1 +λn))2.

The proof may be found in [1]. Thus, if the largest eigenvalue is much larger than
the smallest one, mA will be nearly 1 and one typically have slow convergence. In
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this case we have mA ≈ cond(A) where cond(A) = λ1/λn is the condition number of
the matrix A. So the rule is: if the condition number of A is small we get fast con-
vergence, but if cond(A) is large, there will be slow convergence. A similar behavior
holds for most functions f because locally near a minimum point the function is
very close to its second order Taylor approximation in x∗ which is a quadratic func-
tion with A =∇2 f (x∗).

Thus, Theorem 4.9 says that the sequence obtained in the steepest descent method
converges linearly to a stationary point (at least for quadratic functions).

We now turn to Newton’s method.

Newton’s method for unconstrained optimization:
1. Choose an initial point x0.
2. For k = 1,2, . . . do

(i) (Newton step) d k :=−∇2 f (x)−1∇ f (x); η=−∇ f (x)T d k

(ii) (Stopping criterion) If η/2 < ε: stop.
(iii) (Line search) Use backtracking line search to find step size αk

(iv) (Update) xk+1 := xk +αk d k

Recall that the pure Newton step minimizes the second order Taylor approxima-
tion of f at the current iterate xk . Thus, if the function we minimize is quadratic,
we are done in one step. Similarly, if the function can be well approximated by a
quadratic function, then one would expect fast convergence.

We shall give a result on the convergence of Newton’s method (see [2] for further
details). When A is symmetric, we let λmi n(A) denote that smallest eigenvalue of A.

For the convergence result we need a lemma on strictly convex functions. As-
sume that x0 is a starting point for Newton’s method and let S = {x ∈ Rn : f (x) ≤
f (x0)}. We shall assume that f is continuous and convex, and this implies that S is a
closed convex set. We also assume that f has a minimum point x∗ which then must
be a global minimum. Moreover the minimum point will be unique due to a strict
convexity assumption on f . Let f ∗ = f (x∗) be the optimal value.

The following lemma says that for a convex function as just described, a point is
nearly a minimum point (in terms of the f -value) whenever the gradient is small in
that point.

Lemma 4.10. Assume that f is convex as above and that λmi n(∇2 f (x)) ≥ m for
all x ∈ S. Then

f (x)− f ∗ ≤ 1

2m
‖∇ f (x)‖2. (4.9)

Proof: From Theorem 1.5, the second order Taylor’ theorem, we have for each
x , y ∈ S

f (y) = f (x)+∇ f (x)T (y −x)+ (1/2)(y −x)T ∇2 f (z)(y −x)
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for suitable z on the line segment between x and y . Here a lower bound for the
quadratic term is (m/2)‖y −x‖2, due to Lemma 4.3. Therefore

f (y) ≥ f (x)+∇ f (x)T (y −x)+ (m/2)‖y −x‖2.

Now, fix x and view the expression on the right-hand side as a quadratic function of
y . This function is minimized for y∗ = x−(1/m)∇ f (x). So, by inserting y = y∗ above
we get

f (y) ≥ f (x)+∇ f (x)T (y∗−x)+ (m/2)‖y∗−x‖2

= f (x)− 1
2m ‖∇ f (x)‖2

This holds for every y ∈ S so letting y = x∗ gives

f ∗ = f (x∗) ≥ f (x)− 1

2m
‖∇ f (x)‖2

which proves the desired inequality.
In the following convergence result we consider a function f as in Lemma 4.10.

Moreover, we assume that the Hessian matrix is Lipschitz continuous over S; this is
essentially a bound on the third derivatives of f . We do not give the complete proof
(it is quite long), but consider some of the main ideas. Recall the definition of the set
S from above. Recall that the spectral norm of a square matrix A is defined by

‖A‖2 = max
‖x‖=1

‖Ax‖.

It is a fact that ‖A‖2 is equal to the largest singular value of A.

Theorem 4.11. Let f be convex and twice continuously differentiable and as-
sume that

(i) λmi n(∇2 f (x)) ≥ m for all x ∈ S.

(ii) ‖∇2 f (x)−∇2 f (y)‖2 ≤ L‖x − y‖ for all x ∈ S.

Moreover, assume that f has a minimum point x∗. Then Newton’s method gener-
ates a sequence {xk }∞k=0 that converges to x∗. From a certain k ′ the convergence
speed is quadratic.

Proof: The proof is based on [2]). Define f ∗ = f (x∗). We will prove the result
by establishing two lemmas. The proofs of these lemmas are rather technical, so
they are put in their own sections which are not part of the curriculum, and are only
included for the sake of completeness.

The first lemma applies to the first iterations of Newton’s method. In this phase
the convergence of the method may be slow, and we will see that backtracking line
search may choose a step size which is very small. This phase of Newton’s method is
therefore called the damped Newton phase:
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Lemma 4.12. For any η, there exists γ> 0 so that, for each k, if ‖∇ f (xk )‖ ≥ η, then

f (xk+1) ≤ f (xk )−γ. (4.10)

The proof can be found in Section 4.2.1. After the damped Newton phase, the
Newton method will enter a phase where the convergence is much quicker, as the
following result shows. It is in this phase that we have a quadratical convergence
rate, so that this phase also is called the quadratically convergent phase. It turns out
that backtacking line search always chooses a step size equal to 1 in this phase:

Lemma 4.13. There exists ηwith 0 < η≤ m2/L so that, for each k, if ‖∇ f (xk )‖ < η,
thenαk = 1 satisfies the stopping criterion of backtracking line search in Newton’s
method, and Newton’s method with backtracking line search gives

L

2m2 ‖∇ f (xk+1)‖ ≤
(

L

2m2 ‖∇ f (xk )‖
)2

. (4.11)

The proof can be found in Section 4.2.2. Now, let us combine these two lemmas
to prove the theorem. In each iteration where (4.10) occurs f is decreased by at least
γ, so the number of such iterations must be bounded by

( f (x0)− f ∗)/γ

which is a finite number. For some k we must thus have by Lemma 4.12 that ‖∇ f (xk )‖ <
η, and we can then use (4.11) and Lemma 4.13 to obtain

‖∇ f (xk+1)‖ ≤ 2m2

L

(
L

2m2 ‖∇ f (xk )‖
)2

= L

2m2 ‖∇ f (xk )‖2 ≤ L

2m2 η
2 = 1

2

L

m2 ηη≤
1

2
η≤ η.

Therefore, as soon as (4.11) occurs in the iterative process, in all the remaining itera-
tions (4.11) will occur. Actually, let us show that as soon as (4.11) “kicks in”, quadratic
convergence starts:

Defineµl = L
2m2 ‖∇ f (x l )‖ for each l ≥ k. Then 0 ≤µk < 1/2 asη≤ m2/L. From (4.11)

it follows that

µl+1 ≤µ2
l (l ≥ k).

So (by induction)

µl ≤µ2l−k

k ≤ (1/2)2l−k
(l = k +1,k +2, . . .).
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Next, from Lemma 4.10

f (x l )− f ∗ ≤ 1

2m
‖∇ f (x l )‖2 = 1

2m

4m4

L2

(
L

2m2 ‖∇ f (x l )‖
)2

= 2m3

L2 µ2
l ≤

2m3

L2 (1/2)2l−k+1
,

for l ≥ k. This inequality shows that f (x l ) → f ∗, and since the minimum point is
unique due to convexity, we must have x l → x∗. It follows that the convergence is
quadratic.

From the proof it is also possible to say something about haw many iterations
that are needed to reach a certain accuracy. In fact, if ε> 0 a bound on the number
of iterations until f (xk ) ≤ f ∗+ε is

( f (x0)− f ∗)/γ+ log2 log2
2m3

εL2 .

Here γ is the parameter introduced in the proof above. The second term in this
expression (the logarithmic term) grows very slowly as ε is decreased, and it may
roughly be replaced by the constant 6. So, whenever the second stage (4.11) occurs,
the convergence is extremely fast, it takes about 6 more Newton iterations. Note
that quadratic convergence means, roughly, that the number of correct digits in the
answer doubles for every iteration.

4.2.1 *The proof for Lemma 4.12

We have that

‖d k‖2 = (∇ f (xk ))T (∇2 f (xk ))−2∇ f (xk ) ≤ 1

m
(∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk ),

since the largest eigenvalue of (∇ f (xk ))T (∇2 f (xk ))−2∇ f (xk ) is less than 1/m. Since
there also is an upper bound M on the highest eigenvalue of ∇2 f (x), the second
order Taylor approximation gives

f (xk +αk d k ) = f (xk )+αk∇ f (xk )T dk + 1

2
(αk )2(d k )T ∇2 f (z)d k

≤ f (xk )+αk∇ f (xk )T dk + M‖d k‖2

2
α2

k

≤ f (xk )−αk (∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk )+ M(∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk )

2m
α2

k

If we try the value α̂k = m/M we get

f (xk + α̂k d k ) ≤ f (xk )− 1

2
α̂k (∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk ),

which can be written as

f (xk )− f (xk + α̂k d k ) ≥ 1

2
α̂k (∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk )

≥σα̂k (∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk )

=−σα̂k (∇ f (xk ))T d k ,
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which shows that α̂k = m/M satisfies the stopping criterion of backtracking line
search. Since we may not have exactly m/M =βn s for some n,we may still conclude
that backtracking line search stops at αk ≥βm/M , so that

f (xk+1) ≤ f (xk )+σα̂k (∇ f (xk ))T d k

≤ f (xk )−σαk (∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk )

≤ f (xk )−σβm

M

1

M
‖∇ f (xk )‖2

≤ f (xk )−σβη2 m

M 2 .

This shows that we can choose γ=σβη2 m
M 2 .

4.2.2 *The proof for Lemma 4.13

We will first show that backtracking line search chooses unit steps provided that η≤
3(1−2σ)m2/L. By condition (ii),

‖∇2 f (xk +αk d k )−∇2 f (xk )‖2 ≤αk L‖d k‖,

so that ∣∣(d k )T (∇2 f (xk +αk d k )−∇2 f (xk )
)

d k
∣∣≤αk L‖d k‖3.

Now we define the function g (t ) = f (x + td k ). The chain rule gives that

g ′(t ) =∇ f (x + td k )T d k g ′′(t ) = (d k )T ∇2 f (xk + tdk )d k .

In particular, note that g ′′(0) = (∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk ). The inequality above
can therefore be written as

|g ′′(t )− g ′′(0)| ≤ tL‖d k‖3,

so that

g ′′(t ) ≤ g ′′(0)+ tL‖d k‖3

≤ (∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk )+ t
L

m3/2
((∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk ))3/2

where we have used that

m‖d k‖2 = m(∇ f (xk ))T (∇2 f (xk ))−2∇ f (xk ) ≤ (∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk ).

We integrate this inequality to get

g ′(t ) ≤ g ′(0)+ t (∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk )

+ t 2 L

2m3/2
((∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk ))3/2

=−(∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk )+ t (∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk )

+ t 2 L

2m3/2
((∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk ))3/2.

42



We integrate this once more and get

g (t ) ≤ g (0)− t (∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk )

+ t 2 1

2
(∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk )

+ t 3 L

6m3/2
((∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk ))3/2.

If we here set t = 1 we get

f (xk +d k ) ≤ f (x)− 1

2
(∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk )

+ L

6m3/2
((∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk ))3/2.

Assume now that also ‖∇ f (xk‖ ≤ 3(1 − 2σ)m2/L. Since the biggest eigenvalue of
(∇2 f (xk ))−1 is less than 1/m, we have that

(∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk ) ≤ 1

m
(3(1−2σ)m2/L)2 = (3(1−2σ)m3/2/L)2.

This implies that

1/2− L((∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk ))1/2

6m3/2
≥σ.

We therefore have that

f (xk +d k ) ≤ f (x)−∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk )

(
1

2
− L

6m3/2
((∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk ))1/2

)
≤ f (x)−σ∇ f (xk ))T (∇2 f (xk ))−1∇ f (xk ) = f (x)+σ∇ f (xk ))T d k ,

which proves that αk = 1 is accepted by the stopping criterion of backtracking line
search. We also have that

‖∇ f (xk +d k )‖ = ‖∇ f (xk +d k )−∇ f (xk )−∇2 f (xk )d k‖

= ‖
∫ 1

0
(∇2 f (xk + td k )−∇2 f (xk ))d k d t‖

≤
∫ 1

0
‖(∇2 f (xk + td k )−∇2 f (xk ))d k‖2d t

≤
∫ 1

0
t‖d k‖2d t = L

2
‖d k‖2 = L

2
‖(∇2 f (xk ))−1∇ f (xk )‖2

≤ L

2m2 ‖∇ f (xk )‖2.

This proves the lemma.
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Exercises for Chapter 4

1. Consider the function f (x1, x2) = x2
1+ax2

2 where a > 0 is a parameter. Draw some
of the level sets of f (for different levels) for each a in the set {1,4,100}. Also draw
the gradient in a few points on these level sets.

2. State and prove a theorem similar to Theorem 4.1 for maximization problems.

3. Let f (x) = xT Ax where A is a symmetric n×n matrix. Assume that A is indefinite,
so it has both positive and negative eigenvalues. Show that x = 0 is a saddlepoint of
f .

4. Let f (x1, x2) = 4x1+6x2+x2
1+2x2

2 . Find all stationary points and determine if they
are minimum, maximum or saddlepoints. Do the same for the function g (x1, x2) =
4x1 +6x2 +x2

1 −2x2
2 .

5. Let the function f be given by f (x1, x2) = (x1 −1)2 + (x2 −2)2 +1.

a. Compute the search direction d k which is chosen by the steepest descent
method in the point xk = (2,3).

b. Compute in the same way the search direction d k which is chosen when
we instead use Newton’s method in the point xk = (2,3).

6. The function f (x1, x2) = 100(x2−x2
1)2+(1−x1)2 is called the Rosenbrock function.

Compute the gradient and the Hessian matrix at every point x . Find every local
minimum. Also draw some of the level sets (contour lines) of f using Matlab.

7. Let f (x) = (1/2)xT Ax −bT x where A is a positive definite n×n matrix. Consider
the steepest descent method applied to the minimization of f , where we assume
exact line search is used. Assume that the search direction happens to be equal to
an eigenvector of A. Show that then the minimum is reached in just one step.

8. Consider the second order Taylor approximation

T 2
f (x ; x +h) = f (x)+∇ f (x)T h + (1/2)hT ∇2 f (x)h.

a. Show that ∇h T 2
f =∇ f (x)+∇2 f (x)h.

b. Minimizing T 2
f with respect to h implies solving ∇h T 2

f = 0, i.e. ∇ f (x)+
∇2 f (x)h = 0 from a.. If∇2 f (x) is positive definite, explain that it also is invert-
ible, so that this equation has the unique solution h = −(∇2 f (xk ))−1∇ f (xk ),
as previously noted for the Newton step.

9. We want to find the minimum of f (x) = 1
2 xT Ax−bT x , defined on Rn . Formulate

one step with Newton’s method, and one step with the steepest descent method,
where you set the step size to αk = 1. Which of these methods works best for finding
the minimum for functions on this form?

10. Implement the steepest descent method. Test the algorithm on the functions
in exercises 4 and 6. Use different starting points.
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11. What can go wrong when you apply backtracking line search (Equation (4.7)) to
a function f where ∇2 f er negative definite (i.e. all eigenvalues of ∇2 f are negative)?
Hint: Substitute the Taylor approximation

f (xk +βm sd k ) ≈ f (xk )+∇ f (xk )T (βm sd k )

in Equation (4.7), and remember that σ there is chosen so that σ< 1.

12. Write a function newtonbacktrack which performs Newton’s method for un-
constrained optimization. The input parameters are the function, its gradient, its
Hesse matrix, and the initial point. The function should also return the number of
iterations, and at each iteration write the corresponding function value. Use back-
tracking line search to compute the step size, i.e. compute mk from Equation (4.7)
with β= 0.2, s = 0.5, σ= 10−3, and use α= βmk s as the step size. Test the algorithm
on the functions in exercises 4 and 6. Use different starting points.

13. Let us return to the maximum likelihood example 1.3.

a. Run the function newtonbacktrack with parameters being the function
f and its and derivaties defined as in Example 1.3 with n = 10 and

x = (0.4992,−0.8661,0.7916,0.9107,0.5357,0.6574,0.6353,0.0342,0.4988,−0.4607)

Use the start value α0 = 0 for Newtons method. What estimate for the mini-
mum of f (and thereby α) did you obtain?

b. The ten measurements from a. were generated from a probability distri-
bution where α = 0.5. The answer you obtained was quite far from this. Let
us therefore take a look at how many measurements we should use in order
to get quite precise estimates for α. You can use the function

function ret=randmuon(alpha,m,n)

to generate an m ×n-matrix with measurements generated with a probabil-
ity distribution with a given parameter α. This function can be found at the
homepage of the book.

With α = 0.5, generate n = 10 measurements with the help of the function
randmuon, and find the maximum likelihood estimate as above. Repeat this
10 times, and plot the ten estimates you obtain. Repeat for n = 1000, and for
n = 100000 (in all cases you are supposed to plot 10 maximum likelihood es-
timates). How many measurements do we need in order to obtain maximum
likelihood estimates which are reliable?
Note that it is possible for the maximum likelihood estimates you obtain here
to be outside the domain of definition [−1,1]. You need not take this into
account.
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Chapter 5
Constrained optimization -
theory

In this chapter we consider constrained optimization problems. A general optimiza-
tion problem is

minimize f (x) subject to x ∈ S

where S ⊆ Rn is a given set and f : S → R. We here focus on a very general opti-
mization problem which often occurs in applications. Consider the nonlinear opti-
mization problem with equality/inequality constraints

minimize f (x)
subject to

hi (x) = 0 (i ≤ m)
g j (x) ≤ 0 ( j ≤ r )

(5.1)

where f , h1,h2, . . . ,hm and g1, g2, . . . , gr are continuously differentiable functions
from Rn into R. A point x satisfying all the m + r constraints will be called feasible.
Thus, we look for a feasible point with smallest f -value.

Our goal is to establish optimality conditions for this problem, starting with the
special case with only equality constraints. Then we discuss algorithms for solving
this problem. Our presentation is strongly influenced by [2] and [1].

5.1 Equality constraints and the Lagrangian

Consider the nonlinear optimization problem with equality constraints
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minimize f (x)
subject to

hi (x) = 0 (i ≤ m)
(5.2)

where f and h1,h2, . . . ,hm are continuously differentiable functions from Rn into
R. We introduce the vector field H = (h1,h2, . . . ,hm), so H : Rn → Rm and H(x) =
(h1(x),h2(x), . . . ,hm(x)).

We first establish necessary optimality conditions for this problem. A point x∗ ∈
Rn is called regular if the gradient vectors ∇hi (x∗) (i ≤ m) are linearly independent.

Theorem 5.1. Let x∗ be a local minimum in problem (5.1) and assume that x∗ is
a regular point. Then there is a unique vectorλ∗ = (λ∗

1 ,λ∗
2 , . . . ,λ∗

m) ∈Rm such that

∇ f (x∗)+
m∑

i=1
λ∗

i ∇hi (x∗) = 0. (5.3)

If f and each hi are twice continuously differentiable, then the following also
holds

hT (∇2 f (x∗)+
m∑

i=1
λ∗

i ∇2hi (x∗))h ≥ 0 for all h ∈ T (x∗) (5.4)

where T (x∗) is the subspace T (x∗) = {h ∈Rn : ∇hi (x∗) ·h = 0 (i ≤ m)}.

The numbers λ∗
i in this theorem are called the Lagrangian multipliers. Note

that the Lagrangian multiplier vector λ∗ is unique; this follows directly from the
linear independence assumption as x∗ is assumed regular. The theorem may also
be stated in terms of the Lagrangian function L :Rn ×Rm →R given by

L(x ,λ) = f (x)+
m∑

i=1
λi hi (x) = f (x)+λT H(x) (x ∈Rn ,λ ∈Rm).

Then

∇x L(x ,λ) =∇ f (x)+∑
i
λi∇hi

∇λL(x ,λ) = H(x).

Therefore, the first order conditions in Theorem 5.1 may be rewritten as follows

∇x L(x∗,λ∗) = 0, ∇λL(x∗,λ∗) = 0.

Here the second equation simply means that H(x) = 0. These two equations say that
(x∗,λ∗) is a stationary point for the Lagrangian, and it is a system of n+m (possibly
nonlinear) equations in n +m variables.
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h1(x) = b1

h2(x) = b2

Figure 5.1: The two surfaces h1(x) = b1 og h2(x) = b2 intersect each other in a curve.
Along this curve the constraints are fulfilled
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Figure 5.2: ∇ f (x∗) as a linear combination of ∇h1(x∗) and ∇h2(x∗)

Let us interpret Theorem 5.1. First of all, T (x∗) can be interpreted as a linear sub-
space consisting of the “first order feasible directions” at x∗, i.e. search directions
we can choose which do not violate the constraints (so that hi (x∗+h) = 0 whenever
hi (x∗) = 0, i ≤ m). To see this, note that ∇hi (x∗) ·h is what is called the directional
derivative of hi in the direction h. This quantity measures the change of hi in direc-
tion h, and if this is zero, hi remains zero when we move in direction h, so that the
constraints are kept. Actually, if each hi is linear, then T (x∗) consists of those h such
that x∗+h is also feasible, i.e., hi (x∗+h) = 0 for each i ≤ m. Thus, Equation(5.3)
says that in a local minimum x∗ the gradient ∇ f (x∗) is orthogonal to the subspace
T (x∗) of the first order feasible variations. This is reasonable since otherwise there
would be a feasible direction in which f would decrease. In Figure 5.1 we have plot-
ted a curve where two constraints are fulfilled. In Figure 5.2 we have then shown an
interpretation of Theorem 5.1.

Note that this necessary optimality condition corresponds to the condition∇ f (x∗) =
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0 in the unconstrained case. The second condition (5.4) is a similar generalization of
the second order condition in Theorem 4.1 (saying that ∇2 f (x∗) is positive semidef-
inite).

It is possible to prove the theorem by eliminating variables based on the equa-
tions and thereby reducing the problem to an unconstrained one. Another proof,
which we shall present below is based on the penalty approach. This approach is
also interesting as it leads to algorithms for actually solving the problem.

Proof: (Theorem 5.1) For k = 1,2, . . . consider the modified objective function

F k (x) = f (x)+ (k/2)‖H(x)‖2 + (α/2)‖x −x∗‖2

where x∗ is the local minimum under consideration, and α is a positive constant.
The second term is a penalty term for violating the constraints and the last term is
there for proof technical reasons. As x∗ is a local minimum there is an ε> 0 such that
f (x∗) ≤ f (x) for all x ∈ B̄(x∗;ε). Choose now an optimal solution xk of the problem
min{F k (x) : x ∈ B̄(x∗;ε)}; the existence here follows from the extreme value theorem
(F k is continuous and the ball is compact). For every k

F k (xk ) = f (xk )+ (k/2)‖H(xk )‖2 + (α/2)‖xk −x∗‖2 ≤ F k (x∗) = f (x∗).

By letting k →∞ in this inequality we conclude that limk→∞ ‖H(xk )‖ = 0. So every
limit point x̄ of the sequence {xk } satisfies H(x̄) = 0. The inequality above also im-
plies (by dropping a term on the left-hand side) that f (xk )+(α/2)‖xk −x∗‖2 ≤ f (x∗)
for all k, so by passing to the limit we get

f (x̄)+ (α/2)‖x̄ −x∗‖2 ≤ f (x∗) ≤ f (x̄)

where the last inequality follows from the facts that x̄ ∈ B̄(x∗;ε) and H(x̄) = 0. Clearly,
this gives x̄ = x∗. We have therefore shown that the sequence {xk } converges to the
local minimum x∗. Since x∗ is the center of the ball B̄(x∗;ε), the points xk lie in the
interior of S for suitably large k. The conclusion is then that xk is the unconstrained
minimum of F k when k is sufficiently large. We may therefore apply Theorem 4.1 so
∇F k (xk ) = 0, so

0 =∇F k (xk ) =∇ f (xk )+kH ′(xk )T H(xk )+α(xk −x∗). (5.5)

Here H ′ denotes the Jacobi matrix of H . For suitably large k the matrix H ′(xk )H ′(xk )T

is invertible (as the rows of H ′(xk ) are linearly independent due to rank(H ′(x∗)) = m
and a continuity argument). Multiply equation (5.5) by (H ′(xk )H ′(xk )T )−1H ′(xk ) to
obtain

kH(xk ) =−(H ′(xk )H ′(xk )T )−1H ′(xk )(∇ f (xk )+α(xk −x∗)).

Letting k →∞ we see that the sequence {kH(xk )} is convergent and its limit point
λ∗ is given by

λ∗ =−(H ′(x∗)H ′(x∗)T )−1H ′(x∗)∇ f (x∗).

Finally, by passing to the limit in (5.5) we get

0 =∇ f (x∗)+H ′(x∗)Tλ∗
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This proves the first part of the theorem; we omit proving the second part which may
be found in [1].

The first order necessary condition (5.3) along with the constraints H(x) = 0 is a
system of n +m equations in the n +m variables x1, x2, . . . , xn ï¿½and λ1,λ2, . . . ,λm .
One may use e.g. Newton’s method for solving these equations and find a candidate
for an optimal solution. But usually there are better numerical methods for solving
the optimization (5.1), as we shall see soon.

Necessary optimality conditions are used for finding a candidate solution for be-
ing optimal. In order to verify optimality we need sufficient optimality conditions.

Theorem 5.2. Assume that f and H are twice continuously differentiable func-
tions. Moreover, let x∗ be a point satisfying the first order necessary optimality
condition (5.3) and the following condition

y T ∇2L(x∗,λ∗)y > 0 for all y 6= 0 with H ′(x∗)T y = 0 (5.6)

where ∇2L(x∗,λ∗) is the Hessian of the Lagrangian function with second order
partial derivatives with respect to x . Then x∗ is a (strict) local minimum of f
subject to H(x) = 0.

This theorem may be proved (see [1] for details) by considering the augmented
Lagrangian function

Lc (x ,λ) = f (x)+λT H(x)+ (c/2)‖H(x)‖2 (5.7)

where c is a positive scalar. This is in fact the Lagrangian function in the modified
problem

minimize f (x)+ (c/2)‖H(x)‖2 subject to H(x) = 0 (5.8)

and this problem must have the same local minima as the problem of minimizing
f (x) subject to H(x) = 0. The objective function in (5.8) contains the penalty term
(c/2)‖H(x)‖2 which may be interpreted as a penalty (increased function value) for
violating the constraint H(x) = 0. In connection with the proof of Theorem 5.2 based
on the augmented Lagrangian one also obtains the following interesting and useful
fact: if x∗ and λ∗ satisfy the sufficient conditions in Theorem 5.2 then there exists
a positive c̄ such that for all c ≥ c̄ the point x∗ is also a local minimum of the aug-
mented Lagrangian Lc (·,λ∗). Thus, the original constrained problem has been con-
verted to an unconstrained one involving the augmented Lagrangian. And, as we
know, unconstrained problems are easier to solve (solve the equations saying that
the gradient is equal to zero).

5.2 Inequality constraints and KKT

We now consider the general nonlinear optimization problem where there are both
equality and inequality constraints. The problem is then
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minimize f (x)
subject to

hi (x) = 0 (i ≤ m)
g j (x) ≤ 0 ( j ≤ r )

(5.9)

We assume, as usual, that all these functions are continuously differentiable real-
valued functions defined on Rn . In short form we write the constraints as H(x) = 0
and G(x) ≤ 0 where we let H = (h1,h2, . . . ,hm) and G = (g1, g2, . . . , gr ).

A main difficulty in problems with inequality constraints is to determine which
of the inequalities that are active in an optimal solution. If we knew the active
inequalities, we would essentially have a problem with only equality constraints,
H(x) = 0 plus the active equalities, i.e., a problem of the form discussed in the previ-
ous section. For very small problems (solvable by hand-calculation) a direct method
is to consider all possible choices of active inequalities and solve the corresponding
equality-constrained problem by looking at the Lagrangian function.

Interestingly, one may also transform the problem (5.9) into the following equality-
constrained problem

minimize f (x)
subject to

hi (x) = 0 (i ≤ m)
g j (x)+ z2

j = 0 ( j ≤ r ).

(5.10)

We have introduced extra variables z j , one for each inequality. The square of
these variables represent slack in each of the original inequalities. Note that there
is no sign constraint on z j . Clearly, the problems (5.9) and (5.10) are equivalent.
This transformation can also be useful computationally. Moreover, it is useful the-
oretically as one may apply the optimality conditions from the previous section to
problem (5.10) to derive the theorem below (see [1]).

We now present a main result in nonlinear optimization. It gives optimality con-
ditions for this problem, and these conditions are called the Karush-Kuhn-Tucker
conditions, or simply the KKT conditions. In order to present the KKT conditions we
introduce the Lagrangian function L :Rn ×Rm ×Rr →R given by

L(x ,λ,µ) = f (x)+
m∑

i=1
λi hi (x)+

r∑
j=1

µ j g j (x) = f (x)+λT H(x)+µT G(x). (5.11)

The gradient of L with respect to x is given by

∇x L(x ,λ,µ) =∇ f (x)+
m∑

i=1
λi∇hi (x)+

r∑
j=1

µ j∇g j (x).
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The Hessian matrix of L at (x ,λ,µ) containing second order partial derivatives of L
with respect to x will be denoted by ∇x x L(x ,λ,µ). Finally, the indices of the active
inequalities at x is denoted by A(x), so A(x) = { j ≤ r : g j (x) = 0}. A point x is called
regular if {∇h1(x), . . .∇hm(x)}∪ {∇gi (x) : i ∈ A(x)} is linearly independent.

In the following theorem the first part contains necessary conditions while the
second part contains sufficient conditions for optimality.

Theorem 5.3. Consider problem (5.9) with the usual differentiability assump-
tions.

(i ) Let x∗ be a local minimum of this problem and assume that x∗ is a regular
point. Then there are unique Lagrange multiplier vectors λ∗ = (λ∗

1 ,λ∗
2 , . . . ,λ∗

m)
and µ∗ = (µ∗

1 ,µ∗
2 , . . . ,µ∗

r ) such that

∇x L(x∗,λ∗,µ∗) = 0
µ∗

j ≥ 0 ( j ≤ r )

µ∗
j = 0 ( j 6∈ A(x∗)).

(5.12)

If f , g and h are twice continuously differentiable, then the following also holds

y T ∇2
x x L(x∗,λ∗,µ∗)y ≥ 0 (5.13)

for all y with ∇hi (x∗)T y = 0 (i ≤ m) and ∇g j (x∗)T y = 0 ( j ∈ A(x∗)).

(i i ) Assume that x∗, λ∗ and µ∗ are such that x∗ is a feasible point and (5.12)
holds. Assume, moreover, that (5.13) holds with strict inequality for each y . Then
x∗ is a (strict) local minimum in problem (5.9).

Proof: We shall derive this result from Theorem 5.1.
(i) By assumption x∗ is a local minimum of problem (5.9), and x∗ is a regular

point. Consider the constrained problem

minimize f (x)
subject to

hi (x) = 0 (i ≤ m)
g j (x) = 0 ( j ∈ A(x∗))

(5.14)

which is obtained by removing all inactive constraints in x∗. Then x∗ must be a
local minimum in (5.14); otherwise there would be a point x ′ in the neighborhood of
x∗ which is feasible in (5.14) and satisfying f (x ′) < f (x∗). By choosing x ′ sufficiently
near x∗ we would get g j (x ′) < 0 for all j ∈ A(x∗), contradicting that x∗ is a local min-
imum in (5.9). Therefore we may apply Theorem 5.1 to problem (5.14) and by reg-
ularity of x∗ there must be unique Lagrange multiplier vectors λ∗ = (λ∗

1 ,λ∗
2 , . . . ,λ∗

m)
and µ∗

j ( j ∈ A(x∗)) such that

∇ f (x∗)+
m∑

i=1
λ∗

i ∇hi (x∗)+ ∑
j∈A(x∗)

µ∗
j ∇g j (x∗) = 0
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By defining µ j = 0 for j 6∈ A(x∗) we get (5.12), except for the nonnegativity of µ.
The remaining part of the theorem may be proved, after some work, by studying

the equality-constrained reformulation (5.10) of (5.9) and applying Theorem 5.1 to
(5.10). The details may be found in [1].

The KKT conditions have an interesting geometrical interpretation. They say
that −∇ f (x∗) may be written as linear combination of the gradients of the hi ’s plus
a nonnegative linear combination of the gradients of the g j ’s that are active at x∗.
Example 5.4. Let us consider the following optimization problem:

min{x1 : x2 ≥ 0,1− (x1 −1)2 −x2
2 ≥ 0}.

Here there are two inequality constraints:

g1(x1, x2) =−x2 ≤ 0

g2(x1, x2) = (x1 −1)2 +x2
2 −1 ≤ 0.

If we compute the gradients we see that the KKT conditions take the form(
1
0

)
+µ1

(
0
−1

)
+µ2

(
2(x1 −1)

2x2

)
= 0,

where the two last terms on the left hand side only are included if the corresponding
inequalities are active. It is clear that we find no solutions if no inequalities are ac-
tive. If only the first inequality is active we find no solution either. If only the second
inequality is active we get the equations

(x1 −1)2 +x2
2 = 1

1+2µ2(x1 −1) = 0

2µ2x2 = 0.

From the last equation we see that either x2 = 0 or µ2 = 0. µ2 = 0 is in conflict with
the second equation, however. If x2 = 0, the first equation gives us that x1 = 0 or
x1 = 2. x1 = 2 put into the second equation gives that µ2 = −1/2, which contradicts
µ2 ≥ 0. With x1 = 0 we get thatµ2 = 1/2, so that (0,0) is a candidate for the minimum.
If both inequalities are active we get the equations

(x1 −1)2 +x2
2 = 1

x2 = 0

1+2µ2(x1 −1) = 0

−µ1 +2µ2x2 = 0.

It is clear that this reduces to the system we just solved, so that (0,0) is the only candi-
date for a minimum. It is clear that we must have a minimum, since any continuous
function defined on a closed, bounded region must have a minimum.

Finally we should comment on any points which are not regular. If the first in-
equality is active it is impossible to have that ∇g1 = 0. If the other inequality is ac-
tive we must have that (2(x1 − 1),2x2) = 0 in a point which is not regular, so that
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(x1, x2) = (1,0). However, it is clear that the other inequality is not active at this point.
If both inequalities are active it is clear that (x1, x2) = (0,0), or (2,0). We have already
considered the first point. In the other point the gradients are ∇g1 = (0,−1) and
∇g2 = (2,0), which are linearly independent, so that we get no candidates for the
minimum from points which are not regular. ♣

We remark that the assumption that x∗ is a regular point may be too restric-
tive in some situations, for instance there may be more than n active inequalities
in x∗. There exist several other weaker assumptions that assure the existence of La-
grangian multipliers (and similar necessary conditions). Let us briefly say a bit more
on this matter.

Definition 5.5 (Tangent vector). Let C ⊆ Rn and let x ∈ C . A vector d ∈ Rn is
called a tangent (vector) to C at x if there is a sequence {xk } in C and a sequence
{αk } in R+ such that

lim
k→∞

(xk −x)/αk = d .

The set of tangent vectors at x is denoted by TC (x).

TC (x) always contains the zero vector and it is a cone, meaning that it contains
each positive multiple of its vectors. Consider now problem (5.9) and let C be the set
of feasible solutions (those x satisfying all the equality and inequality constraints).

Definition 5.6 (Linearized feasible directions). A linearized feasible direction at
x ∈C is a vector d such that

d ·∇hi (x) = 0 (i ≤ m)
d ·∇g j (x) = 0 ( j ∈ A(x∗)).

Let LFC (x) be the set of all linearized feasible directions at x .

So, if we move from x along a linearized feasible direction with a suitably small
step, then the new point is feasible if we only care about the linearized constraints at
x (the first order Taylor approximations) of each hi and each g j for active constraints
at x , i.e., those inequality constraints that hold with equality. With this notation
we have the following lemma. The proof may be found in [11] and it involves the
implicit function theorem from multivariate calculus [8].

Lemma 5.7. Let x∗ ∈ C . Then TC (x∗) ⊆ LFC (x). If x∗ is a regular point, then
TC (x∗) = LFC (x).

The purpose of constraint qualifications is to assure that TC (x∗) = LFC (x). This
property is central for obtaining the necessary optimality conditions discussed above.
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An important example is when C is defined only by linear constraints, i.e., each hi

and c j is a linear function. Then TC (x∗) = LFC (x) holds for each x ∈C .
For a more thorough discussion of these matters, see e.g. [11, 1].

In the remaining part of this section we discuss some examples; the main tool is
to establish the KKT conditions.
Example 5.8. Consider the one-variable problem: minimize f (x) subject to x ≥ 0,
where f :R→R is a differentiable convex function. We here let g1(x) =−x and m = 0.
The KKT conditions then become: there is a number µ such that f ′(x)−µ= 0, µ≥ 0
and µ = 0 if x > 0. This is one of the (rare) occasions where we can eliminate the
Lagrangian variable µ via the equation µ = f ′(x). So the optimality conditions are:
x ≥ 0 (feasibility), f ′(x) ≥ 0, and f ′(x) = 0 if x > 0 (x is an interior point of the domain
so the derivative must be zero), and if x = 0 we must have f ′(0) ≥ 0. ♣
Example 5.9. More generally, consider the problem to minimize f (x) subject to x ≥
0, where f : Rn → R. So here C = {x ∈ Rn : x ≥ 0} is the nonnegative orthant. We
have that gi (x) = −xi , so that ∇gi = −e i . The KKT conditions say that −∇ f (x∗) is
a nonnegative combination of −e i for i so that xi = 0. In other words, ∇ f (x∗) is a
nonnegative combination of e i for i so that xi = 0. This means that

∂ f (x∗)/∂xi = 0 for all i ≤ n with x∗
i > 0, and

∂ f (x∗)/∂xi ≥ 0 for all i ≤ n with x∗
i = 0.

It we interpret this for n = 3 we get the following cases:

• No active constraints: This means that x, y, z > 0. The KKT-conditions say that
all partial derivatives are 0, so that ∇ f (x∗) = 0. This is reasonable, since these
points are internal points.

• One active constraint, such as x = 0, y, z > 0 The KKT-conditions say that
∂ f (x∗)/∂y = ∂ f (x∗)/∂z = 0, so that ∇ f (x∗) points in the positive direction of
e1, as shown in Figure 5.3(a).

• Two active constraints, such x = y = 0, z > 0. The KKT-conditions say that
∂ f (x∗)/∂z = 0, so that ∇ f (x∗) lies in the cone spanned by e1,e2, i.e. ∇ f (x∗)
lies in the first quadrant of the x y-plane, as shown in Figure 5.3(b).

• Three active constraints: This means that x = y = z = 0. The KKT conditions
say that ∇ f (x∗) is in the cone spanned by e1, e2, e3, as shown in Figure 5.3(c).

In all cases ∇ f (x∗) points into a cone spanned by gradients corresponding to the
active inequalities (in general, by a cone we mean the set of all linear combinations
of a set of vectors, with positive coefficients). Note that for the third case above, we
are used to finding minimum values from before: if we restrict f to values where
x = y = 0, we have a one-dimensional problem where we want to minimize g (z) =
f (x, y, z), which is equivalent to finding z so that g ′(z) = ∂ f (x∗)/∂z = 0, as stated by
the KKT-conditions. ♣
Example 5.10. Consider a quadratic optimization problem with linear equality con-
straints
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Figure 5.3: The different possibilities for ∇ f in a minimum of f , under the con-
straints x ≥ 0.

minimize (1/2) xT Dx −q T x
subject to

Ax = b

where D is positive semidefinite and A ∈ Rm×n ,b ∈ Rm . This is a special case
of (5.16) where f (x) = (1/2) xT Dx − q T x . Then ∇ f (x) = Dx − q (see Exercise 9 in
Chapter 1). Thus, the KKT conditions are: there is some λ ∈ Rm such that Dx −q +
ATλ = 0. In addition, the vector x is feasible so we have Ax = b. Thus, solving the
quadratic optimization problem amounts to solving the linear system of equations

Dx + ATλ= q , Ax = b

which may be written as [
D AT

A 0

][
x
λ

]
=

[
q
b

]
. (5.15)

Under the additional assumption that D is positive definite and A has full row rank,
one can show that the coefficient matrix in (5.15) is invertible so this system has a
unique solution x ,λ. Thus, for this problem, we may write down an explicit solu-
tion (in terms of the inverse of the block matrix). Numerically, one finds x (and the
Lagrangian multiplier λ) by solving the linear system (5.15) by e.g. Gaussian elimi-
nation or some faster (direct or iterative) method. ♣
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Example 5.11. Consider an extension of the previous example by allowing linear
inequality constraints as well:

minimize (1/2) xT Dx −q T x
subject to

Ax = b
x ≥ 0

Here D , A and b are as above. Then ∇ f (x) = Dx − q and ∇gk (x) = −ek . Thus,
the KKT conditions for this problem are: there are λ ∈ Rm and µ ∈ Rn such that
Dx − q + ATλ−µ = 0, µ ≥ 0 and µk = 0 if xk > 0 (k ≤ n). We eliminate µ from
the first equation and obtain the equivalent condition: there is a λ ∈ Rm such that
Dx + ATλ≥ q and (Dx + ATλ−q)k ·xk = 0 (k ≤ n). In addition, we have Ax = b, x ≥
0. This problem may be solved numerically, for instance, by a so-called active set
method, see [9]. ♣
Example 5.12. Linear optimization is a problem of the form

minimize c T x subject to Ax = b, x ≥ 0

This is a special case of the convex programming problem (5.16) where g j (x) =
−x j ( j ≤ n). Here ∇ f (x) = c and ∇gk (x) =−ek . Let x be a feasible solution. The KKT
conditions state that there are vectors λ ∈Rm and µ ∈Rn such that c + ATλ−µ= 0,
µ≥ 0 and µk = 0 if xk > 0 (k ≤ n). Here we eliminate µ and obtain the equivalent set
of KKT conditions: there is a vectorλ ∈Rm such that c + ATλ≥ 0, (c + ATλ)k ·xk = 0
(k ≤ n). These conditions are the familiar optimality conditions in linear optimiza-
tion theory. The vector λ is feasible in the so-called dual problem and complemen-
tary slack holds. We do not go into details on this here, but refer to the course INF-
MAT3370 Linear optimization where these matters are treated in detail. ♣

5.3 Convex optimization

A convex optimization problem is to minimize a convex function f over a convex set
C in Rn . These problems are especially attractive, both from a theoretic and algo-
rithmic perspective.

First, let us consider some general results.

Theorem 5.13. Let f : C →Rbe a convex function defined on a convex set C ⊆Rn .

1. Then every local minimum of f over C is also a global minimum.

2. If f is continuous and C is closed, then the set of local (and therefore global)
minimum points of f over C is a closed convex set.
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3. Assume, furthermore, that f : C → R is differentiable and C is open. Let
x∗ ∈C . Then x∗ ∈C is a local (global) minimum if and only if ∇ f (x∗) = 0.

Proof: 1.) The proof of property 1 is exactly as the proof of the first part of Theo-
rem 4.5, except that we work with local and global minimum of f over C .

2.) Assume the set C∗ of minimum points is nonempty and let α= minx∈C f (x).
Then C∗ = {x ∈C : f (x) ≤α} is a convex set, see Proposition 2.5. Moreover, this set is
closed as f is continuous.

3.) This follows directly from Theorem 2.10.
Next, we consider a quite general convex optimization problem which is of the

form (5.9):

minimize f (x)
subject to

Ax = b
g j (x) ≤ 0 ( j ≤ r )

(5.16)

where all the functions f and g j are differentiable convex functions, and A ∈ Rm×n

and b ∈ Rm . Let C denote the feasible set of problem (5.16). Then C is a convex set,
see Proposition 2.5. A special case of (5.16) is linear optimization.

An important concept in convex optimization is duality. To briefly explain this
introduce again the Lagrangian function L :Rn ×Rm ×Rr+ →R given by

L(x ,λ,ν) = f (x)+λT (Ax −b)+νT G(x) (x ∈Rn ,λ ∈Rm ,ν ∈Rr
+)

Remark: we use the variable name ν here in stead of the µ used before because
of another parameter µ to be used soon. Note that we require ν≥ 0.

Define the new function g :Rm ×Rr+ → R̄ by

g (λ,ν) = inf
x

L(x ,λ,ν)

Note that this infimum may sometimes be equal to −∞ (meaning that the function
x → L(x ,λ,ν) is unbounded below). The function g is the pointwise infimum of a
family of affine functions in (λ,µ), one function for each x , and this implies that g
is a concave function. We are interested in g due to the following fact, which is easy
to prove. It is usually referred to as weak duality.

Lemma 5.14. Let x be feasible in problem (5.16) and let λ ∈ Rm ,ν ∈ Rr where
ν≥ 0. Then

g (λ,ν) ≤ f (x).
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Proof: Forλ ∈Rm , ν ∈Rr with ν≥ 0 and x feasible in problem (5.16) we have

g (λ,ν) ≤ L(x ,λ,ν)
= f (x)+λT (Ax −b)+νT G(x)
≤ f (x)

as Ax = b, ν≥ 0 and G(x) ≤ 0.
Thus, g (λ,ν) provides a lower bound on the optimal value in (5.16). It is natural

to look for a best possible such lower bound and this is precisely the so-called dual
problem which is

maximize g (λ,ν)
subject to

ν≥ 0.
(5.17)

Actually, in this dual problem, we may further restrict the attention to those
(λ,ν) for which g (λ,ν) is finite. g (λ,ν) is also called the dual objective function.

The original problem (5.16) will be called the primal problem. It follows from
Lemma 5.14 that

g∗ ≤ f ∗

where f ∗ denotes the optimal value in the primal problem and g∗ the optimal value
in the dual problem. If g∗ < f ∗, we say that there is a duality gap. Note that the
derivation above, and weak duality, holds for arbitrary functions f and g j ( j ≤ r ).
The concavity of g also holds generally.

The dual problem is useful when the dual objective function g may be computed
efficiently, either analytically or numerically. Duality provides a powerful method for
proving that a solution is optimal or, possibly, near-optimal. If we have a feasible x
in (5.16) and we have found a dual solution (λ,ν) with ν≥ 0 such that

f (x) = g (λ,ν)+ε

for some ε (which then has to be nonnegative), then we can conclude that x is
“nearly optimal”, it is not possible to improve f by more than ε. Such a point x is
sometimes called ε-optimal, where the case ε= 0 means optimal.

So, how good is this duality approach? For convex problems it is often perfect
as the next theorem says. We omit most of the proof, see [5, 1, 14]). For noncon-
vex problems one should expect a duality gap. Recall that G ′(x) denotes the Jacobi
matrix of G = (g1, g2, . . . , gr ) at x .

Theorem 5.15. Consider convex optimization problem (5.16) and assume this
problem has a feasible point satisfying

g j (x ′) < 0 ( j ≤ r ).
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Then f ∗ = g∗, so there is no duality gap. Moreover, x is a (local and global ) mini-
mum in (5.16) if and only if there areλ ∈Rm and ν ∈Rr with ν≥ 0 and

∇ f (x)+ ATλ+G ′(x)Tν= 0

and
ν j g j (x) = 0 ( j ≤ r ).

Proof: We only prove the second part (see the references above). So assume that
f ∗ = g∗ and the infimum and supremum are attained in the primal and dual prob-
lems, respectively. Let x be a feasible point in the primal problem. Then x is a min-
imum in the primal problem if and only if there are λ ∈ Rm and ν ∈ Rr such that
all the inequalities in the proof of Lemma 5.14 hold with equality. This means that
g (λ,ν) = L(x ,λ,ν) and νT G(x) = 0. But L(x ,λ,ν) is convex in x so it is minimized
by x if and only if its gradient is the zero vector, i.e., ∇ f (x)+λT A+G ′(x)Tν= 0. This
leads to the desired characterization.

The assumption stated in the theorem, that g j (x ′) < 0 for each j , is called the
weak Slater condition.
Example 5.16. Consider the convex optimization problem where we want to mini-
mize the function f (x) = x2 +1 subject to the inequality constraint g (x) = (x −3)2 −
1 ≤ 0. From Figure 5.4(a) it is quite clear that the minimum is attained for x = 2,
and is f (2) = 5. Since both the constraint and the objective function are convex, and
since here the weak Slater condition holds, Theorem 5.15 guarantees that the dual
problem has the same solution as the primal problem. Let us verify this by consid-
ering the dual problem as well. The Lagrangian function is given by

L(x,ν) = f (x)+νg (x) = x2 +1+ν((x −3)2 −1).

It is easy to see that this function attains its minimum for x = 3ν
1+ν . This means that

the dual objective function is given by

g (ν) = L

(
3ν

1+ν ,ν

)
=

(
3ν

1+ν
)2

+1+ν
((

3ν

1+ν −3

)2

−1

)
.

This is shown in Figure 5.4(b). It is quite clear from this figure that the maximum
is 5, which we already found by solving the primal problem. To prove this requires
some more work, by setting the derivative of the dual objective function to zero.
Therefore, the primal and the dual problem are two very different problems, where
we in practice choose the one which is simplest to solve. ♣

Finally, we mention a theorem on convex optimization which is used in several
applications.

Theorem 5.17. Let f : C →Rbe a convex function defined on a convex set C ⊆Rn ,
and x∗ ∈C . Then x∗ is a (local and therefore global) minimum of f over C if and
only if

∇ f (x∗)T (x −x∗) ≥ 0 for all x ∈C . (5.18)
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Figure 5.4: The objective function and the dual objective function of Example 5.16

Proof: Assume first that ∇ f (x∗)T (x − x∗) < 0 for some x ∈C . Consider the func-
tion g (ε) = f (x∗+ε(x−x∗)) and apply the first order Taylor theorem to this function.
Thus, for every ε> 0 there exists an t ∈ [0,1] with

f (x∗+ε(x −x∗)) = f (x∗)+ε∇ f (x∗+ tε(x −x∗))T (x −x∗).

Since ∇ f (x∗)T (x − x∗) < 0 and the gradient function is continuous (our standard
assumption!) we have for sufficiently small ε> 0 that∇ f (x∗+tε(x−x∗))T (x−x∗) < 0.
This implies that f (x∗+ ε(x − x∗)) < f (x∗). But, as C is convex, the point x∗+ ε(x −
x∗) = εx +(1−ε)x∗ also lies in C and so we conclude that x∗ is not a local minimum.
This proves that (5.18) is necessary for x∗ to be a local minimum of f over C .

Next, assume that (5.18) holds. Using Theorem 2.10 we then get

f (x) ≥ f (x∗)+∇ f (x∗)T (x −x∗) ≥ f (x∗) for every x ∈C

so x∗ is a (global) minimum.

Exercises for Chapter 5

1. In the plane consider a rectangle R with sides of length x and y and with perime-
ter equal to α (so 2x + 2y = α). Determine x and y so that the area of R is largest
possible.

2. Consider the optimization problem

minimize f (x1, x2) subject to (x,x2) ∈C

where C = {(x1, x2) ∈R2 : x1, x2 ≥ 0,4x1 +x2 ≥ 8,2x1 +3x3 ≤ 12}. Draw the feasible set
C in the plane. Find the set of optimal solutions in each of the cases given below.
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a. f (x1, x2) = 1.

b. f (x1, x2) = x1.

c. f (x1, x2) = 3x1 +x2.

d. f (x1, x2) = (x1 −1)2 + (x2 −1)2.

e. f (x1, x2) = (x1 −10)2 + (x2 −8)2.

3. Solve

max{x1x2 · · ·xn :
n∑

j=1
x j = 1, x j ≥ 0}.

4. Let S = {x ∈ R2 : ‖x‖ = 1} be the unit circle in the plane. Let a ∈ R2 be a given
point. Formulate the problem of finding a nearest point in S to a as a nonlinear
optimization problem. How can you solve this problem directly using a geometrical
argument?

5. Let S be the unit circle from the previous exercise. Let a1, a2 be two given points
in the plane. Let f (x) = ∑2

i=1 ‖x −ai‖2. Formulate this as an optimization problem
and find its Lagrangian function L. Find the stationary points of L, and use this to
solve the optimization problem.

6. Solve
minimize x1 +x2 subject to x2

1 +x2
2 = 1.

using the Lagrangian, see Theorem 5.1. Next, solve the problem by eliminating x2

(using the constraint).

7. Let g (x1, x2) = 3x2
1 +10x1x2 +3x2

2 −2. Solve

min{‖(x1, x2)‖ : g (x1, x2) = 0}.

8. Same question as in previous exercise, but with g (x1, x2) = 5x2
1 −4x1x2 +4x2

2 −6.

9. Let f be a two times differentiable function f : Rn → R. Consider the optimiza-
tion problem

minimize f (x) subject to x1 +x2 +·· ·+xn = 1.

Characterize the stationary points (find the equation they satisfy).

10. Consider the previous exercise. Explain how to convert this into an uncon-
strained problem by eliminating xn .

11. Let A be a real symmetric n ×n matrix. Consider the optimization problem

max

{
1

2
xT Ax : ‖x‖ = 1

}
Rewrite the constraint as ‖x‖−1 = 0 and show that an optimal solution of this prob-
lem must be an eigenvector of A. What can you say about the Lagrangian multiplier?

12. Solve
min{(1/2)(x2

1 +x2
2 +x2

3) : x1 +x2 +x3 ≤−6}.
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13. Solve
min{(x1 −3)2 + (x2 −5)2 +x1x2 : 0 ≤ x1, x2 ≤ 1}.

14. Solve
min{x1 +x2 : x2

1 +x2
2 ≤ 2}.

15. Write down the KKT conditions for the portfolio optimization problem of Sec-
tion 1.2.1.

16. Write down the KKT conditions for the optimization problem

min{ f (x1, x2, . . . , xn) : x j ≥ 0 ( j ≤ n),
n∑

j=1
x j ≤ 1}

where f :Rn →R is a differentiable function.

17. Consider the following optimization problem

min{

(
x1 − 3

2

)2

+x2
2 : x1 +x2 ≤ 1, x1 −x2 ≤ 1,−x1 +x2 ≤ 1,−x1 −x2 ≤ 1}.

a. Draw the region which we minimize over, and find the minimum of f (x) =(
x1 − 3

2

)2 +x2
2 by a direct geometric argument.

b. Write down the KKT conditions for this problem. From a., decide which
two conditions g1 and g2 are active at the minimum, and verify that you can
findµ1 ≥ 0,µ2 ≥ 0 so that ∇ f +µ1∇g1+µ2∇g2 = 0 (as the KKT conditions guar-
antee in a minimum) (it is not the meaning here that you should go through
all possibilities for active inequalities, only those you see must be fulfilled
from a.).

18. Consider the following optimization problem

min{−x1x2 : x2
1 +x2

2 ≤ 1}

Write down the KKT conditions for this problem, and find the minimum.
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Chapter 6
Constrained optimization -
methods

In this final chapter we present numerical methods for solving nonlinear optimiza-
tion problems. This is a huge area, so we can here only give a small taste of it! The
algorithms we present are known good methods.

6.1 Equality constraints

We here consider the nonlinear optimization problem with linear equality constraints

minimize f (x)
subject to

Ax = b
(6.1)

Newton’s method may be applied to this problem. The method is very similar to
the unconstrained case, but with two modifications. First, the initial point x0 must
be chosen so that it is feasible, i.e., Ax0 = b. Next, the search direction d must be
such that the new iterate is feasible as well. This means that Ad = 0, so the search
direction lies in the nullspace of A.

The second order Taylor approximation of f at an iterate xk is

T 1
f (xk ; xk +h) = f (xk )+∇ f (xk )T h + (1/2)hT ∇2 f (xk )h

and we want to minimize this under the constaint Axk+1 = A(xk +h) = Axk = b, i.e.

Ah = 0 (6.2)
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Since the gradient of T 1
f w.r.t. h is ∇ f (xk )+∇2 f (xk )h, setting the gradient of the

Lagrangian w.r.t. h equal to zero gives

∇ f (xk )+∇2 f (xk )h + ATλ= 0, (6.3)

whereλ is the Lagrange multiplier. Equations (6.2)-(6.3) together give[ ∇2 f (xk ) AT

A 0

][
h
λ

]
=

[ −∇ f (xk )
0

]
.

The Newton step is only defined when the coefficient matrix in the KKT problem
is invertible. In that case, the problem has a unique solution (h,λ) and we define
d N t = h and call this the Newton step.

Newton’s method for solving (6.1) may now be described as follows. Again ε> 0
is a small stopping criterion.

Newton’s method for linear equality constrained optimization:
1. Choose an initial point x0 satisfying Ax0 = b and let x = x0.
2. repeat

(i) Compute the Newton step d N t and η := d T
N t∇2 f (x)d N t .

(ii) If η2/2 < ε: stop.
(iii) Use backtracking line search to find step size α
(iv) Update x := x +αd N t

This leads to an algorithm for Newtons’s method for linear equality constrained
optimization which is very similar to the function newtonbacktrack from Exer-
cise 12 in Chapter 4.2. We do not state a formal convergence theorem for this method,
but it behaves very much like Newton’s method for unconstrained optimization. Ac-
tually, it can be seen that the method just described corresponds to eliminating vari-
ables based on the equations Ax = b and using the unconstrained Newton method
for the resulting (smaller) problem. So as soon as the solution is “sufficiently near”
an optimal solution, the convergence rate is quadratic, so extremely few iterations
are needed in this final stage.

6.2 Inequality constraints

We here briefly discuss an algorithm for inequality constrained nonlinear optimiza-
tion problems. The presentation is mainly based on [2, 11]. We restrict the attention
to convex optimization problems, but many of the ideas are used for nonconvex
problems as well.

The method we present is an interior-point method, more precisely, an interior-
point barrier method. This is an iterative method which produces a sequence of
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points lying in the relative interior of the feasible set. The barrier idea is to approx-
imate the problem by a simpler one in which constraints are replaced by a penalty
term. The purpose of this penalty term is to give large objective function values to
points near the (relative) boundary of the feasible set, which effectively becomes a
barrier against leaving the feasible set.

Consider again the convex optimization problem

minimize f (x)
subject to

Ax = b
g j (x) ≤ 0 ( j ≤ r )

(6.4)

where A is an m×n matrix and b ∈Rm . The feasible set here is F = {x ∈Rn : Ax =
b, g j (x) ≤ 0 ( j ≤ r )}. We assume that the weak Slater condition holds, and therefore
by Theorem 5.15 the KKT conditions for problem (6.4) are

Ax = b, g j (x) ≤ 0 ( j ≤ r )
ν≥ 0, ∇ f (x)+ ATλ+G ′(x)Tν= 0

ν j g j (x) = 0 ( j ≤ r ).
(6.5)

So, x is a minimum in (6.4) if and only if there are λ ∈ Rm and ν ∈ Rr such that (6.5)
holds.

Let us state an algorithm for Newton’s method for linear equality constrained
optimization with inequality constraints. Before we do this there is one final prob-
lem we need to address: The α we get from backtracking line search may be so that
x+αd N t do not satisfty the inequality constraints (in the exercises you will be asked
to verify that this is the case for a certain function). The problem comes from that
the iterates xk +βm sd k from Armijo’s rule do not necessarily satisfy the inequality
constraints. However, we can choose m large enough so that all succeeding iterates
satisfy these constraints. We can modify the function newtonbacktrack from Ex-
ercise 12 in Chapter 4.2 to a function newtonbacktrackg1g2 in an obvious way so
that, in addition to applying Armijos rule, we also choose a step size so small that
the inequality constraints are saitsfied:

function [x,numit]=newtonbacktrackg1g2LEC(f,df,d2f,A,b,x0,g1,g2)
epsilon=10^(-3);
x=x0;
maxit=100;
for numit=1:maxit

matr=[d2f(x) A’; A zeros(size(A,1))];
vect=[-df(x); zeros(size(A,1),1)];
solvedvals=matr\vect;
d=solvedvals(1:size(A,2));
eta=d’*d2f(x)*d;
if eta^2/2<epsilon

break;
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end
% Armijos rule with two inequalities
beta=0.2; s=0.5; sigma=10^(-3);
m=0;
while (f(x)-f(x+beta^m*s*d) < -sigma *beta^m*s *(df(x))’*d) || (g1(x+beta^m*s*d)>0) || (g2(x+beta^m*s*d)>0)

m=m+1;
end
alpha = beta^m*s;

x=x+alpha*d;
end

Here g1 and g2 are function handles which represent the inequality constraints.
The new function works only in the case when there are exactly two inequality con-
straints.

The interior-point barrier method is based on an approximation of problem (6.4)
by the barrier problem

minimize f (x)+µφ(x)
subject to

Ax = b
(6.6)

where

φ(x) =−
r∑

j=1
ln(−g j (x))

and µ > 0 is a parameter (in R). The function φ is called the (logarithmic) barrier
function and its domain is the relative interior of the feasible set

F ◦ = {x ∈Rn : Ax = b, g j (x) < 0 ( j ≤ r )}.

The same set F ◦ is the feasible set of the barrier problem. The key properties of the
barrier function are:

• φ is twice differentiable and

∇φ(x) =
r∑

j=1

1

(−g j (x))
∇g j (x) (6.7)

∇2φ(x) =
r∑

j=1

1

g 2
j (x)

∇g j (x)∇g j (x)T +
r∑

j=1

1

(−g j (x))
∇2g j (x) (6.8)

• φ is convex. For this it is enough to show that ∇2φ is positive semidefinite at
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all points, which can be shown from Equation 6.8 as follows:

hT ∇2φ(x)h =
r∑

j=1

(
1

g 2
j (x)

hT ∇g j (x)∇g j (x)T h + 1

(−g j (x))
hT ∇2g j (x)h

)

=
r∑

j=1

(
1

g 2
j (x)

‖∇g j (x)T h‖2 + 1

(−g j (x))
hT ∇2g j (x)h

)
≥ 0

since 1
(−g j (x)) > 0 and hT ∇2g j (x)h ≥ 0 (since all g j are convex, ∇2g j (x) is posi-

tive semidefinite).

• If {xk } is a sequence in F ◦ such that g j (xk ) → 0 for some j ≤ r , thenφ(xk ) →∞.
This is the barrier property.

The idea here is that for points x near the boundary of F the value of φ(x) is very
large. So, an iterative method which moves around in the interior F ◦ of F will typ-
ically avoid points near the boundary as the logarithmic penalty term makes the
function value f (x)+µφ(x) very large.

The interior point method consists in solving the barrier problem, using New-
ton’s method, for a sequence {µk } of (positive) barrier parameters; these are called
the outer iterations. The solution xk found for µ=µk is used as the starting point in
Newton’s method in the next outer iteration where µ = µk+1. The sequence {µk } is
chosen such that µk → 0. When µ is very small, the barrier function approximates
the "ideal" penalty function η(x) which is zero in F and −∞ when one of the in-
equalities g j (x) ≤ 0 is violated.

A natural question is why one bothers to solve the barrier problems for more
than one single µ, typically a very small value. The reason is that it would be hard
to find a good starting point for Newton’s method in that case; the Hessian matrix of
µφ is typically ill-conditioned for small µ.

Assume now that the barrier problem has a unique optimal solution x(µ); this is
true under reasonable assumptions that we shall return to. The point x(µ) is called a
central point. Assume also that Newton’s method may be applied to solve the barrier
problem. The set of points x(µ) for µ > 0 is called the central path; it is a path (or
curve) as we know it from multivariate calculus. In order to investigate the central
path we prefer to work with the equivalent problem1 to (6.6) obtained by multiplying
the objection function by 1/µ, so

minimize (1/µ) f (x)+φ(x)
subject to

Ax = b.
(6.9)

A central point x(µ) is characterized by

Ax(µ) = b
g j (x(µ)) < 0 ( j ≤ r )

1Equivalent here means the same minimum points.
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and the existence ofλ ∈Rm (the Lagrange multiplier vector) such that

(1/µ)∇ f (x(µ))+∇φ(x(µ))+ ATλ= 0

i.e.,

(1/µ)∇ f (x(µ))+
r∑

j=1

1

(−g j (x(µ)))
∇g j (x(µ))+ ATλ= 0. (6.10)

A fundamental question is: how far from being optimal is the central point x(µ)? We
now show that duality provides a very elegant way of answering this question.

Theorem 6.1. For each µ> 0 the central point x(µ) satisfies

f ∗ ≤ f (x(µ)) ≤ f ∗+ rµ.

Proof: Define ν(µ) = (ν1(µ), . . . ,νr (µ)) ∈ Rr and λ(µ) ∈ Rm as Lagrange parame-
ters for the original problem by

ν j (µ) =−µ/g j (x(µ)), ( j ≤ r );

λ(µ) =µλ.
(6.11)

where λ and x(µ) satisfy Equation (6.10),i.e. they are Lagrange parameters for the
barrier problem. We need to return to the dual problem (of the original problem),
defined in Section 5.3. We first claim that the pair (λ(µ),ν(µ)) is feasible in the dual
problem to (6.4). We thus need to show that ν(µ) is nonnegative. This is immediate:
since g j (x(µ)) < 0 and µ> 0, we get ν j (µ) =−µ/g j (x(µ)) > 0 for each j . We now also
want to show that x(µ) satisfies

g (λ(µ),ν(µ)) = inf
x

L(x ,λ(µ),ν(µ)) = L(x(µ),λ(µ),ν(µ)),

where g is the dual objective function. To see this, note first that the Lagrangian
function L(x ,λ,ν) = f (x)+λT (Ax −b)+νT G(x) is convex in x for givenλ and µ≥ 0.
Thus, x minimizes this function if and only if ∇x L = 0. Now,

∇x L(x(µ),λ(µ),ν(µ))

=∇ f (x(µ))+ ATλ(µ)+
r∑

j=1
ν j (µ)∇g j (x(µ))

=∇ f (x(µ))+µATλ+µ
r∑

j=1

1

(−g j (x(µ)))
∇g j (x(µ))

=µ
(

1

µ
∇ f (x(µ))+ ATλ+

r∑
j=1

1

(−g j (x(µ)))
∇g j (x(µ))

)
= 0,

by (6.10) and the definition of the dual variables (6.11). This shows that g (λ(µ),ν(µ)) =
L(x(µ),λ(µ),ν(µ)).
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By weak duality and Lemma 5.14, we now obtain

f ∗ ≥ g (λ(µ),ν(µ))

= L(x(µ),λ(µ),ν(µ))

= f (x(µ))+λ(µ)T (Ax(µ)−b)+
r∑

j=1
ν j (µ)g j (x(µ))

= f (x(µ))− rµ

which proves the result.
This theorem is very useful and shows why letting µ→ 0 (more accurately µ→

0+) is a good idea.

Corollary 6.2. The central path has the following property

lim
µ→0

f (x(µ)) = f ∗.

In particular, if f is continuous and limµ→0 x(µ) = x∗ for some x∗, then x∗ is a
global minimum in (6.4).

Proof: This follows from Theorem 6.1 by letting µ→ 0. The second part follows
from

f (x∗) = f (lim
µ→0

x(µ)) = lim
µ→0

f (x(µ)) = f ∗

by the first part and the continuity of f ; moreover x∗ must be a feasible point by
elementary topology.

After these considerations we may now present the interior-point barrier method.
It uses a tolerance ε> 0 in its stopping criterion.

Interior-point barrier method:
1. Choose an initial point x = x0 in F ◦, µ=µ0 and α< 1.
2. while rµ> ε do

(i) (Centering step) Using initial point x find the solution x(µ) of (6.6)
(ii) (Update) x := x(µ)
(iii) (Decrease µ) µ :=αµ.

This leads to the following algorithm for the internal point barrier method for
the case of equality constraints, and 2 inequality constraints:

function xopt=IPBopt(f,g1,g2,df,dg1,dg2,d2f,d2g1,d2g2,A,b,x0)
xopt=x0;
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mu=1;
alpha=0.1;
r=2;
epsilon=10^(-3);
numitouter=0;
while (r*mu>epsilon)
[xopt,numit]=newtonbacktrackg1g2LEC(...
@(x)(f(x)-mu*log(-g1(x))-mu*log(-g2(x))),...
@(x)(df(x) - mu*dg1(x)/g1(x) - mu*dg2(x)/g2(x)),...
@(x)(d2f(x) + mu*dg1(x)*dg1(x)’/(g1(x)^2) ...

+ mu*dg2(x)*dg2(x)’/(g2(x)^2) - mu*d2g1(x)/g1(x)...
- mu*d2g2(x)/g2(x) ),A,b,xopt,g1,g2);

mu=alpha*mu;
numitouter=numitouter+1;
fprintf(’Iteration %i:’,numitouter);
fprintf(’(%f,%f)\n’,xopt,f(xopt));

end

Note that we here have inserted the expressions from Equation 6.7 and Equation 6.8
for the gradient and the Hesse matrix of the barrier function. The input are f , g1,
g2, their gradients and their Hesse matrices, the matrix A, the vector b, and an ini-
tial feasible point x0. The function calls newtonbacktrackg1g2LEC, and returns
the optimal solution x∗. It also gives some information on the values of f during
the iterations. The iterations used in Newton’s method is called the inner iterations.
There are different implementation details here that we do not discuss very much.
A typical value on α is 0.1. The choice of the initial µ0 can be difficult, if it is chosen
too large, one may experience many outer iterations. Another issue is how accu-
rately one solves (6.6). It may be sufficient to find a near-optimal solution here as
this saves inner iterations. For this reason the method is also called a path-following
method; it follows in the neighborhood of the central path.

Finally, it should be mentioned that there exists a variant of the interior-point
barrier method which permits an infeasible starting point. For more details on this
and various implementation issues one may consult [2] or [11].
Example 6.3. Consider the function f (x) = x2 +1, 2 ≤ x ≤ 4. Minimizing f can be
considered as the problem of finding a minimum subject to the constraints g1(x) =
2−x ≤ 0, and g2(x) = x −4 ≤ 0. The barrier problem is to minimize the function

f (x)+µφ(x) = x2 +1−µ ln(x −2)−µ ln(4−x).

Some of these are drawn in Figure 6.1, where we clearly can see the effect of de-
creasing µ in the barrier function: The function converges to f pointwise as µ→ 0+,
except at the boundaries x = 2, x = 4. It is easy to see that x = 2 is the minimum of
f under the given constraints, and that f (2) = 5 is the minimum value. There are no
equality constrains in this case, so that we can use the barrier method with Newton’s
method for unconstrained optimization, as this was implemented in Exercise 12 in
Chapter 4.2. We need, however, to make sure also here that the iterates from Armijo’s
rule satisfy the inequality constraints. In fact, in the exercises you will be asked to
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(d) Barrier problem with µ= 1

Figure 6.1: The function from Example 6.3 and some if its barrier functions.

verify that, for the function f considered here, some of the iterates from Armijo’s
rule do not satisfy the constraints.

It is straightforward to implement a function newtonbacktrackg1g2 which im-
plements Newtons method for two inequality constraints and no equality constraints
, similarly to how we implemented the function newtonbacktrackg1g2LEC. This
leads to the following algorithm for the internal point barrier method for the case of
no equality constraints, but 2 inequality constraints:

function xopt=IPBopt2(f,g1,g2,df,dg1,dg2,d2f,d2g1,d2g2,x0)
xopt=x0;
mu=1; alpha=0.1; r=2; epsilon=10^(-3);
numitouter=0;
while (r*mu>epsilon)
[xopt,numit]=newtonbacktrackg1g2(...
@(x)(f(x)-mu*log(-g1(x))-mu*log(-g2(x))),...
@(x)(df(x) - mu*dg1(x)/g1(x) - mu*dg2(x)/g2(x)),...
@(x)(d2f(x) + mu*dg1(x)*dg1(x)’/(g1(x)^2) ...
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+ mu*dg2(x)*dg2(x)’/(g2(x)^2) ...
- mu*d2g1(x)/g1(x) - mu*d2g2(x)/g2(x) ),xopt,g1,g2);

mu=alpha*mu;
numitouter=numitouter+1;
fprintf(’Iteration %i:’,numitouter);
fprintf(’(%f,%f)\n’,xopt,f(xopt));

end

Note that this function also prints a summary for each of the outer iterations, so that
we can see the progress in the barrier method. We can now find the minimum of f
with the following code, where we have substituted with Matlab functions for f , gi ,
their gradients, and their Hesse matrices.

IPBopt2(@(x)(x.^2+1),@(x)(2-x),@(x)(x-4),...
@(x)(2*x),@(x)(-1),@(x)(1),...
@(x)(2),@(x)(0),@(x)(0),3)

Running this code gives a good approximation to the minimum x = 2 after 4 outer
iterations. ♣
Example 6.4. Let us consider the problem of finding the minimum of x2

1+x2
2 subject

to the constraint x1 + x2 ≥ 2. We set f (x1, x2) = x2
1 + x2

2 , and write the constraint as
g1(x1, x2) = 2− x1 − x2 ≤ 0. Here it is not difficult to state the KKT conditions and
solve these, so let us do this first. The gradients are ∇ f = (2x1,2x2), ∇g1 = (−1,−1),
so that the KKT conditions take the form

(2x1,2x2)+ν1(−1,−1) = 0

for aν1 ≥ 0, where the last term is included only if x1+x2 = 2 (i.e. when the constraint
is active). If the constraint is not active we see that x1 = x2 = 0, which does not satisfy
the inequality constraint. If the constraint is active we see that x1 = x2 = ν1/2, so
that x1 = x2 = 1 and ν1 = 2 ≥ 0 in order for x1 + x2 = 2. The minimum value is thus
f (1,1) = 2. It is clear that this must be a minimum: Since f is bounded below and
approaches ∞ when either x1 or x2 grows large, it must have a mimimum ( f has no
global maximum). For this one can also argue that the Hessian of the Lagrangian
for the constrained problem becomes positive definit. All points are regular for this
problem since ∇g1 6= 0.

Let us also see if we can come to this same solution by solving the barrier prob-
lem. The barrier function is φ(x1, x2) = − ln(x1 + x2 − 2), which has gradient ∇φ =
(−1/(x1 + x2 −2),−1/(x1 + x2 −2)). We set the gradient of f (x1, x2)+µφ(x1, x2) to 0
and get

(2x1,2x2)+µ(−1/(x1 +x2 −2),−1/(x1 +x2 −2)) = 0.

From this we see that x1 = x2 must fulfill 2x1 = µ
2x1−2 , so that 4x1(x1 −1) = µ, so that

4x2
1 −4x1 −µ= 0. If we solve this problem we find that x1 = 4±p16+16µ

8 = 1±p1+µ
2 . If

we choose the negative sign here we find that x1 < 0, which does not lie inside the
domain of definition for the function we optimize (i.e. points where x1 + x2 > 2). If

we choose the positive sign we find x1 = x2 = 1+p1+µ
2 . It is clear that, when µ→ 0,

74



this will converge to x1 = x2 = 1, which equals the solution we found when we solved
the KKT conditions. ♣

Exercises for Chapter 6

1. Consider problem (6.1) in Section 6.1. Verify that the KKT conditions for this
problem are as stated there.

2. Define the function f (x, y) = x + y . We will attempt to minimize f under the
constraints y −x = 1, and x, y ≥ 0

a. Find A, b, and functions g1, g2 so that the problem takes the same form
as in Equation (6.4).

b. Draw the contours of the barrier function f (x, y)+µφ(x, y) forµ= 0.1,0.2,0.5,1,
where φ(x, y) =− ln(−g1(x, y))− ln(−g2(x, y)).

c. Solve the barrier problem analytically using the Lagrange method.

d. It is straightforward to find the minimum of f under the mentioned con-
straints. State a simple argument for finding this minimum.

e. State the KKT conditions for finding the minimum, and solve these.

f. Show that the central path converges to the same solution which you found
in d. and e..

3. Use the function IPBopt to verify the solution you found in Exercise 2. Initially
you must compute a feasible starting point x0.

4. State the KKT conditions for finding the minimum for the contstrained problem
of Example 6.3, and solve these. Verify that you get the same solution as in Exam-
ple 6.3.

5. In the function IPBopt2, replace the call to the function newtonbacktrackg1g2
with a call to the function newtonbacktrack, with the obvious modification to the
parameters. Verify that the code does not return the expected minimum in this case.

6. Consider the function f (x) = (x −3)2, with the same constraints 2 ≤ x ≤ 4 as in
Example 6.3. Verify in this case that the function IPBopt2 returns the correct mini-
mum regardless of whether you call newtonbacktrackg1g2 or newtonbacktrack.
This shows that, at least in some cases where the minimum is an interior point, the
iterates from Newtons method satisfy the inequality constraints as well.

7. (Trial Exam UIO V2012) In this exercise we will find the minimum of the function
f (x, y) = 3x +2y under the constraints x + y = 1 and x, y ≥ 0.

a. Find a matrix A and a vector b so that the constraint x + y = 1 can be
written on the form Ax = b.

b. State the KKT-conditions for this problem, and find the minimum by solv-
ing these.
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c. Write down the barrier functionφ(x, y) =− ln(−g1(x, y))−ln(−g2(x, y)) for
this problem, where g1 and g2 represent the two constraints of the problem.
Also compute ∇φ.

d. Solve the barrier problem with parameter µ, and denote the solution by
x(µ). Is it the case that the limit limµ→0 x(µ) equals the solution you found in
b.?
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