Exercise 5.8

Let $\phi_{1}=\left\{\phi_{1,0}, \phi_{1,1}, \phi_{1,2}\right\}$ and $\mathcal{C}_{1}=\left\{\phi_{0,0}, \psi_{0,0}, \phi_{0,1}\right\}$ be a bases for V_{1}. We will consider the change of basis from ϕ_{1} to \mathcal{C}_{1}. We have the following relations (recall that $\phi_{1, k}=\sqrt{2} \phi(2 x-k)$)

$$
\begin{aligned}
& \phi_{1,0}=\frac{\sqrt{2} \phi_{0,0}+\sqrt{2} \psi_{0,0}}{2}=\frac{\phi_{0,0}+\psi_{0,0}}{\sqrt{2}} \\
& \phi_{1,1}=\frac{\sqrt{2} \phi_{0,0}-\sqrt{2} \psi_{0,0}}{2}=\frac{\phi_{0,0}-\psi_{0,0}}{\sqrt{2}} \\
& \phi_{1,2}=\sqrt{2} \phi_{0,1}-\phi_{1,0}=\sqrt{2} \phi_{0,1}-\frac{\phi_{0,0}+\psi_{0,0}}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(-\phi_{0,0}-\psi_{0,0}+2 \phi_{0,1}\right)
\end{aligned}
$$

The last equality follows, since we have assumed that all basis functions have period $3 / 2$. This means that

$$
\phi_{0,1}(t)= \begin{cases}1 & \text { if } t \in[0,1 / 2) \cup[1,3 / 2] \\ 0 & \text { otherwise }\end{cases}
$$

Now we can write the change of basis matrix from ϕ_{1} to \mathcal{C}_{1} (i.e. the DWT matrix) as

