
Nonlinear optimization
Lecture notes for the course MAT-INF2360

Solutions manual.

Øyvind Ryan

March 5, 2015



ii



Contents

1 1

2 5

3 9

4 13

5 19

6 25

iii



iv



Chapter 1
1. Give an example of a function f :R→R with 10 global minima.

2. Consider the function f (x) = x sin(1/x) defined for x > 0. Find its local minima.
What about global minimum?

3. Let f : X → R+ be a function (with nonnegative function values). Explain why it
is equivalent to minimize f over x ∈ X or minimize f 2(x) over X .
Solution: You can argue in many ways here: For instance the derivative of f 2(x) is
2 f (x) f ′(x), so that extremal points of f are also extremal points of f 2.

4. In Example 1.2.3 we mentioned that optimizing the function px (y) is equivalent
to optimizing the function ln px (y). Explain why maximizing/minimizing g is the
same as maximizing/minimizing ln g for any positive function g .

5. Consider f : R2 → R given by f (x) = (x1 −3)2 + (x2 −2)2. How would you explain
to anyone that x∗ = (3, 2) is a minimum point?

6. The level sets of a function f : R2 → R are sets of the form Lα = x ∈ R2 : f (x) =α}.
Let f (x) = 1

4 (x1 −1)2 + (x2 −3)2. Draw the level sets in the plane for α= 10,5,1,0.1.

7. The sublevel set of a function f : Rn → R is the set Sα( f ) = {x ∈ R2 : f (x) ≤ α},
where α ∈R. Assume that inf{ f (x) : x ∈Rn} = η exists.

a. What happens to the sublevel sets Sα as α decreases? Give an example.

b. Show that if f is continuous and there is an x ′ such that withα= f (x ′) the
sublevel set Sα( f ) is bounded, then f attains its minimum.

8. Consider the portfolio optimization problem in Subsection 1.2.1.

a. Assume that ci j = 0 for each i 6= j . Find, analytically, an optimal solution.
Describe the set of all optimal solutions.
Solution: If ci , j = 0 the function to be minimized is

α
∑
i≤n

ci i x2
i −

n∑
j=1

µ j x j .
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The gradient of this function is 2αC x −µ, where µ is the vector with µ in all
entries. Lagrange multipliers thus gives that 2αC x −µ = λ, where λ is the

vector with λ in all entries. This gives that xi = µ+λ
2αci

. If
∑

xi = 1 we must have

that µ+λ
2α

∑ 1
ci
= 1, so that λ=−µ+ 2α∑

1/ci
.

b. Consider the special case where n = 2. Solve the problem (hint: eliminate
one variable) and discuss how minimum point depends on α.
Solution: When n = 2, we have that x2 = 1−x1, so that

f (x1, x2) =αc11x2
1 +αc22x2

2 +α(c12 + c21)x1x2 −µx1 −µx2

=αc11x2
1 +αc22(1−x1)2 +α(c12 + c21)x1(1−x1)−µx1 −µ(1−x1)

=α(c11 + c22 − c12 − c21)x2
1 +α(−2c22 + c12 + c21)x1 +αc22 −µ

The derivative of this is 2α(c11+c22−c12−c21)x1+α(−2c22+c12+c21), which
is 0 when x1 =− −2c22+c12+c21

2(c11+c22−c12−c21) . This is not dependent on α.

9. Later in these notes we will need the expression for the gradient of functions
which are expressed in terms of matrices.

a. Let f :Rn →R be defined by f (x) = q T x = xT q , where q is a vector. Show
that ∇ f (x) = q , and that ∇2 f (x) = 0.

Solution: We have that f (x) = ∑
i qi xi , so that ∂ f

∂xi
= qi , so that ∇ f (x) = q .

Clearly ∂2 f
∂xi ∂x j

= 0, so that ∇2 f (x) = 0.

b. Let f : Rn → R be the quadratic function f (x) = (1/2)xT Ax , where A is
symmetric. Show that ∇ f (x) = Ax , and that ∇2 f (x) = A.
Solution: We have that

f (x) = 1

2

∑
i , j

xi Ai j x j = 1

2

∑
i

Ai i x2
i +

1

2

∑
i , j ,i 6= j

xi Ai j x j ,

so that

∂ f

∂xi
= Ai i xi + 1

2

∑
j , j 6=i

x j (Ai j + A j i ) = 1

2

∑
j

x j 2Ai j

=∑
j

Ai j x j = (Ax)i

This gives ∇ f = Ax . Finally we get

∂ f

∂xi∂x j
= ∂

∂x j
(
∑

j
Ai j x j ) = Ai j ,

so that ∇2 f = A.
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c. Show that, with f defined as in b., but with A not symmetric, we obtain
that ∇ f (x) = 1

2 (A+ AT )x , and ∇2 f = 1
2 (A+ AT ). Verify that these formulas are

compatibe with what you found in b. when A is symmetric.
Solution: As in b. we have that

f (x) = 1

2

∑
i , j

xi Ai j x j = 1

2

∑
i

Ai i x2
i +

1

2

∑
i , j ,i 6= j

xi Ai j x j ,

but the further simplifications now take the form

∂ f

∂xi
= Ai i xi + 1

2

∑
j , j 6=i

x j (Ai j + A j i ) = 1

2

∑
j

x j (Ai j + A j i )

= 1

2

∑
j

(Ai j + (AT )i j )x j = (
1

2
(A+ AT )x)i

This gives ∇ f = 1
2 (A+ AT )x . Finally we get

∂ f

∂xi∂x j
= ∂

∂x j
(

1

2

∑
j

(Ai j + (AT )i j )x j ) = 1

2

∑
j

(Ai j + (AT )i j ),

so that ∇2 f = 1
2 (A+ AT ).

10. Consider f (x) = f (x1, x2) = x2
1+3x1x2−5x2

2+3. Determine the first order Taylor
approximation to f at each of the points (0,0) and (2,1).
Solution: First note that f (0,0) = 3, and that f (2,1) = 8 We have that ∇ f = (2x1 +
3x2,3x1−10x2), and that ∇ f (0,0) = (0,0), and ∇ f (2,1) = (7,−4). The first order Taylor
approximation at (0,0) is thus

f (0,0)+∇ f (0,0)T (x − (0,0)) = 3.

The first order Taylor approximation at (2,1) is

f (2,1)+∇ f (2,1)T (x − (2,1)) = 8+ (7,−4)T (x1 −2, x2 −1)

= 8+7(x1 −2)−4(x2 −1) = 7x1 −4x2 −2.

11. Let A =
(
1 2
2 8

)
. Show that A is positive definite. (Try to give two different

proofs.)

12. Show that if A is positive definite, then its inverse is also positive definite.
Solution: If A is positive definite then its eigenvalues λi are positive. The eigenval-
ues of A−1 are 1/λi , which also are positive, so that A−1 also is positive definite.
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Chapter 2
1. We recall that A ∩B consists of all points which lie both in A and B . Show that
A∩B is convex when A and B are.

2. Suppose that f is a convex function defined on R which also is positive. Show
that g (x) = ( f (x))n also is convex.
Solution: Since f is convex we get that

f ((1−λ)x +λy) ≤ (1−λ) f (x)+λ f (y).

But then we also have that

( f ((1−λ)x +λy))n ≤ ((1−λ) f (x)+λ f (y))n .

Since h(y) = yn is convex for y > 0 (since h′′(y) > 0), and since f is positive, we get
that ((1−λ) f (x)+λ f (y))n ≤ (1−λ)( f (x))n +λ( f (y))n , so that

g ((1−λ)x +λy) = ( f ((1−λ)x +λy))n

≤ (1−λ)( f (x))n +λ( f (y))n = (1−λ)g (x)+λg (y).

It follows that g (x) = ( f (x))n is convex.

3. (Trial Exam UIO V2012) Assume that f , g are convex, positive, and increasing
functions, both two times differentiable and defined onR. Show that h(x) = f (x)g (x)
is convex.
Hint: Look at the second derivative of h(x).
Solution: We have that h′(x) = f ′(x)g (x)+ f (x)g ′(x), and h′′(x) = f ′′(x)g (x)+ f (x)g ′′(x)+
2 f ′(x)g ′(x). Since f and g are convex we have that f ′′(x) ≥ 0 and g ′′(x) ≥ 0. Since
the functions are increasing we have that f ′(x) ≥ 0 and g ′(x) ≥ 0. Since the functions
also are positive we see that all three terms in the sum are ≥ 0 so that h′′(x) ≥ 0, and
it follows that h also is convex.

4. Show that the previous result also holds for any f , g which are convex, positive,
and increasing functions (i.e. they need not be differentiable).
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5. (Exam UIO V2012)

a. Let f and g both be two times (continuously) differentiable functions de-
fined on R. Suppose also that f and g are convex, and that f is increasing.
Show that h(x) = f (g (x)) is convex. This states that, in particular the func-
tion f (x) = eh(x) (which we previsously just stated as convex without proof),
is convex.
Hint: Compute the second derivative of h(x), and consider its sign.
Solution: We have learnt that (continuously) differentiable functions are
convex if and only if the Hessian is positive semidefinite (here this is trans-
lated to that the second derivative is ≥ 0). We have that h′(x) = f ′(g (x))g ′(x),
and that h′′(x) = f ′′(g (x))[g ′(x)]2 + f ′(g (x))g ′′(x). Since f is convex we have
that f ′′(g (x)) ≥ 0. Since g also is convex we have that g ′′(x) ≥ 0. Since f is
increasing we also have that f ′(g (x)) ≥ 0. Therefore both terms in the sum
must be ≥ 0, so that h′′(x) ≥ 0, so that h is convex.

b. Construct two convex functions f , g so that h(x) = f (g (x)) is not convex.

6. Let f be a convex function defined on C ⊂Rn . Show that g (x) = e f (x) also is con-
vex (i.e. the result from the previous exercise holds also when f is not differentiable).
Solution: Since f is convex we have that f ((1−λ)x+λy) ≤ (1−λ) f (x)+λ f (y). Since
also h(y) = e y is an increasing function, we have that

g ((1−λ)x +λy) = e f ((1−λ)x+λy) ≤ e(1−λ) f (x)+λ f (y).

Since h(y) = e y also is convex (h′′(y) = e y > 0) it follows that

g ((1−λ)x +λy) ≤ e(1−λ) f (x)+λ f (y) ≤ (1−λ)e f (x) +λe f (y) = (1−λ)g (x)+λg (y),

and we have therefore shown that. If f was assumed to be two times differentiable,
we could have done as follows: We have that

∇g (x) = h′( f (x))∇ f (x) = e f (x)∇ f (x)

∇2g (x) = e f (x)∇2 f (x)+e f (x)∇ f (x)(∇ f (x))T .

From this it is clear that ∇2g (x) is positive semidefinite: ∇2 f (x) is positiv semidefi-
nite since f is convex, and∇ f (x)(∇ f (x))T is positive semidefinite since hT ∇ f (x)(∇ f (x))T h =
‖(∇ f (x))T h‖2 ≥ 0 for all h. Therefore, the sum e f (x)∇2 f (x)+ e f (x)∇ f (x)(∇ f (x))T is
also positive semidefinite. It follows that ∇2g (x) is positive semidefinite, so that g is
convex.

7. Let S = {(x, y, z) : z ≥ x2+ y2} ⊂R3. Sketch the set and verify that it is a convex set.
Solution: The function f (x, y, z) = x2 + y2 − z is convex (the Hessian is positive
semidefinite). The set in question can be written as the points where f (x, y, z) ≤ 0,
which is a sublevel set, and therefore convex.

8. Let f : S →R be a differentiable function, where S is an open set in R. Check that
f is convex if and only if f ′′(x) ≥ 0 for all x ∈ S.
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9. Prove Proposition 2.3.

10. Prove Proposition 2.5.

11. Explain how you can write the LP problem max {c T x : Ax ≥ b, B x = d , x ≥ 0} as
an LP problem of the form

max{c T x : H x ≤ h, x ≥ 0}

for suitable matrix H and vector h.
Solution: Write B in row echelon form, to see which are pivot variables. Express
these variables in terms of the free variables, and replace the pivot variables in all
the equations. Ax ≥ b then takes the form C x ≥ b (where x now is a shorter vector),
and this can be written as −C x ≤−b, which is on the new form with H =−C , h =−b.
Note that this strategy rewrites the vector c to a shorter vector.

12. Let x1, . . . , x t ∈Rn and let C be the set of vectors of the form

t∑
j=1

λ j x j

where λ j ≥ 0 for each j = 1, . . . , t , and
∑t

j=1λ j = 1. Show that C is convex. Make a

sketch of such a set in R3.
Solution: Let y = ∑t

j=1λ j x j and z = ∑t
j=1µ j x j , where all λ j ,µ j ≥ 0, and

∑t
j=1λ j =

1,
∑t

j=1µ j = 1. For any 0 ≤λ≤ 1 we have that

(1−λ)y +λz = (1−λ)
t∑

j=1
λ j x j +λ

t∑
j=1

µ j x j =
t∑

j=1
((1−λ)λ j +λµ j )x j .

The sum of the coefficients here is

t∑
j=1

((1−λ)λ j +λµ j ) = (1−λ)
t∑

j=1
λ j +λ

t∑
j=1

µ j = 1−λ+λ= 1,

so that C is a convex set.

13. Show that f (x) = e
∑n

j=1 x j is a convex function.
Solution: Follows from Proposition 2.3, since f (x) = ex is convex, and H(x) =∑n

j=1 x j is affine.

14. Assume that f and g are convex functions defined on an interval I . Which of
the following functions are convex or concave?

a. λ f where λ ∈R,
Solution: λ f is convex if λ≥ 0, concave if λ≤ 0.

b. min{ f , g },
Solution: min{ f , g } may be neither convex or concave, consider the func-
tions f (x) = x2, g (x) = (x −1)2.
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c. | f |.
Solution: | f |may be neither convex or concave, consider the function f (x) =
x2 −1.

15. Let f : [a,b] →R be a convex function. Show that

max{ f (x) : x ∈ [a,b]} = max{ f (a), f (b)}

i.e., a convex function defined on closed real interval attains its maximum in one of
the endpoints.

16. (Trial Exam UIO V2012) Show that max{ f , g } is a convex function when f and g
are convex (we define max{ f , g } by max{ f , g }(x) = max( f (x), g (x)))).
Solution: That f is convex means that f ((1−λ)x +λy) ≤ (1−λ) f (x)+λ f (y) for all
λ between 0 and 1. We have that

f ((1−λ)x +λy) ≤ (1−λ) f (x)+λ f (y) ≤ (1−λ)max{ f , g }(x)+λmax{ f , g }(y)

g ((1−λ)x +λy) ≤ (1−λ)g (x)+λg (y) ≤ (1−λ)max{ f , g }(x)+λmax{ f , g }(y),

but then also

max{ f , g }((1−λ)x +λy) ≤ (1−λ)max{ f , g }(x)+λmax{ f , g }(y),

so that max{ f , g } also is convex.

17. Let f : 〈0,∞〉→R and define the function g : 〈0,∞〉→R by g (x) = x f (1/x). Why
is the function x → xe1/x convex?

18. Let C ⊆ Rn be a convex set and consider the distance function dC defined by
dC (x) = inf{‖x − y‖ : y ∈C }. Show that dC is a convex function.
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Chapter 3
1. Show that the problem of solving nonlinear equations (3.1) may be transformed
into a nonlinear optimization problem. (Hint: Square each component function
and sum these up!)
Solution: F (x) = 0 is equivalent to ‖F (x)‖2 = ∑

i Fi (x) = 0, where Fi are the com-
ponent functions of F . Solving F (x) = 0 thus is equivalent to showing that 0 is the
minimum value of

∑
i Fi (x).

2. Let T : R→ R be given by T (x) = (3/2)(x − x3). Draw the graph of this function,
and determine its fixed points. Let x∗ denote the largest fixed point. Find, using your
graph, an interval I containing x∗ such that the fixed point algorithm with an initial
point in I will guaranteed converge towards x∗. Then try the fixed point algorithm
with starting point x0 =

p
5/3.

Solution: Here we construct the function f (x) = T (x)− x = x/2−3x3/2, which has
derivative f ′(x) = 1/2−9x2/2. We can then run Newton’s method as follows:

newtonmult(sqrt(5/3),@(x)(0.5*x-1.5*x^3),@(x)(0.5-4.5*x^2))

This converges to the zero we are looking for, which we easily compute as x =p
1/3.

3. Let α ∈ R+ be fixed, and consider f (x) = x2 −α. Then the zeros are ±pα. Write
down the Newton’s iteration for this problem. Let α= 2 and compute the first three
iterates in Newton’s method when x0 = 1.

4. For any vector norm ‖ · ‖ on Rn , we can more generally define a corresponding
operator norm for n ×n matrices by

‖A‖ = sup
‖x‖=1

‖Ax‖.

a. Explain why this supremum is attained.
Solution: The function x → ‖Ax‖ is continuous, and any continuous func-
tion achieves a supremum in a closed set (here ‖x‖ = 1).

In the rest of this exercise we will use the vector norm ‖x‖ = ‖x‖1 =∑n
j=1 |x j | on Rn .
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b. For n = 2, draw the sublevel set {x ∈R2 : ‖x‖1 ≤ 1}.
Solution: For n = 2, it is clear that the sublevel set is the square with corners
(1,0), (−1,0), (0,1), (0,−1).

c. Show that f (x) = ‖Ax‖ is convex for any n, and show that the maximum
of f on the set {x : ‖x‖ = 1} is attained in a point x on the form ±ek .
Hint: For the second statement, use Jensen’s inequality with x j =±e j (Theo-
rem 2.4).
Solution: The function f (x) = ‖Ax‖ is the composition of a convex function
and an affine function, so that it must be convex. If x ∈ Rn and ‖x‖1 = 1, we
can write x = ∑n

i=1λi v i , where 0 ≤ λi ≤ 1,
∑n

i=1λi = 1, and v i = ±e i (i.e. it
absorbs the sign of the i th component). If w is the vector among {±e j } j so
that f (±e j ) ≤ f (w ) for all j and all signs, Jensen’s inequality (Theorem 2.4)
gives

f (x) = f

(
n∑

i=1
λi v i

)
≤

n∑
i=1

λi f (v i ) ≤
n∑

i=1
λi f (w ) = f (w ),

so that f assumes its maximum in w .

d. Show that, for any n×n-matrix A, ‖A‖ = supk
∑n

i=1 |ai k |, where ai j are the
entries of A (i.e. the biggest sum of absolute values in a column).
Solution: Since the supremum is attained for some w =±ek , the maximum
is

‖Aw‖1 = ‖±colk A‖ =
n∑

i=1
|±ai k | =

n∑
i=1

|ai k |.

It is now clear that ‖A‖ = supk
∑n

i=1 |ai k |.

5. Consider a linear map T :Rn →Rm given by T (x) = Ax where A is an n×n matrix.
When is T a contraction w.r.t. the vector norm ‖ ·‖1?
Solution: We are asked to find for which A we have that ‖Ax‖1 < ‖x‖1 for any x .
From the previous exercise we know that this happens if and only if ‖A‖ < 1, i.e.
when

∑n
i=1 |ai k | < 1 for all k.

6. Test the function newtonmult on the equations given initially in Section 3.1.
Solution: You can write

newtonmult(x0,...
@(x)([x(1)^2-x(1)/x(2)^3+cos(x(1))-1; 5*x(1)^4+2*x(1)^3-tan(x(1)*x(2)^8)-3]),...
@(x)([2*x(1)-1/x(2)^3-sin(x(1)) 3*x(1)/x(2)^4; ...

20*x(1)^3+6*x(1)^2-x(2)^8/(cos(x(1)*x(2)^8))^2 -8*x(1)*x(2)^7/(cos(x(1)*x(2)^8))^2])...
)

7. In this exercise we will implement Broyden’s method with Matlab.

a. Given a value x0, implement a function which computes an estimate of
F ′(x0) by estimating the partial derivatives of F , using a numerical differenti-
ation method and step size of you own choosing.
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b. Implement a function

function x=broyden(x0,F)

which returns an estimate of a zero of F using Broyden’s method. Your method
should set B0 to be the matrix obtained from the function in a. Just indicate
where line search along the search direction should be performed in your
function, without implementing it. The function should work as newtonmult
in that it terminates after a given number of iterations, or after precision of a
given accuracy has been obtained.
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Chapter 4
1. Consider the function f (x1, x2) = x2

1+ax2
2 where a > 0 is a parameter. Draw some

of the level sets of f (for different levels) for each a in the set {1,4,100}. Also draw
the gradient in a few points on these level sets.

2. State and prove a theorem similar to Theorem 4.1 for maximization problems.

3. Let f (x) = xT Ax where A is a symmetric n×n matrix. Assume that A is indefinite,
so it has both positive and negative eigenvalues. Show that x = 0 is a saddlepoint of
f .

4. Let f (x1, x2) = 4x1+6x2+x2
1+2x2

2 . Find all stationary points and determine if they
are minimum, maximum or saddlepoints. Do the same for the function g (x1, x2) =
4x1 +6x2 +x2

1 −2x2
2 .

Solution: The gradient of f is ∇ f = (4 + 2x1,6+ 4x2), and the Hessian matrix is

∇2 f =
(
2 0
0 4

)
, which is positive definite. The only stationary point is (−2,−3/2),

which is a minimum.

The gradient of g is ∇g = (4+2x1,6−4x2), and the Hessian matrix is ∇2g =
(
2 0
0 −4

)
,

which is indefinite. The only stationary point is (−2,3/2), which must be a saddle
point.

5. Let the function f be given by f (x1, x2) = (x1 −1)2 + (x2 −2)2 +1.

a. Compute the search direction d k which is chosen by the steepest descent
method in the point xk = (2,3).

b. Compute in the same way the search direction d k which is chosen when
we instead use Newton’s method in the point xk = (2,3).

6. The function f (x1, x2) = 100(x2−x2
1)2+(1−x1)2 is called the Rosenbrock function.

Compute the gradient and the Hessian matrix at every point x . Find every local
minimum. Also draw some of the level sets (contour lines) of f using Matlab.
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Solution: The gradient is∇ f = (−400x1(x2−x2
1)−2(1−x1),200(x2−x2

1)). The Hessian
matrix is

∇2 f =
(
1200x2

1 −400x2 +2 −400x1

−400x1 200

)
.

Clearly the only stationary point is x = (1,1), and we get that

∇2 f (1,1) =
(

802 −400
−400 200

)
.

It is straightforward to check that this matrix is positive definite, so that (1,1) is a
local minimum.

7. Let f (x) = (1/2)xT Ax −bT x where A is a positive definite n×n matrix. Consider
the steepest descent method applied to the minimization of f , where we assume
exact line search is used. Assume that the search direction happens to be equal to
an eigenvector of A. Show that then the minimum is reached in just one step.
Solution: The steepest descent method takes the form

xk+1 = xk −αk∇ f (xk ),

where ∇ f (xk ) = Axk −b. We have that

f (xk+1) = (1/2)xT
k+1 Axk+1 −bT xk+1

= 1

2

(∇ f (xk )T A∇ f (xk )
)
α2

k −
1

2

(
xT

k A∇ f (xk )+∇ f (xk )T Axk
)
αk

+ 1

2
xT

k Axk −bT (xk −αk∇ f (xk ))

= 1

2

(∇ f (xk )T A∇ f (xk )
)
α2

k

+
(

bT ∇ f (xk )− 1

2

(
xT

k A∇ f (xk )+∇ f (xk )T Axk
))
αk

+ 1

2
xT

k Axk −bT xk .

Now, since ∇ f (xk )T Axk is a scalar, it is in particular symmetric, so that

∇ f (xk )T Axk = (∇ f (xk )T Axk )T = xT
k AT ∇ f (xk ) = xT

k A∇ f (xk ),

where we have used that A is symmetric. We conclude that∇ f (xk )T Axk = xT
k A∇ f (xk ).

We can thus simplify what we found above to

f (xk+1)

= 1

2

(∇ f (xk )T A∇ f (xk )
)
α2

k +
(
bT ∇ f (xk )−xT

k A∇ f (xk )
)
αk +

1

2
xT

k Axk −bT xk

= 1

2
λ‖∇ f (xk )‖2α2

k +
(
bT ∇ f (xk )−xT

k A∇ f (xk )
)
αk +

1

2
xT

k Axk −bT xk ,

where we also have used that ∇ f (xk ) is an eigenvector of A, that A is symmetric, so
that A∇ f (xk ) = λ∇ f (xk ) and ∇ f (xk )T A = λ∇ f (xk )T , where λ is the corresponding
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eigenvalue. If we are to apply exact line search, we need to minimize this expression
w.r.t. αk . This can be done by taking the derivative w.r.t. αk and setting this to 0. If
we do this we get

αk =−bT ∇ f (xk )−xT
k A∇ f (xk )

λ‖∇ f (xk )‖2 =
(
xT

k A−bT )∇ f (xk )

λ‖∇ f (xk )‖2

= (Axk −b)T ∇ f (xk )

λ‖∇ f (xk )‖2 = ∇ f (x)T ∇ f (xk )

λ‖∇ f (xk )‖2 = 1

λ
.

This means that αk = 1
λ is the step size we should use when we perform exact line

search. We now compute that

∇ f (xk+1) = Axk+1 −b = A

(
xk −

1

λ
∇ f (xk )

)
−b

= Axk −
1

λ
A∇ f (xk )−b = Axk −∇ f (xk )−b

=∇ f (xk )−∇ f (xk ) = 0,

which shows that the minimum is reached in one step.

8. Consider the second order Taylor approximation

T 2
f (x ; x +h) = f (x)+∇ f (x)T h + (1/2)hT ∇2 f (x)h.

a. Show that ∇h T 2
f =∇ f (x)+∇2 f (x)h.

Solution: This is simply Exercise 9 in Chapter1.3.

b. Minimizing T 2
f with respect to h implies solving ∇h T 2

f = 0, i.e. ∇ f (x)+
∇2 f (x)h = 0 from a.. If∇2 f (x) is positive definite, explain that it also is invert-
ible, so that this equation has the unique solution h = −(∇2 f (xk ))−1∇ f (xk ),
as previously noted for the Newton step.
Solution: If∇2 f (x) is positive definite, its eigenvalues are positive, so that the
determinant is positive, and that the matrix is invertible. h =−(∇2 f (xk ))−1∇ f (xk )
follows after multiplying with the inverse.

9. We want to find the minimum of f (x) = 1
2 xT Ax−bT x , defined on Rn . Formulate

one step with Newton’s method, and one step with the steepest descent method,
where you set the step size to αk = 1. Which of these methods works best for finding
the minimum for functions on this form?
Solution: We have that∇ f (x) = Ax−b, and that∇2 f (x) = A. One step with Newton’s
method with αk = 1 is therefore

xk+1 = xk − (∇2 f (x))−1∇ f (x) = xk − A−1(Axk −b) = A−1b.

One step with the steepest descent method with αk = 1 becomes

xk+1 = xk −∇ f (xk ) = xk − (Axk −b) = (I − A)xk +b.

It is clear that Newton’s method is best here, since this corresponds to finding the
minimum for the second order approximation where αk = 1, and here the function
is equal to the second order approximation.
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10. Implement the steepest descent method. Test the algorithm on the functions
in exercises 4 and 6. Use different starting points.
Solution: Here we have said nothing about the step length, but we can implement
this as in the function newtonbacktrack as follows:

function [x,numit]=steepestdescent(f,df,x0)
epsilon=10^(-3);
x=x0;
maxit=100;
for numit=1:maxit

d=-df(x);
eta=-df(x)’*d;
if eta/2<epsilon

break;
end
% Armijos rule
beta=0.2; s=0.5; sigma=10^(-3);
m=0;
while (f(x)-f(x+beta^m*s*d) < -sigma *beta^m*s *(df(x))’*d)

m=m+1;
end
alpha = beta^m*s;

x=x+alpha*d;
end

The algorithm can be tested on the first function from Exercise 4 as follows:

f=@(x)(4*x(1)+6*x(2)+x(1)^2+2*x(2)^2);
df=@(x)([4+2*x(1);6+4*x(2)])
steepestdescent(f,df,[-1;-1])

11. What can go wrong when you apply backtracking line search (Equation (4.7)) to
a function f where ∇2 f er negative definite (i.e. all eigenvalues of ∇2 f are negative)?
Hint: Substitute the Taylor approximation

f (xk +βm sd k ) ≈ f (xk )+∇ f (xk )T (βm sd k )

in Equation (4.7), and remember that σ there is chosen so that σ< 1.

12. Write a function newtonbacktrack which performs Newton’s method for un-
constrained optimization. The input parameters are the function, its gradient, its
Hesse matrix, and the initial point. The function should also return the number of
iterations, and at each iteration write the corresponding function value. Use back-
tracking line search to compute the step size, i.e. compute mk from Equation (4.7)
with β= 0.2, s = 0.5, σ= 10−3, and use α= βmk s as the step size. Test the algorithm
on the functions in exercises 4 and 6. Use different starting points.
Solution: The function can be implemented as follows:
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function [x,numit]=newtonbacktrack(f,df,d2f,x0)
beta=0.2; s=0.5; sigma=10^(-3);
epsilon=10^(-3);
x=x0;
maxit=100;
for numit=1:maxit

d=-d2f(x)\df(x);
eta=-df(x)’*d;
if eta/2<epsilon

break;
end
m=0;
% Armijos rule
while (f(x)-f(x+beta^m*s*d) < -sigma *beta^m*s *(df(x))’*d)
m=m+1;

end
x=x+beta^m*s*d;

end

13. Let us return to the maximum likelihood example 1.3.

a. Run the function newtonbacktrack with parameters being the function
f and its and derivaties defined as in Example 1.3 with n = 10 and

x = (0.4992,−0.8661,0.7916,0.9107,0.5357,0.6574,0.6353,0.0342,0.4988,−0.4607)

Use the start value α0 = 0 for Newtons method. What estimate for the mini-
mum of f (and thereby α) did you obtain?

b. The ten measurements from a. were generated from a probability distri-
bution where α = 0.5. The answer you obtained was quite far from this. Let
us therefore take a look at how many measurements we should use in order
to get quite precise estimates for α. You can use the function

function ret=randmuon(alpha,m,n)

to generate an m ×n-matrix with measurements generated with a probabil-
ity distribution with a given parameter α. This function can be found at the
homepage of the book.

With α = 0.5, generate n = 10 measurements with the help of the function
randmuon, and find the maximum likelihood estimate as above. Repeat this
10 times, and plot the ten estimates you obtain. Repeat for n = 1000, and for
n = 100000 (in all cases you are supposed to plot 10 maximum likelihood es-
timates). How many measurements do we need in order to obtain maximum
likelihood estimates which are reliable?
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Note that it is possible for the maximum likelihood estimates you obtain here
to be outside the domain of definition [−1,1]. You need not take this into
account.
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Chapter 5
1. In the plane consider a rectangle R with sides of length x and y and with perime-
ter equal to α (so 2x + 2y = α). Determine x and y so that the area of R is largest
possible.

2. Consider the optimization problem

minimize f (x1, x2) subject to (x,x2) ∈C

where C = {(x1, x2) ∈R2 : x1, x2 ≥ 0,4x1 +x2 ≥ 8,2x1 +3x3 ≤ 12}. Draw the feasible set
C in the plane. Find the set of optimal solutions in each of the cases given below.

a. f (x1, x2) = 1.

b. f (x1, x2) = x1.

c. f (x1, x2) = 3x1 +x2.

d. f (x1, x2) = (x1 −1)2 + (x2 −1)2.

e. f (x1, x2) = (x1 −10)2 + (x2 −8)2.

3. Solve

max{x1x2 · · ·xn :
n∑

j=1
x j = 1, x j ≥ 0}.

Solution: This is the same as finding the minimum of f (x1, . . . , xn) = −x1x2 · · ·xn .
This boils down to the equations −∏

i 6= j xi = 1, since clearly the minimum is not
attained when there are any active constraints. This implies that x1 = . . . = xn , so that
all xi = 1/n. It is better to give a direct argument here that this must be a minimum,
than to attempt to analyse the second order conditions for a minimum.

4. Let S = {x ∈ R2 : ‖x‖ = 1} be the unit circle in the plane. Let a ∈ R2 be a given
point. Formulate the problem of finding a nearest point in S to a as a nonlinear
optimization problem. How can you solve this problem directly using a geometrical
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argument?
Solution: We can formulate the problem as finding the minimum of f (x1, x2) =
(x1−a1)2+(x2−a2)2 subject to the constraint h1(x1, x2) = x2

1 +x2
2 = 1. The minimum

can be found geometrically by drawing a line which passes through a and the origin,
and reading the intersection with the unit circle. This follows also from that ∇ f is
parallel to x−a, ∇h1 is parallel to x , and from that the KKT-conditions say that these
should be parallel.

5. Let S be the unit circle from the previous exercise. Let a1, a2 be two given points
in the plane. Let f (x) = ∑2

i=1 ‖x −ai‖2. Formulate this as an optimization problem
and find its Lagrangian function L. Find the stationary points of L, and use this to
solve the optimization problem.

6. Solve
minimize x1 +x2 subject to x2

1 +x2
2 = 1.

using the Lagrangian, see Theorem 5.1. Next, solve the problem by eliminating x2

(using the constraint).
Solution: We rewrite the constraint as g1(x1, x2) = x2

1 + x2
2 − 1 = 0, and get that

∇g1(x1, x2) = (2x1,2x2). Clearly all points are regular, since ∇g1(x1, x2) 6= 0 whenever
g1(x1, x2) = 0. Since ∇ f = (1,1) we get that the gradient of the Lagrangian is(

1
1

)
+λ

(
2x1

2x2

)
= 0,

which gives that x1 = x2. This gives us the two possible feasible points (1/
p

2,1/
p

2)
and (−1/

p
2,−1/

p
2). For the first we see that λ=−1/

p
2, for the second we see that

λ= 1/
p

2. The Hessian of the Lagrangian is λ

(
2 0
0 2

)
. For the point (1/

p
2,1/

p
2) this

is negative definite since λ is negative, for the point (−1/
p

2,−1/
p

2) this is positive
definite since λ is positive. From the second order conditions it follows that the
minimum is attained in (−1/

p
2,−1/

p
2).

If we instead eliminated x2 we must write x2 = −
√

1−x2
1 (since the positive

square root gives a bigger value for f ), so that we must minimize f (x) = x −
p

1−x2

subject to the constraint −1 ≤ x ≤ 1. The derivative of this is 1+ xp
1−x2

, which is zero

when x =− 1p
2

, which we found above. We also could have found this by considering

the two inequality constraints −x −1 ≤ 0 and x −1 ≤ 0.
If the first one of these is active (i.e. x =−1), the KKT conditions say that f ′(−1) >

0. However, this is not the case since f ′(x) → −∞ when x → −1+. If the second
constraint is active (i.e. x = 1), the KKT conditions say that f ′(1) < 0. This is not the
case since f ′(x) →∞ when x → 1−. When we have no active constraint, the problem
boils down to setting the derivative to zero, in which case we get the solution we
already have found.

7. Let g (x1, x2) = 3x2
1 +10x1x2 +3x2

2 −2. Solve

min{‖(x1, x2)‖ : g (x1, x2) = 0}.
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8. Same question as in previous exercise, but with g (x1, x2) = 5x2
1 −4x1x2 +4x2

2 −6.

9. Let f be a two times differentiable function f : Rn → R. Consider the optimiza-
tion problem

minimize f (x) subject to x1 +x2 +·· ·+xn = 1.

Characterize the stationary points (find the equation they satisfy).
Solution: We define h1(x1, . . . , xn) = x1 + . . .+ xn −1, and find that ∇h1 = (1,1, . . . ,1).
The stationary points are characterized by ∇ f +λT (1,1, . . . ,1) = 0, which has a solu-

tion exactly when ∂ f
∂x1

= ∂ f
∂x2

= . . . = ∂ f
∂xn

.

10. Consider the previous exercise. Explain how to convert this into an uncon-
strained problem by eliminating xn .
Solution: We substitute xn = 1− x1 − . . .− xn−1 in the expression for f , to turn the
problem into one of minimizing a function in n −1 variables.

11. Let A be a real symmetric n ×n matrix. Consider the optimization problem

max

{
1

2
xT Ax : ‖x‖ = 1

}
Rewrite the constraint as ‖x‖−1 = 0 and show that an optimal solution of this prob-
lem must be an eigenvector of A. What can you say about the Lagrangian multiplier?
Solution: The problem can be rewritten to the following minimation problem:

min

{
−1

2
xT Ax : h1(x) = ‖x‖−1 = 0

}
.

We have that ∇ f (x) = −Ax , and ∇h1(x) = 2x
2‖x‖ = x

‖x‖ . Clearly all points are regular,
and we get that

∇ f +λ∇h1 =−Ax +λ x

‖x‖ = 0.

Since we require that ‖x‖ = 1 we get that Ax =λx . In other words, the optimal point
x is an eigenvector of A, and the Lagrange multiplier is the corresponding eigen-
value.

12. Solve
min{(1/2)(x2

1 +x2
2 +x2

3) : x1 +x2 +x3 ≤−6}.

Solution: Define f (x1, x2, x3) = (1/2)(x2
1 + x2

2 + x2
3) and g1(x1, x2, x3) = x1 + x2 + x3.

We have that ∇ f = (x1, x2, x3), ∇g1 = (1,1,1). Clearly all points are regular points. If
there are no active constraints, we must have that ∇ f = 0, so that x1 = x2 = x3 = 0,
which does not fulfill the constraint. If the constraint is active we must have that
(x1, x2, x3)+µ(1,1,1) = 0 for some µ ≤ 0, which is satisfied when x1 = x2 = x3 < 0.
Clearly we must have that x1 = x2 = x3 =−2. The Hessian of L(x ,λ,µ) is easily com-
puted to be positive definite, so that we have found a minimum.
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13. Solve

min{(x1 −3)2 + (x2 −5)2 +x1x2 : 0 ≤ x1, x2 ≤ 1}.

Solution: We need to minimize f (x1, x2) = (x1 −3)2 + (x2 −5)2 + x1x2 subject to the
constraints

g1(x1, x2) =−x1 ≤ 0

g2(x1, x2) =−x2 ≤ 0

g3(x1, x2) = x1 −1 ≤ 0

g4(x1, x2) = x2 −1 ≤ 0.

We have that ∇ f = (2(x1 − 3)+ x2,2(x2 − 5)+ x1), and ∇g1 = (−1,0), ∇g2 = (0,−1),
∇g3 = (1,0), ∇g4 = (0,1).

Clearly all points are regular: even though the gradients ∇g1 and ∇g3 are lin-
early dependent, they can’t be active at the same time, and similarly for g2 and g4.
Also any of ∇g1,∇g3 is independent from any of ∇g2,∇g4, so that linear dependence
between active gradients is impossible, so that all points are regular.

The KKT conditions are ∇ f +µ1∇g1+µ2∇g2+µ3∇g3+µ4∇g4 = 0, where µi = 0 if
gi is not active. This can be written(

2(x1 −3)+x2

2(x2 −5)+x1

)
+

(
µ3

µ4

)
=

(
µ1

µ2

)
,

subject to the constraints 0 ≤ x1, x2 ≤ 1, µi ≥ 0. Here we have grouped together
the gradients with negative signs on the right hand side. Note first that, due to the
constraints 0 ≤ x1, x2 ≤ 1, the entries in ∇ f = (2(x1 −3)+ x2,2(x2 −5)+ x1) are both
negative. Since all µi ≥ 0, it is impossible for any of µ3 and µ4 to be zero, since this
then would imply that one of µ1 or µ2 is negative, by computing the left hand side
above. But this implies that both g3 and g4 must be active, so that x1 = x2 = 1. Then
clearly g1 and g2 are not active, so that µ1 = µ2 = 0, and we get the equation (by
inserting x1 = x2 = 1) (−3

−7

)
+

(
µ3

µ4

)
=

(
0
0

)
,

so that µ3 = 3, µ4 = 7, which is allowed. This means that (1,1) is the only candidate
for minimum, and the minimum value is f (1,1) = 21

14. Solve

min{x1 +x2 : x2
1 +x2

2 ≤ 2}.

Solution: We can define g1(x1, x2) = x2
1+x2

2−2, so that the only constraint is g1(x1, x2) ≤
0. We have that ∇g1 = (2x1,2x2), and this can be zero if and only if x1 = x2 = 0. How-
ever g1(0,0) =−2 < 0, so that the equality is not active. This means that all points are
regular for this problem.
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We compute that ∇ f = (1,1). If g1 is not an active inequality, the KKT conditions
say that ∇ f = 0, which is impossible. If g1 is active, we get that

∇ f (x1, x2)+µ∇g1(x1, x2) =
(
1
1

)
+µ

(
2x1

2x2

)
=

(
0
0

)
,

so that 1 =−2µx1 and 1 =−2µx2 for someµ≥ 0. This is satisfied if x1 = x2 is negative.
For g1 to be active we must have that x2

1 + x2
2 = 2, which implies that x1 = x2 = −1.

We have that f (−1,−1) =−2.

15. Write down the KKT conditions for the portfolio optimization problem of Sec-
tion 1.2.1.

16. Write down the KKT conditions for the optimization problem

min{ f (x1, x2, . . . , xn) : x j ≥ 0 ( j ≤ n),
n∑

j=1
x j ≤ 1}

where f :Rn →R is a differentiable function.
Solution: We define g j (x) = −x j for j = 1, . . . ,n, and gn+1(x) = ∑n

j=1 x j − 1. We
have that ∇g j = −e j for 1 ≤ j ≤ n, and ∇gn+1 = (1,1, . . . ,1). If there are no active
inequalities, we must have that ∇ f (x) = 0. If the last constraint is not active we have
that

∇ f = ∑
j∈A(x), j≤n

µ j e j ,

i.e. ∇ f points into the cone spanned by e j , j ∈ A(x). If the last constraint is active
also , we see that

∇ f = ∑
j 6∈A(x), j≤n

−µn+1e j
∑

j∈A(x), j≤n
(µ j −µn+1)e j .

∇ f is on this form whenever components outside the active set are equal and ≤ 0,
and all are components are greater than or equal to this.

17. Consider the following optimization problem

min{

(
x1 − 3

2

)2

+x2
2 : x1 +x2 ≤ 1, x1 −x2 ≤ 1,−x1 +x2 ≤ 1,−x1 −x2 ≤ 1}.

a. Draw the region which we minimize over, and find the minimum of f (x) =(
x1 − 3

2

)2 +x2
2 by a direct geometric argument.

b. Write down the KKT conditions for this problem. From a., decide which
two conditions g1 and g2 are active at the minimum, and verify that you can
findµ1 ≥ 0,µ2 ≥ 0 so that ∇ f +µ1∇g1+µ2∇g2 = 0 (as the KKT conditions guar-
antee in a minimum) (it is not the meaning here that you should go through
all possibilities for active inequalities, only those you see must be fulfilled
from a.).

18. Consider the following optimization problem

min{−x1x2 : x2
1 +x2

2 ≤ 1}

Write down the KKT conditions for this problem, and find the minimum.
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Chapter 6
1. Consider problem (6.1) in Section 6.1. Verify that the KKT conditions for this
problem are as stated there.
Solution: The constraint Ax = b actually yields one constraint per row in A, and the
gradient of the i ’th constraint is the i ’th row in A. This gives the following sum in the
KKT conditions:

m∑
i=1

∇giλi =
m∑

i=1
aT

i ·λi ==
m∑

i=1
(AT )·iλi = ATλ.

The gradient of f (xk )+∇ f (xk )T h + 1
2 hT ∇2 f (xk )h is ∇ f (xk )+∇2 f (xk )h. The KKT

conditions are thus ∇ f (xk )+∇2 f (xk )h+ATλ= 0 and Ah = 0. This can be written as
the set of equations

∇2 f (xk )h + ATλ=−∇ f (xk )

Ah +0λ= 0,

from which the stated equation system follows.

2. Define the function f (x, y) = x + y . We will attempt to minimize f under the
constraints y −x = 1, and x, y ≥ 0

a. Find A, b, and functions g1, g2 so that the problem takes the same form
as in Equation (6.4).
Solution: We can set g1(x, y) =−x, g2(x, y) =−y , A = (−1 1

)
, and b = (

1
)
.

b. Draw the contours of the barrier function f (x, y)+µφ(x, y) forµ= 0.1,0.2,0.5,1,
where φ(x, y) =− ln(−g1(x, y))− ln(−g2(x, y)).

c. Solve the barrier problem analytically using the Lagrange method.
Solution: The barrier problem here is to minimize x+y−µ ln x−µ ln y subject
to the constraint y−x = 1. The gradient of the Lagrangian is (1−µ/x,1−µ/y)+
ATλ. If this is 0 we must have that 1−µ/x = µ/y −1, so that 2x y = µ(x + y)
The constraint gives that y = x +1, so that 2x(x +1) = µ(2x +1). This can be
written as 2x2 +2(1−µ)x −µ= 0, which has the solution

x = −2(1−µ)±
√

4(1−µ)2 +8µ

4
= −2(1−µ)±

√
4+4µ2

4
= µ−1±

√
1+µ2

2
.
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If we here choose the minus sign it is straighforward to see that we get some-
thing negative, and this violates the constraint x, y > 0. Therefore, the barrier

method obtains the minimum where x = µ−1+
p

1+µ2

2 , y = x +1 = µ+1+
p

1+µ2

2 .

d. It is straightforward to find the minimum of f under the mentioned con-
straints. State a simple argument for finding this minimum.
Solution: By inserting y = x+1 for the constraint we see that we need to min-
imize g (x) = 2x +1 subject to x ≥ 0, which clearly has a minimum for x = 0,
and then y = 1. This gives the same minimum as in c.

e. State the KKT conditions for finding the minimum, and solve these.
Solution: The KKT conditions takes one of the following forms:

• If there are no active inequalities:

∇ f + ATλ= (1,1)+λ(−1,1) = 0,

which has no solutions.

• The first inequality is active (i.e. x = 0):

∇ f + ATλ+µ1∇g1 = (1,1)+λ(−1,1)+µ1(−1,0) = (1−λ−µ1,1+λ) = 0,

which gives that λ=−1 and µ1 = µ1 = 2. When x = 0 the equaility con-
straint gives that y = 1, so that (0,1) satisfies the KKT conditions.

• The second inequality is active (i.e y = 0): The first constraint then gives
that x =−1, which does not give a feasible point.

In conclusion, (0,1) is the only point which satisfies the KKT conditions. If
we attempt the second order test, we will see that it is inconclusive, since the
Hessian of the Lagrangian is zero. To prove that (1,0) must be a minimum,
you can argue that f is very large outside any rectangle, so that it must have
a minimum on this rectangle (the rectangle is a closed and bounded set).

f. Show that the central path converges to the same solution which you found
in d. and e..

Solution: With the barrier method we obtained the solution x(µ) =
(
µ−1+

p
1+µ2

2 ,
µ+1+

p
1+µ2

2

)
.

Since this converges to (0,1) as µ→ 0, the central path converges to the solu-
tion we have found.

3. Use the function IPBopt to verify the solution you found in Exercise 2. Initially
you must compute a feasible starting point x0.
Solution: You can use the following code:
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IPBopt(@(x)(x(1)+x(2)),@(x)(-x(1)),@(x)(-x(2)),...
@(x)([1;1]),@(x)([-1;0]),@(x)([0;-1]),...
@(x)(zeros(2)),@(x)(zeros(2)),@(x)(zeros(2)),...
[-1 1],1,[4;5])

4. State the KKT conditions for finding the minimum for the contstrained problem
of Example 6.3, and solve these. Verify that you get the same solution as in Exam-
ple 6.3.
Solution: Here we have that ∇ f = 2x, ∇g1 = −1, ∇g2 = 1. If there are no active
constraints the KKT conditions say that 2x = 0, so that x = 0, which is outside the
domain of definition for f .
If the first constraint is active we get that 2x −µ1 = 4−µ1 = 0, so that µ1 = 4. This is a
candidate for the minimum (clearly the second order conditions for a minimum is
fulfilled here as well, since the Hessian of the Lagrangian is 2).
If the second constraint is active we get that 2x +µ2 = 4+µ2 = 0, so that µ2 =−4, so
that this gives no candidate for a solution.
It is impossible for both constraints to be active at the same time, so x = 2 is the
unique minimum.

5. In the function IPBopt2, replace the call to the function newtonbacktrackg1g2
with a call to the function newtonbacktrack, with the obvious modification to the
parameters. Verify that the code does not return the expected minimum in this case.

6. Consider the function f (x) = (x −3)2, with the same constraints 2 ≤ x ≤ 4 as in
Example 6.3. Verify in this case that the function IPBopt2 returns the correct mini-
mum regardless of whether you call newtonbacktrackg1g2 or newtonbacktrack.
This shows that, at least in some cases where the minimum is an interior point, the
iterates from Newtons method satisfy the inequality constraints as well.
Solution: You can use the following code:

IPBopt2(@(x)((x-3).^2),@(x)(2-x),@(x)(x-4),...
@(x)(2*(x-3)),@(x)(-1),@(x)(1),...
@(x)(2),@(x)(0),@(x)(0),3.5)

7. (Trial Exam UIO V2012) In this exercise we will find the minimum of the function
f (x, y) = 3x +2y under the constraints x + y = 1 and x, y ≥ 0.

a. Find a matrix A and a vector b so that the constraint x + y = 1 can be
written on the form Ax = b.
Solution: We can set A = (

1 1
)
, og b = 1.

b. State the KKT-conditions for this problem, and find the minimum by solv-
ing these.
Solution: We set g1(x, y) = −x ≤ 0 and g2(x, y) = −y ≤ 0, and have that
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∇ f = (3,2), ∇g1 = (−1,0), ∇g2 = (0,−1). The KKT-conditions therefore take
the form x + y = 1 and

∇ f + ATλ+ν1∇g1 +ν2∇g2 = (3,2)+λ(1,1)+ν1(−1,0)+ν2(0,−1) = 0,

where the two last terms are included only if the corresponding inequalities
are active, and where ν1,ν2 ≥ 0.
If none of the inequalities are active we get that (3,2)+λ(1,1) = 0, which has
now solution.
If both inequalities are active we get that x = y = 0, which does not fulfill the
constraint x + y = 1. If we have only one active inequality we have two possi-
bilities: If the first inequality is active we get that (3,2)+λ(1,1)+ν1(−1,0) = 0.
The equation for the second component says that λ = −2, and the equation
for the first component says that 3−2−ν1 = 0, so that ν1 = 1.
If the second inequality is active we get that (3,2)+λ(1,1)+ν2(0,−1) = 0. The
equation for the first component says that λ = −3, and the equation for the
second component says that 2− 3−ν2 = 0, which gives that ν2 = −1. This
possibilitywe must denounce since ν2 < 0. We are left with the first inquality
as active as the only possibility. Then x = 0, and the constraint x + y = 1 gives
that y = 1, and a minimum value of 2. Since f clearly is bounded below on
the region we work on, it is clear that this must be a global minimum.

Finally we should candidates for the minimum which are not regular points.
If none of the equations are active we have no candidates, since ∇h1 = (1,1) 6=
0. If one inequality is active we get no candidates either, since (1,1) and (−1,0)
are linearly independent, and since (1,1) and (0,−1) are linearly independent.
If both inequalities are active (x = y = 0), it is clear that the constraint x+y = 1
is not fulfilled. All in all, we get no additional candidates from points which
are not regular.

c. Write down the barrier functionφ(x, y) =− ln(−g1(x, y))−ln(−g2(x, y)) for
this problem, where g1 and g2 represent the two constraints of the problem.
Also compute ∇φ.
Solution: We get that φ(x, y) =− ln x − ln y , and ∇φ= (−1/x,−1/y).

d. Solve the barrier problem with parameter µ, and denote the solution by
x(µ). Is it the case that the limit limµ→0 x(µ) equals the solution you found in
b.?
Solution: In the barrier problem we minimize the function f (x, y)+µφ(x, y) =
3x+2y −µ ln x−µ ln y under the constraint x+ y = 1. The KKT-conditions be-
come (3,2)+µ(−1/x,−1/y)+λ(1,1) = 0, which gives the equations

µ

x
= 3+λ

µ

y
= 2+λ.

This gives that µ
y + 1 = µ

x , which again gives µ(y − x) = x y . If we substitute
the constraint x + y = 1 we get that µ(1−2x) = x(1− x), which can be written
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x2 − (1+2µ)x +µ= 0. If we solve this we find that

x = 1+2µ±
√

(1+2µ)2 −4µ

2
= 1+2µ±

√
1+4µ2

2
.

This corresponds to two different points, depending on which sign we choose,
but if we choose + as sign we see that x > 1, so that y < 0 in order for x+y = 1,
so that (x, y) then is outside the domain of definition for the problem. We

therefore have that x = 1+2µ−
p

1+4µ2

2 . It is clear that x → 0 when µ→ 0 here,
so that the solution of the barrier problem converges to the solution of the
original problem.
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