
Chapter 5

Motivation for wavelets and
some simple examples

In the first part of the book our focus was to approximate functions or vectors
with trigonometric functions. We saw that the Discrete Fourier transform could
be used to obtain a representation of a vector in terms of such functions, and
that computations could be done e�ciently with the FFT algorithm. This was
useful for analyzing, filtering, and compressing sound and other discrete data.
The approach with trigonometric functions has some limitations, however. One
of these is that, in a representation with trigonometric functions, the frequency
content is fixed over time. This is in contrast with most sound data, where
the characteristics are completely di�erent in di�erent parts. We have also
seen that, even if a sound has a simple representation in terms of trigonometric
functions on two di�erent parts, the representation of the entire sound may not
be simple. In particular, if the function is nonzero only on a very small interval,
a representation of it in terms of trigonometric functions is not so simple.

In this chapter we are going to introduce the basic properties of an alternative
to Fourier analysis for representing functions. This alternative is called wavelets.
Similar to Fourier analysis, wavelets are also based on the idea of expressing a
function in some basis. But in contrast to Fourier analysis, where the basis is
fixed, wavelets provide a general framework with many di�erent types of bases.
In this chapter we first give a motivation for wavelets, before we continue by
introducing some very simple wavelets. The first wavelet we look at can be
interpreted as an approximation scheme based on piecewise constant functions.
The next wavelet we look at is similar, but with piecewise linear functions used
instead. Following these examples we will establish a more general framework,
based on experiences from the simple wavelets. In the following chapters we will
interpret this framework in terms of filters, and use this connection to construct
even more interesting wavelets.
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5.1 Why wavelets?
The left image in Figure 5.1 shows a view of the entire Earth.

Figure 5.1: A view of Earth from space, together with versions of the image
where we have zoomed in.

The startup image in Google EarthTM, a program for viewing satellite images,
maps and other geographic information, is very similar to this. In the middle
image we have zoomed in on the Mexican Gul�, as marked with a rectangle in
the left image. Similarly, in the right image we have further zoomed in on Cuba
and a small portion of Florida, as marked with a rectangle in the middle image.
There is clearly an amazing amount of information available behind a program
like Google EarthTM, since we there can zoom further in, and obtain enough
detail to di�erentiate between buildings and even trees or cars all over the Earth.
So, when the Earth is spinning in the opening screen of Google EarthTM, all
the Earth’s buildings appear to be spinning with it! If this was the case the
Earth would not be spinning on the screen, since there would just be so much
information to process that a laptop would not be able to display a rotating
Earth.

There is a simple reason that the globe can be shown spinning in spite of
the huge amounts of information that need to be handled. We are going to see
later that a digital image is just a rectangular array of numbers that represent
the color at a dense set of points. As an example, the images in Figure 5.1 are
made up of a grid of 1064 ◊ 1064 points, which gives a total of 1 132 096 points.
The color at a point is represented by three eight-bit integers, which means that
the image files contain a total of 3 396 288 bytes each. So regardless of how
close to the surface of the Earth our viewpoint is, the resulting image always
contains the same number of points. This means that when we are far away
from the Earth we can use a very coarse model of the geographic information
that is being displayed, but as we zoom in, we need to display more details and
therefore need a more accurate model.

Observation 5.1. Images model.
When discrete information is displayed in an image, there is no need to use a

mathematical model that contains more detail than what is visible in the image.
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A consequence of Observation 5.1 is that for applications like Google EarthTM

we should use a mathematical model that makes it easy to switch between di�erent
levels of detail, or di�erent resolutions. Such models are called multiresolution
models, and wavelets are prominent examples of this kind of models. We will
see that multiresolution models also provide us with means of approximating
functions, just as Taylor series and Fourier series. Our new approximation scheme
di�ers from these in one important respect, however: When we approximate
with Taylor series and Fourier series, the error must be computed at the same
data points as well, so that the error contains just as much information as the
approximating function, and the function to be approximated. Multiresolution
models on the other hand will be defined in such a way that the error and the
“approximating function” each contain half of the information from the function
we approximate, i.e. their amount of data is reduced. This property makes
multiresolution models attractive for the problems at hand, when compared to
approaches such as Taylor series and Fourier series.

When we zoom in with Google EarthTM, it seems that this is done contin-
uously. The truth is probably that the program only has representations at
some given resolutions (since each representation requires memory), and that
one interpolates between these to give the impression of a continuous zoom. In
the coming chapters we will first look at how we can represent the information
at di�erent resolutions, so that only new information at each level is included.

We will now turn to how wavelets are defined more formally, and construct
the simplest wavelet we have. Its construction goes in the following steps: First
we introduce what we call resolution spaces, and the corresponding scaling
function. Then we introduce the detail spaces, and the corresponding mother
wavelet. These two functions will give rise to certain bases for these spaces,
and we will define the Discrete Wavelet Transform as a change of coordinates
between these bases.

5.2 A wavelet based on piecewise constant func-
tions

Our starting point will be the space of piecewise constant functions on an interval
[0, N). This will be called a resolution space.

Definition 5.2. The resolution space V
0

.
Let N be a natural number. The resolution space V

0

is defined as the space
of functions defined on the interval [0, N) that are constant on each subinterval
[n, n + 1) for n = 0, . . . , N ≠ 1.

Note that this also corresponds to piecewise constant functions which are
periodic with period N . We will, just as we did in Fourier analysis, identify a
function defined on [0, N) with its (period N) periodic extension. An example
of a function in V

0

for N = 10 is shown in Figure 5.2. It is easy to check that V
0

is a linear space, and for computations it is useful to know the dimension of the
space and have a basis.
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Figure 5.2: A piecewise constant function.

Lemma 5.3. The function „.
Define the function „(t) by

„(t) =
I

1, if 0 Æ t < 1;
0, otherwise;

(5.1)

and set „n(t) = „(t ≠ n) for any integer n. The space V
0

has dimension N , and
the N functions {„n}N≠1

n=0

form an orthonormal basis for V
0

with respect to the
standard inner product

Èf, gÍ =
⁄ N

0

f(t)g(t) dt. (5.2)

In particular, any f œ V
0

can be represented as

f(t) =
N≠1ÿ

n=0

cn„n(t) (5.3)

for suitable coe�cients (cn)N≠1

n=0

. The function „n is referred to as the character-
istic function of the interval [n, n + 1).

Note the small di�erence between the inner product we define here from the
inner product we used for functions previously: Here there is no scaling 1/T
involved. Also, for wavelets we will only consider real functions, and the inner
product will therefore not be defined for complex functions. Two examples of
the basis functions defined in Lemma 5.3 are shown in Figure 5.3.

Proof. Two functions „n1 and „n2 with n
1

”= n
2

clearly satisfy
s

„n1(t)„n2(t)dt =
0 since „n1(t)„n2(t) = 0 for all values of x. It is also easy to check that Î„nÎ = 1
for all n. Finally, any function in V

0

can be written as a linear combination the
functions „

0

, „
1

, . . . , „N≠1

, so the conclusion of the lemma follows.
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Figure 5.3: The basis functions „
2

and „
7

from �
0

.

Figure 5.4: Examples of functions from V
0

. The square wave in V
0

(left), and
an approximation to cos t from V

0

(right).

In our discussion of Fourier analysis, the starting point was the function
sin(2fit) that has frequency 1. We can think of the space V

0

as being analogous
to this function: The function

qN≠1

n=0

(≠1)n„n(t) is (part of the) square wave
that we discussed in Chapter 1, and which also oscillates regularly like the sine
function, see the left plot in Figure 5.4. The di�erence is that we have more
flexibility since we have a whole space at our disposal instead of just one function

— the right plot in Figure 5.4 shows another function in V
0

.
In Fourier analysis we obtained a linear space of possible approximations by

including sines of frequency 1, 2, 3, . . . , up to some maximum. We use a similar
approach for constructing wavelets, but we double the frequency each time and
label the spaces as V

0

, V
1

, V
2

, . . .

Definition 5.4. Refined resolution spaces.
The space Vm for the interval [0, N) is the space of piecewise constant

functions defined on [0, N) that are constant on each subinterval [n/2m, (n +
1)/2m) for n = 0, 1, . . . , 2mN ≠ 1.

Some examples of functions in the spaces V
1

, V
2

and V
3

for the interval [0, 10]
are shown in Figure 5.5. As m increases, we can represent smaller details. In
particular, the function in the rightmost is a piecewise constant function that
oscillates like sin(2fi22t) on the interval [0, 10].
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Figure 5.5: Piecewise constant approximations to cos t on the interval [0, 10] in
the spaces V

1

, V
2

, and V
3

. The lower right plot shows the square wave in V
2

.

It is easy to find a basis for Vm, we just use the characteristic functions of
each subinterval.
Lemma 5.5. Basis for Vm.

Let [0, N) be a given interval with N some positive integer. Then the
dimension of Vm is 2mN . The functions

„m,n(t) = 2m/2„(2mt ≠ n), for n = 0, 1, . . . , 2mN ≠ 1 (5.4)
form an orthonormal basis for Vm, which we will denote by �m. Any function
f œ Vm can thus be represented uniquely as

f(t) =
2

mN≠1ÿ

n=0

cm,n„m,n(t).

Proof. The functions given by Equation (5.4) are nonzero on the subintervals
[n/2m, (n+1)/2m) which we referred to in Definition 5.4, so that „m,n1„m,n2 = 0
when n

1

”= n
2

, since these intervals are disjoint. The only mysterious thing may
be the normalisation factor 2m/2. This comes from the fact that

⁄ N

0

„(2mt ≠ n)2 dt =
⁄

(n+1)/2

m

n/2

m

„(2mt ≠ n)2 dt = 2≠m

⁄
1

0

„(u)2 du = 2≠m.

The normalisation therefore thus ensures that Î„m,nÎ = 1 for all m.
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In the following we will always denote the coordinates in the basis �m by
cm,n. Note that our definition restricts the dimensions of the spaces we study
to be on the form N2m. In Chapter 6 we will explain how this restriction can
be dropped, but until then the dimensions will be assumed to be on this form.
In the theory of wavelets, the function „ is also called a scaling function. The
origin behind this name is that the scaled (and translated) functions „m,n of „
are used as basis functions for the refined resolution spaces. Later on we will see
that other scaling functions „ can be chosen, where the scaled versions „m,n will
be used to define similar resolution spaces, with slightly di�erent properties.

5.2.1 Function approximation property
Each time m is increased by 1, the dimension of Vm doubles, and the subinterval
on which the functions in Vm are constant are halved in size. It therefore seems
reasonable that, for most functions, we can find good approximations in Vm

provided m is big enough.

Theorem 5.6. Resolution spaces and approximation.
Let f be a given function that is continuous on the interval [0, N ]. Given

‘ > 0, there exists an integer m Ø 0 and a function g œ Vm such that
--f(t) ≠ g(t)

-- Æ ‘

for all t in [0, N ].

Proof. Since f is (uniformly) continuous on [0, N ], we can find an integer m so
that

--f(t
1

)≠f(t
2

)
-- Æ ‘ for any two numbers t

1

and t
2

in [0, N ] with |t
1

≠t
2

| Æ 2≠m.
Define the approximation g by

g(t) =
2

mN≠1ÿ

n=0

f
!
tm,n+1/2

"
„m,n(t),

where tm,n+1/2

is the midpoint of the subinterval
#
n2≠m, (n + 1)2≠m

"
,

tm,n+1/2

= (n + 1/2)2≠m.

For t in this subinterval we then obviously have |f(t) ≠ g(t)| Æ ‘, and since these
intervals cover [0, N ], the conclusion holds for all t œ [0, N ].

Theorem 5.6 does not tell us how to find the approximation g although the
proof makes use of an approximation that interpolates f at the midpoint of each
subinterval. Note that if we measure the error in the L2-norm, we have

Îf ≠ gÎ2 =
⁄ N

0

--f(t) ≠ g(t)
--2

dt Æ N‘2,

so Îf ≠ gÎ Æ ‘
Ô

N . We therefore have the following corollary.
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Corollary 5.7. Resolution spaces and approximation.
Let f be a given continuous function on the interval [0, N ]. Then

lim
mæŒ

Îf ≠ projVm
(f)Î = 0.

Figure 5.6 illustrates how some of the approximations of the function f(x) =
x2 from the resolution spaces for the interval [0, 1] improve with increasing m.

Figure 5.6: Comparison of the function defined by f(t) = t2 on [0, 1] with the
projection onto V

2

, V
4

, and V
6

, respectively.

5.2.2 Detail spaces and wavelets
So far we have described a family of function spaces that allow us to determine
arbitrarily good approximations to a continuous function. The next step is to
introduce the so-called detail spaces and the wavelet functions. We start by
observing that since

[n, n + 1) = [2n/2, (2n + 1)/2) fi [(2n + 1)/2, (2n + 2)/2),

we have

„
0,n = 1Ô

2
„

1,2n + 1Ô
2

„
1,2n+1

.
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This provides a formal proof of the intuitive observation that V
0

µ V
1

, for if
g œ V

0

, we can write

g(t) =
N≠1ÿ

n=0

c
0,n„

0,n(t) =
N≠1ÿ

n=0

c
0,n

!
„

1,2n + „
1,2n+1

"
/
Ô

2,

and the right-hand side clearly lies in V
1

. Since also

„m≠1,n(t) = 2(m≠1)/2„(2m≠1t ≠ n) = 2(m≠1)/2„
0,n(2m≠1t)

= 2(m≠1)/2

1Ô
2

(„
1,2n(2m≠1t) + „

1,2n+1

(2m≠1t))

= 2(m≠1)/2(„(2mt ≠ 2n) + „(2mt ≠ (2n + 1))) = 1Ô
2

(„m,2n(t) + „m,2n+1

(t)),

we also have that

„m≠1,n = 1Ô
2

„m,2n + 1Ô
2

„m,2n+1

, (5.5)

so that also Vk µ Vk+1

for any integer k Ø 0.

Lemma 5.8. Resolution spaces are nested.
The spaces V

0

, V
1

, . . . , Vm, . . . are nested,

V
0

µ V
1

µ V
2

µ · · · µ Vm · · · .

This means that it is meaningful to project Vk+1

onto Vk. The next step is to
characterize the projection from V

1

onto V
0

, and onto the orthogonal complement
of V

0

in V
1

. Before we do this, let us make the following definitions.

Definition 5.9. Detail spaces.
The orthogonal complement of Vm≠1

in Vm is denoted Wm≠1

. All the spaces
Wk are also called detail spaces, or error spaces.

The name detail space is used since the projection from Vm onto Vm≠1

in
considered as a (low-resolution) approximation, and the error, which lies in
Wm≠1

, is the detail which is left out when we replace with this approximation.
We will also write gm = gm≠1

+ em≠1

when we split gm œ Vm into a sum of a
low-resolution approximation and a detail component. In the context of our
Google EarthTMexample, in Figure 5.1 you should interpret g

0

as the left image,
the middle image as an excerpt of g

1

, and e
0

as the additional details which are
needed to reproduce the middle image from the left image.

Since V
0

and W
0

are mutually orthogonal spaces they are also linearly
independent spaces. When U and V are two such linearly independent spaces,
we will write U ü V for the vector space consisting of all vectors of the form
u+ v, with u œ U , v œ V . U ü V is also called the direct sum of U and V . This
also makes sense if we have more than two vector spaces (such as U ü V ü W ),
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and the direct sum clearly obeys the associate law U ü (V ü W ) = (U ü V ) ü W .
Using the direct sum notation, we can first write

Vm = Vm≠1

ü Wm≠1

. (5.6)
Since Vm has dimension 2mN , it follows that also Wm has dimension 2mN . We
can continue the direct sum decomposition by also writing Vm≠1

as a direct sum,
then Vm≠2

as a direct sum, and so on, and end up with

Vm = V
0

ü W
0

ü W
1

ü · · · ü Wm≠1

, (5.7)
where the spaces on the right hand side have dimension N, N, 2N, . . . , 2m≠1N .
This decomposition wil be important for our purposes. It says that the resolution
space Vm acan be written as the sum of a lower order resolution space V

0

, and
m detail spaces W

0

, . . . , Wm≠1

. We will later interpret this splitting into a
low-resolution component and m detail components.

It turns out that the following function will play the same role for the detail
space Wk as the function „ plays for the resolution space Vk.

Definition 5.10. The function Â.
We define

Â(t) =
!
„

1,0(t) ≠ „
1,1(t)

"
/
Ô

2 = „(2t) ≠ „(2t ≠ 1), (5.8)
and

Âm,n(t) = 2m/2Â(2mt ≠ n), for n = 0, 1, . . . , 2mN ≠ 1. (5.9)

The functions „ and Â are shown in Figure 5.7.

Figure 5.7: The functions „ and Â we used to analyse the space of piecewise
constant functions.

As in the proof for Equation (5.5), it follows that

Âm≠1,n = 1Ô
2

„m,2n ≠ 1Ô
2

„m,2n+1

, (5.10)

Clearly Â is supported on [0, 1), and ÎÂÎ = 1. From this it follows as for �
0

that the {Â
0,n}N≠1

n=0

are orthonormal. In the same way as for �m, it follows
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also that the {Âm,n}2

mN≠1

n=0

is orthonormal for any m. We will write  m for
the orthonormal basis {Âm,n}2

mN≠1

n=0

, and we will always denote the coordinates
in the basis  m by wm,n. The next result motivates the definition of Â, and
states how we can project from V

1

onto V
0

and W
0

, i.e. find the low-resolution
approximation and the detail component of g

1

œ V
1

.

Lemma 5.11. Orthonormal bases.
For 0 Æ n < N we have that

projV0(„
1,n) =

I
„

0,n/2

/
Ô

2, if n is even;
„

0,(n≠1)/2

/
Ô

2, if n is odd.
(5.11)

projW0(„
1,n) =

I
Â

0,n/2

/
Ô

2, if n is even;
≠Â

0,(n≠1)/2

/
Ô

2, if n is odd.
(5.12)

In particular,  
0

is an orthonormal basis for W
0

. More generally, if g
1

=q
2N≠1

n=0

c
1,n„

1,n œ V
1

, then

projV0(g
1

) =
N≠1ÿ

n=0

c
0,n„

0,n, where c
0,n = c

1,2n + c
1,2n+1Ô

2
(5.13)

projW0(g
1

) =
N≠1ÿ

n=0

w
0,nÂ

0,n, where w
0,n = c

1,2n ≠ c
1,2n+1Ô

2
. (5.14)

Proof. We first observe that „
1,n(t) ”= 0 if and only if n/2 Æ t < (n + 1)/2.

Suppose that n is even. Then the intersection
5

n

2 ,
n + 1

2

4
fl [n

1

, n
1

+ 1) (5.15)

is nonempty only if n
1

= n
2

. Using the orthogonal decomposition formula we get

projV0(„
1,n) =

N≠1ÿ

k=0

È„
1,n, „

0,kÍ„
0,k = È„

1,n, „
0,n1Í„

0,n1

=
⁄

(n+1)/2

n/2

Ô
2 dt „

0,n/2

= 1Ô
2

„
0,n/2

.

Using this we also get

projW0(„
1,n) = „

1,n ≠ 1Ô
2

„
0,n/2

= „
1,n ≠ 1Ô

2

3
1Ô
2

„
1,n + 1Ô

2
„

1,n+1

4

= 1
2„

1,n ≠ 1
2„

1,n+1

= Â
0,n/2

/
Ô

2.
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This proves the expressions for both projections when n is even. When n is
odd, the intersection (5.15) is nonempty only if n

1

= (n ≠ 1)/2, which gives the
expressions for both projections when n is odd in the same way. In particular
we get

projW0(„
1,n) = „

1,n ≠ „
0,(n≠1)/2Ô

2
= „

1,n ≠ 1Ô
2

3
1Ô
2

„
1,n≠1

+ 1Ô
2

„
1,n

4

= 1
2„

1,n ≠ 1
2„

1,n≠1

= ≠Â
0,(n≠1)/2

/
Ô

2.

 
0

must be an orthonormal basis for W
0

since  
0

is contained in W
0

, and both
have dimension N .

We project the function g
1

in V
1

using the formulas in (5.11). We first split
the sum into even and odd values of n,

g
1

=
2N≠1ÿ

n=0

c
1,n„

1,n =
N≠1ÿ

n=0

c
1,2n„

1,2n +
N≠1ÿ

n=0

c
1,2n+1

„
1,2n+1

. (5.16)

We can now apply the two formulas in (5.11),

projV0(g
1

) = projV0

A
N≠1ÿ

n=0

c
1,2n„

1,2n +
N≠1ÿ

n=0

c
1,2n+1

„
1,2n+1

B

=
N≠1ÿ

n=0

c
1,2n projV0(„

1,2n) +
N≠1ÿ

n=0

c
1,2n+1

projV0(„
1,2n+1

)

=
N≠1ÿ

n=0

c
1,2n„

0,n/
Ô

2 +
N≠1ÿ

n=0

c
1,2n+1

„
0,n/

Ô
2

=
N≠1ÿ

n=0

c
1,2n + c

1,2n+1Ô
2

„
0,n

which proves Equation (5.13). Equation (5.14) is proved similarly.

In Figure 5.8 we have used Lemma 5.11 to plot the projections of „
1,0 œ V

1

onto V
0

and W
0

. It is an interesting exercise to see from the plots why exactly
these functions should be least-squares approximations of „

1,n. It is also an
interesting exercise to prove the following from Lemma 5.11:

Proposition 5.12. Projections.
Let f(t) œ V

1

, and let fn,1 be the value f attains on [n, n + 1/2), and fn,2

the value f attains on [n + 1/2, n + 1). Then projV0(f) is the function in V
0

which equals (fn,1 + fn,2)/2 on the interval [n, n + 1). Moreover, projW0(f) is
the function in W

0

which is (fn,1 ≠ fn,2)/2 on [n, n + 1/2), and ≠(fn,1 ≠ fn,2)/2
on [n + 1/2, n + 1).
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Figure 5.8: The projection of „
1,0 œ V

1

onto V
0

and W
0

.

In other words, the projection on V
0

is constructed by averaging on two
subintervals, while the projection on W

0

is constructed by taking the di�erence
from the mean. This sounds like a reasonable candidate for the least-squares
approximations. In the exercise we generalize these observations.

In the same way as in Lemma 5.11, it is possible to show that

projWm≠1(„m,n) =
I

Âm≠1,n/2

/
Ô

2, if n is even;
≠Âm≠1,(n≠1)/2

/
Ô

2, if n is odd.
(5.17)

From this it follows as before that  m is an orthonormal basis for Wm. If {Bi}n
i=1

are mutually independent bases, we will in the following write (B
1

, B
2

, . . . , Bn)
for the basis where the basis vectors from Bi are included before Bj when i < j.
With this notation, the decomposition in Equation (5.7) can be restated as
follows

Theorem 5.13. Bases for Vm.
�m and (�

0

, 
0

, 
1

, · · · , m≠1

) are both bases for Vm.

The function Â thus has the property that its dilations and translations
together span the detail components. Later we will encounter other functions,
which also will be denoted by Â, and have similar properties. In the theory of
wavelets, such Â are called mother wavelets. There is one important property of
Â, which we will return to:

Observation 5.14. Vanishing moment.
We have that

s N

0

Â(t)dt = 0.

This can be seen directly from the plot in Figure 5.7, since the parts of
the graph above and below the x-axis cancel. In general we say that Â has k
vanishing moments if the integrals

s
tlÂ(t)dt = 0 for all 0 Æ l Æ k ≠ 1. Due to

Observation 5.14, Â has one vanishing moment. In Chapter 7 we will show that
mother wavelets with many vanishing moments are very desirable when it comes
to approximation of functions.

We now have all the tools needed to define the Discrete Wavelet Transform.
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Definition 5.15. Discrete Wavelet Transform.
The DWT (Discrete Wavelet Transform) is defined as the change of coordi-

nates from �
1

to (�
0

, 
0

). More generally, the m-level DWT is defined as the
change of coordinates from �m to (�

0

, 
0

, 
1

, · · · , m≠1

). In an m-level DWT,
the change of coordinates from

(�m≠k+1

, m≠k+1

, m≠k+2

, · · · , m≠1

) to (�m≠k, m≠k, m≠k+1

, · · · , m≠1

)
(5.18)

is also called the k’th stage. The (m-level) IDWT (Inverse Discrete Wavelet
Transform) is defined as the change of coordinates the opposite way.

The DWT corresponds to replacing as many „-functions as we can with
Â-functions, i.e. replacing the original function with a sum of as much detail at
di�erent resolutions as possible. We now can state the following result.

Theorem 5.16. Expression for the DWT.
If gm = gm≠1

+ em≠1

with

gm =
2

mN≠1ÿ

n=0

cm,n„m,n œ Vm,

gm≠1

=
2

m≠1N≠1ÿ

n=0

cm≠1,n„m≠1,n œ Vm≠1

em≠1

=
2

m≠1N≠1ÿ

n=0

wm≠1,nÂm≠1,n œ Wm≠1

,

then the change of coordinates from �m to (�m≠1

, m≠1

) (i.e. first stage in a
DWT) is given by

3
cm≠1,n

wm≠1,n

4
=

3
1/

Ô
2 1/

Ô
2

1/
Ô

2 ≠1/
Ô

2

4 3
cm,2n

cm,2n+1

4
(5.19)

Conversely, the change of coordinates from (�m≠1

, m≠1

) to �m (i.e. the last
stage in an IDWT) is given by

3
cm,2n

cm,2n+1

4
=

3
1/

Ô
2 1/

Ô
2

1/
Ô

2 ≠1/
Ô

2

4 3
cm≠1,n

wm≠1,n

4
(5.20)

Proof. Equations (5.5) and (5.10) say that

„m≠1,n = „m,2n/
Ô

2 + „m,2n+1

/
Ô

2 Âm≠1,n = „m,2n/
Ô

2 ≠ „m,2n+1

/
Ô

2.

The change of coordinate matrix from the basis {„m≠1,n, Âm≠1,n} to {„m,2n, „m,2n+1

}
is thus

3
1/

Ô
2 1/

Ô
2

1/
Ô

2 ≠1/
Ô

2

4
. This proves Equation (5.20). Equation (5.19) follows

immediately since this matrix equals its inverse.
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Above we assumed that N is even. In Exercise 5.8 we will see how we can
handle the case when N is odd.

From Theorem 5.16, we see that, if we had defined

Cm = {„m≠1,0, Âm≠1,0, „m≠1,1, Âm≠1,1, · · · , „m≠1,2m≠1N≠1

, Âm≠1,2m≠1N≠1

}.
(5.21)

i.e. we have reordered the basis vectors in (�m≠1

, m≠1

) (the subscript m is used
since Cm is a basis for Vm), it is apparent from Equation (5.20) that G = P

�mΩCm

is the matrix where
A

1Ô
2

1Ô
2

1Ô
2

≠ 1Ô
2

B

is repeated along the main diagonal 2m≠1N times. Also, from Equation (5.19) it
is apparent that H = PCmΩ�m

is the same matrix. Such matrices are called block
diagonal matrices. This particular block diagonal matrix is clearly orthogonal.
Let us make the following definition.

Definition 5.17. DWT and IDWT kernel transformations.
The matrices H = PCmΩ�m

and G = P
�mΩCm

are called the DWT and
IDWT kernel transformations. The DWT and the IDWT can be expressed in
terms of these kernel transformations by

DWT = P
(�m≠1, m≠1)ΩCm

H and IDWT = GPCmΩ(�m≠1, m≠1)

,

respectively, where

• P
(�m≠1, m≠1)ΩCm

is a permutation matrix which groups the even elements
first, then the odd elements,

• PCmΩ(�m≠1, m≠1)

is a permutation matrix which places the first half at
the even indices, the last half at the odd indices.

Clearly, the kernel transformations H and G also invert each other. The point
of using the kernel transformation is that they compute the output sequentially,
similarly to how a filter does. Clearly also the kernel transformations are very
similar to a filter, and we will return to this in the next chapter.

At each level in a DWT, Vk is split into one low-resolution component from
Vk≠1

, and one detail component from Wk≠1

. We have illustrated this in figure 5.9,
where the arrows represent changes of coordinates.

The detail component from Wk≠1

is not subject to further transformation.
This is seen in the figure since  k≠1

is a leaf node, i.e. there are no arrows going
out from  m≠1

. In a similar illustration for the IDWT, the arrows would go the
opposite way.

The Discrete Wavelet Transform is the analogue in a wavelet setting to the
Discrete Fourier transform. When applying the DFT to a vector of length N ,
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�m
//

""

�m�1
//

##

�m�2
//

##

· · · // �1
//

  

�0

 m�1  m�2  m�3  0

Figure 5.9: Illustration of a wavelet transform.

one starts by viewing this vector as coordinates relative to the standard basis.
When applying the DWT to a vector of length N , one instead views the vector
as coordinates relative to the basis �m. This makes sense in light of Exercise 5.1.

Exercise 5.1: The vector of samples is the coordinate vector
Show that the coordinate vector for f œ V

0

in the basis {„
0,0, „

0,1, . . . , „
0,N≠1

}
is (f(0), f(1), . . . .f(N ≠ 1)). This shows that, for f œ Vm, there is no loss of
information in working with the samples of f rather than f itself.

Exercise 5.2: Proposition 5.12
Prove Proposition 5.12.

Exercise 5.3: Computing projections 1
In this exercise we will consider the two projections from V

1

onto V
0

and W
0

.

a) Consider the projection projV0 of V
1

onto V
0

. Use Lemma 5.11 to write down
the matrix for projV0 relative to the bases �

1

and �
0

.

b) Similarly, use Lemma 5.11 to write down the matrix for projW0 : V
1

æ W
0

relative to the bases �
1

and  
0

.

Exercise 5.4: Computing projections 2
Consider again the projection projV0 of V

1

onto V
0

.

a) Explain why projV0(„) = „ and projV0(Â) = 0.

b) Show that the matrix of projV0 relative to (�
0

, 
0

) is given by the diagonal
matrix where the first half of the entries on the diagonal are 1, the second half 0.

c) Show in a similar way that the projection of V
1

onto W
0

has a matrix relative
to (�

0

, 
0

) given by the diagonal matrix where the first half of the entries on
the diagonal are 0, the second half 1.
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Exercise 5.5: Computing projections 3
Show that

projV0(f) =
N≠1ÿ

n=0

3⁄ n+1

n

f(t)dt

4
„

0,n(t) (5.22)

for any f . Show also that the first part of Proposition 5.12 follows from this.

Exercise 5.6: Finding the least squares error
Show that

Î
ÿ

n

3⁄ n+1

n

f(t)dt

4
„

0,n(t) ≠ fÎ2 = Èf, fÍ ≠
ÿ

n

3⁄ n+1

n

f(t)dt

4
2

.

This, together with the previous exercise, gives us an expression for the least-
squares error for f from V

0

(at least after taking square roots). 2DO: Generalize
to m

Exercise 5.7: Projecting on W
0

Show that

projW0(f) =
N≠1ÿ

n=0

A⁄ n+1/2

n

f(t)dt ≠
⁄ n+1

n+1/2

f(t)dt

B
Â

0,n(t) (5.23)

for any f . Show also that the second part of Proposition 5.12 follows from this.

Exercise 5.8: When N is odd
When N is odd, the (first stage in a) DWT is defined as the change of coordinates
from („

1,0, „
1,1, . . . , „

1,N≠1

) to

(„
0,0, Â

0,0, „
0,1, Â

0,1, . . . , „
0,(N≠1)/2

, Â
(N≠1)/2

, „
0,(N+1)/2

).
Since all functions are assumed to have period N , we have that

„
0,(N+1)/2

= 1Ô
2

(„
1,N≠1

+ „
1,N ) = 1Ô

2
(„

1,0 + „
1,N≠1

).

From this relation one can find the last column in the change of coordinate
matrix from �

0

to (�
1

, 
1

), i.e. the IDWT matrix. In particular, when N is
odd, we see that the last column in the IDWT matrix circulates to the upper
right corner. In terms of coordinates, we thus have that

c
1,0 = 1Ô

2
(c

0,0 + w
0,0 + c

0,(N+1)/2

) c
1,N≠1

= 1Ô
2

c
0,(N+1)/2

. (5.24)
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a) If N = 3, the DWT matrix equals

1Ô
2

Q

a
1 1 1
1 ≠1 0
0 0 1

R

b ,

and the inverse of this is

1Ô
2

Q

a
1 1 ≠1
1 ≠1 ≠1
0 0 2

R

b .

Explain from this that, when N is odd, the DWT matrix can be constructed by
adding a column on the form 1Ô

2

(≠1, ≠1, 0, . . . , 0, 2) to the DWT matrices we
had for N even (in the last row zeros are also added). In terms of the coordinates,
we thus have the additional formulas

c
0,0 = 1Ô

2
(c

1,0+c1,1≠c1,N≠1)

w
0,0 = 1Ô

2
(c

1,0≠c1,1≠c1,N≠1)

c
0,(N+1)/2

= 1Ô
2

2c
1,N≠1

. (5.25)

b) Explain that the DWT matrix is orthogonal if and only if N is even. Also
explain that it is only the last column which spoils the orthogonality.

5.3 Implementation of the DWT and examples
The DWT is straightforward to implement: Simply iterate Equation (5.19)
for m, m ≠ 1, . . . , 1. For each iteration we will use a kernel function which
takes as input the coordinates (cm,0, cm,1, . . .), and returns the coordinates
(cm≠1,0, wm≠1,0, cm≠1,1, wm≠1,1, . . .), i.e. computes one stage of the DWT, but
with a di�erent order of the coordinates than in the basis (�m, m). This turns
out to be the natural ordering for computing the DWT in-place. As an example,
the kernel function for the Haar wavelet can be implemented as follows (for
simplicity this first version of the code assumes that N is even):

function x = dwt_kernel_haar(x, bd_mode)
x = x/sqrt(2);
N = size(x, 1);
for k = 1:2:(N-1)

x(k:(k+1), :) = [x(k, :) + x(k+1, :); x(k, :) - x(k+1, :)];
end

The code above accepts two-dimensional data, just as our function FFTImpl.
Thus, the function may be applied simultaneously to all channels in a sound.
The reason for using a general kernel function will be apparent later, when we



CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES178

change to di�erent types of wavelets. It is not meant that you call this kernel
function directly. Instead every time you apply the DWT call the function

DWTImpl(x, m, wave_name, bd_mode, dual, transpose)

x is the input to the DWT, and m is the number of levels. The three last
parameters will be addressed later in the book (the bd_mode-parameter addresses
how the boundary should be handled). The function also sets meaningful default
values for the three last parameters, so that you mostly only need to provide the
three first parameters.

We will later construct other wavelets, and we will distinguish them by
using di�erent names. This is the purposes of the wave_name parameter. This
parameter is sent to a function called find_kernel which looks up a kernel
function by name (find_kernel also uses the dual and transpose parameters
to take a decision on which kernel to choose). The Haar wavelet is identified
with the name "Haar". When this is input to DWTImpl, find_kernel returns
the dwt_kernel_haar kernel. The kernel is then used as input to the following
function:

function x=DWTImpl_internal(x, m, dwt_kernel, bd_mode)
for res=0:(m - 1)

x(1:2^res:end, :) = dwt_kernel(x(1:2^res:end, :), bd_mode);
end
x = reorganize_coeffs_forward(x, m);

end

The code is applied to all columns if the data is two-dimensional, and we see
that the kernel function is invoked one time for each resolution. To reorder
coordinates in the same order as (�m, m), note that the coordinates from �m

above end up at indices k2m, where m represents the current stage, and k runs
through the indices. The function reorganize_coeffs_forward uses this to
reorder the coordinates (you will be spared the details in this implementation).
Although the DWT requires this reorganization, this may not be required in
practice. In Exercise 5.27 we go through some aspects of this implementation.
The implementation is not recursive, as the for-loop runs through the di�erent
stages.

In this implementation, note that the first levels require the most operations,
since the latter levels leave an increasing part of the coordinates unchanged. Note
also that the change of coordinates matrix is a very sparse matrix: At each level
a coordinate can be computed from only two of the other coordinates, so that
this matrix has only two nonzero elements in each row/column. The algorithm
clearly shows that there is no need to perform a full matrix multiplication to
perform the change of coordinates.

There is a similar setup for the IDWT:

IDWTImpl(x, m, wave_name, bd_mode, dual, transpose)

If the wave_name-parameter is set to "Haar", also this function will use the
find_kernel function to look up another kernel function, idwt_kernel_haar
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(when N is even, this uses the exact same code as dwt_kernel_haar. For N is
odd, see Exercises 5.8 and 5.26). This is then sent as input to

function x=IDWTImpl_internal(x, m, f, bd_mode)
x = reorganize_coeffs_reverse(x, m);
for res = (m - 1):(-1):0

x(1:2^res:end, :) = f(x(1:2^res:end, :), bd_mode);
end

end

Here the steps are simply performed in the reverse order, and by iterating
Equation (5.20).

In the next sections we will consider other cases where the underlying function
„ may be something else, and not necessarily piecewise constant. It will turn
out that much of the analysis we have done makes sense for other functions „ as
well, giving rise to other structures which we also will refer to as wavelets. The
wavelet resulting from piecewise constant functions is thus simply one example
out of many, and it is commonly referred to as the Haar wavelet. Let us round
o� this section with some important examples.

Example 5.9: Computing the DWT by hand
In some cases, the DWT can be computed by hand, keeping in mind its definition
as a change of coordinates. As an example, consider the simple vector x of
length 210 = 1024 defined by

xn =
I

1 for n < 512
0 for n Ø 512,

and let us compute the 10-level DWT of this vector by first visualizing the
function with these coordinates. Since m = 10 here, we should view x as
coordinates in the basis �

10

of a function f(t) œ V
10

. This is f(t) =
q

511

n=0

„
10,n,

and since „
10,n is supported on [2≠10n, 2≠10(n + 1)), the support of f has width

512 ◊ 2≠10 = 1/2 (512 translates, each with width 2≠10). Moreover, since „
10,n

is 210/2 = 25 = 32 on [2≠10n, 2≠10(n + 1)) and 0 elsewhere, it is clear that

f(t) =
I

32 for 0 Æ t < 1/2
0 for 0t Ø 1/2.

This is by definition a function in V
1

: f must in fact be a multiplum of „
1,0, since

this also is supported on [0, 1/2). We can thus write f(t) = c„
1,0(t) for some

c. We can find c by setting t = 0. This gives that 32 = 21/2c (since f(0) = 32,
„

1,0(0) = 21/2), so that c = 32/
Ô

2. This means that f(t) = 32Ô
2

„
1,0(t), f is in

V
1

, and with coordinates (32/
Ô

2, 0, . . . , 0) in �
1

.
When we run a 10-level DWT we make a change of coordinates from �

10

to
(�

0

, 
0

, · · · , 
9

). The first 9 levels give us the coordinates in (�
1

, 
1

, 
2

, . . . , 
9

),
and these are (32/

Ô
2, 0, . . . , 0) from what we showed. It remains thus only to



CHAPTER 5. MOTIVATION FOR WAVELETS AND SOME SIMPLE EXAMPLES180

perform the last level in the DWT, i.e. perform the change of coordinates from
�

1

to (�
0

, 
0

). Since „
1,0 = 1Ô

2

(„
0,0 + Â

0,0), so that we get

f(t) = 32Ô
2

„
1,0(t) = 32Ô

2
1Ô
2

(„
0,0 + Â

0,0) = 16„
0,0 + 16Â

0,0.

From this we see that the coordinate vector of f in (�
0

, 
0

, · · · , 
9

), i.e. the
10-level DWT of x, is (16, 16, 0, 0, . . . , 0). Note that here V

0

and W
0

are both
1-dimensional, since V

10

was assumed to be of dimension 210 (in particular,
N = 1).

It is straightforward to verify what we found using the algorithm above:

DWTImpl([ones(512,1); zeros(512,1)], 10, ’Haar’)

The reason why the method from this example worked was that the vector we
started with had a simple representation in the wavelet basis, actually it equaled
the coordinates of a basis function in �

1

. Usually this is not the case, and our
only possibility then is to run the DWT on a computer.

Example 5.10: DWT on sound
Let us plot the samples of our audio sample file, and compare them with the
first order DWT. Both are shown in Figure 5.10.

Figure 5.10: The 217 first sound samples (left) and the DWT coe�cients (right)
of the sound castanets.wav.

The first part of the DWT plot represents the low resolution part, the second
the detail.

Since „(2mt ≠ n) œ Vm oscillates more quickly than „(t ≠ n) œ V
0

, one is lead
to believe that coe�cients from lower order resolution spaces correspond to lower
frequencies. The functions „m,n do not correspond to pure tones in the setting
of wavelets, however, but let us nevertheless listen to sound from the di�erent
resolution spaces. The code base includes a function forw_comp_rev_DWT which
runs an m-level DWT on the first samples of the audio sample file, extracts the
detail or the low-resolution approximation, and runs an IDWT to reconstruct
the sound. Since the returned values may lie outside the legal range [≠1, 1], the
values are normalized at the end.
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To listen to the low-resolution approximation, write

[x, fs] = forw_comp_rev_DWT(m, ’Haar’);
playerobj = audioplayer(x, fs);
playblocking(playerobj)

It is instructive to run this code for di�erent values of m. For m = 2 we clearly
hear a degradation in the sound. For m = 4 and above most of the sound is
unrecognizable, since too much of the detail is omitted. To be more precise,
when listening to the sound by throwing away detail from W

0

, W
1

,...,Wm≠1

, we
are left with a 2≠m share of the data.

Let us also consider the detail. For m = 1 this can be played as follows

[x, fs] = forw_comp_rev_DWT(1, ’Haar’, 0);
playerobj = audioplayer(x, fs);
playblocking(playerobj)

We see that the detail is quite significant, so that the first order wavelet approxi-
mation does not give a very good approximation. For m = 2 the detail can be
played as follows

[x, fs] = forw_comp_rev_DWT(2, ’Haar’, 0);
playerobj = audioplayer(x, fs);
playblocking(playerobj)

Figure 5.11: The detail in our audio sample file, for m = 1 (left) and m = 2
(right).

The errors are shown in Figure 5.11. The error is larger when two levels of
the DWT are performed, as one would suspect. It is also seen that the error
is larger in the part of the file where there are bigger variations. Since more
and more information is contained in the detail components as we increase m,
we here see the opposite e�ect: The sound gradually improves in quality as we
increase m.

The previous example illustrates that wavelets as well may be used to perform
operations on sound. As we will see later, however, our main application for
wavelets will be images, where they have found a more important role than
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for sound. Images typically display variations which are less abrupt than the
ones found in sound. Just as the functions above had smaller errors in the
corresponding resolution spaces than the sound had, images are thus more suited
for for use with wavelets. The main idea behind why wavelets are so useful
comes from the fact that the detail, i.e., wavelet coe�cients corresponding to the
spaces Wk, are often very small. After a DWT one is therefore often left with a
couple of significant coe�cients, while most of the coe�cients are small. The
approximation from V

0

can be viewed as a good approximation, even though
it contains much less information. This gives another reason why wavelets
are popular for images: Detailed images can be very large, but when they are
downloaded to a web browser, the browser can very early show a low-resolution of
the image, while waiting for the rest of the details in the image to be downloaded.
When we later look at how wavelets are applied to images, we will need to handle
one final hurdle, namely that images are two-dimensional.

Example 5.11: DWT on the samples of a mathematical
function
Above we plotted the DWT coe�cients of a sound, as well as the detail/error.
We can also experiment with samples generated from a mathematical function.
Figure 5.12 plots the error for di�erent functions, with N = 1024.

In these cases, we see that we require large m before the detail/error becomes
significant. We see also that there is no error for the square wave. The reason
is that the square wave is a piecewise constant function, so that it can be
represented exactly by the „-functions. For the other functions, however, this is
not the case, so we here get an error.

Example 5.12: Computing the wavelet coe�cients
For the functions we plotted in the previous example we used the functions
DWTImpl, IDWTImpl to plot the error, but it is also possible to compute the
wavelet coe�cients wm,n exactly. You will be asked to do this in exercises 5.23
and 5.24. To exemplify the general procedure for this, consider the function
f(t) = 1 ≠ t/N . This decreases linearly from 1 to 0 on [0, N ], so that it is not
piecewise constant, and does not lie in any of the spaces Vm. We can instead
consider projVm

f œ Vm, and apply the DWT to this. Let us compute the  m-
coordinates wm,n of projVm

f in the orthonormal basis (�
0

, 
0

, 
1

, . . . , m≠1

).
The orthogonal decomposition theorem says that

wm,n = Èf, Âm,nÍ =
⁄ N

0

f(t)Âm,n(t)dt =
⁄ N

0

(1 ≠ t/N)Âm,n(t)dt.

Using the definition of Âm,n we see that this can also be written as
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Figure 5.12: The error (i.e. the contribution from W
0

ü W
1

ü · · · ü Wm≠1

) for
N = 1024 when f is a square wave, the linear function f(t) = 1 ≠ 2|1/2 ≠ t/N |,
and the trigonometric function f(t) = 1/2 + cos(2fit/N)/2, respectively. The
detail is indicated for m = 6 and m = 8.

2m/2

⁄ N

0

(1 ≠ t/N)Â(2mt ≠ n)dt = 2m/2

A⁄ N

0

Â(2mt ≠ n)dt ≠
⁄ N

0

t

N
Â(2mt ≠ n)dt

B
.

Using Observation 5.14 we get that
s N

0

Â(2mt ≠ n)dt = 0, so that the first term
above vanishes. Moreover, Âm,n is nonzero only on [2≠mn, 2≠m(n + 1)), and is 1
on [2≠mn, 2≠m(n + 1/2)), and ≠1 on [2≠m(n + 1/2), 2≠m(n + 1)). We therefore
get
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wm,n = ≠2m/2

A⁄
2

≠m
(n+1/2)

2

≠mn

t

N
dt ≠

⁄
2

≠m
(n+1)

2

≠m
(n+1/2)

t

N
dt

B

= ≠2m/2

A5
t2

2N

6
2

≠m
(n+1/2)

2

≠mn

≠
5

t2

2N

6
2

≠m
(n+1)

2

≠m
(n+1/2)

B

= ≠2m/2

33
2≠2m(n + 1/2)2

2N
≠ 2≠2mn2

2N

4
≠

3
2≠2m(n + 1)2

2N
≠ 2≠2m(n + 1/2)2

2N

44

= ≠2m/2

3
≠2≠2mn2

2N
+ 2≠2m(n + 1/2)2

N
≠ 2≠2m(n + 1)2

2N

4

= ≠2≠3m/2

2N

!≠n2 + 2(n + 1/2)2 ≠ (n + 1)2

"
= 1

N22+3m/2

.

We see in particular that wm,n æ 0 when m æ Œ. Also, all coordinates were
equal, i.e. wm,0 = wm,1 = wm,2 = · · · . It is not too hard to convince oneself
that this equality has to do with the fact that f is linear. We see also that
there were a lot of computations even in this very simple example. For most
functions we therefore usually do not compute wm,n symbolically, but instead
run implementations like DWTImpl, IDWTImpl on a computer.

Exercise 5.13: Implement IDWT for The Haar wavelet
Write a function idwt_kernel_haar which uses the formulas (5.24) to implement
the IDWT, similarly to how the function dwt_kernel_haar implemented the
DWT using the formulas (5.25).

Exercise 5.14: Computing projections 4
Generalize Exercise 5.4 to the projections from Vm+1

onto Vm and Wm.

Exercise 5.15: Scaling a function
Show that f(t) œ Vm if and only if g(t) = f(2t) œ Vm+1

.

Exercise 5.16: Direct sums
Let C

1

, C
2

. . . , Cn be independent vector spaces, and let Ti : Ci æ Ci be linear
transformations. The direct sum of T

1

, T
2

,. . . ,Tn, written as T
1

ü T
2

ü . . . ü Tn,
denotes the linear transformation from C

1

ü C
2

ü · · · ü Cn to itself defined by

T
1

ü T
2

ü . . . ü Tn(c
1

+ c
2

+ · · · + cn) = T
1

(c
1

) + T
2

(c
2

) + · · · + Tn(cn)

when c
1

œ C
1

, c
2

œ C
2

, . . . , cn œ Cn. Similarly, when A
1

, A
2

, . . . , An are square
matrices, A

1

ü A
2

ü · · · ü An is defined as the block matrix where the blocks
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along the diagonal are A
1

, A
2

, . . . , An, and where all other blocks are 0. Show
that, if Bi is a basis for Ci then

[T
1

ü T
2

ü . . . ü Tn]
(B1,B2,...,Bn)

= [T
1

]B1 ü [T
2

]B2 ü · · · ü [Tn]Bn
,

Here two new concepts are used: a direct sum of matrices, and a direct sum of
linear transformations.

Exercise 5.17: Eigenvectors of direct sums
Assume that T

1

and T
2

are matrices, and that the eigenvalues of T
1

are equal
to those of T

2

. What are the eigenvalues of T
1

ü T
2

? Can you express the
eigenvectors of T

1

ü T
2

in terms of those of T
1

and T
2

?

Exercise 5.18: Invertibility of direct sums
Assume that A and B are square matrices which are invertible. Show that AüB
is invertible, and that (A ü B)≠1 = A≠1 ü B≠1.

Exercise 5.19: Multiplying direct sums
Let A, B, C, D be square matrices of the same dimensions. Show that (A ü
B)(C ü D) = (AC) ü (BD).

Exercise 5.20: Finding N

Assume that you run an m-level DWT on a vector of length r. What value of
N does this correspond to? Note that an m-level DWT performs a change of
coordinates from �m to (�

0

, 
0

, 
1

, . . . , m≠2

, m≠1

).

Exercise 5.21: Di�erent DWTs for similar vectors
In Figure 5.13 we have plotted the DWT’s of two vectors x

1

and x
2

. In both
vectors we have 16 ones followed by 16 zeros, and this pattern repeats cyclically
so that the length of both vectors is 256. The only di�erence is that the second
vector is obtained by delaying the first vector with one element.

You see that the two DWT’s are very di�erent: For the first vector we see
that there is much detail present (the second part of the plot), while for the
second vector there is no detail present. Attempt to explain why this is the case.
Based on your answer, also attempt to explain what can happen if you change
the point of discontinuity for the piecewise constant function in the left part of
Figure 5.11 to something else.

Exercise 5.22: Construct a sound
Attempt to construct a (nonzero) sound where the low resolution approximations
equal the sound itself for m = 1, m = 2.
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Figure 5.13: 2 vectors x
1

and x
2

which seem equal, but where the DWT’s are
very di�erent.

Exercise 5.23: Exact computation of wavelet coe�cients 1
Compute the wavelet detail coe�cients analytically for the functions in Exam-
ple 5.11, i.e. compute the quantities wm,n =

s N

0

f(t)Âm,n(t)dt similarly to how
this was done in Example 5.12.

Exercise 5.24: Exact compution of wavelet coe�cients 2
Compute the wavelet detail coe�cients analytically for the functions f(t) =

!
t

N

"k,
i.e. compute the quantities wm,n =

s N

0

!
t

N

"k
Âm,n(t)dt similarly to how this was

done in Example 5.12. How do these compare with the coe�cients from the
Exercise 5.23?

Exercise 5.25: Computing the DWT of a simple vector
Suppose that we have the vector x with length 210 = 1024, defined by xn = 1
for n even, xn = ≠1 for n odd. What will be the result if you run a 10-level
DWT on x? Use the function DWTImpl to verify what you have found.

Hint. We defined Â by Â(t) = („
1,0(t) ≠ „

1,1(t))/
Ô

2. From this connection it
follows that Â

9,n = („
10,2n ≠„

10,2n+1

)/
Ô

2, and thus „
10,2n ≠„

10,2n+1

=
Ô

2Â
9,n.

Try to couple this identity with the alternating sign you see in x.

Exercise 5.26: The Haar wavelet when N is odd
Use the results from Exercise 5.8 to rewrite the implementations dwt_kernel_haar
and idwt_kernel_haar so that they also work in the case when N is odd.

Exercise 5.27: in-place DWT
Show that the coordinates in �m after an in-place m-level DWT end up at
indices k2m, k = 0, 1, 2, . . .. Show similarly that the coordinates in  m after an
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in-place m-level DWT end up at indices 2m≠1 + k2m, k = 0, 1, 2, . . .. Find these
indices in the code for the function reorganize_coefficients.

5.4 A wavelet based on piecewise linear func-
tions

Unfortutately, piecewise constant functions are too simple to provide good
approximations. In this section we are going to extend the construction of
wavelets to piecewise linear functions. The advantage is that piecewise linear
functions are better for approximating smooth functions and data than piecewise
constants, which should translate into smaller components (errors) in the detail
spaces in many practical situations. As an example, this would be useful if we
are interested in compression. In this new setting it turns out that we loose the
orthonormality we had for the Haar wavelet. On the other hand, we will see
that the new scaling functions and mother wavelets are symmetric functions.
We will later see that this implies that the corresponding DWT and IDWT have
simple implementations with higher precision. Our experience from deriving
Haar wavelets will guide us in the construction of piecewise linear wavelets. The
first task is to define the new resolution spaces.

Definition 5.18. Resolution spaces of piecewise linear functions.
The space Vm is the subspace of continuous functions on R which are periodic

with period N , and linear on each subinterval of the form [n2≠m, (n + 1)2≠m).

Figure 5.14: A piecewise linear function and the two functions „(t) and „(t ≠ 3).

Any f œ Vm is uniquely determined by its values in the points {2≠mn}2

mN≠1

n=0

.
The linear mapping which sends f to these samples is thus an isomorphism from
Vm onto RN2

m , so that the dimension of Vm is N2m. The lft plot in Figure 5.14
shows an example of a piecewise linear function in V

0

on the interval [0, 10]. We
note that a piecewise linear function in V

0

is completely determined by its value
at the integers, so the functions that are 1 at one integer and 0 at all others are
particularly simple and therefore interesting, see the right plot in Figure 5.14.
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These simple functions are all translates of each other and can therefore be built
from one scaling function, as is required for a multiresolution analysis.

Lemma 5.19. The function „.
Let the function „ be defined by

„(t) =
I

1 ≠ |t|, if ≠1 Æ t Æ 1;
0, otherwise;

(5.26)

and for any m Ø 0 set

„m,n(t) = 2m/2„(2mt ≠ n) for n = 0, 1, . . . , 2mN ≠ 1,

and �m = {„m,n}2

mN≠1

n=0

. �m is a basis for Vm, and „
0,n(t) is the function in V

0

with smallest support that is nonzero at t = n.

Proof. It is clear that „m,n œ Vm, and

„m,nÕ(n2≠m) = 2m/2„(2m(2≠mn) ≠ nÕ) = 2m/2„(n ≠ nÕ).

Since „ is zero at all nonzero integers, and „(0) = 1, we see that „m,nÕ(n2≠m) =
2m/2 when nÕ = n, and 0 if nÕ ”= n. Let Lm : Vm æ RN2

m be the isomorphism
mentioned above which sends f œ Vm to the samples in the points {2≠mn}2

mN≠1

n=0

.
Our calculation shows that Lm(„m,n) = 2m/2en. Since Lm is an isomorphism it
follows that �m = {„m,n}2

mN≠1

n=0

is a basis for Vm.
Suppose that the function g œ V

0

has smaller support than „
0,n, but is

nonzero at t = n. We must have that L
0

(g) = cen for some c, since g is zero on
the integers di�erent from n. But then g is a multiple of „

0,n, so that it is the
function in V

0

with smallest support that is nonzero at t = n.

The function „ and its translates and dilates are often referred to as hat
functions for obvious reasons. Note that the new function „ is nonzero for small
negative x-values, contrary to the „ we defined in Chapter 5. If we plotted the
function on [0, N), we would see the nonzero parts at the beginning and end of
this interval, due to the period N , but we will mostly plot on an interval around
zero, since such an interval captures the entire support of the function. Also for
the piecewise linear wavelet the coordinates of a basis function is given by the
samples:

Lemma 5.20. Writing in terms of the samples.
A function f œ Vm may be written as

f(t) =
2

mN≠1ÿ

n=0

f(n/2m)2≠m/2„m,n(t). (5.27)

An essential property also here is that the spaces are nested.
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Lemma 5.21. Resolution spaces are nested.
The piecewise linear resolution spaces are nested,

V
0

µ V
1

µ · · · µ Vm µ · · · .

Proof. We only need to prove that V
0

µ V
1

since the other inclusions are similar.
But this is immediate since any function in V

0

is continuous, and linear on any
subinterval in the form [n/2, (n + 1)/2).

In the piecewise constant case, we saw in Lemma 5.3 that the scaling functions
were automatically orthogonal since their supports did not overlap. This is not
the case in the linear case, but we could orthogonalise the basis �m with the
Gram-Schmidt process from linear algebra. The disadvantage is that we lose the
nice local behaviour of the scaling functions and end up with basis functions
that are nonzero over all of [0, N ]. And for most applications, orthogonality is
not essential; we just need a basis. The next step in the derivation of wavelets is
to find formulas that let us express a function given in the basis �

0

for V
0

in
terms of the basis �

1

for V
1

.

Lemma 5.22. The two-scale equation.
The functions „

0,n satisfy the relation

„
0,n = 1Ô

2

3
1
2„

1,2n≠1

+ „
1,2n + 1

2„
1,2n+1

4
. (5.28)

Figure 5.15: How „(t) can be decomposed as a linear combination of „
1,≠1

,
„

1,0, and „
1,1.

Proof. Since „
0,n is in V

0

it may be expressed in the basis �
1

with formula
(5.27),

„
0,n(t) = 2≠1/2

2N≠1ÿ

k=0

„
0,n(k/2)„

1,k(t).
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The relation (5.28) now follows since

„
0,n

!
(2n ≠ 1)/2

"
= „

0,n

!
(2n + 1)/2

"
= 1/2, „

0,n(2n/2) = 1,

and „
0,n(k/2) = 0 for all other values of k.

The relationship given by Equation (5.28) is shown in Figure 5.15.

5.4.1 Detail spaces and wavelets
The next step in our derivation of wavelets for piecewise linear functions is
the definition of the detail spaces. We need to determine a space W

0

that is
linearly independent from V

0

, and so that V
1

= V
0

ü W
0

. In the case of piecewise
constant functions we started with a function g

1

in V
1

, computed the least
squares approximation g

0

in V
0

, and then defined the error function e
0

= g
1

≠ g
0

,
with e

0

œ W
0

and W
0

as the orthogonal complement of V
0

in V
1

.
It turns out that this strategy is less appealing in the case of piecewise linear

functions. The reason is that the functions „
0,n are not orthogonal anymore

(see Exercise 5.32). Due to this we have no simple, orthogonal basis for the
set of piecewise linear functions, so that the orthogonal decomposition theorem
fails to give us the projection onto V

0

in a simple way. It is therefore no reason
to use the orthogonal complement of V

0

in V
1

as our error space, since it is
hard to write a piecewise linear function as a sum of two other piecewise linear
functions which are orthogonal. Instead of using projections to find low-resolution
approximations, and orthogonal complements to find error functions, we will
attempt the following simple approximation method:

Definition 5.23. Alternative projection.
Let g

1

be a function in V
1

given by

g
1

=
2N≠1ÿ

n=0

c
1,n„

1,n. (5.29)

The approximation g
0

= P (g
1

) in V
0

is defined as the unique function in V
0

which has the same values as g
1

at the integers, i.e.

g
0

(n) = g
1

(n), n = 0, 1, . . . , N ≠ 1. (5.30)

It is easy to show that P (g
1

) actually is di�erent from the projection of g
1

onto V
0

: If g
1

= „
1,1, then g

1

is zero at the integers, and then clearly P (g
1

) = 0.
But in Exercise 5.31 you will be asked to compute the projection onto V

0

using
di�erent means than the orthogonal decomposition theorem, and the result will
be seen to be nonzero. It is also very easy to see that the coordinates of g

0

in �
0

can be obtained by dropping every second coordinate of g
0

in �
1

. To be more
precise, the following holds:

Lemma 5.24. Expression for the alternative projection.
We have that
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P („
1,n) =

IÔ
2„

0,n/2

, if n is an even integer;
0, otherwise.

Once this approximation method is determined, it is straightforward to
determine the detail space as the space of error functions.

Lemma 5.25. Resolution spaces.
Define

W
0

= {f œ V
1

| f(n) = 0, for n = 0, 1, . . . , N ≠ 1},

and

Â(t) = 1Ô
2

„
1,1(t) Âm,n(t) = 2m/2Â(2mt ≠ n). (5.31)

Suppose that g
1

œ V
1

and that g
0

= P (g
1

). Then

• the error e
0

= g
1

≠ g
0

lies in W
0

,

•  
0

= {Â
0,n}N≠1

n=0

is a basis for W
0

.

• V
0

and W
0

are linearly independent, and V
1

= V
0

ü W
0

.

Proof. Since g
0

(n) = g
1

(n) for all integers n, e
0

(n) = (g
1

≠ g
0

)(n) = 0, so that
e

0

œ W
0

. This proves the first statement.
For the second statement, note first that

Â
0,n(t) = Â(t ≠ n) = 1Ô

2
„

1,1(t ≠ n) = „(2(t ≠ n) ≠ 1)

= „(2t ≠ (2n + 1)) = 1Ô
2

„
1,2n+1

(t). (5.32)

 
0

is thus a linearly independent set of dimension N , since it corresponds to a
subset of �

1

. Since „
1,2n+1

is nonzero only on (n, n + 1), it follows that all of  
0

lies in W
0

. Clearly then  
0

is also a basis for W
0

, since W
0

also has dimension
N (its image under L

1

consists of points where every second component is zero).
Consider finally a linear combination from �

0

and  
0

which gives zero:

N≠1ÿ

n=0

an„
0,n +

N≠1ÿ

n=0

bnÂ
0,n = 0.

If we evaluate this at t = k, we see that Â
0,n(k) = 0, „

0,n(k) = 0 when n ”= k,
and „

0,k(k) = 1. When we evaluate at k we thus get ak, which must be zero. If
we then evaluate at t = k + 1/2 we get in a similar way that all bn = 0, and it
follows that V

0

and W
0

are linearly independent. That V
1

= V
0

ü W
0

follows
from the fact that V

1

has dimension 2N , and V
0

and W
0

both have dimension
N .
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We can define Wm in a similar way for m > 0, and generalize the lemma
to Wm. We can thus state the following analog to Theorem 5.16 for writing
gm œ Vm as a sum of a low-resolution approximation gm≠1

œ Vm≠1

, and a
detail/error component em≠1

œ Wm≠1

.

Theorem 5.26. Decomposing Vm.
The space Vm can be decomposed as the direct sum Vm = Vm≠1

ü Wm≠1

where

Wm≠1

= {f œ Vm | f(n/2m≠1) = 0, for n = 0, 1, . . . , 2m≠1N ≠ 1}.

Wm has the base  m = {Âm,n}2

mN≠1

n=0

, and Vm has the two bases

�m = {„m,n}2

mN≠1

n=0

, and (�m≠1

, m≠1

) =
!{„m≠1,n}2

m≠1N≠1

n=0

, {Âm≠1,n}2

m≠1N≠1

n=0

"
.

With this result we can define the DWT and the IDWT with their stages
as before, but the matrices themmselves are now di�erent. For the IDWT
(i.e. P

�1Ω(�0, 0)

), the columns in the matrix can be found from equations (5.28)
and (5.32), i.e.

„
0,n = 1Ô

2

3
1
2„

1,2n≠1

+ „
1,2n + 1

2„
1,2n+1

4

Â
0,n = 1Ô

2
„

1,2n+1

. (5.33)

This states that

G = P
�mΩCm = 1Ô

2

Q

ccccccca

1 0 0 0 · · · 0 0 0
1/2 1 1/2 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1 0

1/2 0 0 0 · · · 0 1/2 1

R

dddddddb

(5.34)

In general we will call a matrix on the form
Q

ccccccca

1 0 0 0 · · · 0 0 0
⁄ 1 ⁄ 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1 0
⁄ 0 0 0 · · · 0 ⁄ 1

R

dddddddb

(5.35)

an elementary lifting matrix of odd type, and denote it by B⁄. This results from
the identity matrix by adding ⁄ times the preceding and succeeding rows to the
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odd-indexed rows. Since the even-indexed rows are left untouched, the inverse is
clearly obtained by subtracting ⁄ times the preceding and succeeding rows to
the odd-indexed rows, i.e. (B⁄)≠1 = B≠⁄. This means that the matrix for the
DWT is also easily found, and

H = PCmΩ�m
=

Ô
2B≠1/2

(5.36)

G = P
�mΩCm

= 1Ô
2

B
1/2

. (5.37)

In the exercises you will be asked to implement a function lifting_odd_symm
which computes B⁄. Using this the DWT kernel transformation for the piecewise
linear wavelet can be applied to a vector x as follows.

x = x*sqrt(2);
x = lifting_odd_symm(-0.5, x, symm);

The IDWT kernel transformation is computed similarly. Functions dwt_kernel_pwl0,
idwt_kernel_pwl0 which perform these steps are included in the code base.
The 0 stands for 0 vanishing moments. We defined vanishing moments after
Observation 5.14, and we will have more to say about vanishing moments later.

Example 5.28: DWT on sound
Using the new kernels, let us plot the listen to the new low resolution approxi-
mations, as well as plot and listen to the detail, as we did in Example 5.10. First
we listen to the low-resolution approximation.

[x, fs] = forw_comp_rev_DWT(m, ’pwl0’);
playerobj = audioplayer(x, fs);
playblocking(playerobj)

There is a new and undesired e�ect when we increase m here: The castanet
sound seems to grow strange. The sounds from the castanets are perhaps the
sound with the highest frequencies.

Now for the detail. For m = 1 this can be played as follows

[x, fs] = forw_comp_rev_DWT(1, ’pwl0’, 0);
playerobj = audioplayer(x, fs);
playblocking(playerobj)

For m = 2 the detail can be played as follows

[x, fs] = forw_comp_rev_DWT(2, ’pwl0’, 0);
playerobj = audioplayer(x, fs);
playblocking(playerobj)

The errors are shown in Figure 5.16. When comparing with Example 5.10
we see much of the same, but it seems here that the error is bigger than before.
In the next section we will try to explain why this is the case, and construct
another wavelet based on piecewise linear functions which remedies this.
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Figure 5.16: The detail in our audio sample file for the piecewise linear wavelet,
for m = 1 (left) and m = 2 (right).

Example 5.29: DWT on the samples of a mathematical
function
Let us also repeat Example 5.11, where we plotted the detail/error at di�erent
resolutions for the samples of a mathematical function.

Figure 5.17: The error (i.e. the contribution from W
0

ü W
1

ü · · · ü Wm≠1

) for
N = 1025 when f is a square wave, the linear function f(t) = 1 ≠ 2|1/2 ≠ t/N |,
and the trigonometric function f(t) = 1/2 + cos(2fit/N)/2, respectivey. The
detail is indicated for m = 6 and m = 8.

Figure 5.17 shows the new plot. With the square wave we see now that
there is an error. The reason is that a piecewise constant function can not be
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represented exactly by piecewise linear functions, due to discontinuity. For the
second function we see that there is no error. The reason is that this function is
piecewise linear, so there is no error when we represent the function from the
space V

0

. With the third function, however, we see an error.

Exercise 5.30: The vector of samples is the coordinate vec-
tor 2
Show that, for f œ V

0

we have that [f ]
�0 = (f(0), f(1), . . . , f(N ≠ 1)). This

shows that, also for the piecewise linear wavelet, there is no loss of information
in working with the samples of f rather than f itself.

Exercise 5.31: Computing projections
In this exercise we will show how the projection of „

1,1 onto V
0

can be computed.
We will see from this that it is nonzero, and that its support is the entire [0, N ].
Let f = projV0„

1,1, and let xn = f(n) for 0 Æ n < N . This means that, on
(n, n + 1), f(t) = xn + (xn+1

≠ xn)(t ≠ n).

a) Show that
s n+1

n
f(t)2dt = (x2

n + xnxn+1

+ x2

n+1

)/3.

b) Show that

⁄
1/2

0

(x
0

+ (x
1

≠ x
0

)t)„
1,1(t)dt = 2

Ô
2

3
1
12x

0

+ 1
24x

1

4

⁄
1

1/2

(x
0

+ (x
1

≠ x
0

)t)„
1,1(t)dt = 2

Ô
2

3
1
24x

0

+ 1
12x

1

4
.

c) Use the fact that

⁄ N

0

(„
1,1(t) ≠

N≠1ÿ

n=0

xn„
0,n(t))2dt

=
⁄

1

0

„
1,1(t)2dt ≠ 2

⁄
1/2

0

(x
0

+ (x
1

≠ x
0

)t)„
1,1(t)dt ≠ 2

⁄
1

1/2

(x
0

+ (x
1

≠ x
0

)t)„
1,1(t)dt

+
N≠1ÿ

n=0

⁄ n+1

n

(xn + (xn≠1

≠ xn)t)2dt

and a) and b) to find an expression for Î„
1,1(t) ≠ qN≠1

n=0

xn„
0,n(t)Î2.

d) To find the minimum least squares error, we can set the gradient of the
expression in c) to zero, and thus find the expression for the projection of „

1,1

onto V
0

. Show that the values {xn}N≠1

n=0

can be found by solving the equation
Sx = b, where S = 1

3

{1, 4, 1} is an N ◊ N symmetric filter, and b is the vector
with components b

0

= b
1

=
Ô

2/2, and bk = 0 for k Ø 2.
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e) Solve the system in d. for some values of N to verify that the projection of
„

1,1 onto V
0

is nonzero, and that its support covers the entire [0, N ].

Exercise 5.32: Non-orthogonality for the piecewise linear
wavelet
Show that

È„
0,n, „

0,nÍ = 2
3 È„

0,n, „
0,n±1

Í = 1
6 È„

0,n, „
0,n±kÍ = 0 for k > 1.

As a consequence, the {„
0,n}n are neither orthogonal, nor have norm 1.

Exercise 5.33: Implement elementary lifting steps of odd
type
Write a function

lifting_odd_symm(lambda, x, bd_mode)

which applies an elementary lifting matrix of odd type (Equation (5.35)) to
x. Assume that N is even. The parameter bd_mode should do nothing, as we
will return to this parameter later. The function should not perform matrix
multiplication, and apply as few multiplications as possible.

Exercise 5.34: Wavelets based on polynomials
The convolution of two functions defined on (≠Œ, Œ) is defined by

(f ú g)(x) =
⁄ Œ

≠Œ
f(t)g(x ≠ t)dt.

Show that we can obtain the piecewise linear „ we have defined as „ = ‰
[≠1/2,1/2)

ú
‰

[≠1/2,1/2)

(recall that ‰
[≠1/2,1/2)

is the function which is 1 on [≠1/2, 1/2) and
0 elsewhere). This gives us a nice connection between the piecewise constant
scaling function (which is similar to ‰

[≠1/2,1/2)

) and the piecewise linear scaling
function in terms of convolution.

5.5 Alternative wavelet based on piecewise lin-
ear functions

For the scaling function used for piecewise linear functions, {„(t≠n)}
0Æn<N were

not orthogonal anymore, contrary to the case for piecewise constant functions. We
were still able to construct what we could call resolution spaces and detail spaces.
We also mentioned that having many vanishing moments is desirable for a mother
wavelet, and that the scaling function used for piecewise constant functions had
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one vanishing moment. It is easily checked, however, that the mother wavelet
we now introduced for piecewise linear functions (i.e. Â(t) = 1Ô

2

„
1,1(t)) has no

vanishing moments. Therefore, this is not a very good choice of mother wavelet.
We will attempt the following adjustment strategy to construct an alternative
mother wavelet Â̂ which has two vanishing moments, i.e. one more than the Haar
wavelet.

Idea 5.27. Adjusting the wavelet construction.
Adjust the wavelet construction in Theorem 5.26 to

Â̂ = Â ≠ –„
0,0 ≠ —„

0,1 (5.38)

and choose –, — so that
⁄ N

0

Â̂(t) dt =
⁄ N

0

tÂ̂(t) dt = 0, (5.39)

and define  m = {Â̂m,n}N2

m≠1

n=0

, and Wm as the space spanned by  m.

We thus have two free variables –, — in Equation (5.38), to enforce the two
conditions in Equation (5.39). In Exercise 5.38 you are taken through the details
of solving this as two linear equations in the two unknowns – and —, and this
gives the following result:

Lemma 5.28. The new function Â.
The function

Â̂(t) = Â(t) ≠ 1
4

!
„

0,0(t) + „
0,1(t)

"
(5.40)

satisfies the conditions (5.39).

Using Equation (5.28), which stated that

„
0,n = 1Ô

2

3
1
2„

1,2n≠1

+ „
1,2n + 1

2„
1,2n+1

4
, (5.41)

we get

Â̂
0,n = Â

0,n ≠ 1
4

!
„

0,n + „
0,n+1

"

= 1Ô
2

„
1,2n+1

≠ 1
4

1Ô
2

3
1
2„

1,2n≠1

+ „
1,2n + 1

2„
1,2n+1

4

≠ 1
4

1Ô
2

3
1
2„

1,2n+1

+ „
1,2n+2

+ 1
2„

1,2n+3

4

= 1Ô
2

3
≠1

8„
1,2n≠1

≠ 1
4„

1,2n + 3
4„

1,2n+1

≠ 1
4„

1,2n+2

≠ 1
8„

1,2n+3

4
(5.42)

In summary we have
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„
0,n = 1Ô

2
(1
2„

1,2n≠1

+ „
1,2n + 1

2„
1,2n+1

)

Â̂
0,n = 1Ô

2

3
≠1

8„
1,2n≠1

≠ 1
4„

1,2n + 3
4„

1,2n+1

≠ 1
4„

1,2n+2

≠ 1
8„

1,2n+3

4
,

(5.43)

The new function Â̂ is plotted in Figure 5.18.

Figure 5.18: The function Â̂ we constructed as an alternative wavelet for
piecewise linear functions.

We see that Â̂ has support (≠1, 2), and consist of four linear segments glued
together. This is in contrast with the old Â, which was simpler in that it had the
shorther support (0, 1), and consisted of only two linear segments glued together.
It may therefore seem surprising that Â̂ is better suited for approximating
functions than Â. This is indeed a more complex fact, which may not be deduced
by simply looking at plots of the functions.

The DWT in this new setting is the change of coordinates from �m to

Ĉm = {„m≠1,0, Â̂m≠1,0, „m≠1,1, Â̂m≠1,1, · · · , „m≠1,2m≠1N≠1

, Â̂m≠1,2m≠1N≠1

}.

Equation (5.40) states that

PCmΩ ˆCm
=

Q

ccccccca

1 ≠1/4 0 0 · · · 0 0 ≠1/4
0 1 0 0 · · · 0 0 0
0 ≠1/4 1 ≠1/4 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · ≠1/4 1 ≠1/4
0 0 0 0 · · · 0 0 1

R

dddddddb
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(Column j for j even equals ej , since the basis functions „
0,n are not altered).

In general we will call a matrix on the form
Q

ccccccca

1 ⁄ 0 0 · · · 0 0 ⁄
0 1 0 0 · · · 0 0 0
0 ⁄ 1 ⁄ · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · ⁄ 1 ⁄
0 0 0 0 · · · 0 0 1

R

dddddddb

(5.44)

an elementary lifting matrix of even type, and denote it by A⁄. Using Equation
(5.34) we can write

G = P
�mΩ ˆCm

= P
�mΩCmPCmΩ ˆCm

, = 1Ô
2

B
1/2

A≠1/4

This gives us a factorization of the IDWT in terms of lifting matrices. The inverse
of elementary lifting matrices of even type can be found similarly to how we
found the inverse of elementary lifting matrices of odd type, i.e. (A⁄)≠1 = A≠⁄.

This means that the matrix for the DWT is easily found also in this case,
and

H = P
ˆCmΩ�m

=
Ô

2A
1/4

B≠1/2

(5.45)

G = P
�mΩ ˆCm

= 1Ô
2

B
1/2

A≠1/4

. (5.46)

Note that equations (5.43) also computes the matrix G, but we will rather
use these factorizations, since the elementary lifting operations are already
implemented in the exercises. We will also explain later why such a factorization
is attractive in terms of saving computations. In the exercises you will be asked
to implement a function lifting_even_symm which computes A⁄. Using this
the DWT kernel transformation for the alternative piecewise linear wavelet can
be applied to a vector x as follows.

x = x*sqrt(2);
x = lifting_odd_symm(-0.5, x, symm);
x = lifting_even_symm(0.25, x, symm);

The IDWT kernel transformation is computed similarly. Functions dwt_kernel_pwl2,
idwt_kernel_pwl2 which perform these steps are included in the code base (2
stands for 2 vanishing moments).

Example 5.35: DWT on sound
Using the new kernels, let us also here listen to the low resolution approximations
and the detail. First the low-resolution approximation:
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[x, fs] = forw_comp_rev_DWT(m, ’pwl2’);
playerobj = audioplayer(x, fs);
playblocking(playerobj)

The new, undesired e�ect in the castanets from Example 5.28 now seem to be
gone. The detail for m = 1 this can be played as follows

[x, fs] = forw_comp_rev_DWT(1, ’pwl2’, 0);
playerobj = audioplayer(x, fs);
playblocking(playerobj)

For m = 2 the detail can be played as follows

[x, fs] = forw_comp_rev_DWT(2, ’pwl2’, 0);
playerobj = audioplayer(x, fs);
playblocking(playerobj)

Figure 5.19: The detail in our audio sample file for the alternative piecewise
linear wavelet, for m = 1 (left) and m = 2 (right).

The errors are shown in Figure 5.19. Again, when comparing with Exam-
ple 5.10 we see much of the same. It is di�cult to see an improvement from
this figure. However, this figure also clearly shows a smaller error than the
piecewise linear wavelet. A partial explanation is that the wavelet we now have
constructed has two vanishing moments, while the other had not.

Example 5.36: DWT on the samples of a mathematical
function
Let us also repeat Exercise 5.11 for our alternative wavelet, where we plotted the
detail/error at di�erent resolutions, for the samples of a mathematical function.

Figure 5.20 shows the new plot. Again for the square wave there is an error,
which seems to be slightly lower than for the previous wavelet. For the second
function we see that there is no error, as before. The reason is the same as
before, since the function is piecewise linear. With the third function there is an
error. The error seems to be slightly lower than for the previous wavelet, which
fits well with the fact that this new wavelet has a bigger number of vanishing
moments.
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Figure 5.20: The error (i.e. the contribution from W
0

ü W
1

ü · · · ü Wm≠1

) for
N = 1025 when f is a square wave, the linear function f(t) = 1 ≠ 2|1/2 ≠ t/N |,
and the trigonometric function f(t) = 1/2 + cos(2fit/N)/2, respectivey. The
detail is indicated for m = 6 and m = 8.

Exercise 5.37: Implement elementary lifting steps of even
type
Write a function

lifting_even_symm(lambda, x, bd_mode)

which applies an elementary lifting matrix of even type (Equation (5.44)) to x.
As before, assume that N is even, and that the parameter bd_mode does nothing.

Exercise 5.38: Two vanishing moments
In this exercise we will show that there is a unique function on the form given
by Equation (5.38) which has two vanishing moments.

a) Show that, when Â̂ is defined by Equation (5.38), we have that
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Â̂(t) =

Y
______]

______[

≠–t ≠ – for ≠ 1 Æ t < 0
(2 + – ≠ —)t ≠ – for 0 Æ t < 1/2
(– ≠ — ≠ 2)t ≠ – + 2 for 1/2 Æ t < 1
—t ≠ 2— for 1 Æ t < 2
0 for all other t

b) Show that

⁄ N

0

Â̂(t)dt = 1
2 ≠ – ≠ —,

⁄ N

0

tÂ̂(t)dt = 1
4 ≠ —.

c) Explain why there is a unique function on the form given by Equation (5.38)
which has two vanishing moments, and that this function is given by Equation
(5.40).

Exercise 5.39: Implement finding Â with vanishing mo-
ments
In the previous exercise we ended up with a lot of calculations to find –, — in
Equation (5.38). Let us try to make a program which does this for us, and which
also makes us able to generalize the result.

a) Define

ak =
⁄

1

≠1

tk(1 ≠ |t|)dt, bk =
⁄

2

0

tk(1 ≠ |t ≠ 1|)dt, ek =
⁄

1

0

tk(1 ≠ 2|t ≠ 1/2|)dt,

for k Ø 0. Explain why finding –, — so that we have two vanishing moments in
Equation (5.38) is equivalent to solving the following equation:

3
a

0

b
0

a
1

b
1

4 3
–
—

4
=

3
e

0

e
1

4

Write a program which sets up and solves this system of equations, and use this
program to verify the values for –, — we previously have found.

Hint. you can integrate functions in Matlab with the function quad . As an
example, the function „(t), which is nonzero only on [≠1, 1], can be integrated
as follows:

quad(@(t)t.^k.*(1-abs(t)),-1,1)
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b) The procedure where we set up a matrix equation in a) allows for generaliza-
tion to more vanishing moments. Define

Â̂ = Â
0,0 ≠ –„

0,0 ≠ —„
0,1 ≠ “„

0,≠1

≠ ”„
0,2. (5.47)

We would like to choose –, —, “, ” so that we have 4 vanishing moments. Define
also

gk =
⁄

0

≠2

tk(1 ≠ |t + 1|)dt, dk =
⁄

3

1

tk(1 ≠ |t ≠ 2|)dt

for k Ø 0. Show that –, —, “, ” must solve the equation
Q

cca

a
0

b
0

g
0

d
0

a
1

b
1

g
1

d
1

a
2

b
2

g
2

d
2

a
3

b
3

g
3

d
3

R

ddb

Q

cca

–
—
“
”

R

ddb =

Q

cca

e
0

e
1

e
2

e
3

R

ddb ,

and solve this with your computer.

c) Plot the function defined by (5.47), which you found in b).

Hint. If t is the vector of t-values, and you write

(t >= 0).*(t <= 1).*(1-2*abs(t-0.5))

you get the points „
1,1(t).

d) Explain why the coordinate vector of Â̂ in the basis (�
0

, 
0

) is

[Â̂]
(�0, 0)

= (≠–, ≠—, ≠”, 0, . . . , 0 ≠ “) ü (1, 0, . . . , 0).

Hint. The placement of ≠“ may seem a bit strange here, and has to with
that „

0,≠1

is not one of the basis functions {„
0,n}N≠1

n=0

. However, we have that
„

0,≠1

= „
0,N≠1

, i.e. „(t + 1) = „(t ≠ N + 1), since we always assume that the
functions we work with have period N .

e) Sketch a more general procedure than the one you found in b)., which can
be used to find wavelet bases where we have even more vanishing moments.

Exercise 5.40: Â for the Haar wavelet with two vanishing
moments
Let „(t) be the function we used when we defined the Haar-wavelet.

a) Compute projV0(f(t)), where f(t) = t2, and where f is defined on [0, N).

b) Find constants –, — so that Â̂(t) = Â(t)≠–„
0,0(t)≠—„

0,1(t) has two vanishing
moments, i.e. so that ÈÂ̂, 1Í = 0, and ÈÂ̂, tÍ = 0. Plot also the function Â̂.
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Hint. Start with computing the integrals
s

Â(t)dt,
s

tÂ(t)dt,
s

„
0,0(t)dt,

s
„

0,1(t)dt,
and

s
t„

0,0(t)dt,
s

t„
0,1(t)dt.

c) Express „ and Â̂ with the help of functions from �
1

, and use this to write
down the change of coordinate matrix from (�

0

,  ̂
0

) to �
1

.

Exercise 5.41: More vanishing moments for the Haar wavelet
It is also possible to add more vanishing moments to the Haar wavelet. Define

Â̂ = Â
0,0 ≠ a

0

„
0,0 ≠ · · · ≠ ak≠1

„
0,k≠1

.

Define also cr,l =
s l+1

l
trdt, and er =

s
1

0

trÂ(t)dt.

a) Show that Â̂ has k vanishing moments if and only if a
0

, . . . , ak≠1

solves the
equation

Q

ccca

c
0,0 c

0,1 · · · c
0,k≠1

c
1,0 c

1,1 · · · c
1,k≠1

...
...

...
...

ck≠1,0 ck≠1,1 · · · ck≠1,k≠1

R

dddb

Q

ccca

a
0

a
1

...
ak≠1

R

dddb
=

Q

ccca

e
0

e
1

...
ek≠1

R

dddb
(5.48)

b) Write a function vanishingmomshaar which takes k as input, solves Equation
(5.48), and returns the vector a = (a

0

, a
1

, . . . , ak≠1

).

Exercise 5.42: Listening experiments
Run the function forw_comp_rev_DWT for di�erent m for the Haar wavelet, the
piecewise linear wavelet, and the alternative piecewise linear wavelet, but listen
to the detail components W

0

ü W
1

ü · · · ü Wm≠1

instead. Describe the sounds
you hear for di�erent m, and try to explain why the sound seems to get louder
when you increase m.

5.6 Multiresolution analysis: A generalization
Let us summarize the properties of the spaces Vm. In both our examples we
showed that they were nested, i.e.

V
0

µ V
1

µ V
2

µ · · · µ Vm µ · · · .

We also showed that continuous functions could be approximated arbitrarily
well from Vm, as long as m was chosen large enough. Moreover, the space V

0

is
closed under all translates, at least if we view the functions in V

0

as periodic
with period N . In the following we will always identify a function with this
periodic extension, just as we did in Fourier analysis. When performing this
identification, we also saw that f(t) œ Vm if and only if g(t) = f(2t) œ Vm+1

.
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We have therefore shown that the scaling functions we have considered fit into
the following general framework.

Definition 5.29. Multiresolution analysis.
A Multiresolution analysis, or MRA, is a nested sequence of function spaces

V
0

µ V
1

µ V
2

µ · · · µ Vm µ · · · , (5.49)

called resolution spaces, so that

• Any function can be approximated arbitrarily well from Vm, as long as m
is large enough,

• f(t) œ V
0

if and only if f(2mt) œ Vm,

• f(t) œ V
0

if and only if f(t ≠ n) œ V
0

for all n.

• There is a function „, called a scaling function, so that � = {„(t≠n)}
0Æn<N

is a basis for V
0

.

When � is an orthonormal basis we say that the MRA is orthonormal.

The wavelet of piecewise constant functions was an orthonormal MRA, while
the wavelets for piecewise linear functions were not. Although the definition
above states that any function can be approximated with MRA’s, in practice
one needs to restrict to certain functions: Certain pathological functions may be
di�cult to approximate. In the literature one typically requires that the function
is in L2(R), and also that the scaling function and the spaces Vm are in L2(R).
MRA’s are much used, and one can find a wide variety of functions „, not only
piecewise constant functions, which give rise to MRA’s.

In the examples we have considered we also chose a mother wavelet. The
term wavelet is used in very general terms. However, the term mother wavelet
is quite concrete, and is what gives rise to the theory of wavelets. This was
necessary in order to e�ciently decompose the gm œ Vm into a low resolution
approximation gm≠1

œ Vm≠1

, and a detail/error em≠1

in a detail space we called
Wm≠1

. We have freedom in how we define these detail spaces, as well as how we
define a mother wavelet whose translates span the detail space (in general we
choose a mother wavelet which simplifies the computation of the decomposition
gm = gm≠1

+ em≠1

, but we will see later that it also is desirable to choose a
Â with other properties). Once we agree on the detail spaces and the mother
wavelet, we can perform a change of coordinates to find detail and low resolution
approximations. We thus have the following general recipe.

Idea 5.30. Recipe for constructing wavelets.
In order to construct MRA’s which are useful for practical purposes, we need

to do the following:

• Find a function „ which can serve as the scaling function for an MRA,
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• Find a function Â so that  = {Â(t≠n)}
0Æn<N and � = {„(t≠n)}

0Æn<N

together form an orthonormal basis for V
1

. The function Â is also called a
mother wavelet.

With V
0

the space spanned by � = {„(t ≠ n)}
0Æn<N , and W

0

the space spanned
by  = {Â(t ≠ n)}

0Æn<N , „ and Â should be chosen so that we easily can
compute the decomposition of g

1

œ V
1

into g
0

+ e
0

, where g
0

œ V
0

and e
0

œ W
0

.
If we can achieve this, the Discrete Wavelet Transform is defined as the change
of coordinates from �

1

to (�
0

, 
0

).

More generally, if

f(t) =
ÿ

n

cm,n„m,n =
ÿ

n

c
0,n„

0,n +
ÿ

mÕ<m,n

wmÕ,nÂmÕ,n,

then the m-level DWT is defined by DWT(cm) = (c
0

,w
0

, . . . ,wm≠1

). It is
useful to interpret m as frequency, n as time, and wm,n as the contribution
at frequency m and time n. In this sense, wavelets provide a time-frequency
representation of signals. This is what can make them more useful than Fourier
analysis, which only provides frequency representations.

While there are in general many possible choices of detail spaces, in the
case of an orthonormal wavelet we saw that it was natural to choose the detail
space Wm≠1

as the orthogonal complement of Vm≠1

in Vm, and obtain the
mother wavelet by projecting the scaling function onto the detail space. Thus,
for orthonormal MRA’s, the low-resolution approximation and the detail can be
obtained by computing projections, and the least squares approximation of f
from Vm can be computed as

projVm
(f) =

ÿ

n

Èf, „m,nÍ„m,n(t).

Working with the samples of f rather than f itself: The first crime of
wavelets. In Exercise 5.1 we saw that for the piecewise constant wavelet the
coordinate vector of f in �m equaled the sample vector of f . In Exercise 5.30 we
saw that the same held for the piecewise linear wavelet. The general statement
is false, however: The coordinate vector of f in �

0

may not equal the samples
(f(0), f(1), ...), so that

q
n f(n)„

0,n and f are two di�erent functions.
In most applications, a function is usually only available through its samples.

In many books on wavelets, one starts with these samples, and computes their
DWT. This means that the underlying function is

q
n f(n)„

0,n, and since this is
di�erent from f in general, we compute something completely di�erent than we
want. This shows that many books apply a wrong procedure when computing
the DWT. This kind of error is also called the first crime of wavelets.

So, how bad is this crime? We will address this with two results. First we
will see how the samples are related to the wavelet coe�cients. Then we will
see how the function

q
s f(s/2m)„m,s(t) is related to f (wavelet crime assumes

equality).
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Theorem 5.31. Relation between samples and wavelet coe�cients.
Assume that „̃ has compact support and is absolutely integrable, i.e.

s N

0

|„̃(t)| dt <
Œ. Assume also that f is continuous and has wavelet coe�cients cm,n. Then
we have that

lim
mæŒ

2m/2cm,n2

m≠mÕ = f(n/2mÕ
)
⁄ N

0

„̃(t) dt.

Proof. Since „̃ has compact support, „̃m,n2

m≠mÕ will be supported on a small
interval close to n/2mÕ for large m. Since f is continuous, given ‘ > 0 we can
choose m so large that f = f(n/2mÕ) + r(t), where |r(t)| < ‘ on this interval.
But then

cm,n2

m≠mÕ =
⁄ N

0

f(t)„̃m,n2

m≠mÕ (t) dt

= f(n/2mÕ
)
⁄ N

0

„̃m,n2

m≠mÕ (t) dt +
⁄ N

0

r(t)„̃m,n2

m≠mÕ (t) dt

Æ 2≠m/2f(n/2mÕ
)
⁄ N

0

„̃(t) dt + ‘

⁄ N

0

|„̃m,n2

m≠mÕ (t)| dt

= 2≠m/2f(n/2mÕ
)
⁄ N

0

„̃(t) dt + 2≠m/2‘

⁄ N

0

|„̃(t)| dt.

From this it follows that limmæŒ 2m/2cm,n2

m≠mÕ = f(n/2mÕ)
s N

0

„̃(t) dt, since ‘

was arbitrary, and „̃(t) was assumed to be absolutely integrable.

This result has an important application. It turns out that there is usually
no way to find analytical expressions for the scaling function and the mother
wavelet. Their coordinates in (�

0

, 
0

) are simple, however, since there is only
one non-zero coordinate:

• The coordinates of „ in (�
0

, 
0

) is (1, 0, ..., 0), where there are 2mN ≠ 1
zeros.

• The coordinates of Â in (�
0

, 
0

) is (0, ..., 0, 1, 0, ..., 0), where there are
2m≠1N zeros at the beginning.

If we know that „ and Â are continuous, we can apply an m stage IDWT to
these coordinates and use Theorem 5.31 to find arbitrarily good estimates to the
samples „(n/2mÕ), Â(n/2mÕ). The coordinates we find have to be scaled with
2m/2 in order for the values to be of comparable size. Also, this algorithm will
miss the actual samples by a factor of

s N

0

„̃(t) dt. Nevertheless, the graphs will
be similar. The algorithm is also called the cascade algorithm.
Definition 5.32. The cascade algorithm.

The cascade algorithm applies a change of coordinates for the functions „, Â
from the basis (�

0

, 
0

, 
1

. . .) to the basis �m, and uses the new coordinates as
an an approximation to the function values of these functions.
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Now for the second result.

Theorem 5.33. Using the samples.
If f is continuous and „ has compact support, for all t with a finite bit

expansion (i.e. t = n/2mÕ for some integers n and mÕ) we have that

lim
mæŒ

2≠m/2

2

mN≠1ÿ

s=0

f(s/2m)„m,s(t) = f(t)
ÿ

s

„(s).

This says that, up to the constant factor c =
q

n „(n), the functions fm œ Vm

with coordinates 2≠m/2(f(0/2m), f(1/2m), ...) in �m converge pointwise to f as
m æ Œ (even though the samples of fm may not equal those of f).

Proof. With t = n/2mÕ , for m > mÕ we have that

„m,s(t) = „m,s(n2m≠mÕ
/2m) = 2m/2„(2mn2m≠mÕ

/2m≠s) = 2m/2„(n2m≠mÕ≠s).

We thus have that

2

mN≠1ÿ

s=0

2≠m/2f(s/2m)„m,s(t) =
2

mN≠1ÿ

s=0

f(s/2m)„(n2m≠mÕ ≠ s).

In the sum finitely many s close to n2m≠mÕ contribute (due to finite support), and
then s/2m ¥ t. Due to continuity of f this sum thus converges to f(t)

q
s „(s),

and the proof is done.

Let us see how we can implement the cascade algorithm. As input to the
algorithm we must have the number of levels m, and the kernel to use for the
IDWT. Also we need to know an interval [a, b] so large that it contains the
supports of „, Â (we will see later how we can compute this supports). Else
we can not obtain complete plots of the functions. a and b thus also need to
be input to the algorithm. We now set N = b ≠ a. The space �m is then of
dimension (b ≠ a)2m, so the cascade algorithm needs a coordinate vector of this
size as starting point. the coordinates of „ in the (b ≠ a)2m-dimensional basis
(�

0

, 
0

, 
1

. . .) is (1, 0, ..., 0) while the coordinates of Â in the same basis is

( 0, ..., 0¸ ˚˙ ˝
b≠a times

, 1, 0, ..., 0).

Our algorithm can take as input whether we want to plot the „ or the Â function
(and thereby choose among these sets of coordinates), and also the value of the
dual parameter, which we will return to. The following algorithm can be used
for all this
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function cascade_alg(m, a, b, wave_name, scaling, dual)
coords = zeros((b-a)*2^m, 1);
if scaling

coords(1) = 1;
else

coords(b - a + 1) = 1;
end
t = linspace(a, b, (b-a)*2^m);
coords = IDWTImpl(coords, m, wave_name, ’per’, dual);
coords = [ coords((b*2^m+1):((b-a)*2^m)); coords(1:(b*2^m)) ];
figure()
plot(t, 2^(m/2)*coords, ’k-’)

end

Example 5.43: Implementing the cascade algorithm
One thing should be noted in the function cascade_alg. As the scaling function
of the piecewise linear wavelet, it may be that the function is nonzero for small,
negative values. If we plot the function over [0, N ], we would see two disconnected
segments - one to the left, and one to the right. In the code we shift the values
so that the graph appears as one connected segment.

We will use a = ≠2 and b = 6 in what follows, since [≠2, 6] will turn out to
contain all supports. We will also use m = 10 levels in the cascade algorithm.
The following code then runs the cascade algorithm for the three wavelets we
have considered, to reproduce all previous scaling functions and mother wavelets.

cascade_alg(10, -2, 6, ’Haar’, 1, 0)
cascade_alg(10, -2, 6, ’Haar’, 0, 0)

cascade_alg(10, -2, 6, ’pwl0’, 1, 0)
cascade_alg(10, -2, 6, ’pwl0’, 0, 0)

cascade_alg(10, -2, 6, ’pwl2’, 1, 0)
cascade_alg(10, -2, 6, ’pwl2’, 0, 0)

5.7 Summary
We started this chapter by motivating the theory of wavelets as a di�erent
function approximation scheme, which solved some of the shortcomings of Fourier
series. While one approximates functions with trigonometric functions in Fourier
theory, with wavelets one instead approximates a function in several stages,
where one at each stage attempts to capture information at a given resolution,
using a function prototype. This prototype is localized in time, contrary to
the Fourier basis functions, and this makes the theory of wavelets suitable for
time-frequency representations of signals. We used an example based on Google
Earth to illustrate that the wavelet-based scheme can represent an image at
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di�erent resolutions in a scalable way, so that passing from one resolution to
another simply mounts to adding some detail information to the lower resolution
version of the image. This also made wavelets useful for compression, since the
images at di�erent resolutions can serve as compressed versions of the image.

We defined the simplest wavelet, the Haar wavelet, which is a function
approximation scheme based on piecewise constant functions, and deduced its
properties. We defined the Discrete Wavelet Transform (DWT) as a change of
coordinates corresponding to the function spaces we defined. This transform is
the crucial object to study when it comes to more general wavelets also, since
it is the object which makes wavelets useful for computation. In the following
chapters, we will see that reordering of the source and target bases of the
DWT will aid in expressing connections between wavelets and filters, and in
constructing optimized implementations of the DWT.

We then defined another wavelet, which corresponded to a function approxi-
mation scheme based on piecewise linear functions, instead of piecewise constant
functions. There were several di�erences with the new wavelet when compared
to the previous one. First of all, the basis functions were not orthonormal, and
we did not attempt to make them orthonormal. The resolution spaces we now
defined were not defined in terms of orthogonal bases, and we had some freedom
on how we defined the detail spaces, since they are not defined as orthogonal
complements anymore. Similarly, we had some freedom on how we define the
mother wavelet, and we mentioned that we could define it so that it is more
suitable for approximation of functions, by adding what we called vanishing
moments.

From these examples of wavelets and their properties we made a generalization
to what we called a multiresolution analysis (MRA). In an MRA we construct
successively refined spaces of functions that may be used to approximate functions
arbitrarily well. We will continue in the next chapter to construct even more
general wavelets, within the MRA framework.

The book [29] goes through developments for wavelets in detail. While
wavelets have been recognized for quite some time, it was with the important
work of Daubechies [12, 13] that they found new arenas in the 80’s. Since then
they found important applications. The main application we will focus on in
later chapters is image processing.

What you should have learned in this chapter.

• Definition of resolution spaces (Vm), detail spaces (Wm), scaling function
(„), and mother wavelet (Â) for the wavelet based on piecewise constant
functions.

• The nesting of resolution spaces, and how one can project from one reso-
lution space onto a lower order resolution space, and onto its orthogonal
complement.

• The definition of the Discrete Wavelet Transform as a change of coordinates,
and how this can be written down from relations between basis functions.
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• Definition of the m-level Discrete Wavelet Transform.

• Implementation of the Haar wavelet transform and its inverse.

• Experimentation with wavelets on sound.

• Definition of scaling function, mother wavelet, resolution spaces, and detail
spaces for the wavelet of piecewise linear functions.

• How one alters the mother wavelet for piecewise linear functions, in order
to add a vanishing moment.

• Definition of a multiresolution analysis.



Chapter 6

The filter representation of
wavelets

Previously we saw that analog filters restricted to the Fourier spaces gave rise to
digital filters. These digital filters sent the samples of the input function to the
samples of the output function, and are easily implementable, in contrast to the
analog filters. We have also seen that wavelets give rise to analog filters. This
leads us to believe that the DWT also can be implemented in terms of digital
filters. In this chapter we will prove that this is in fact the case.

There are some di�erences between the Fourier and wavelet settings, however:

• The DWT is not constructed by looking at the samples of a function, but
rather by looking at coordinates in a given basis.

• The function spaces we work in (i.e. Vm) are di�erent from the Fourier
spaces.

• The DWT gave rise to two di�erent types of analog filters: The filter
defined by Equation (7.16) for obtaining cm,n, and the filter defined by
Equation (7.17) for obtaining wm,n. We want both to correspond to digital
filters.

Due to these di�erences, the way we realize the DWT in terms of filters will
be a bit di�erent. Despite the di�erences, this chapter will make it clear
that the output of a DWT can be interpreted as the combined output of two
di�erent filters, and each filter will have an interpretation in terms of frequency
representations. We will also see that the IDWT has a similar interpretation in
terms of filters.

In this chapter we will also see that expressing the DWT in terms of filters
will also enable us to define more general transforms, where even more filters
are used. It is fruitful to think about each filter as concentrating on a particular
frequency range, and that these transforms thus simply splits the input into
di�erent frequency bands. Such transforms have important applications to the

212



CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 213

processing and compression of sound, and we will show that the much used MP3
standard for compression of sound takes use of such transforms.

6.1 The filters of a wavelet transformation
We will make the connection with digital filters by looking again at the di�erent
examples of wavelet bases we have seen: In each case we saw that every second
row/column in the kernel transformations G = P

�mΩCm
and H = PCmΩ�m

repeated, as in a circulant matrix. The matrices were not exactly circulant
Toeplitz matrices, however, since there are two di�erent columns repeating. The
change of coordinate matrices occuring in the stages in a DWT are thus not
digital filters, but they seem to be related. Let us start by giving these new
matrices names:

Definition 6.1. MRA-matrices.
An N ◊ N -matrix T , with N even, is called an MRA-matrix if the columns

are translates of the first two columns in alternating order, in the same way as
the columns of a circulant Toeplitz matrix.

From our previous calculations it is clear that, once „ and Â are given
through an MRA, the corresponding change of coordinate matrices will always
be MRA-matrices. The MRA-matrices is our connection between filters and
wavelets. Let us make the following definition:

Definition 6.2. H
0

and H
1

.
We denote by H

0

the (unique) filter with the same first row as H, and by H
1

the (unique) filter with the same second row as H. H
0

and H
1

are also called
the DWT filter components.

Using this definition it is clear that

(Hcm)k =
I

(H
0

cm)k when k is even
(H

1

cm)k when k is odd,

since the left hand side depends only on row k in the matrix H, and this is equal
to row k in H

0

(when k is even) or row k in H
1

(when k is odd). This means
that Hcm can be computed with the help of H

0

and H
1

as follows:

Theorem 6.3. DWT expressed in terms of filters.
Let cm be the coordinates in �m, and let H

0

, H
1

be defined as above. Any
stage in a DWT can ble implemented in terms of filters as follows:

• Compute H
0

cm. The even-indexed entries in the result are the cordinates
cm≠1

in �m≠1

.

• Compute H
1

cm. The odd-indexed entries in the result are the coordinates
wm≠1

in  m≠1

.
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This gives an important connection between wavelets and filters: The DWT
corresponds to applying two filters, H

0

and H
1

, and the result from the DWT
is produced by assembling half of the coordinates from each. Keeping only
every second coordinate is called downsampling (with a factor of two). Had
we not performed downsampling, we would have ended up with twice as many
coordinates as we started with. Downsampling with a factor of two means that
we end up with the same number of samples as we started with. We also say that
the output of the two filters is critically sampled. Due to the critical sampling, it
is ine�cient to compute the full application of the filters. We will return to the
issue of making e�cient implementations of critically sampled filter banks later.

We can now complement Figure 5.9 by giving names to the arrows as follows:

�m

H0 //

H1

""

�m�1
H0 //

H1

##

�m�2
H0 //

H1

##

· · · H0 // �1
H0 //

H1

  

�0

 m�1  m�2  m�3  0

Figure 6.1: Detailed illustration of a wavelet transform.

Let us make a similar anlysis for the IDWT, and let us first make the following
definition:

Definition 6.4. G
0

and G
1

.
We denote by G

0

the (unique) filter with the same first column as G, and by
G

1

the (unique) filter with the same second column as G. G
0

and G
1

are also
called the IDWT filter components.

These filters are uniquely determined, since any filter is uniquely determined
from one of its columns. We can now write
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cm = G

Q

cccccccca

cm≠1,0

wm≠1,0

cm≠1,1

wm≠1,1

· · ·
cm≠1,2m≠1N≠1

wm≠1,2m≠1N≠1

R

ddddddddb

= G

Q

cccccccca

Q

cccccccca

cm≠1,0

0
cm≠1,1

0
· · ·

cm≠1,2m≠1N≠1

0

R

ddddddddb

+

Q

cccccccca

0
wm≠1,0

0
wm≠1,1

· · ·
0

wm≠1,2m≠1N≠1

R

ddddddddb

R

ddddddddb

= G

Q

cccccccca

cm≠1,0

0
cm≠1,1

0
· · ·

cm≠1,2m≠1N≠1

0

R

ddddddddb

+ G

Q

cccccccca

0
wm≠1,0

0
wm≠1,1

· · ·
0

wm≠1,2m≠1N≠1

R

ddddddddb

= G
0

Q

cccccccca

cm≠1,0

0
cm≠1,1

0
· · ·

cm≠1,2m≠1N≠1

0

R

ddddddddb

+ G
1

Q

cccccccca

0
wm≠1,0

0
wm≠1,1

· · ·
0

wm≠1,2m≠1N≠1

R

ddddddddb

.

Here we have split a vector into its even-indexed and odd-indexed elements,
which correspond to the coe�cients from �m≠1

and  m≠1

, respectively. In
the last equation, we replaced with G

0

, G
1

, since the multiplications with G
depend only on the even and odd columns in that matrix (due to the zeros
inserted), and these columns are equal in G

0

, G
1

. We can now state the following
characterization of the inverse Discrete Wavelet transform:

Theorem 6.5. IDWT expressed in terms of filters.
Let G

0

, G
1

be defined as above. Any stage in an IDWT can be implemented
in terms of filters as follows:

cm = G
0

Q

cccccccca

cm≠1,0

0
cm≠1,1

0
· · ·

cm≠1,2m≠1N≠1

0

R

ddddddddb

+ G
1

Q

cccccccca

0
wm≠1,0

0
wm≠1,1

· · ·
0

wm≠1,2m≠1N≠1

R

ddddddddb

. (6.1)

Making a new vector where zeroes have been inserted in this way is also called
upsampling (with a factor of two). We can now also complement Figure 5.9 for
the IDWT with named arrows. This has bee done in Figure 6.2
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�m �m�1G0

oo �m�2G0

oo · · ·
G0

oo �1G0

oo �0G0

oo

 m�1

G1

bb

 m�2

G1

cc

 m�3

G1

cc

 0

G1

``

Figure 6.2: Detailed illustration of an IDWT.

Note that the filters G
0

, G
1

were defined in terms of the columns of G, while
the filters H

0

, H
1

were defined in terms of the rows of H. This di�erence is seen
from the computations above to come from that the change of coordinates one
way splits the coordinates into two parts, while the inverse change of coordinates
performs the opposite. Let us summarize what we have found as follows.

Fact 6.6. Computing DWT/IDWT through filters.
The DWT can be computed with the help of two filters H

0

, H
1

, as explained
in Theorem 6.3. Any linear transformation computed from two filters H

0

, H
1

in
this way is called a forward filter bank transform. The IDWT can be computed
with the help of two filters G

0

, G
1

as explained in Theorem 6.5. Any linear
transformation computed from two filters G

0

, G
1

in this way is called a reverse
filter bank transform.

In Chapter 8 we will go through how any forward and reverse filter bank
transform can be implemented, once we have the filters H

0

, H
1

, G
0

, and G
1

.
When we are in a wavelet setting, the filter coe�cients in these four filters can
be found from the relations between the bases �

1

and (�
0

, 
0

). The filters
H

0

, H
1

, G
0

, G
1

can also be constructed from outside a wavelet setting, i.e. that
they do not originate from change of coordinate matrices between certain function
bases. The important point is that the matrices invert each other, but in a signal
processing setting it may also be meaningful to allow for the reverse transform
not to invert the forward transform exactly. This corresponds to some loss of
information when we attempt to reconstruct the original signal using the reverse
transform. A small such loss can, as we will see at the end of this chapter, be
acceptable.

Note that Figure 6.1 and 6.2 do not indicate the additional downsampling and
upsampling steps described in Theorem 6.3 and 6.5. If we indicate downsampling
with ¿

2

, and upsampling with ø
2

, the algorithms given in Theorem 6.3 and 6.5
can be summarized as in Figure 6.3.

Here ü represents summing the elements which point inwards to the plus
sign. In this figure, the left side represents the DWT, the right side the IDWT.
In the literature, wavelet transforms are more often illustrated in this way using
filters, since it makes alle steps involved in the process more clear. This type of
figure also opens for generalization. We will shortly look into this.

There are several reasons why it is smart to express a wavelet transformation
in terms of filters. First of all, it enables us to reuse theoretical results from
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H0c1 // #2 // c0 // "2 // (cm�1,0, 0, cm�1,1, 0, · · · )

G0

✏✏
c1

OO

✏✏

�

H1c1 // #2 // w0
// "2 // (0, wm�1,0, 0, wm�1,1, · · · )

G1

OO

Figure 6.3: Detailed illustration of a DWT.

the world of filters in the world of wavelets, and to give useful interpretations
of the wavelet transform in terms of frequencies. Secondly, and perhaps most
important, it enables us to reuse e�cient implementations of filters in order
to compute wavelet transformations. A lot of work has been done in order to
establish e�cient implementations of filters, due to their importance.

In Example 5.10 we argued that the elements in Vm≠1

correspond to frequen-
cies at lower frequencies than those in Vm, since V

0

= Span({„
0,n}n) should be

interpreted as content of lower frequency than the „
1,n, with W

0

= Span({Â
0,n}n)

the remaining high frequency detail. To elaborate more on this, we have that

„(t) =
2N≠1ÿ

n=0

(G
0

)n,0„
1,n(t) (6.2)

Â(t) =
2N≠1ÿ

n=0

(G
1

)n≠1,1„
1,n(t)., (6.3)

where (Gk)i,j are the entries in the matrix Gk. Similar equations are true for
„(t ≠ k), Â(t ≠ k). Due to Equation (6.2), the filter G

0

should have lowpass
characteristics, since it extracts the information at lower frequencies. Similarly,
G

1

should have highpass characteristics due to Equation (6.3).

Example 6.1: The Haar wavelet
For the Haar wavelet we saw that, in G, the matrix

A
1Ô
2

1Ô
2

1Ô
2

≠ 1Ô
2

B
(6.4)

repeated along the diagonal. The filters G
0

and G
1

can be found directly from
these columns:
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G
0

= {1/
Ô

2, 1/
Ô

2}
G

1

= {1/
Ô

2, ≠1/
Ô

2}.

We have seen these filters previously: G
0

is a moving average filter of two
elements (up to multiplication with a constant). This is a lowpass filter. G

1

is
a bass-reducing filter, which is a high-pass filter. Up to a constant, this is also
an approximation to the derivative. Since G

1

is constructed from G
0

by adding
an alternating sign to the filter coe�cients, we know from before that G

1

is the
high-pass filter corresponding to the low-pass filter G

0

, so that the frequency
response of the second is given by a shift of frequency with fi in the first. The
frequency responses are

⁄G0(Ê) = 1Ô
2

+ 1Ô
2

e≠iÊ =
Ô

2e≠iÊ/2 cos(Ê/2)

⁄G1(Ê) = 1Ô
2

eiÊ ≠ 1Ô
2

=
Ô

2ieiÊ/2 sin(Ê/2).

By considering the filters where the rows are as in Equation (6.4), it is clear that

H
0

= {1/
Ô

2, 1/
Ô

2}
H

1

= {≠1/
Ô

2, 1/
Ô

2},

so that the frequency responses for the DWT have the same lowpass/highpass
characteristics.

Example 6.2: Wavelet for piecewise linear functions
For the wavelet for piecewise linear functions we looked at in the previous section,
Equation (5.34) gives that

G
0

= 1Ô
2

{1/2, 1, 1/2}

G
1

= 1Ô
2

{1}. (6.5)

G
0

is again a filter we have seen before: Up to multiplication with a constant, it
is the treble-reducing filter with values from row 2 of Pascal’s triangle. We see
something di�erent here when compared to the Haar wavelet, in that the filter
G

1

is not the highpass filter corresponding to G
0

. The frequency responses are
now
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⁄G0(Ê) = 1
2
Ô

2
eiÊ + 1Ô

2
+ 1

2
Ô

2
e≠iÊ = 1Ô

2
(cos Ê + 1)

⁄G1(Ê) = 1Ô
2

.

⁄G1(Ê) thus has magnitude 1Ô
2

at all points. Comparing with Figure 6.5 we see
that here also the frequency response has a zero at fi. The frequency response
seems also to be flatter around fi. For the DWT we have that

H
0

=
Ô

2{1}
H

1

=
Ô

2{≠1/2, 1, ≠1/2}. (6.6)

Even though G
1

was not the highpass filter corresponding to G
0

, we see that,
up to a constant, H

1

is (it is a bass-reducing filter with values taken from row 2
of Pascals triangle).

Example 6.3: The alternative piecewise linear wavelet
We previously wrote down the first two columns in P

�mΩCm
for the alternative

piecewise linear wavelet. This gives us that the filters G
0

ans G
1

are

G
0

= 1Ô
2

{1/2, 1, 1/2}

G
1

= 1Ô
2

{≠1/8, ≠1/4, 3/4, ≠1/4, ≠1/8}. (6.7)

Here G
0

was as for the wavelet of piecewise linear functions since we use the
same scaling function. G

1

was changed, however. Clearly, G
1

now has highpass
characteristics, while the lowpass characteristic of G

0

has been preserved.
The filters G

0

, G
1

, H
0

, H
1

are particularly important in applications: Apart
from the scaling factors 1/

Ô
2,

Ô
2 in front, we see that the filter coe�cients are

all dyadic fractions, i.e. they are on the form —/2j . Arithmetic operations with
dyadic fractions can be carried out exactly on a computer, due to representations
as binary numbers in computers. These filters are thus important in applications,
since they can be used as transformations for lossless coding. The same argument
can be made for the Haar wavelet, but this wavelet had one less vanishing moment.

Note that the role of H
1

as the high-pass filter corresponding to G
0

is the
case in both previous examples. We will prove in the next chapter that this
is a much more general result which holds for all wavelets, not only for the
orthonormal ones.
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6.1.1 The dual filter bank transform and the dual param-
eter

Since the reverse transform inverts the forward transform, GH = I. If we
transpose this expression we get that HT GT = I. Clearly HT is a reverse
filter bank transform with filters (H

0

)T , (H
1

)T , and GT is a forward filter bank
transform with filters (G

0

)T , (G
1

)T . Due to their usefulness, these transforms
have their own name:

Definition 6.7. Dual filter bank transforms.
Assume that H

0

, H
1

are the filters of a forward filter bank transform, and that
G

0

, G
1

are the filters of a reverse filter bank transform. By the dual transforms
we mean the forward filter bank transform with filters (G

0

)T , (G
1

)T , and the
reverse filter bank transform with filters (H

0

)T , (H
1

)T .

In other words, if H and G are the kernel transformations of the DWT and
the IDWT, respectively, the kernel transformations of the dual DWT and the
dual IDWT are GT and HT , respectively. In Section 5.3 we used a parameter
dual in our call to the DWT and IDWT kernel functions. This parameter can
now be explained as follows:

Fact 6.8. The dual-parameter in DWT kernel functions..

• If the dual parameter is false, the DWT is computed as the forward filter
bank transform with filters H

0

, H
1

, and the IDWT is computed as the
reverse filter bank transform with filters G

0

, G
1

.

• If the dual parameter is true, the DWT is computed as the forward filter
bank transform with filters (G

0

)T , (G
1

)T , and the IDWT is computed as
the reverse filter bank transform with filters (H

0

)T , (H
1

)T .

This means that we can di�er between the DWT, IDWT, and their duals as
follows.

DWTImpl(x, m, wave_name, 1, 0); % DWT
IDWTImpl(x, m, wave_name, 1, 0); % IDWT
DWTImpl(x, m, wave_name, 1, 1); % Dual DWT
IDWTImpl(x, m, wave_name, 1, 1); % Dual IDWT

Note that, even though the reverse filter bank transform G can be associated
with certain function bases, it is not clear if the reverse filter bank transform
HT also can be associated with such bases. We will see in the next chapter that
such bases can in many cases be found. We will also denote these bases as dual
bases.

The construction of the dual wavelet transform was function-free - we have no
reason to believe that they correspond to scaling functions and mother wavelets.
In the next chapter we will show that such dual scaling functions and dual
mother wavelets exist in many cases. We can set the dual parameter to True in
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the implementation of the cascade algorithm in Example 5.43 to see how the
functions must look. In Figure 6.4 we have plotted the result. We see that these
functions look very irregular. Also, they are very di�erent from the original
scaling function and mother wavelet. We will later argue that this is bad, it
would be much better if „ ¥ „̃ and Â ¥ Ẫ.

Figure 6.4: Dual functions for the two piecewise linear wavelets.

In the construction of the alternative piecewise linear wavelet we actually
made a DWT/IDWT implementation before we found the filter coe�cients
themselves. But since the filter coe�cients of G

0

and G
1

can be found in the
columns of the matrix, they can be extracted by applying the IDWT kernel
implementation to e

0

(for the low-pass filter coe�cients) and e
1

(for the high-pass
filter coe�cients). Finally the frequency responses can by plotted by copying
what we did in Section 3.3 The following algorithm does this.

function freqresp_alg(wave_name, lowpass, dual)
idwt_kernel = find_kernel(wave_name, 0, dual, 0);
N = 128;
n = (0:(N-1))’;
omega = 2*pi*n/N;

g = zeros(N, 1);
if lowpass

g(1) = 1;
else

g(2) = 1;
end
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g = idwt_kernel(g, ’per’);
figure();
plot(omega, abs(fft(g)), ’k-’)

end

If the parameter dual is set to True, the dual filters (H
0

)T and (H
1

)T are plotted
instead. If the filters have real coe�cients, |⁄HT

i
(Ê)| = |⁄Hi

(Ê)|, so the correct
frequency responses are shown.

Example 6.4: Plotting the frequency responses
In order to verify the low-pass/high-pass characteristics of G

0

and G
1

, let us
plot the frequency responses of the wavelets we have considered. To plot ⁄G0(Ê)
and ⁄G1(Ê) for the Haar wavelet, we can write

freqresp_alg(’Haar’, 1, 0)
freqresp_alg(’Haar’, 0, 0)

To plot the same frequency response for the alternative piecewise linear wavelet,
we can write

freqresp_alg(’pwl2’, 1, 0)
freqresp_alg(’pwl2’, 0, 0)

The resulting frequency responses are shown in Figure 6.5. Low-pass/high-pass
characteristics are clearly seen here.

6.1.2 The support of the scaling function and the mother
wavelet

The scaling functions and mother wavelets we encounter will turn out to always
be functions with compact support. An interesting consequence of equations
(6.2) and (6.3) is that we can find the size of these supports from the number of
filter coe�cients in G

0

and G
1

. In the following we will say that the support of
a filter is [E, F ] if t≠E , ..., tF are the only nonzero filter coe�cients.

Theorem 6.9. Support size.
Assume that G

0

has support [M
0

, M
1

], G
1

has support [N
0

, N
1

]. Then the
support of „ is [M

0

, M
1

], and the support of Â is [(M
0

+N
0

+1)/2, (M
1

+N
1

+1)/2].

Proof. Let [m
0

, m
1

] be the support of „. Then „
1,n clearly has support [(m

0

+
n)/2, (m

1

+ n)/2]. In the equation

„(t) =
M1ÿ

n=M0

(G
0

)n„
1,n,

the function with the leftmost support is „
1,M0 , while the one with the rightmost

one is „
1,M1 . These supports are [(m

0

+ M
0

)/2, (m
1

+ M
1

)/2]. In order for the
supports of the two sides to match we clearly must have
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Figure 6.5: The frequency responses ⁄G0(Ê) and ⁄G1(Ê) for the Haar wavelet
(top), and for the alternative piecewise linear wavelet (bottom).

m
0

= (m
0

+ M
0

)/2 m
1

= (m
1

+ M
1

)/2.

It follows that m
0

= M
0

and m
1

= M
1

, so that the support of „ is [M
0

, M
1

].
Similarly, let [n

0

, n
1

] be the support of Â. We have that

Â(t) =
N1+1ÿ

n=N0+1

(G
1

)n≠1

„
1,n,

and we get in the same way

n
0

= (m
0

+ N
0

+ 1)/2 n
1

= (m
1

+ N
1

+ 1)/2.

It follows that n
0

= (M
0

+ N
0

+ 1)/2. n
1

= (M
1

+ N
1

+ 1)/2, so that the support
of Â is ((M

0

+ N
0

+ 1)/2, (M
1

+ N
1

+ 1)/2).

There are two special cases of the above we will run into.
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Wavelets with symmetric filters. The results then say the support of „ is
[≠M

1

, M
1

] (i.e. symmetric around 0), and the support of Â is 1/2 + [≠(M
1

+
N

1

)/2, (M
1

+ N
1

)/2], i.e. symmetric around 1/2. The wavelet with most such
filter coe�cients we will consider has 7 and 9 filter coe�cients, respectively, so
that the support of „ is [≠3, 3], and the support of Â is [≠3, 4]. This is why
we have plotted these functions over [≠4, 4], so that the entire function can be
seen. For the alternative piecewise linear wavelet the same argument gives that
support of „ is [≠1, 1], and the support of Â is [≠1, 2] (which we already knew
from Figure 5.18). For the piecewise linear wavelet the support of Â is deduced
to be [0, 1].

Orthonormal wavelets. For these wavelets it will turn that G
0

has filter
coe�cients evenly distributed around 1/2, and G

1

has equally many, and evenly
distributed around ≠1/2. It is straightforward to check that the filters for the
Haar wavelet are of this kind, and this will turn out to be the simplest case of an
orthonormal wavelet. For such supports Theorem 6.9 says that both supports are
symmetric around 1/2, and that both „, Â, G

0

and G
1

have the same support
lengths. This can also be verified from the plots for the Haar wavelet. We
will only consider orthonormal wavelets with at most 8 filter coe�cients. This
number of filter coe�cients is easily seen to give the support [≠3, 4], which is
why we have used [≠4, 4] as a common range when we plot functions on this
form.

6.1.3 Symmetric extensions and the bd_mode parameter.
Continuous functions f : [0, N ] æ R are approximated well from Vm, at least
if the wavelet has one vanishing moment. The periodic extension of f is not
continuous, however, if f(0) ”= f(N). We can instead form the symmetric
extension f̆ of f , as given by Definition 1.22, which is defined on [0, 2N ], and
which can be periodically extended to a continuous function. We make a smaller
error if we restrict to the approximation of f̆ from Vm, when compared to that
of f from Vm.

The input to the DWT is given in terms of a vector c, however, so that our
f is really the function

q
n cm,n„m,n. If „ has compact support, then clearly

the function
q

n c̆m,n„m,n retains the same values as the symmetric extension
(except near the boundary), when c̆ is some kind of symmetric extension of the
vector c. We are free to decide how vectors are symmetrically extended near the
boundary. In the theory of wavelets, the following symmetric extension strategy
for vectors is used.

Definition 6.10. Symmetric extension of a vector.
By the symmetric extension of x œ RN , we mean x̆ œ R2N≠2 defined by

x̆k =
;

xk 0 Æ k < N
x

2N≠2≠k N Æ k < 2N ≠ 3 (6.8)
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This is di�erent from the symmetric extension given by Definition 4.1. Note
that (f̆(0), f̆(1), ..., f̆(N ≠ 1), f̆(N), f̆(N + 1), ..., f̆(2N ≠ 1)) œ R2N is now the
symmetric extension of (f(0), f(1), ..., f(N)), so that this way of defining sym-
metric extensions is perhaps the most natural when it comes to sampling which
includes the boundaries.

Figure 6.6: A vector and its symmetric extension. Note that the period of the
vector is now 2N ≠ 2, while it was 2N for the vector shown in Figure 4.1.

Consider applying the DWT to a symmetric extension x̆ of length 2N ≠ 2.
Assume that all filters are symmetric (2N ≠ 2) ◊ (2N ≠ 2) filters. Accorins to
Chapter 4, they preserve vectors symmetric around 0 and N ≠ 1, so that there
exist N ◊ N -matrices (H

0

)r, (H
1

)r, (G
0

)r, and (G
1

)r, so that for all x œ RN ,
Hix̆ = ˘(Hi)rx and Gix̆ = ˘(Gi)rx. In particular, the first N entries in Hix̆
are (Hi)rx. The first N entries of Hx̆ are thus obtained by assembling the
even-indexed entries from (H

0

)rx, and the odd-indexed entries from (H
1

)rx.
Since the di�erence between N ≠ 1 ≠ k and N ≠ 1 + k is even, and since Hix̆

is a symmetric extension, for one i we have that

(Hx̆)N≠1≠k = (Hix̆)N≠1≠k = (Hix̆)N≠1+k = (Hx̆)N≠1+k.

It follows that H preserves the same type of symmetric extensions, i.e. there
exists an N ◊ N -matrix Hr so that Hx̆ = ˘Hrx. Moreover, the entries in Hrx
are assembled from the entries in (Hi)rx, in the same way as the entries in Hx
are assembled from the entries in Hix.

Note also that setting every second element to zero in a symmetric extension
only creates a new symmetric extension, so that G also preserves symmetric
extensions. It follows that there exist N ◊ N -matrices Gr, (G

0

)r, (G
1

)r so that
Gx̆ = ˘Grx, and so that the entries 0, ..., N ≠ 1 in the output of Gr are obtained
by combining (G

0

)r and (G
1

)r as in Theorem 6.5.

Theorem 6.11. Symmetric filters and symmetric extensions.
If the filters H

0

, H
1

, G
0

, and G
1

in a wavelet transform are symmetric, then
the DWT/IDWT preserve symmetric extensions (as defined in Definition 6.10).
Also, applying the filters H

0

, H
1

, G
0

, and G
1

to x̆ œ R2N≠2 in the DWT/IDWT
is equivalent to applying (H

0

)r, (H
1

)r, (G
0

)r, and (G
1

)r to x œ RN as described
in theorems 6.3 and 6.5.
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In our implementations, we factored H and G in terms of elementary lifting
matrices. Note that the filters in these matrices are symmetric so that, after
applying Ax̆ = ˘Arx repeatedly,

Ÿ

i

A⁄2iB⁄2i+1 x̆ = ˘Ÿ

i

(A⁄2i)r(B⁄2i+1)rx

It follows that (
r

i A⁄2iB⁄2i+1)r =
r

i(A⁄2i)r(B⁄2i+1)r. It is straightforward
to find expressions for (A⁄)r and (B⁄)r (Exercise 6.7). DWT and IDWT
implementations can thus apply symmetric extensions by replacing A⁄ and B⁄

with (A⁄)r and (B⁄)r.
The purpose of the bd_mode parameter is to control how we should han-

dle the boundary of the signal, in particular whether symmetric extensions
should be performed. This parameter is passed to lifting_even_symm and
lifting_odd_symm, which are the building blocks in our kernel functions. If this
parameter equals ’symm’ (this is the default value), the methods apply symmetric
extensions by using (A⁄)r/(B⁄)r rather than A⁄/B⁄. If the parameter equals
’per’, a periodic extension at the boundaries is made.

Fact 6.12. The bd_mode-parameter in DWT kernel functions.
Assume that the filters H

0

, H
1

, G
0

, and G
1

are symmetric. If the bd_mode
parameter is "symm", the symmetric versions (H

0

)r, (H
1

)r, (G
0

)r, and (G
1

)r

are applied in the DWT and IDWT, rather than the filters H
0

, H
1

, G
0

, and
G

1

themselves. If the ‘parameter is "per", the filters H
0

, H
1

, G
0

, and G
1

are
applied.

Exercise 6.5: Implement the dual filter bank transforms
a) Show that AT

⁄ = B⁄ and BT
⁄ = A⁄, i.e. that the transpose of an elementary

lifting matrix of even/odd type is an elementary lifting matrix of odd/even type.

b) Let H be the kernel of the DWT, and assume that we have a factorization
of it in terms of elementary lifting matrices. Use a) how that the dual DWT is
obtained from the DWT by replacing each A⁄ with B≠⁄, and B⁄ with A≠⁄ in
this factorization.

c) Previously we expressed the DWT and the IDWT of the piecewise linear
wavelets in terms of elementary liftings. Use b) to write down the dual DWT and
IDWT of these two wavelets in terms of lifting matrices. Verify your answer by
going through the code in the functions dwt_kernel_pwl0, idwt_kernel_pwl0,
dwt_kernel_pwl2, and idwt_kernel_pwl2 where the dual parameter is set to
true..

Exercise 6.6: Transpose of the DWT and IDWT
Explain why

• The transpose of the DWT can be computed with an IDWT with the
kernel of the dual IDWT
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• The transpose of the dual DWT can be computed with an IDWT with the
kernel of the IDWT

• The transpose of the IDWT can be computed with a DWT with the kernel
of the dual DWT

• The transpose of the dual IDWT can be computed with a DWT with the
kernel of the DWT

Exercise 6.7: Reduced matrices for elementary lifting
Show that the reduced matrices for elementary lifting are

(A⁄)r =

Q

ccccccca

1 2⁄ 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0
0 ⁄ 1 ⁄ · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · ⁄ 1 ⁄
0 0 0 0 · · · 0 0 1

R

dddddddb

(6.9)

(B⁄)r =

Q

ccccccca

1 0 0 0 · · · 0 0 0
⁄ 1 ⁄ 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1 0
0 0 0 0 · · · 0 2⁄ 1

R

dddddddb

. (6.10)

Also, change the implementations of liftingstevensymm and liftingstoddsymm
so that these expressions are used (rather than A⁄, B⁄) when the parmeter symm
is set to True.

Exercise 6.8: Prove expression for Sr

Show that, with

S =
3

S
1

S
2

S
3

S
4

4
œ R2N≠2 ◊ R2N≠2

a symmetric filter, with S
1

œ RN ◊ RN , S
2

œ RN ◊ RN≠2, we have that

Sr = S
1

+
!
0 (S

2

)f 0
"

.

Use the proof of Theorem 4.9 as a guide.
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Exercise 6.9: Orthonormal basis for the symmetric exten-
sions
In this exercise we will establish an orthonormal basis for the symmetric exten-
sions, as defined by Definition 6.10. This parallels Theorem 4.6.

a) Explain why, if x œ R2N≠2 is a symmetric extension (according to Def-
inition 4.1), then (‚x)n = zne≠fiin, where z is a real vectors which satisfies
zn = z

2N≠2≠n

b) Show that
I
e

0

,

;
1Ô
2

(ei + e
2N≠2≠i)

<N≠2

n=1

, eN≠1

J
(6.11)

is an orthonormal basis for the vectors on the form ‚x with x œ R2N≠2 a
symmetric extension.

c) Show that

1Ô
2N ≠ 2

cos
3

2fi
0

2N ≠ 2k

4

;
1Ô

N ≠ 1
cos

3
2fi

n

2N ≠ 2k

4<N≠2

n=1

1Ô
2N ≠ 2

cos
3

2fi
N ≠ 1
2N ≠ 2k

4
(6.12)

is an orthonormal basis for the symmetric extensions in R2N≠2.

d) Assume that S is symmetric. Show that the vectors listed in (6.12) are
eigenvectors for Sr, when the vectors are viewed as vectors in RN , and that they
are linearly independent. This shows that Sr is diagonalizable.

Exercise 6.10: Diagonalizing Sr

Let us explain how the matrix Sr can be diagonalized, similarly to how we
previously diagonalized using the DCT. In Exercise 6.9 we showed that the
vectors

;
cos

3
2fi

n

2N ≠ 2k

4<N≠1

n=0

(6.13)

in RN is a basis of eigenvectors for Sr when S is symmetric. Sr itself is not
symmetric, however, so that this basis can not possibly be orthogonal (S is
symmetric if and only if it is orthogonally digonalizable). However, when the
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vectors are viewed in R2N≠2 we showed in Exercise 6.9c) an orthogonality
statement which can be written as

2N≠3ÿ

k=0

cos
3

2fi
n

1

2N ≠ 2k

4
cos

3
2fi

n
2

2N ≠ 2k

4
= (N ≠ 1) ◊

Y
_]

_[

2 if n
1

= n
2

œ {0, N ≠ 1}
1 if n

1

= n
2

”œ {0, N ≠ 1}
0 if n

1

”= n
2

.

(6.14)

a) Show that

(N ≠ 1) ◊

Y
_]

_[

1 if n
1

= n
2

œ {0, N ≠ 1}
1

2

if n
1

= n
2

”œ {0, N ≠ 1}
0 if n

1

”= n
2

= 1Ô
2

cos
3

2fi
n

1

2N ≠ 2 · 0
4

1Ô
2

cos
3

2fi
n

2

2N ≠ 2 · 0
4

+
N≠2ÿ

k=1

cos
3

2fi
n

1

2N ≠ 2k

4
cos

3
2fi

n
2

2N ≠ 2k

4

+ 1Ô
2

cos
3

2fi
n

1

2N ≠ 2(N ≠ 1)
4

1Ô
2

cos
3

2fi
n

2

2N ≠ 2(N ≠ 1)
4

.

Hint. Use that cos x = cos(2fi ≠ x) to pair the summands k and 2N ≠ 2 ≠ k.
Now, define the vector d

(I)

n as

dn,N

A
1Ô
2

cos
3

2fi
n

2N ≠ 2 · 0
4

,

;
cos

3
2fi

n

2N ≠ 2k

4<N≠2

k=1

,
1Ô
2

cos
3

2fi
n

2N ≠ 2(N ≠ 1)
4B

,

and define d(I)

0,N = d(I)

N≠1,N = 1/
Ô

N ≠ 1, and d(I)

n,N =


2/(N ≠ 1) when n > 1.
The orthogonal N ◊ N matrix where the rows are d

(I)

n is called the DCT-I,
and we will denote it by D(I)

N . DCT-I is also much used, just as the DCT-II of
Chapter 4. The main di�erence from the previous cosine vectors is that 2N has
been replaced by 2N ≠ 2.

b) Explain that the vectors d
(I)

n are orthonormal, and that the matrix

Ú
2

N ≠ 1

Q

ccccca

1/
Ô

2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/

Ô
2

R

dddddb

1
cos

1
2fi n

2N≠2

k
22

Q

ccccca

1/
Ô

2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/

Ô
2

R

dddddb

is orthogonal.
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c) Explain from b) that
1

cos
1

2fi n
2N≠2

k
22≠1

can be written as

2
N ≠ 1

Q

ccccca

1/2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/2

R

dddddb

1
cos

1
2fi n

2N≠2

k
22

Q

ccccca

1/2 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1/2

R

dddddb

With the expression we found in c) Sr can now be diagonalized as
1

cos
1

2fi n
2N≠2

k
22

D
1

cos
1

2fi n
2N≠2

k
22≠1

.

Exercise 6.11: Compute filters and frequency responses 1
Write down the corresponding filters G

0

og G
1

for Exercise 5.40. Plot their
frequency responses, and characterize the filters as low-pass- or high-pass filters.

Exercise 6.12: Symmetry of MRA matrices vs. symmetry
of filters 1
Find two symmetric filters, so that the corresponding MRA-matrix, constructed
with alternating rows from these two filters, is not a symmetric matrix.

Exercise 6.13: Symmetry of MRA matrices vs. symmetry
of filters 2
Assume that an MRA-matrix is symmetric. Are the corresponding filters H

0

,
H

1

, G
0

, G
1

also symmetric? If not, find a counterexample.

Exercise 6.14: Finding H
0

, H
1

from H

Assume that one stage in a DWT is given by the MRA-matrix

H =

Q

ccccca

1/5 1/5 1/5 0 0 0 · · · 0 1/5 1/5
≠1/3 1/3 ≠1/3 0 0 0 · · · 0 0 0
1/5 1/5 1/5 1/5 1/5 0 · · · 0 0 0
0 0 ≠1/3 1/3 ≠1/3 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...

R

dddddb

Write down the compact form for the corresponding filters H
0

, H
1

, and compute
and plot the frequency responses. Are the filters symmetric?
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Exercise 6.15: Finding G
0

,G
1

from G

Assume that one stage in the IDWT is given by the MRA-matrix

G =

Q

ccccccccccccccca

1/2 ≠1/4 0 0 · · ·
1/4 3/8 1/4 1/16 · · ·
0 ≠1/4 1/2 ≠1/4 · · ·
0 1/16 1/4 3/8 · · ·
0 0 0 ≠1/4 · · ·
0 0 0 1/16 · · ·
0 0 0 0 · · ·
...

...
...

...
...

0 0 0 0 · · ·
1/4 1/16 0 0 · · ·

R

dddddddddddddddb

Write down the compact form for the filters G
0

, G
1

, and compute and plot the
frequency responses. Are the filters symmetric?

Exercise 6.16: Finding H from H
0

, H
1

Assume that H
0

= {1/16, 1/4, 3/8, 1/4, 1/16}, and H
1

= {≠1/4, 1/2, ≠1/4}.
Plot the frequency responses of H

0

and H
1

, and verify that H
0

is a lowpass
filter, and that H

1

is a highpass filter. Also write down the change of coordinate
matrix PC1Ω�1 for the wavelet corresponding to these filters.

Exercise 6.17: Finding G from G
0

, G
1

Assume that G
0

= 1

3

{1, 1, 1}, and G
1

= 1

5

{1, ≠1, 1, ≠1, 1}. Plot the frequency
responses of G

0

and G
1

, and verify that G
0

is a lowpass filter, and that G
1

is a
highpass filter. Also write down the change of coordinate matrix P

�1ΩC1 for the
wavelet corresponding to these filters.

Exercise 6.18: Computing by hand
In Exercise 5.21 we computed the DWT of two very simple vectors x

1

and x
2

,
using the Haar wavelet.

a) Compute H
0

x
1

, H
1

x
1

, H
0

x
2

, and H
1

x
2

, where H
0

and H
1

are the filters
used by the Haar wavelet.

b) Compare the odd-indexed elements in H
1

x
1

with the odd-indexed elements
in H

1

x
2

. From this comparison, attempt to find an explanation to why the two
vectors have very di�erent detail components.

Exercise 6.19: Comment code
Suppose that we run the following algorithm on the sound represented by the
vector x:
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N=size(x,1);
c = (x(1:2:N, :) + x(2:2:N, :))/sqrt(2);
w = (x(1:2:N, :) - x(2:2:N, :))/sqrt(2);

newx = [c; w];
newx = newx/max(abs(newx));
playerobj=audioplayer(newx,44100);
playblocking(playerobj)

a) Comment the code and explain what happens. Which wavelet is used? What
do the vectors c and w represent? Describe the sound you believe you will hear.

b) Assume that we add lines in the code above which sets the elements in the
vector w to 0 before we compute the inverse operation. What will you hear if
you play the new sound you then get?

Exercise 6.20: Computing filters and frequency responses
Let us return to the piecewise linear wavelet from Exercise 5.39.

a) With Â̂ as defined as in b) in Exercise 5.39, compute the coordinates of Â̂ in
the basis �

1

(i.e. [Â̂]
�1) with N = 8, i.e. compute the IDWT of

[Â̂]
(�0, 0)

= (≠–, ≠—, ≠”, 0, 0, 0, 0, ≠“) ü (1, 0, 0, 0, 0, 0, 0, 0),

which is the coordinate vector you computed in d) in Exercise 5.39. For this,
you should use the function IDWTImpl, with the kernel of the piecewise linear
wavelet without symmetric extension as input. Explain that this gives you the
filter coe�cients of G

1

.

b) Plot the frequency response of G
1

.

Exercise 6.21: Computing filters and frequency responses
2
Repeat the previous exercise for the Haar wavelet as in Exercise 5.41, and plot
the corresponding frequency responses for k = 2, 4, 6.

Exercise 6.22: Implementing with symmetric extension
In Exercise 3.9 we implemented a symmetric filter applied to a vector, i.e. when a
periodic extension is assumed. The corresponding function was called filterS(t,
x), and used the function conv.

a) Reimplement the function filterS so that it also takes a third parameter
symm. If symm is false a periodic extension of x should be performed (i.e. filtering
as we have defined it, and as the previous version of filterS performs it). If
symm is true, symmetric extensions should be used (as given by Definition 6.10).
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b) Implement functions

dwt_kernel_filters(H0, H1, G0, G1, x, bd_mode)
idwt_kernel_filters(H0, H1, G0, G1, x, bd_mode)

which return the DWT and IDWT kernels using theorems 6.3 and 6.5, respectively.
This function thus bases itself on that the filters of the wavelet are known. The
functions should call the function filterS from a). Recall also the definition of
the parameter dual from this section.

With the functions defined in b) you can now define standard DWT and
IDWT kernels in the following way, once the filters are known.

dwt_kernel = @(x, bd_mode) dwt_kernel_filters(H0, H1, G0, G1, x, bd_mode);
idwt_kernel = @(x, bd_mode) idwt_kernel_filters(H0, H1, G0, G1, x, bd_mode);

6.2 Properties of the filter bank transforms of a
wavelet

We have now described the DWT/IDWT as linear transformations G, H so
that GH = I, and where two filters G

0

, G
1

characterize G, two filters H
0

, H
1

characterize H. G and H are not Toeplitz matrices, however, so they are not
filters. Since filters produce the same output frequency from an input frequency,
we must have that G and H produce other (undesired) frequencies in the output
than those that are present in the input. We will call this phenomenon aliasing.
In order for GH = I, the undesired frequencies must cancel each other, so that
we end up with what we started with. Thus, GH must have what we will refer to
as alias cancellation. This is the same as saying that GH is a filter. In order for
GH = I, alias cancellation is not enough: We also need that the amount at the
given frequency is unchanged, i.e. that GH„n = „n for any Fourier basis vector
„n. We then say that we have perfect reconstruction. Perfect reconstruction
is always the case for wavelets by construction, but in signal processing many
interesting examples (G

0

, G
1

, H
0

, H
1

) exist, for which we do not have perfect
reconstruction. Historically, forward and reverse filter bank transforms have
been around long before they appeared in a wavelet context. Operations where
GH„n = cn„n for all n may also be useful, in particular when cn is close to 1
for all n. If cn is real for all n, we say that we have no phase distortion. If we
have no phase distortion, the output from GH has the same phase, even if we
do not have perfect reconstruction. Such “near-perfect reconstruction systems"
have also been around long before many perfect reconstruction wavelet systems
were designed. In signal processing, these transforms also exist in more general
variants, and we will define these later. Let us summarize as follows.

Definition 6.13. Alias cancellation, phase distortion, and perfect reconstruction.
We say that we have alias cancellation if, for any n,

GH„n = cn„n,
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for some constant cn (i.e. GH is a filter). If all cn are real, we say that we
no phase distortion. If GH = I (i.e. cn = 1 for all n) we say that we have
perfect reconstruction. If all cn are close to 1, we say that we have near-perfect
reconstruction.

In signal processing, one also says that we have perfect- or near-perfect
reconstruction when GH equals Ed, or is close to Ed (i.e. the overall result is a
delay). The reason why a delay occurs has to do with that the transforms are
used in real-time processing, for which we may not be able to compute the output
at a given time instance before we know some of the following samples. Clearly
the delay is unproblematic, since one can still can reconstruct the input from
the output. We will encounter a useful example of near-perfect reconstruction
soon in the MP3 standard.

Let us now find a criterium for alias cancellation: When do we have that
GHe2fiirk/N is a multiplum of e2fiirk/N , for any r? We first remark that

H(e2fiirk/N ) =
I

⁄H0,re2fiirk/N k even
⁄H1,re2fiirk/N k odd.

The frequency response of H(e2fiirk/N ) is

N/2≠1ÿ

k=0

⁄H0,re2fiir(2k)/N e≠2fii(2k)n/N +
N/2≠1ÿ

k=0

⁄H1,re2fiir(2k+1)/N e≠2fii(2k+1)n/N

=
N/2≠1ÿ

k=0

⁄H0,re2fii(r≠n)(2k)/N +
N/2≠1ÿ

k=0

⁄H1,re2fii(r≠n)(2k+1)/N

= (⁄H0,r + ⁄H1,re2fii(r≠n)/N )
N/2≠1ÿ

k=0

e2fii(r≠n)k/(N/2).

Clearly,
qN/2≠1

k=0

e2fii(r≠n)k/(N/2) = N/2 if n = r or n = r + N/2, and 0 else.
The frequency response is thus the vector

N

2 (⁄H0,r + ⁄H1,r)er + N

2 (⁄H0,r ≠ ⁄H1,r)er+N/2

,

so that

H(e2fiirk/N ) = 1
2(⁄H0,r + ⁄H1,r)e2fiirk/N + 1

2(⁄H0,r ≠ ⁄H1,r)e2fii(r+N/2)k/N .

(6.15)
Let us now turn to the reverse filter bank transform. We can write

(e2fiir·0/N , 0, e2fiir·2/N , 0, . . . , e2fiir(N≠2)/N , 0) = 1
2(e2fiirk/N + e2fii(r+N/2)k/N )

(0, e2fiir·1/N , 0, e2fiir·3/N , . . . , 0, e2fiir(N≠1)/N ) = 1
2(e2fiirk/N ≠ e2fii(r+N/2)k/N ).
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This means that

G(e2fiirk/N ) = G
0

3
1
2

1
e2fiirk/N + e2fii(r+N/2)k/N

24
+ G

1

3
1
2

1
e2fiirk/N ≠ e2fii(r+N/2)k/N

24

=1
2(⁄G0,re2fiirk/N + ⁄G0,r+N/2

e2fii(r+N/2)k/N ) + 1
2(⁄G1,re2fiirk/N ≠ ⁄G1,r+N/2

e2fii(r+N/2)k/N )

=1
2(⁄G0,r + ⁄G1,r)e2fiirk/N + 1

2(⁄G0,r+N/2

≠ ⁄G1,r+N/2

)e2fii(r+N/2)k/N . (6.16)

Now, if we combine equations (6.15) and (6.16), we get

GH(e2fiirk/N )

= 1
2(⁄H0,r + ⁄H1,r)G(e2fiirk/N ) + 1

2(⁄H0,r ≠ ⁄H1,r)G(e2fii(r+N/2)k/N )

= 1
2(⁄H0,r + ⁄H1,r)

3
1
2(⁄G0,r + ⁄G1,r)e2fiirk/N + 1

2(⁄G0,r+N/2

≠ ⁄G1,r+N/2

)e2fii(r+N/2)k/N )
4

+ 1
2(⁄H0,r ≠ ⁄H1,r)

3
1
2(⁄G0,r+N/2

+ ⁄G1,r+N/2

)e2fii(r+N/2)k/N + 1
2(⁄G0,r ≠ ⁄G1,r)e2fiirk/N )

4

= 1
4 ((⁄H0,r + ⁄H1,r)(⁄G0,r + ⁄G1,r) + (⁄H0,r ≠ ⁄H1,r)(⁄G0,r ≠ ⁄G1,r)) e2fiirk/N

+ 1
4

!
(⁄H0,r + ⁄H1,r)(⁄G0,r+N/2

≠ ⁄G1,r+N/2

) + (⁄H0,r ≠ ⁄H1,r)(⁄G0,r+N/2

+ ⁄G1,r+N/2

)
"

e2fii(r+N/2)k/N

= 1
2(⁄H0,r⁄G0,r + ⁄H1,r⁄G1,r)e2fiirk/N + 1

2(⁄H0,r⁄G0,r+N/2

≠ ⁄H1,r⁄G1,r+N/2

)e2fii(r+N/2)k/N .

If we also replace with the continuous frequency response, we obtain the following:

Theorem 6.14. Expression for aliasing.
We have that

GH(e2fiirk/N ) =1
2(⁄H0,r⁄G0,r + ⁄H1,r⁄G1,r)e2fiirk/N

+ 1
2(⁄H0,r⁄G0,r+N/2

≠ ⁄H1,r⁄G1,r+N/2

)e2fii(r+N/2)k/N .

(6.17)

In particular, we have alias cancellation if and only if

⁄H0(Ê)⁄G0(Ê + fi) = ⁄H1(Ê)⁄G1(Ê + fi). (6.18)
We will refer to this as the alias cancellation condition. If in addition

⁄H0(Ê)⁄G0(Ê) + ⁄H1(Ê)⁄G1(Ê) = 2, (6.19)
we also have perfect reconstruction. We will refer to as the condition for perfect
reconstruction.
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No phase distortion means that we have alias cancellation, and that

⁄H0(Ê)⁄G0(Ê) + ⁄H1(Ê)⁄G1(Ê) is real.

Now let us turn to how we can construct wavelets/perfect reconstruction systems
from FIR-filters (recall from Chapter 3 that FIR filters where filters with a finite
number of filter coe�cients). We will have use for some theorems which allow us
to construct wavelets from prototype filters. In particular we show that, when
G

0

and H
0

are given lowpass filters which satisfy a certain common property,
we can define unique (up to a constant) highpass filters H

1

and G
1

so that the
collection of these four filters can be used to implement a wavelet. We first state
the following general theorem.

Theorem 6.15. Criteria for perfect reconstruction.
The following statements are equivalent for FIR filters H

0

, H
1

, G
0

, G
1

:

• H
0

, H
1

, G
0

, G
1

give perfect reconstruction,

• there exist – œ R and d œ Z so that

(H
1

)n = (≠1)n–≠1(G
0

)n≠2d (6.20)
(G

1

)n = (≠1)n–(H
0

)n+2d (6.21)
2 = ⁄H0,n⁄G0,n + ⁄H0,n+N/2

⁄G0,n+N/2

(6.22)

Let us translate this to continuous frequency responses. We first have that

⁄H1(Ê) =
ÿ

k

(H
1

)ke≠ikÊ =
ÿ

k

(≠1)k–≠1(G
0

)k≠2de≠ikÊ

= –≠1

ÿ

k

(≠1)k(G
0

)ke≠i(k+2d)Ê = –≠1e≠2idÊ
ÿ

k

(G
0

)ke≠ik(Ê+fi)

= –≠1e≠2idÊ⁄G0(Ê + fi).

We have a similar computation for ⁄G1(Ê). We can thus state the following:

Theorem 6.16. Criteria for perfect reconstruction.
The following statements are equivalent for FIR filters H

0

, H
1

, G
0

, G
1

:

• H
0

, H
1

, G
0

, G
1

give perfect reconstruction,

• there exist – œ R and d œ Z so that

⁄H1(Ê) = –≠1e≠2idÊ⁄G0(Ê + fi) (6.23)
⁄G1(Ê) = –e2idÊ⁄H0(Ê + fi) (6.24)

2 = ⁄H0(Ê)⁄G0(Ê) + ⁄H0(Ê + fi)⁄G0(Ê + fi) (6.25)
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Proof. Let us prove first that equations (6.23)- (6.25) for a FIR filter implies
that we have perfect reconstruction. Equations (6.23)-(6.24) mean that the alias
cancellation condition (6.18) is satisfied, since

⁄H1(Ê)⁄G1(Ê + fi) =–≠1e≠2idÊ⁄G0(Ê + fi)(–)e2id(Ê+fi⁄H0(Ê)
=⁄H0(Ê)⁄G0(Ê + fi).

Inserting this in the perfect reconstruction condition (6.25), we get

2 = ⁄H0(Ê)⁄G0(Ê) + ⁄G0(Ê + fi)⁄H0(Ê + fi)
= ⁄H0(Ê)⁄G0(Ê) + –≠1e≠2idÊ⁄G0(Ê + fi)–e2idÊ⁄H0(Ê + fi)
= ⁄H0(Ê)⁄G0(Ê) + ⁄H1(Ê)⁄G1(Ê),

which is Equation (6.19), so that equations (6.23)- (6.25) imply perfect recon-
struction. We therefore only need to prove that any set of FIR filters which give
perfect reconstruction, also satisfy these equations. Due to the calculation above,
it is enough to prove that equations (6.23)-(6.24) are satisfied. The proof of this
will wait till Section 8.1, since it uses some techniques we have not introduced
yet.

When constructing a wavelet it may be that we know one of the two pairs
(G

0

, G
1

), (H
0

, H
1

), and that we would like to construct the other two. This can
be achieved if we can find the constants d and – from above. If the filters are
symmetric we just saw that d = 0. If G

0

, G
1

are known, it follows from from
equations (6.20) and(6.21) that

1 =
ÿ

n

(G
1

)n(H
1

)n =
ÿ

n

(G
1

)n–≠1(≠1)n(G
0

)n = –≠1

ÿ

n

(≠1)n(G
0

)n(G
1

)n,

so that – =
q

n(≠1)n(G
0

)n(G
1

)n. On the other hand, if H
0

, H
1

are known
instead, we must have that

1 =
ÿ

n

(G
1

)n(H
1

)n =
ÿ

n

–(≠1)n(H
0

)n(H
1

)n = –
ÿ

n

(≠1)n(H
0

)n(H
1

)n,

so that – = 1/(
q

n(≠1)n(H
0

)n(H
1

)n). Let us use these observations to state
the filters for the alternative wavelet of piecewise linear functions, which is the
only wavelet we have gone through we have not computed the filters and the
frequency response for.

Let us use Theorem 6.16 to compute the filters H
0

and H
1

for the alternative
piecewise linear wavelet. These filters are also symmetric, since G

0

, G
1

were. We
get that
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– =
ÿ

n

(≠1)n(G
0

)n(G
1

)n = 1
2

3
≠1

2

3
≠1

4

4
+ 1 · 3

4 ≠ 1
2

3
≠1

4

44
= 1

2 .

We now get

(H
0

)n = –≠1(≠1)n(G
1

)n = 2(≠1)n(G
1

)n

(H
1

)n = –≠1(≠1)n(G
0

)n = 2(≠1)n(G
0

)n, (6.26)

so that

H
0

=
Ô

2{≠1/8, 1/4, 3/4, 1/4, ≠1/8}
H

1

=
Ô

2{≠1/2, 1, ≠1/2}. (6.27)

Note that, even though conditions (6.23) and (6.24) together ensure that the
alias cancellation condition is satisfied, alias cancellation can occur also if these
conditions are not satisfied. Conditions (6.23) and (6.24) thus give a stronger
requirement than alias cancellation. We will be particularly concerned with
wavelets where the filters are symmetric, for which we can state the following
corollary.

Corollary 6.17. Criteria for perfect reconstruction .
The following statements are equivalent:

• H
0

, H
1

, G
0

, G
1

are the filters of a symmetric wavelet,

• ⁄H0(Ê), ⁄H1(Ê), ⁄G0(Ê), ⁄G1(Ê) are real functions, and

⁄H1(Ê) = –≠1⁄G0(Ê + fi) (6.28)
⁄G1(Ê) = –⁄H0(Ê + fi) (6.29)

2 = ⁄H0(Ê)⁄G0(Ê) + ⁄H0(Ê + fi)⁄G0(Ê + fi). (6.30)

Thw delay d is thus 0 for symmetric wavelets.

Proof. Since H
0

is symmetric, (H
0

)n = (H
0

)≠n, and from equations (6.20) and
(6.21) it follows that

(G
1

)n≠2d = (≠1)n≠2d–(H
0

)n = (≠1)n–≠1(H
0

)≠n

= (≠1)(≠n≠2d)–≠1(H
0

)
(≠n≠2d)+2d = (G

1

)≠n≠2d

This shows that G
1

is symmetric about both ≠2d, in addition to being symmetric
about 0 (by assumption). We must thus have that d = 0, so that (H

1

)n =
(≠1)n–(G

0

)n and (G
1

)n = (≠1)n–≠1(H
0

)n. We now get that
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⁄H1(Ê) =
ÿ

k

(H
1

)ke≠ikÊ = –≠1

ÿ

k

(≠1)k(G
0

)ke≠ikÊ

= –≠1

ÿ

k

e≠ikfi(G
0

)ke≠ikÊ = –≠1

ÿ

k

(G
0

)ke≠ik(Ê+fi)

= –≠1⁄G0(Ê + fi),

which proves Equation (6.28). Equation (6.28) follows similarly.

In the literature, two particular cases of filter banks have been important.
They are both refered to as Quadrature Mirror Filter banks, or QMF filter
banks, and some confusion exist between the two. Let us therefore make precise
definitions of the two.

Definition 6.18. Classical QMF filter banks.
In the classical definition of a QMF filter banks it is required that G

0

= H
0

and G
1

= H
1

(i.e. the filters in the forward and reverse transforms are equal),
and that

⁄H1(Ê) = ⁄H0(Ê + fi). (6.31)

It is straightforward to check that, for a classical QMF filter bank, the
forward and reverse transforms are equal (i.e. G = H). It is easily checked that
conditions (6.23) and (6.24) are satisfied with – = 1, d = 0 for a classical QMF
filter bank. In particular, the alias cancellation condition is satisfied. The perfect
recontruction condition can be written as

2 = ⁄H0(Ê)⁄G0(Ê) + ⁄H1(Ê)⁄G1(Ê) = ⁄H0(Ê)2 + ⁄H0(Ê + fi)2. (6.32)

Unfortunately, it is impossible to find non-trivial FIR-filters which satisfy this
quadrature formula (Exercise 6.23). Therefore, classical QMF filter banks which
give perfect reconstruction do not exist. Nevertheless, one can construct such
filter banks which give close to perfect reconstruction [23], and this together
with the fulfillment of the alias cancellation condition still make them useful. In
fact, we will see in Section 8.3 that the MP3 standard take use of such filters,
and this explains our previous observation that the MP3 standard does not give
perfect reconstruction. Note, however, that if the filters in a classical QMF filter
bank are symmetric (so that ⁄H0(Ê) is real), we have no phase distortion.

The second type of QMF filter bank is defined as follows.

Definition 6.19. Alternative QMF filter banks.
In the alternative definition of a QMF filter bank it is required that G

0

=
(H

0

)T and G
1

= (H
1

)T (i.e. the filter coe�cients in the forward and reverse
transforms are reverse of oneanother), and that

⁄H1(Ê) = ⁄H0(Ê + fi). (6.33)



CHAPTER 6. THE FILTER REPRESENTATION OF WAVELETS 240

The perfect reconstruction condition for an alternative QMF filter bank can
be written as

2 = ⁄H0(Ê)⁄G0(Ê) + ⁄H1(Ê)⁄G1(Ê) = ⁄H0(Ê)⁄H0(Ê) + ⁄H0(Ê + fi)⁄H0(Ê + fi)
= |⁄H0(Ê)|2 + |⁄H0(Ê + fi)|2.

We see that the perfect reconstruction property of the two definitions of QMF
filter banks only di�er in that the latter take absolute values. It turns out that
the latter also has many interesting solutions, as we will see in Chapter 7. If we
in in condition (6.23) substitute G

0

= (H
0

)T we get

⁄H1(Ê) = –≠1e≠2idÊ⁄G0(Ê + fi) = –≠1e≠2idÊ⁄H0(Ê + fi).

If we set – = 1, d = 0, we get equality here. A similar computation follows for
Condition (6.24). In other words, also alternative QMF filter banks satisfy the
alias cancellation condition. In the literature, a wavelet is called orthonormal if
G

0

= (H
0

)T , G
1

= (H
1

)T . From our little computation it follows that alternative
QMF filter banks with perfect reconstruction are examples of orthonormal
wavelets, and correpond to orthonormal wavelets which satisfy – = 1, d = 0.

For the Haar wavelet it is easily checked that G
0

= (H
0

)T , G
1

= (H
1

)T , but
it does not satisfy the relation ⁄H1(Ê) = ⁄H0(Ê + fi). Instead it satsifies the
relation ⁄H1(Ê) = ≠⁄H0(Ê + fi). In other words, the Haar wavelet is not an
alternative QMF filter bankthe way we have defined them. The di�erence lies
only in a sign, however. This is the reason why the Haar wavelet is still listed as
an alternative QMF filter bank in the literature. The additional sign leads to
orthonormnal wavelets which satisfy – = ≠1, d = 0 instead.

The following is clear for orthonormal wavelets.

Theorem 6.20. Orthogonality og the DWT matrix.
A DWT matrix is orthogonal (i.e. the IDWT equals the transpose of the

DWT) if and only if the filters satisfy G
0

= (H
0

)T , G
1

= (H
1

)T , i.e. if and only
if the MRA equals the dual MRA.

This can be proved simply by observing that, if we transpose the DWT-matrix,
Theorem 6.23 says that we get an IDWT matrix with filters (H

0

)T , (H
1

)T , and
this is equal to the IDWT if and only if G

0

= (H
0

)T , G
1

= (H
1

)T . It follows that
QMF filter banks with perfect reconstruction give rise to orthonormal wavelets.

Exercise 6.23: Finding FIR filters
Show that it is impossible to find a non-trivial FIR-filter which satisfies Equation
(6.32).
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Exercise 6.24: The Haar wavelet as an alternative QMF
filter bank
Show that the Haar wavelet satisfies ⁄H1(Ê) = ≠⁄H0(Ê + fi), and G

0

= (H
0

)T ,
G

1

= (H
1

)T . The Haar wavelet can thus be considered as an alternative QMF
filter bank.

6.3 A generalization of the filter representation,
and its use in audio coding

It turns out that the filter representation, which we now have used for an
alternative representation of a wavelet transformation, can be generalized in
such a way that it also is useful for audio coding. In this section we will first
define this generalization. We will then state how the MP3 standard encodes
and decodes audio, and see how our generalization is connected to this. Much
literature fails to elaborate on this connection. We will call our generalizations
filter bank transforms, or simply filter banks. Just as for wavelets, filters are
applied di�erently for the forward and reverse transforms.

We start by defining the forward filter bank transform and its filters.

Definition 6.21. Forward filter bank transform.
Let H

0

, H
1

, . . . , HM≠1

be N ◊ N -filters. A forward filter bank transform H
produces output z œ RN from the input x œ RN in the following way:

• ziM = (H
0

x)iM for any i so that 0 Æ iM < N .

• ziM+1

= (H
1

x)iM+1

for any i so that 0 Æ iM + 1 < N .

• . . .

• ziM+(M≠1)

= (HM≠1

x)iM+(M≠1)

for any i so that 0 Æ iM + (M ≠ 1) < N .

In other words, the output of a forward filter bank transform is computed
by applying filters H

0

, H
1

, . . . , HM≠1

to the input, and by downsampling and
assembling these so that we obtain the same number of output samples as
input samples (also in this more general setting this is called critical sampling).
H

0

, H
1

, . . . , HM≠1

are also called analysis filter components, the output of filter
Hi is called channel i channel, and M is called the number of channels. The
output samples ziM+k are also called the subband samples of channel k.

Clearly this definition generalizes the DWT and its analysis filters, since
these can be obtained by setting M = 2. The DWT is thus a 2-channel forward
filter bank transform. While the DWT produces the output

3
cm≠1

wm≠1

4
from the

input cm, an M -channel forward filter bank transform splits the output into
M components, instead of 2. Clearly, in the matrix of a forward filter bank
transform the rows repeat cyclically with period M , similarly to MRA-matrices.
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In practice, the filters in a forward filter bank transform are chosen so that
they concentrate on specific frequency ranges. This parallels what we saw for
the filters of a wavelet, where one concentrated on high frequencies, one on low
frequencies. Using a filter bank to split a signal into frequency components is
also called subband coding. But the filters in a filter bank are usually not ideal
bandpass filters. There exist a variety of di�erent filter banks, for many di�erent
purposes [47, 39]. In Chapter 7 we will say more on how one can construct filter
banks which can be used for subband coding.

Let us now turn to reverse filter bank transforms.

Definition 6.22. Reverse filter bank transforms.
Let G

0

, G
1

, . . . , GM≠1

be N ◊ N -filters. An reverse filter bank transform G
produces x œ RN from z œ RN in the following way:

Define zkRN as the vector where (zk)iM+k = ziM+k for all i so that 0 Æ
iM + k < N , and (zk)s = 0 for all other s.

x = G
0

z
0

+ G
1

z
1

+ . . . + GM≠1

zM≠1

. (6.34)
G

0

, G
1

, . . . , GM≠1

are also called synthesis filter components.

Again, this generalizes the IDWT and its synthesis filters, and the IDWT
can be seen as a 2-channel reverse filter bank transform. Also, in the matrix of
a reverse filter bank transform, the columns repeat cyclically with period M ,
similarly to MRA-matrices. Also in this more general setting the filters Gi are
in general di�erent from the filters Hi. But we will see that, just as we saw
for the Haar wavelet, there are important special cases where the analysis and
synthesis filters are equal, and where their frequency responses are simply shifts
of oneanother. It is clear that definitions 6.21 and 6.22 give the diagram for
computing forward and reverse filter bank transforms shown in Figure 6.7:

Here ¿M and øM means that we extract every M ’th element in the vector,
and add M ≠ 1 zeros between the elements, respectively, similarly to how we
previously defined ¿

2

and ø
2

. Comparing Figure 6.3 with Figure 6.7 makes the
similarities between wavelet transformations and the transformation used in
the MP3 standard very visible: Although the filters used are di�erent, they are
subject to the same kind of processing, and can therefore be subject to the same
implementations.

In general it may be that the synthesis filters do not invert exactly the
analysis filters. If the synthesis system exactly inverts the analysis system, we
say that we have a perfect reconstruction filter bank. Since the analysis system
introduces undesired frequencies in the di�erent channels, these have to cancel
in the inverse transform, in order to reconstruct the input exactly.

We will have use for the following simple connection between forward and
reverse filter bank transforms, which follows imemdiately from the definitions.

Theorem 6.23. Connection between forward and reverse filter bank transforms.
Assume that H is a forward filter bank transform with filters H

0

, . . . , HN≠1

.
Then HT is a reverse filter bank transform with filters G

0

= (H
0

)T , . . . , GN≠1

=
(HN≠1

)T .
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H0x
#M // ziM

"M // z0

G0

⇠⇠

H1x
#M // ziM+1

"M // z1

G1
  

x

==

EE

!!

⇡⇡

...
...

... � // x

HM�2x
#M // ziM+(M�2)

"M // zM�2

GM�2

>>

HM�1x
#M // ziM+(M�1)

"M // zM�1

GM�1

FF

Figure 6.7: Illustration of forward and reverse filter bank transforms.

6.3.1 Forward filter bank transform in the MP3 standard
Now, let us turn to the MP3 standard. The MP3 standard document states
that it applies a filter bank, and explains the following procedure for applying
this filter bank, see p. 67 of the standard document (the procedure is slightly
modified with mathematical terminology adapted to this book):

• Input 32 audio samples at a time.

• Build an input sample vector X œ R512, where the 32 new samples are
placed first, all other samples are delayed with 32 elements. In particular
the 32 last samples are taken out.

• Multiply X componentwise with a vector C (this vector is defined through
a table in the standard), to obtain a vector Z œ R512. The standard calls
this windowing.

• Compute the vector Y œ R64 where Yi =
q

7

j=0

Zi+64j . The standard calls
this a partical calculation.

• Calculate S = MY œ R32, where M is the 32 ◊ 64- matrix where Mik =
cos((2i + 1)(k ≠ 16)fi/64). S is called the vector of output samples, or
output subband samples. The standard calls this matrixing.

The standard does not motivate these steps, and does not put them into the
filter bank transform framework which we have established. Also, the standard
does not explain how the values in the vector C have been constructed.
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Let us start by proving that the steps above really corresponds to applying a
forward filter bank transform, and let us state the corresponding filters of this
transform. The procedure computes 32 outputs in each iteration, and each of
them is associated with a subband. Therefore, from the standard we would guess
that we have M = 32 channels, and we would like to find the corresponding 32
filters H

0

, H
1

, . . . , H
31

.
It may seem strange to use the name matrixing here, for something which

obviously is matrix multiplication. The reason for this name must be that the
at the origin of the procedure come from outside a linear algebra framework.
The name windowing is a bit strange, too. This really does not correspond to
applying a window to the sound samples as we explained in Section 3.3.1. We
will see that it rather corresponds to applying a filter coe�cient to a sound
sample. A third and final thing which seems a bit strange is that the order of the
input samples is reversed, since we are used to having the first sound samples
in time with lowest index. This is perhaps more usual to do in an engineering
context, and not so usual in a mathematical context. FIFO.

Clearly, the procedure above defines a linear transformation, and we need to
show that this linear transformation coincides with the procedure we defined for a
forward filter bank transform, for a set of 32 filters. The input to the transforma-
tion are the audio samples, which we will denote by a vector x. At iteration s of
the procedure above the input audio samples are x

32s≠512

, x
32s≠510

, . . . , x
32s≠1

,
and Xi = x

32s≠i≠1

due to the reversal of the input samples. The output to the
transformation at iteration s of the procedure are the S

0

, . . . , S
31

. We assem-
ble these into a vector z, so that the output at iteration s are z

32(s≠1)

= S
0

,
z

32(s≠1)+1

= S
1

,. . . ,z
32(s≠1)+31

= S
31

.
We will have use for the following cosine-properties, which are easily verified:

cos (2fi(n + 1/2)(k + 2Nr)/(2N)) = (≠1)r cos (2fi(n + 1/2)k/(2N)) (6.35)
cos (2fi(n + 1/2)(2N ≠ k)/(2N)) = ≠ cos (2fi(n + 1/2)k/(2N)) . (6.36)

With the terminology above and using Property (6.35) the transformation can
be written as

z
32(s≠1)+n =

63ÿ

k=0

cos((2n + 1)(k ≠ 16)fi/64)Yk =
63ÿ

k=0

cos((2n + 1)(k ≠ 16)fi/64)
7ÿ

j=0

Zk+64j

=
63ÿ

k=0

7ÿ

j=0

(≠1)j cos((2n + 1)(k + 64j ≠ 16)fi/64)Zk+64j

=
63ÿ

k=0

7ÿ

j=0

cos((2n + 1)(k + 64j ≠ 16)fi/64)(≠1)jCk+64jXk+64j

=
63ÿ

k=0

7ÿ

j=0

cos((2n + 1)(k + 64j ≠ 16)fi/64)(≠1)jCk+64jx
32s≠(k+64j)≠1

.
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Now, if we define {hr}511

r=0

by hk+64j = (≠1)jCk+64j , 0 Æ j < 8, 0 Æ k < 64, and
h(n) as the filter with coe�cients {cos((2n + 1)(k ≠ 16)fi/64)hk}511

k=0

, the above
can be simplified as

z
32(s≠1)+n =

511ÿ

k=0

cos((2n + 1)(k ≠ 16)fi/64)hkx
32s≠k≠1

=
511ÿ

k=0

(h(n))kx
32s≠k≠1

= (h(n)x)
32s≠1

= (En≠31

h(n)x)
32(s≠1)+n.

This means that the output of the procedure stated in the MP3 standard can
be computed as a forward filter bank transform, and that we can choose the
analysis filters as Hn = En≠31

h(n).

Theorem 6.24. Forward filter bank transform for the MP3 standard.
Define {hr}511

r=0

by hk+64j = (≠1)jCk+64j , 0 Æ j < 8, 0 Æ k < 64, and h(n)

as the filter with coe�cients {cos((2n + 1)(k ≠ 16)fi/64)hk}511

k=0

. If we define
Hn = En≠31

h(n), the procedure stated in the MP3 standard corresponds to
applying the corresponding forward filter bank transform.

The filters Hn were shown in Example 3.34 as examples of filters which
concentrate on specific frequency ranges. The hk are the filter coe�cients of
what is called a prototype filter. This kind of filter bank is also called a cosine-
modulated filter. The multiplication with cos (2fi(n + 1/2)(k ≠ 16)/(2N)) hk,
modulated the filter coe�cients so that the new filter has a frequency response
which is simply shifted in frequency in a symmetric manner: In Exercise 3.44,
we saw that, by multiplying with a cosine, we could contruct new filters with
real filter coe�cients, which also corresponded to shifting a prototype filter in
frequency. Of course, multiplication with a complex exponential would also shift
the frequency response (such filter banks are called DFT-modulated filter banks),
but the problem with this is that the new filter has complex coe�cients: It will
turn out that cosine-modulated filter banks can also be constructed so that they
are invertible, and that one can find such filter banks where the inverse is easily
found.

The e�ect of the delay in the definition of Hn is that, for each n, the
multiplications with the vector x are “aligned”, so that we can save a lot of
multiplications by performing this multiplication first, and summing these. We
actually save even more multiplications in the sum where j goes from 0 to 7, since
we here multiply with the same cosines. The steps defined in the MP3 standard
are clearly motivated by the desire to reduce the number of multiplications due
to these facts. A simple arithmetic count illutrates these savings: For every 32
output samples, we have the following number of multiplications:

• The first step computes 512 multiplications.

• The second step computes 64 sums of 8 elements each, i.e. a total of
7 ◊ 64 = 448 additions (note that q = 512/64 = 8).
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The standard says nothing about how the matrix multiplication in the third
step can be implemented. A direct multiplication would yield 32 ◊ 64 = 2048
multiplications, leaving a total number of multiplications at 2560. In a direct
implementation of the forward filter bank transform, the computation of 32
samples would need 32 ◊ 512 = 16384 multiplications, so that the procedure
sketched in the standard gives a big reduction.

The standard does not mention all possibilities for saving multiplications,
however: We can reduce the number of multiplications even further, since clearly
a DCT-type implementation can be used for the matrixing operation. We already
have an e�cient implementation for multiplication with a 32 ◊ 32 type-III cosine
matrix (this is simply the IDCT). We have seen that this implementation can
be chosen to reduce the number of multiplications to N log

2

N/2 = 80, so that
the total number of multiplications is 512 + 80 = 592. Clearly then, when we
use the DCT, the first step is the computationally most intensive part.

6.3.2 Reverse filter bank transform in the MP3 standard
Let us now turn to how decoding is specified in the MP3 standard, and see that
we can associate this with a reverse filter bank transform. The MP3 standard
also states the following procedure for decoding:

• Input 32 new subband samples as the vector S.

• Change vector V œ R512, so that all elements are delayed with 64 elements.
In particular the 64 last elements are taken out.

• Set the first 64 elements of V as NS œ R64, where N is the 64 ◊ 32-
matrix where Nik = cos((16 + i)(2k + 1)fi/64). The standard also calls
this matrixing.

• Build the vector U œ R512 from V from the formulas U
64i+j = V

128i+j ,
U

64i+32+j = V
128i+96+j for 0 Æ i Æ 7 and 0 Æ j Æ 31, i.e. U is the vector

where V is first split into segments of length 132, and U is constructed by
assembling the first and last 32 elements of each of these segments.

• Multiply U componentwise with a vector D (this vector is defined in the
standard), to obtain a vector W œ R512. The standard also calls this
windowing.

• Compute the 32 next sound samples as
q

15

i=0

W
32i+j .

To interpret this also in terms of filters, rewrite first steps 4 to 6 as
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x
32(s≠1)+j =

15ÿ

i=0

W
32i+j =

15ÿ

i=0

D
32i+jU

32i+j

=
7ÿ

i=0

D
64i+jU

64i+j +
7ÿ

i=0

D
64i+32+jU

64i+32+j

=
7ÿ

i=0

D
64i+jV

128i+j +
7ÿ

i=0

D
64i+32+jV

128i+96+j . (6.37)

The elements in V are obtained by “matrixing” di�erent segments of the vector
z. More precisely, at iteration s we have that

Q

ccca

V
64r

V
64r+1

...
V

64r+63

R

dddb
= N

Q

ccca

z
32(s≠r≠1)

z
32(s≠r≠1)+1

...
z

32(s≠r≠1)+31

R

dddb
,

so that

V
64r+j =

31ÿ

k=0

cos((16 + j)(2k + 1)fi/64)z
32(s≠r≠1)+k

for 0 Æ j Æ 63. Since also

V
128i+j = V

64(2i)+j V
128i+96+j = V

64(2i+1)+j+32

,

we can rewrite Equation (6.37) as

7ÿ

i=0

D
64i+j

31ÿ

k=0

cos((16 + j)(2k + 1)fi/64)z
32(s≠2i≠1)+k

+
7ÿ

i=0

D
64i+32+j

31ÿ

k=0

cos((16 + j + 32)(2k + 1)fi/64)z
32(s≠2i≠2))+k.

Again using Relation (6.35), this can be written as

31ÿ

k=0

7ÿ

i=0

(≠1)iD
64i+j cos((16 + 64i + j)(2k + 1)fi/64)z

32(s≠2i≠1)+k

+
31ÿ

k=0

7ÿ

i=0

(≠1)iD
64i+32+j cos((16 + 64i + j + 32)(2k + 1)fi/64)z

32(s≠2i≠2)+k.
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Now, if we define {gr}511

r=0

by g
64i+s = (≠1)iC

64i+s, 0 Æ i < 8, 0 Æ s < 64, and
g(k) as the filter with coe�cients {cos((r + 16)(2k + 1)fi/64)gr}511

r=0

, the above
can be simplified as

31ÿ

k=0

7ÿ

i=0

(g(k))
64i+jz

32(s≠2i≠1)+k +
31ÿ

k=0

7ÿ

i=0

(g(k))
64i+j+32

z
32(s≠2i≠2)+k

=
31ÿ

k=0

A
7ÿ

i=0

(g(k))
32(2i)+jz

32(s≠2i≠1)+k +
7ÿ

i=0

(g(k))
32(2i+1)+jz

32(s≠2i≠2)+k

B

=
31ÿ

k=0

15ÿ

r=0

(g(k))
32r+jz

32(s≠r≠1)+k,

where we observed that 2i and 2i + 1 together run through the values from 0 to
15 when i runs from 0 to 7. Since z has the same values as zk on the indices
32(s ≠ r ≠ 1) + k, this can be written as

=
31ÿ

k=0

15ÿ

r=0

(g(k))
32r+j(zk)

32(s≠r≠1)+k

=
31ÿ

k=0

(g(k)zk)
32(s≠1)+j+k =

31ÿ

k=0

((E≠kg(k))zk)
32(s≠1)+j .

By substituting a general s and j we see that x =
q

31

k=0

(E≠kg(k))zk. We have
thus proved the following.

Theorem 6.25. Reverse filter bank transform for the MP3 standard.
Define {gr}511

r=0

by g
64i+s = (≠1)iC

64i+s, 0 Æ i < 8, 0 Æ s < 64, and g(k)

as the filter with coe�cients {cos((r + 16)(2k + 1)fi/64)gr}511

r=0

. If we define
Gk = E≠kg(k), the procedure stated in the MP3 standard corresponds to applying
the corresponding reverse filter bank transform.

In other words, both procedures for encoding and decoding stated in the
MP3 standard both correspond to filter banks: A forward filter bank transform
for the encoding, and a reverse filter bank transform for the decoding. Moreover,
both filter banks can be constructed by cosine-modulating prototype filters, and
the coe�cients of these prototype filters are stated in the MP3 standard (up to
multiplication with an alternating sign). Note, however, that the two prototype
filters may be di�erent. When we compare the two tables for these coe�cients in
the standard they do indeed seem to be di�erent. At closer inspection, however,
one sees a connection: If you multiply the values in the D-table with 32, and
reverse them, you get the values in the C-table. This indicates that the analysis
and synthesis prototype filters are the same, up to multiplication with a scalar.
This connection will be explained in Section 8.3.
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While the steps defined in the MP3 standard for decoding seem a bit more
complex than the steps for encoding, they are clearly also motivated by the
desire to reduce the number of multiplications. In both cases (encoding and
decoding), the window tables (C and D) are in direct connection with the filter
coe�cients of the prototype filter: one simply adds a sign which alternates for
every 64 elements. The standard document does not mention this connection,
and it is perhaps not so simple to find this connection in the literature (but see
[35]).

The forward and reverse filter bank transforms are clearly very related. The
following result clarifies this.

Theorem 6.26. Connection between the forward and reverse filter bank trans-
forms in the MP3 standard.

Assume that a forward filter bank transform has filters on the form Hi =
Ei≠31

h(i) for a prototype filter h. Then G = E
481

HT is a reverse filter bank
transform with filters on the form Gk = E≠kg(k), where g is a prototype filter
where the elements equal the reverse of those in h. Vice versa, H = E

481

GT .

Proof. From Theorem 6.23 we know that HT is a reverse filter bank transform
with filters

(Hi)T = (Ei≠31

h(i))T = E
31≠i(h(i))T .

(h(i))T has filter coe�cients cos((2i + 1)(≠k ≠ 16)fi/64))h≠k. If we delay all
(Hi)T with 481 = 512 ≠ 31 elements as in the theorem, we get a total delay of
512 ≠ 31 + 31 ≠ i = 512 ≠ i elements, so that we get the filter

E
512≠i{cos((2i + 1)(≠k ≠ 16)fi/64))h≠k}k

= E≠i{cos((2i + 1)(≠(k ≠ 512) ≠ 16)fi/64))h≠(k≠512)

}k

= E≠i{cos((2i + 1)(k + 16)fi/64))h≠(k≠512)

}k.

Now, we define the prototype filter g with elements gk = h≠(k≠512)

. This has,
just as h, its support on [1, 511], and consists of the elements from h in reverse
order. If we define g(i) as the filter with coe�cients cos((2i + 1)(k + 16)fi/64))gk,
we see that E

481

HT is a reverse filter bank transform with filters E≠ig(i). Since
g(k) now has been defined as for the MP3 standard, and its elements are the
reverse of those in h, the result follows.

We will have use for this result in Section 8.3, when we find conditions on
the protototype filter in order for the reverse transform to invert the forward
transform. Preferably, the reverse filter bank transform inverts exactly the
forward filter bank transform. In Exercise 6.26 we construct examples which
show that this is not the case. In the same exercise we also find many examples
where the reverse transform does what we would expect. These examples will
also be explained in Section 8.3, where we also will see how one can get around
this so that we obtain a system with perfect reconstruction. It may seem strange
that the MP3 standard does not do this.
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In the MP3 standard, the output from the forward filter bank transform is
processed further, before the result is compressed using a lossless compression
method.

Exercise 6.25: Plotting frequency responses
The values Cq, Dq can be found by calling the functions mp3ctable, mp3dtable
which can be found on the book’s webpage.

a) Use your computer to verify the connection we stated between the tables C
and D, i.e. that Di = 32Ci for all i.

b) Plot the frequency responses of the corresponding prototype filters, and verify
that they both are lowpass filters. Use the connection from Theorem (6.24) to
find the prototype filter coe�cients from the Cq.

Exercise 6.26: Implementing forward and reverse filter bank
transforms
It is not too di�cult to make implementations of the forward and reverse steps
as explained in the MP3 standard. In this exercise we will experiment with this.
In your code you can for simplicity assume that the input and output vectors to
your methods all have lengths which are multiples of 32. Also, use the functions
mp3ctable, mp3dtable mentioned in the previous exercise.

a) Write a function mp3forwardfbt which implements the steps in the forward
direction of the MP3 standard.

b) Write also a function mp3reversefbt which implements the steps in the
reverse direction.

6.4 Summary
We started this chapter by noting that, by reordering the target base of the
DWT, the change of coordinate matrix took a particular form. From this form
we understood that the DWT could be realized in terms of two filters H

0

and
H

1

, and that the IDWT could be realized in a similar way in terms of two filters
G

0

and G
1

. This gave rise to what we called the filter representation of wavelets.
The filter representation gives an entirely di�erent view on wavelets: instead of
constructing function spaces with certain properties and deducing corresponding
filters from these, we can instead construct filters with certain properties (such
as alias cancellation and perfect reconstruction), and attempt to construct
corresponding mother wavelets, scaling functions, and function spaces. This
strategy, which replaces problems from function theory with discrete problems,
will be the subject of the next chapter. In practice this is what is done.

We stated what is required for filter bank matrices to invert each other: The
frequency responses of the lowpass filters needed to satisfy a certain equation,
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and once this is satsified the highpass filters can easily be obtained in the same
way we previously obtained highpass filters from lowpass filters. We will return
to this equation in the next chapter.

A useful consequence of the filter representation was that we could reuse
existing implementations of filters to implement the DWT and the IDWT, and
reuse existing theory, such as symmetric extensions. For wavelets, symmetric
extensions are applied in a slightly di�erent way, when compared to the develop-
ments which lead to the DCT. We looked at the frequency responses of the filters
for the wavelets we have encountered upto now. From these we saw that G

0

, H
0

were lowpass filters, and that G
1

, H
1

were highpass filters, and we argued why
this is typically the case for other wavelets as well. The filter reprersentation
was also easily generalized from 2 to M > 2 filters, and such transformations
had a similar interpretation in terms of splitting the input into a uniform set of
frequencies. Such transforms were generally called filter bank transforms, and
we saw that the processing performed by the MP3 standard could be interpreted
as a certain filter bank transform, called a cosine-modulated filter bank. This
is just one of many possible filter banks. In fact, the filter bank of the MP3
standard is largely outdated, since it is too simple, and as we will see it does not
even give perfect reconstruction (only alias cancellation and no phase distortion).
It is merely chosen here since it is the simplest to present theoretically, and
since it is perhaps the best known standard for compression of sound. Other
filters banks with better properties have been constructed, and they are used in
more recent standards. In many of these filter banks, the filters do not partition
frequencies uniformly, and have been adapted to the way the human auditory
system handles the di�erent frequencies. Di�erent contruction methods are used
to construct such filter banks. The motivation behind filter bank transforms is
that their output is more suitable for further processing, such as compression, or
playback in an audio system, and that they have e�cient implementations.

We mentioned that the MP3 standard does not say how the prototype filters
were chosen. We will have more to say on what dictates their choice in Section 8.3.

There are several di�erences between the use of wavelet transformations
in wavelet theory, and the use of filter bank transforms in signal processing
theory One is that wavelet transforms are typically applied in stages, while filter
bank transforms often are not. Nevertheless, such use of filter banks also has
theoretical importance, and this gives rise to what is called tree-structured filter
banks [47]. Another di�erence lies in the use of the term perfect reconstruction
system. In wavelet theory this is a direct consequence of the wavelet construction,
since the DWT and the IDWT correspond to change of coordinates to and from
the same bases. The alternative QMF filter bank was used as an example
of a filter bank which stems from signal processing, and which also shows
up in wavelet transformation. In signal processing theory, one has a wider
perspective, since one can design many useful systems with fast implementations
when one replaces the perfect reconstruction requirement with a near perfect
reconstruction requirement. One instead requires that the reverse transform
gives alias cancellation. The classical QMF filter banks were an example of this.
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The original definition of classical QMF filter banks are from [9], and di�er only
in a sign from how they are defined here.

All filters we encounter in wavelets and filter banks in this book are FIR.
This is just done to limit the exposition. Much useful theory has been developed
using IIR-filters.

What you should have learned in this chapter.

• How one can find the filters of a wavelet transformation by considering its
matrix and its inverse.

• Forward and reverse filter bank transforms.

• How one can implement the DWT and the IDWT with the help of the
filters.

• Plot of the frequency responses for the filters of the wavelets we have
considered, and their interpretation as low-pass and high-pass filters.



Chapter 7

Constructing interesting
wavelets

In the previous chapter, from an MRA with corresponding scaling function
and mother wavelet, we defined what we called a forward filter bank transform.
We also defined a reverse filter bank transform, but we did not state an MRA
connected to this, or prove if any such association could be made. In this
chapter we will address this. We will also see, if we start with a forward and
reverse filter bank transform, how we can construct corresponding MRA’s, and
for which transforms we can make this construction. We will see that there
is a great deal of flexibility in the filter bank transforms we can construct (as
this is a discrete problem). Actually it is so flexible that we can construct
scaling functions/mother wavelets with any degree of regularity, and well suited
for approximation of functions. This will also explain our previous interest in
vanishing moments, and explain how we can find the simplest filters which give
rise to a given number of vanishing moments, or a given degree of di�erentiability..
Answers to these questions certainly transfer much more theory between wavelets
and filters. Several of these filters enjoy a widespread use in applications. We
will look at two of these. These are used for lossless and lossy compression in
JPEG2000, which is a much used standard. These wavelets all have symmetric
filters. We end the chapter by looking at a family of orthonormal wavelets with
di�erent number of vanishing moments.

7.1 From filters to scaling functions and mother
wavelets

From Theorem 6.9 it follows that the support sizes of these dual functions are
are 4 and 3, respectively, so that their supports should be [≠2, 2] and [≠1, 2],
respectively. This is the reason why we have plotted the functions over [≠2, 2].
The plots seem to confirm the support sizes we have computed.

253
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In our first examples of wavelets in Chapter 5, we started with some bases
og functions �m, and deduced filters G

0

and G
1

from these. If we instead start
with the filters G

0

and G
1

, what properties must they fulfill in order for us to
make an association the opposite way? We should thus demand that there exist
functions „, Â so that

„(t) =
2N≠1ÿ

n=0

(G
0

)n,0„
1,n(t) (7.1)

Â(t) =
2N≠1ÿ

n=0

(G
1

)n,1„
1,n(t) (7.2)

Using Equation (7.1), the Fourier transform of „ is

„̂(Ê) = 1Ô
2fi

⁄ Œ

≠Œ
„(t)e≠iÊtdt = 1Ô

2fi

⁄ Œ

≠Œ

A
ÿ

n

(G
0

)n,0

Ô
2„(2t ≠ n)

B
e≠iÊtdt

= 1Ô
2
Ô

2fi

ÿ

n

⁄ Œ

≠Œ
(G

0

)n,0„(t)e≠iÊ(t+n)/2dt

= 1Ô
2

A
ÿ

n

(G
0

)n,0e≠iÊn/2

B
1Ô
2fi

⁄ Œ

≠Œ
„(t)e≠i(Ê/2)t)dt = ⁄G0(Ê/2)Ô

2
„̂(Ê/2).

(7.3)

Clearly this expression can be continued recursively. We can thus state the
following result.

Theorem 7.1. gN .
Define

gN (Ê) =
NŸ

s=1

⁄G0(Ê/2s)Ô
2

‰
[0,2fi]

(2≠N Ê). (7.4)

Then on [0, 2fi2N ] we have that „̂(‹) = gN (‹)„̂(‹/2N ).

We can now prove the following.

Lemma 7.2. gN (‹) converges.
Assume that

q
n(G

0

)n =
Ô

2 (i.e. ⁄G0(0) =
Ô

2), and that G
0

is a FIR-
filter. Then gN (‹) converges pointwise as N æ Œ to an infinitely di�erentiable
function.

Proof. We need to verify that the infinite product
rŒ

s=1

⁄G0 (2fi‹/2

s
)Ô

2

converges.

Taking logarithms we get
q

s ln
1

⁄G0 (2fi‹/2

s
)Ô

2

2
. To see if this series converges,

we consider the ratio between two successive terms:
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ln
1

⁄G0 (2fi‹/2

s+1
)Ô

2

2

ln
1

⁄G0 (2fi‹/2

s
)Ô

2

2 .

Since
q

n(G
0

)n =
Ô

2, we see that ⁄G0(0) =
Ô

2. Since lim‹æ0

⁄G0(‹) =
Ô

2,
both the numerator and the denominator above tends to 0 (to one inside the

logarithms), so that we can use L’hospital’s rule on
ln

1
⁄G0 (‹/2)

Ô
2

2

ln

1
⁄G0 (‹)

Ô
2

2 to obtain

⁄G0(‹)
⁄G0(‹/2)

q
n(G

0

)n(≠in)e≠in‹/2/2q
n(G

0

)n(≠in)e≠in‹
æ 1

2 < 1

as ‹ æ 0. It follows that the product converges for any ‹. Clearly the conver-
gence is absolute and uniform on compact sets, so that the limit is infinitely
di�erentiable.

It follows that „̂, when „ exists, must be an infinitely di�erentiable function
also. Similarly we get

Â̂(Ê) = 1Ô
2

A
ÿ

n

(G
1

)n≠1,0e≠iÊn/2

B
1Ô
2fi

⁄ Œ

≠Œ
„(t)e≠i(Ê/2)t)dt

= 1Ô
2

A
ÿ

n

(G
1

)n,0e≠iÊ(n+1)/2

B
„̂(Ê/2) = e≠iÊ/2

⁄G1(Ê/2)Ô
2

„̂(Ê/2).

It follows in the same way that Â̂ must be an infinitely di�erentiable function
also.

Now consider the dual filter bank transform,as defined in Chapter 6. Its
synthesis filter are (H

0

)T and (H
1

)T . If there exist a scaling function „̃ and a
mother wavelet Ẫ for the dual transform, they must in the same way be infinitely
di�erentiable. Moreover, „̂, Â̂, ˆ̃„, ˆ̃Â can be found as infinite products of the known
frequency responses. If these functions are in L2R, then we can find unique
functions „, Â, „̃, Ẫ with these as Fourier transforms.

So, our goal is to find filters so that the derived infinite products of the
frequency responses lie in L2(R), and so that the constructed functions „, Â, „̃, Ẫ
give rise to “nice” wavelet bases. Some more technical requirements will be
needed in order for this. In order to state these we should be clear on what we
mean by a “nice” basis in this context. First of all, the bases should together
span all of L2(R). But our bases are not orthogonal, so we should have some
substitute for this. We will need the following definitions.

Definition 7.3. Frame.
Let H be a Hilbert space. A set of vectors {un}n is called a frame of H if

there exist constants A > 0 and B > 0 so that, for any f œ H,
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AÎfÎ2 Æ
ÿ

n

|Èf, unÍ|2 Æ BÎfÎ2.

If A = B, the frame is said to be tight.
Note that, for a frame of H, any f œ H is uniquely characterized by the

inner products Èf, unÍ. Indeed, if both a, b œ H have the same inner products,
then a ≠ b œ H have inner products 0, which implies that a = b from the left
inequality.

For every frame one can find a dual frame {ũn}n which satisfies

1
B

ÎfÎ2 Æ
ÿ

n

|Èf, ũnÍ|2 Æ 1
A

ÎfÎ2,

and

f =
ÿ

n

Èf, unÍũn =
ÿ

n

Èf, ũnÍun. (7.5)

Thus, if the frame is tight, the dual frame is also tight.
A frame is called a Riesz basis if all its vectors also are linearly independent.

One can show that the vectors in the dual frame of a Riesz basis also are linearly
independent, so that the dual frame of a Riesz basis also is a Riesz basis. It is
also called the dual Riesz basis. We will also need the following definition.
Definition 7.4. Biorthogonal bases.

We say that two bases {fn}n, {gm}m are biorthogonal if Èfn, gmÍ = 0
whenever n ”= m, and 1 if n = m.

From Equation (7.5) and linear independence, it is clear that the vectors in
a Riesz basis and in its dual Riesz basis are biorthogonal. In the absence of
orthonormal bases for L2(R), the best we can hope for is dual Riesz bases for
L2(R). The following result explains how we can obtain this from the filters.
Proposition 7.5. Biorthogonality.

Assume that the frequency responses ⁄G0 and ⁄H0 can be written as.

⁄G0(Ê)Ô
2

=
3

1 + e≠iÊ

2

4L

F(Ê) ⁄H0(Ê)Ô
2

=
3

1 + e≠iÊ

2

4˜L

F̃(Ê), (7.6)

where F and F̃ are trigonometric polynomials of finite degree. Assume also that,
for some k, k̃ > 0,

Bk = max
Ê

--F(Ê) · · · F(2k≠1Ê)
--1/k

< 2L≠1/2 (7.7)

B̃k = max
Ê

---F̃(Ê) · · · F̃(2˜k≠1Ê)
---
1/˜k

< 2˜L≠1/2 (7.8)

Then the following hold:
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• „, „̃ œ L2(R), and the corresponding bases �
0

and �̃
0

are biorthogonal.

•  m,n is a Riesz basis of L2(R).

•  ̃m,n is the dual Riesz basis of  m,n. Thus,  m, n and  ̃m,n are biorthog-
onal bases, and for any f œ L2(R),

f =
ÿ

m,n

Èf, Ẫm,nÍÂm,n =
ÿ

m,n

Èf, Âm,nÍẪm,n. (7.9)

If also

Bk < 2L≠1≠m B̃k < 2˜L≠1≠m̃, (7.10)

then

• „, Â are m times di�erentiable and Ẫ has m + 1 vanishing moments,

• „̃, Ẫ are m̃ times di�erentiable and Â has m̃ + 1 vanishing moments.

The proof for Proposition 7.5 is long, technical, and split in many stages.
The entire proof can be found in [7], and we will not go through all of it, only
address some simple parts of it in the following subsections. After that we will
see how we can find G

0

, H
0

so that equations (7.6), (7.7), (7.8) are fulfilled.
Before we continue on this path, several comments are in order.

1. The paper [7] much more general conditions for when filters give rise to a
Riesz basis as stated here. The conditions (7.7), (7.8) are simply chosen because
they apply or the filters we consider.

2. From Equation (7.6) it follows that the flatness in the frequency responses
close to fi explains how good the bases are for approximations, since the number
of vanishing moments is infered from the multiplictity of the zero at fi for the
frequency response.

3. From the result we obtain an MRA (with scaling function „), and a dual
MRA (with scaling function „̃), as well as mother wavelets (Â and Ẫ), and we
can define the resolution spaces Vm and the detail spaces Wm as before, as well
as the “dual resolution spaces” Ṽm, (the spaces spanned by �̃m = {„̃m,n}n) and
“dual detail spaces” W̃m (the spaces spanned by  ̃m = {Ẫm,n}n). In general
Vm is di�erent from Ṽm (except when „ = „̃), and Wm is in general di�erent
from the orthogonal complement of Vm≠1

in Vm (except when „ = „̃, when all
bases are orthonormal), although constructed so that Vm = Vm≠1

ü Wm≠1

. Our
construction thus involves two MRA’s

V
0

µ V
1

µ V
2

µ · · · µ Vm µ · · · Ṽ
0

µ Ṽ
1

µ Ṽ
2

µ · · · µ Ṽm µ · · ·

where there are di�erent scaling functions, satisfying a biorthogonality relation-
ship. This is also called a dual multiresolution analysis.
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4. The DWT and IDWT are defined as before, so that the same change
of coordinates can be applied, as dictated by the filter coe�cients. As will
be seen below, while proving Proposition 7.5 it also follows that the bases
�

0

ü 
0

ü 
1

· · · m≠1

and �̃
0

ü  ̃
0

ü  ̃
1

· · ·  ̃m≠1

are biorthogonal (in addition
to that �m and „̃m are biorthogonal, as stated). For f œ Vm this means that

f(t) =
ÿ

n

Èf(t), „̃m,nÍ„m,n =
ÿ

n

Èf(t), „̃
0,nÍ„

0,n +
ÿ

mÕ<m,n

Èf(t), ẪmÕ,nÍÂmÕ,n,

since this relationship is fulfilled for any linear combination of the {„m,n}n, or
for any of the {„

0,n, ÂmÕ,n}mÕ<m,n, due to biorthogonality. Similarly, for f̃ œ Ṽm

f̃(t) =
ÿ

n

Èf̃(t), „m,nÍ„̃m,n =
ÿ

n

Èf̃(t), „
0,nÍ„̃

0,n +
ÿ

mÕ<m,n

Èf̃(t), ÂmÕ,nÍẪmÕ,n.

It follows that for f œ Vm and for f̃ œ Ṽm the DWT and the IDWT and their
duals can be expressed in terms of inner products as follows.

• The input to the DWT is cm,n = Èf, „̃m,nÍ. The output of the DWT is
c

0,n = Èf, „̃
0,nÍ and wmÕ,n = Èf, ẪmÕ,nÍ

• The input to the dual DWT is c̃m,n = Èf̃ , „m,nÍ. The output of the dual
DWT is c̃

0,n = Èf̃ , „
0,nÍ and w̃mÕ,n = Èf̃ , ÂmÕ,nÍ.

• in the DWT matrix, column k has entries È„
1,k, „̃

0,lÍ, and È„
1,k, Ẫ

0,lÍ (with
a similar expression for the dual DWT).

• in the IDWT matrix, column 2k has entries È„
0,k, „̃

1,lÍ, and column 2k + 1
has entries ÈÂ

0,k, „̃
1,lÍ (with a similar expression for the dual IDWT).

Equation (7.9) comes from eliminating the „m,n by letting m æ Œ.
5. When „ = „̃ (orthonormal MRA’s), the approximations (finite sums)

above coincide with projections onto the spaces Vm, Ṽm, Wm, W̃m. When „ ”= „̃,
however, there are no reasons to believe that these approximations equal the best
approximations to f from Vm. In this case we have no procedure for computing
best approximations. When f is not in Vm, Ṽm we can, however, consider the
approximations

ÿ

n

Èf(t), „̃m,nÍ„m,n(t) œ Vm and
ÿ

n

Èf(t), „m,nÍ„̃m,n(t) œ Ṽm

(when the MRA is orthonormal, this coincides with the best approximation).
Now, we can choose m so large that f(t) =

q
n cn„m,n(t) + ‘(t), with ‘(t) a

small function. The first approximation can now be written

ÿ

n

È
ÿ

nÕ

cnÕ„m,nÕ(t) + ‘(t), „̃m,nÍ„m,n(t) =
ÿ

n

cn„m,n(t) +
ÿ

n

È‘(t), „̃m,nÍ„m,n(t)

= f(t) +
ÿ

n

È‘(t), „̃m,nÍ„m,n(t) ≠ ‘(t).
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Clearly, the di�erence
q

nÈ‘(t), „̃m,nÍ„m,n(t) ≠ ‘(t) from f is small. It may.
however, be hard to compute the cn above, so that instead, as in Theorem 5.33,
one uses 2

≠ms N

0
„m,0(t)dt

f(n/2m)„m,n(t) as an approximation to f (i.e. use sample

values as cn) also in this more general setting.
6. Previously we were taught to think in a periodic or folded way, so that we

could restrict to an interval [0, N ], and to bases of finite dimensions ({„
0,n}N≠1

n=0

).
But the results above are only stated for wavelet bases of infinite dimension. Let
us therefore say something on how the results carry over to our finite dimensional
setting. If f œ L2(R) we can define the function

fper(t) =
ÿ

k

f(t + kN) ffold(t) =
ÿ

k

f(t + 2kN) +
ÿ

k

f(2kN ≠ t).

fper and ffold are seen to be periodic with periods N and 2N . It is easy to see
that the restriction of fper to [0, N ] is in L2([0, N ]), and that the restriction of
ffold to [0, 2N ] is in L2([0, 2N ]). In [6] it is shown that the result above extends
to a similar result for the periodized/folded basis (i.e. Âfold

m,n ), so that we obtain
dual Riesz bases for L2([0, N ]) and L2([0, 2N ]) instead of L2(R). The result on
the vanishing moments does not extend, however. One can, however, alter some
of the basis functions so that one achieves this. This simply changes some of the
columns in the DWT/IDWT matrices. Note that our extension strategy is not
optimal. The extension is usually not di�erentiable at the boundary, so that the
corresponding wavelet coe�cients may be large, even though the wavelet has
many vanishing moments. The only way to get around this would be to find an
extension strategy which gave a more regular extension. However, natural images
may not have high regularity, which would make such an extension strategy
useless.

Sketch of proof for the biorthogonality in Proposition 7.5 (1). We
first show that �

0

and �̃
0

are biorthogonal. Recall that definition (7.4) said
that gN (Ê) =

rN
s=1

⁄G0 (Ê/2

s
)Ô

2

‰
[0,2fi]

(2≠N Ê). Let us similarly define hN (Ê) =
rN

s=1

⁄H0 (Ê/2

s
)Ô

2

‰
[0,2fi]

(2≠N Ê). Recall that gN æ „̂ and hN æ ˆ̃„ pointwise as
N æ Œ. We have that

gN+1

(Ê) = ⁄G0(Ê/2)Ô
2

gN (Ê/2) hN+1

(Ê) = ⁄H0(Ê/2)Ô
2

hN (Ê/2).

gN , hN are compactly supported, and equal to trigonometric polynomials on
their support, so that gN , hN œ L2(R). Since the Fourier transform also is an
isomorphism og L2(R) onto itself, there exist functions uN , vN œ L2(R) so that
gN = ûN , hN = v̂N . Since the above relationship equals that of Equation (7.3),
with „̂ replaced with gN , we must have that
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uN+1

(t) =
ÿ

n

(G
0

)n,0

Ô
2uN (2t ≠ n) vN+1

(t) =
ÿ

n

(H
0

)
0,n

Ô
2vN (2t ≠ n).

Now, note that g
0

(Ê) = h
0

(Ê) = ‰
[0,1]

(Ê). Since Èu
0

, v
0

Í = Èg
0

, h
0

Í we get that

⁄ ≠Œ

Œ
u

0

(t)v
0

(t ≠ k)dt =
⁄ ≠Œ

Œ
g

0

(‹)h
0

(‹)e2fiik‹d‹ =
⁄

2fi

0

e≠2fiik‹d‹ = ”k,0.

Now assume that we have proved that ÈuN (t), vN (t ≠ k)Í = ”k,0. We then get
that

ÈuN+1

(t), vN+1

(t ≠ k)Í = 2
ÿ

n1,n2

(G
0

)n1,0(H
0

)
0,n2ÈuN (2t ≠ n

1

), vN (2(t ≠ k) ≠ n
2

)Í

= 2
ÿ

n1,n2

(G
0

)n1,0(H
0

)
0,n2ÈuN (t), vN (t + n

1

≠ n
2

≠ 2k)Í

=
ÿ

n1,n2|n1≠n2=2k

(G
0

)n1,0(H
0

)
0,n2 =

ÿ

n

(H
0

)
0,n≠2k(G

0

)n,0

=
ÿ

n

(H
0

)
2k,n(G

0

)n,0 =
ÿ

n

H
2k,nGn,0 = (HG)

2k,0 = I
2k,0 = ”k,0

where we did the change of variables u = 2t ≠ n
1

. There is an extra argument to
show that gN æL2 „̂ (stronger than pointwise convergence as was stated above),
so that also uN æL2 „ œ L2(R), since the Fourier transform is an isomorphism
of L2(R) onto itself. It follows that

È„m,k, „̃m,lÍ = lim
NæŒ

ÈuN (t ≠ k), vN (t ≠ l)Í = ”k,l.

While proving this one also establishes that

|„̂(Ê)| Æ C(1 + |Ê|)≠1/2≠‘ | ˆ̃„(Ê)| Æ C(1 + |Ê|)≠1/2≠‘, (7.11)

where ‘ = L ≠ 1/2 ≠ log Bk/ log 2 > 0 due to Assumption (7.7). In the paper
it is proved that this condition implies that the bases constitute dual frames.
The biorthogonality is used to show that they also are dual Riesz bases (i.e. that
they also are linearly independent).

Sketch of proof for the biorthogonality of in Proposition 7.5 (2). The
biorthogonality of  m,n and  ̃m,n can be deduced from the biorthogonality of
�

0

and �̃
0

as follows. We have that
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ÈÂ
0,k, Ẫ

0,lÍ =
ÿ

n1,n2

(G
1

)n1,1(H
1

)
1,n2È„

1,n1+2k(t)„̃
1,n2+2l(t)Í

=
ÿ

n

(G
1

)n,1(H
1

)
1,n+2(k≠l) =

ÿ

n

(H
1

)
1+2(l≠k),n(G

1

)n,1 =
ÿ

n

H
1+2(l≠k),nGn,1

= (HG)
1+2(l≠k),1 = ”k,0.

Similarly,

ÈÂ
0,k„̃

0,lÍ =
ÿ

n1,n2

(G
1

)n1,1(H
0

)
0,n2È„

1,n1+2k(t)„̃
1,n2+2l(t)Í =

ÿ

n

(G
1

)n,1(H
0

)
0,n+2(k≠l)

=
ÿ

n

(H
0

)
2(l≠k),n(G

1

)n,1 =
ÿ

n

H
2(l≠k),nGn,1 = (HG)

2(l≠k),1 = 0

È„
0,kẪ

0,lÍ =
ÿ

n1,n2

(G
0

)n1,0(H
1

)
1,n2È„

1,n1+2k(t)„̃
1,n2+2l(t)Í =

ÿ

n

(G
0

)n,0(H
1

)
1,n+2(k≠l)

=
ÿ

n

(H
1

)
1+2(l≠k),n(G

0

)n,0 =
ÿ

n

H
1+2(l≠k),nGn,0 = (HG)

1+2(l≠k),0 = 0.

From this we also get with a simple change of coordinates that

ÈÂm,k, Ẫm,lÍ = ÈÂm,k, „̃m,lÍ = È„m,k, Ẫm,lÍ = 0.

Finally, if mÕ < m, „mÕ,kÕ , ÂmÕ,k can be written as a linear combination of „m,l,
so that È„mÕ,k, Ẫm,lÍ = ÈÂmÕ,k, Ẫm,lÍ = 0 due to what we showed above. Similarly,
È„̃mÕ,k, Âm,lÍ = ÈẪmÕ,k, Âm,lÍ = 0.

Regularity and vanishing moments. Now assume also that Bk < 2L≠1≠m,
so that log Bk < L≠1≠m. We have that ‘ = L≠1/2≠ log Bk/ log 2 > L≠1/2≠
L + 1 + m = m + 1/2, so that |„̂(Ê)| < C(1 + |Ê|)≠1/2≠‘ = C(1 + |Ê|)≠m≠1≠”

for some ” > 0. This implies that „̂(Ê)(1 + |Ê|)m < C(1 + |Ê|)≠1≠” œ L1. An
important property of the Fourier transform is that „̂(Ê)(1 + |Ê|)m œ L1 if and
only if „ is m times di�erentiable. This property implies that „, and thus Â is
m times di�erentiable. Similarly, „̃, Ẫ are m̃ times di�erentiable.

In [7] it is also proved that if

• Âm,n and Ẫm,n are biorthogonal bases,

• Â is m times di�erentiable with all derivatives Â(l)(t) of order l Æ m
bounded, and

• Ẫ(t) < C(1 + |t|)m+1,

then Ẫ has m + 1 vanisning moments. In our case we have that Â and Ẫ have
compact support, so that these conditions are satisfied. It follows that Ẫ has
m + 1 vanisning moments.
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In the next section we will construct a wide range of forward and reverse
filter bank transforms which invert each other, and which give rise to wavelets.

In [7] one checks that many of these wavelets satisfy (7.7) and (7.8) (implying
that they give rise to dual Riesz bases for L2(R)), or the more general (7.10)
(implying a certain regularity and a certain number of vanishing moments).
Requirements on the filters lengths in order to obtain a given number of vanishing
moments are also stated.

Exercise 7.1: Implementation of the cascade algorithm
a) In the code above, we turned o� symmetric extensions (the symm-argument is
0). Attempt to use symmetric extensions instead, and observe the new plots you
obtain. Can you explain why these new plots do not show the correct functions,
while the previous plots are correct?

Exercise 7.2: Using the cascade algorithm
In Exercise 6.20 we constructed a new mother wavelet Â̂ for piecewise linear
functions by finding constants –, —, “, ” so that

Â̂ = Â ≠ –„
0,0 ≠ —„

0,1 ≠ ”„
0,2 ≠ “„

0,N≠1

.

Use the cascade algorithm to plot Â̂. Do this by using the wavelet kernel for
the piecewise linear wavelet (do not use the code above, since we have not
implemented kernels for this wavelet yet).

7.2 Vanishing moments
The scaling functions and mother wavelets we constructed in Chapter 5 were
very simple. They were however, enough to provide scaling functions which
were di�erentiable. This may clearly be important for signal approximation, at
least in cases where we know certain things about the regularity of the functions
we approximate. However, there seemed to be nothing which dictated how the
mother wavelet should be chosen in order to be useul. To see that this may pose
a problem, consider the mother wavelet we hose for piecewise linear functions.
Set N = 1 and consider the space V

10

, which has dimension 210. When we
apply a DWT, we start with a function g

10

œ V
10

. This may be a very good
representation of the underlying data. However, when we compute gm≠1

we
just pick every other coe�cient from gm. By the time we get to g

0

we are just
left with the first and last coe�cient from g

10

. In some situations this may be
adequate, but usually not.

Idea 7.6. Approximation.
We would like a wavelet basis to be able to represent f e�ciently. By this

we mean that the approximation f (m) =
q

n c
0,n„

0,n +
q

mÕ<m,n wmÕ,nÂmÕ,n

to f from Observation 7.9 should converge quickly for the f we work with, as
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m increases. This means that, with relatively few Âm,n, we can create good
approximations of f .

In this section we will address a property which the mother wavelet must
fulfill in order to be useful in this respect. To motivate this property, let us first
use decompose f œ Vm as

f =
N≠1ÿ

n=0

Èf, „̃
0,nÍ„

0,n +
m≠1ÿ

r=0

2

rN≠1ÿ

n=0

Èf, Ẫr,nÍÂr,n. (7.12)

If f is s times di�erentiable, it can be represented as f = Ps(x) + Qs(x), where
Ps is a polynomial of degree s, and Qs is a function which is very small (Ps

could for instance be a Taylor series expansion of f). If in addition Ètk, ẪÍ = 0,
for k = 1, . . . , s, we have also that Ètk, Ẫr,tÍ = 0 for r Æ s, so that ÈPs, Ẫr,tÍ = 0
also. This means that Equation (7.12) can be written

f =
N≠1ÿ

n=0

ÈPs + Qs, „̃
0,nÍ„

0,n +
m≠1ÿ

r=0

2

rN≠1ÿ

n=0

ÈPs + Qs, Ẫr,nÍÂr,n

=
N≠1ÿ

n=0

ÈPs + Qs, „̃
0,nÍ„

0,n +
m≠1ÿ

r=0

2

rN≠1ÿ

n=0

ÈPs, Ẫr,nÍÂr,n +
m≠1ÿ

r=0

2

rN≠1ÿ

n=0

ÈQs, Ẫr,nÍÂr,n

=
N≠1ÿ

n=0

Èf, „̃
0,nÍ„

0,n +
m≠1ÿ

r=0

2

rN≠1ÿ

n=0

ÈQs, Ẫr,nÍÂr,n.

Here the first sum lies in V
0

. We see that the wavelet coe�cients from Wr are
ÈQs, Ẫr,nÍ, which are very small since Qs is small. This means that the detail in
the di�erent spaces Wr is very small, which is exactly what we aimed for. Let
us summarize this as follows:

Theorem 7.7. Vanishing moments.
If a function f œ Vm is r times di�erentiable, and Ẫ has r vanishing mo-

ments, then f can be approximated well from V
0

. Moreover, the quality of this
approximation improves when r increases.

Having many vanishing moments is thus very good for compression, since
the corresponding wavelet basis is very e�cient for compression. In particular,
if f is a polynomial of degree less than or equal to k ≠ 1 and Ẫ has k vanishing
moments, then the detail coe�cients wm,n are exactly 0. Since („, Â) and („̃,
Ẫ) both are wavelet bases, it is equally important for both to have vanishing
moments. We will in the following concentrate on the number of vanishing
moments of Â.

The Haar wavelet has one vanishing moment, since Ẫ = Â and
s N

0

Â(t)dt = 0
as we noted in Observation 5.14. It is an exercise to see that the Haar wavelet
has only one vanishing moment, i.e.

s N

0

tÂ(t)dt ”= 0.
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Theorem 7.8. Vanishing moments.
Assume that the filters are chosen so that the scaling functions exist. Then

the following hold

• The number of vanishing moments of Ẫ equals the multiplicity of a zero at
Ê = fi for ⁄G0(Ê).

• The number of vanishing moments of Â equals the multiplicity of a zero at
Ê = fi for ⁄H0(Ê).

number of vanishing moments of Â, Ẫ equal the multiplicities of the zeros of the
frequency responses ⁄H0(Ê), ⁄G0(Ê), respectively, at Ê = fi.

In other words, the flatter the frequency responses ⁄H0(Ê) and ⁄G0(Ê) are near
high frequencies (Ê = fi), the better the wavelet functions are for approximation
of functions. This is analogous to the smoothing filters we constructed previously,
where the use of values from Pascals triangle resulted in filters which behaved
like the constant function one at low frequencies. The frequency response for the
Haar wavelet had just a simple zero at fi, so that it cannot represent functions
e�ciently. The result also proves why we should consider G

0

, H
0

as lowpass
filters, G

1

, H
1

as highpass filters.

Proof. We have that

⁄s≠Ẫ(≠t)(‹) = ≠
⁄ Œ

≠Œ
Ẫ(≠t)e≠2fii‹tdt. (7.13)

By di�erentiating this expression k times w.r.t. ‹ (di�erentiate under the integral
sign) we get

(⁄s≠Ẫ(≠t))
(k)(‹) = ≠

⁄
(≠2fiit)kẪ(t)e≠2fii‹tdt. (7.14)

Evaluating this at ‹ = 0 gives

(⁄s≠Ẫ(≠t))
(k)(0) = ≠

⁄
(≠2fiit)kẪ(t)dt. (7.15)

From this expression it is clear that the number of vanishing moments of Ẫ
equals the multiplicity of a zero at ‹ = 0 for ⁄s≠Ẫ(≠t)(‹), which we have already
shown equals the multiplicity of a zero at Ê = 0 for ⁄H1(Ê). Similarly it follows
that the number of vanishing moments of Â equals the multiplicity of a zero at
Ê = 0 for ⁄G1(Ê). Since we know that ⁄G0(Ê) has the same number of zeros at
fi as ⁄H1(Ê) has at 0, and ⁄H0(Ê) has the same number of zeros at fi as ⁄G1(Ê)
has at 0, the result follows.

These results explain how we can construct „, Â, „̃, Ẫ from FIR-filters H
0

,
H

1

, G
0

, G
1

satisfying the perfect reconstruction condition. Also, the results
explain how we can obtain such functions with as much di�erentiability and
as many vanishing moments as we want. We will use these results in the next
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section to construct interesting wavelets. There we will also cover how we can
construct the simplest possible such filters.

There are some details which have been left out in this section: We have not
addressed why the wavelet bases we have constructed are linearly independent,
and why they span L2(R). Dual Riesz bases. These details are quite technical,
and we refer to [7] for them. Let us also express what we have found in terms of
analog filters.

Observation 7.9. Analog filters.
Let

f(t) =
ÿ

n

cm,n„m,n =
ÿ

n

c
0,n„

0,n +
ÿ

mÕ<m,n

wmÕ,nÂmÕ,n œ Vm.

cm,n and wm,n can be computed by sampling the output of an analog filter. To
be more precise,

cm,n = Èf, „̃m,nÍ =
⁄ N

0

f(t)„̃m,n(t)dt =
⁄ N

0

(≠„̃m,0(≠t))f(2≠mn ≠ t)dt

wm,n = Èf, Ẫm,nÍ =
⁄ N

0

f(t)Ẫm,n(t)dt =
⁄ N

0

(≠Ẫm,0(≠t))f(2≠mn ≠ t)dt.

In other words, cm,n can be obtained by sampling s≠ ˜„m,0(≠t)

(f(t)) at the points
2≠mn, wm,n by sampling s≠ ˜Âm,0(≠t)

(f(t)) at 2≠mn, where the analog filters
s≠ ˜„m,0(≠t)

, s≠ ˜Âm,0(≠t)

were defined in Theorem 1.25, i.e.

s≠ ˜„m,0(≠t)

(f(t)) =
⁄ N

0

(≠„̃m,0(≠s))f(t ≠ s)ds (7.16)

s≠ ˜Âm,0(≠t)

(f(t)) =
⁄ N

0

(≠Ẫm,0(≠s))f(t ≠ s)ds. (7.17)

A similar statement can be made for f̃ œ Ṽm. Here the convolution kernels
of the filters were as before, with the exception that „, Â were replaced by „̃, Ẫ.
Note also that, if the functions „̃, Ẫ are symmetric, we can increase the precision
in the DWT with the method of symmetric extension also in this more general
setting.

7.3 Characterization of wavelets w.r.t. number
of vanishing moments

We have seen that wavelets are particularly suitable for approximation of func-
tions when the mother wavelet or the dual mother wavelet have vanishing
moments. The more vanishing moments they have, the more attractive they
are. In this section we will attempt to characterize wavelets which have a given
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number of vanishing moments. In particular we will characterize the simplest
such, those where the filters have few filters coe�cients.

There are two particular cases we will look at. First we will consider the case
when all filters are symmetric. Then we will look at the case of orthonormal
wavelets. It turns out that these two cases are mutually disjoint (except for
trivial examples), but that there is a common result which can be used to
characterize the solutions to both problems. We will state the results in terms
of the multiplicities of the zeros of ⁄H0 , ⁄G0 at fi, which we proved are the same
as the number of vanishing moments.

7.3.1 Symmetric filters
The main result when the filters are symmetric looks as follows.

Theorem 7.10. Wavelet criteria.
Assume that H

0

, H
1

, G
0

, G
1

are the filters of a wavelet, and that

• the filters are symmetric,

• ⁄H0 has a zero of multiplicity N
1

at fi,

• ⁄G0 has a zero of multiplicity N
2

at fi.

Then N
1

and N
2

are even, and there exist a polynomial Q which satisfies

u(N1+N2)/2Q(1 ≠ u) + (1 ≠ u)(N1+N2)/2Q(u) = 2. (7.18)

so that ⁄H0(Ê), ⁄G0(Ê) can be written on the form

⁄H0(Ê) =
3

1
2(1 + cos Ê)

4N1/2

Q
1

3
1
2(1 ≠ cos Ê)

4
(7.19)

⁄G0(Ê) =
3

1
2(1 + cos Ê)

4N2/2

Q
2

3
1
2(1 ≠ cos Ê)

4
, (7.20)

where Q = Q
1

Q
2

.

Proof. Since the filters are symmetric, ⁄H0(Ê) = ⁄H0(≠Ê) and ⁄G0(Ê) =
⁄G0(≠Ê). Since einÊ + e≠inÊ = 2 cos(nÊ), and since cos(nÊ) is the real part of
(cos Ê + i sin Ê)n, which is a polynomial in cosk Ê sinl Ê with l even, and since
sin2 Ê = 1≠ cos2 Ê, ⁄H0 and ⁄G0 can both be written on the form P (cos Ê), with
P a real polynomial.

Note that a zero at fi in ⁄H0 , ⁄G0 corresponds to a factor of the form 1+e≠iÊ,
so that we can write

⁄H0(Ê) =
3

1 + e≠iÊ

2

4N1

f(eiÊ) = e≠iN1Ê/2 cosN1(Ê/2)f(eiÊ),
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where f is a polynomial. In order for this to be real, we must have that
f(eiÊ) = eiN1Ê/2g(eiÊ) where g is real-valued, and then we can write g(eiÊ) as a
real polynomial in cos Ê. This means that ⁄H0(Ê) = cosN1(Ê/2)P

1

(cos Ê), and
similarly for ⁄G0(Ê). Clearly this can be a polynomial in eiÊ only if N

1

is even.
Both N

1

and N
2

must then be even, and we can write

⁄H0(Ê) = cosN1(Ê/2)P
1

(cos Ê) = (cos2(Ê/2))N1/2P
1

(1 ≠ 2 sin2(Ê/2))
= (cos2(Ê/2))N1/2Q

1

(sin2(Ê/2)),

where we have used that cos Ê = 1 ≠ 2 sin2(Ê/2), and defined Q
1

by the relation
Q

1

(x) = P
1

(1≠2x). Similarly we can write ⁄G0(Ê) = (cos2(Ê/2))N2/2Q
2

(sin2(Ê/2))
for another polynomial Q

2

. Using the identities

cos2

Ê

2 = 1
2(1 + cos Ê) sin2

Ê

2 = 1
2(1 ≠ cos Ê),

we see that ⁄H0 and ⁄G0 satisfy equations (7.19) and (7.20). With Q = Q
1

Q
2

,
Equation (6.25) can now be rewritten as

2 = ⁄G0(Ê)⁄H0(Ê) + ⁄G0(Ê + fi)⁄H0(Ê + fi)

=
!
cos2(Ê/2)

"
(N1+N2)/2

Q(sin2(Ê/2)) +
!
cos2((Ê + fi)/2)

"
(N1+N2)/2

Q(sin2((Ê + fi)/2))
= (cos2(Ê/2))(N1+N2)/2Q(sin2(Ê/2)) + (sin2(Ê/2))(N1+N2)/2Q(cos2(Ê/2))
= (cos2(Ê/2))(N1+N2)/2Q(1 ≠ cos2(Ê/2)) + (1 ≠ cos2(Ê/2))(N1+N2)/2Q(cos2(Ê/2))

Setting u = cos2(Ê/2) we see that Q must fulfill the equation

u(N1+N2)/2Q(1 ≠ u) + (1 ≠ u)(N1+N2)/2Q(u) = 2,

which is Equation (7.18). This completes the proof.

While this result characterizes all wavelets with a given number of vanishing
moments, it does not say which of these have fewest filter coe�cients. The
polynomial Q decides the length of the filters H

0

, G
0

, however, so that what we
need to do is to find the polynomial Q of smallest degree. In this direction, note
first that the polynomials uN1+N2 and (1 ≠ u)N1+N2 have no zeros in common.
Bezouts theorem, proved in Section 7.3.3, states that the equation

uN q
1

(u) + (1 ≠ u)N q
2

(u) = 1 (7.21)
has unique solutions q

1

, q
2

with deg(q
1

), deg(q
2

) < (N
1

+ N
2

)/2. To find these
solutions, substituting 1 ≠ u for u gives the following equations:

uN q
1

(u) + (1 ≠ u)N q
2

(u) = 1
uN q

2

(1 ≠ u) + (1 ≠ u)N q
1

(1 ≠ u) = 1,



CHAPTER 7. CONSTRUCTING INTERESTING WAVELETS 268

and uniqueness in Bezouts theorem gives that q
1

(u) = q
2

(1 ≠ u), and q
2

(u) =
q

1

(1 ≠ u). Equation (7.21) can thus be stated as

uN q
2

(1 ≠ u) + (1 ≠ u)N q
2

(u) = 1,

and comparing with Equation (7.18) (set N = (N
1

+ N
2

)/2) we see that Q(u) =
2q

2

(u). uN q
1

(u) + (1 ≠ u)N q
2

(u) = 1 now gives

q
2

(u) = (1 ≠ u)≠N (1 ≠ uN q
1

(u)) = (1 ≠ u)≠N (1 ≠ uN q
2

(1 ≠ u))

=
A

N≠1ÿ

k=0

3
N + k ≠ 1

k

4
uk + O(uN )

B
(1 ≠ uN q

2

(1 ≠ u))

=
N≠1ÿ

k=0

3
N + k ≠ 1

k

4
uk + O(uN ),

where we have used the first N terms in the Taylor series expansion of (1 ≠ u)≠N

around 0. Since q
2

is a polynomial of degree N ≠ 1, we must have that

Q(u) = 2q
2

(u) = 2
N≠1ÿ

k=0

3
N + k ≠ 1

k

4
uk. (7.22)

Define Q(N)(u) = 2
qN≠1

k=0

!
N+k≠1

k

"
uk. The first Q(N) are

Q(1)(u) = 2 Q(2)(u) = 2 + 4u

Q(3)(u) = 2 + 6u + 12u2 Q(4)(u) = 2 + 8u + 20u2 + 40u3,

for which we compute

Q(1)

3
1
2(1 ≠ cos Ê)

4
= 2

Q(2)

3
1
2(1 ≠ cos Ê)

4
= ≠e≠iÊ + 4 ≠ eiÊ

Q(3)

3
1
2(1 ≠ cos Ê)

4
= 3

4e≠2iÊ ≠ 9
2e≠iÊ + 19

2 ≠ 9
2eiÊ + 3

4e2iÊ

Q(4)

3
1
2(1 ≠ cos Ê)

4
= ≠5

8e≠3iÊ + 5e≠2iÊ ≠ 131
8 e≠iÊ + 26 ≠ 131

8 eiÊ + 5e2iÊ ≠ 5
8e3iÊ,

Thus in order to construct wavelets where ⁄H0 , ⁄G0 have as many zeros at fi as
possible, and where there are as few filter coe�cients as possible, we need to
compute the polynomials above, factorize them into polynomials Q

1

and Q
2

,
and distribute these among ⁄H0 and ⁄G0 . Since we need real factorizations, we
must in any case pair complex roots. If we do this we obtain the factorizations
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Q(1)

3
1
2(1 ≠ cos Ê)

4
= 2

Q(2)

3
1
2(1 ≠ cos Ê)

4
= 1

3.7321(eiÊ ≠ 3.7321)(e≠iÊ ≠ 3.7321)

Q(3)

3
1
2(1 ≠ cos Ê)

4
= 3

4
1

9.4438(e2iÊ ≠ 5.4255eiÊ + 9.4438)

◊ (e≠2iÊ ≠ 5.4255e≠iÊ + 9.4438)

Q(4)

3
1
2(1 ≠ cos Ê)

4
= 5

8
1

3.0407
1

7.1495(eiÊ ≠ 3.0407)(e2iÊ ≠ 4.0623eiÊ + 7.1495)

◊ (e≠iÊ ≠ 3.0407)(e≠2iÊ ≠ 4.0623e≠iÊ + 7.1495), (7.23)

The factors in these factorizations can be distributed as factors in the frequency
responses of ⁄H0(Ê), and ⁄G0(Ê). One possibility is to let one of these frequency
responses absorb all the factors, another possibility is to split the factors as evenly
as possible across the two. When a frequency response absorbs more factors, the
corresponding filter gets more filter coe�cients. In the following examples, both
factor distribution strategies will be encountered. Note that it is straightforward
to use your computer to factor Q into a product of polynomials Q

1

and Q
2

.
First the roots function can be used to find the roots in the polynomials. Then
the conv function can be used to multiply together factors corresponding to
di�erent roots, to obtain the coe�cients in the polynomials Q

1

and Q
2

.

7.3.2 Orthonormal wavelets
Now we turn to the case of orthonormal wavelets, i.e. where G

0

= (H
0

)T ,
G

1

= (H
1

)T . For simplicity we will assume d = 0, – = ≠1 in conditions
(6.23) and (6.24) (this corresponded to requiring ⁄H1(Ê) = ≠⁄H0(Ê + fi) in the
definition of alternative QMF filter banks). We will also assume for simplicity
that G

0

is causal, meaning that t≠1

, t≠2

, . . . all are zero (the other solutions can
be derived from this). We saw that the Haar wavelet was such an orthonormal
wavelet. We have the following result:

Theorem 7.11. Criteria for perfect reconstruction.
Assume that H

0

, H
1

, G
0

, G
1

are the filters of an orthonormal wavelet (i.e. H
0

=
(G

0

)T and H
1

= (G
1

)T ) which also is an alternative QMF filter bank (i.e. ⁄H1(Ê) =
≠⁄H0(Ê + fi)). Assume also that ⁄G0(Ê) has a zero of multiplicity N at fi and
that G

0

is causal. Then there exists a polynomial Q which satisfies

uN Q(1 ≠ u) + (1 ≠ u)N Q(u) = 2, (7.24)

so that if f is another polynomial which satisfies f(eiÊ)f(e≠iÊ) = Q
!

1

2

(1 ≠ cos Ê)
"
,

⁄G0(Ê) can be written on the form
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⁄G0(Ê) =
3

1 + e≠iÊ

2

4N

f(e≠iÊ), (7.25)

We avoided stating ⁄H0(Ê) in this result, since the relation H
0

= (G
0

)T gives
that ⁄H0(Ê) = ⁄G0(Ê). In particular, ⁄H0(Ê) also has a zero of multiplicity N
at fi. That G

0

is causal is included to simplify the expression further.

Proof. The proof is very similar to the proof of Theorem 7.10. N vanishing
moments and that G

0

is causal means that we can write

⁄G0(Ê) =
3

1 + e≠iÊ

2

4N

f(e≠iÊ) = (cos(Ê/2))N e≠iNÊ/2f(e≠iÊ),

where f is a real polynomial. Also

⁄H0(Ê) = ⁄G0(Ê) = (cos(Ê/2))N eiNÊ/2f(eiÊ).

Condition (6.25) now says that

2 = ⁄G0(Ê)⁄H0(Ê) + ⁄G0(Ê + fi)⁄H0(Ê + fi)
= (cos2(Ê/2))N f(eiÊ)f(e≠iÊ) + (sin2(Ê/2))N f(ei(Ê+fi))f(e≠i(Ê+fi)).

Now, the function f(eiÊ)f(e≠iÊ) is symmetric around 0, so that it can be written
on the form P (cos Ê) with P a polynomial, so that

2 = (cos2(Ê/2))N P (cos Ê) + (sin2(Ê/2))N P (cos(Ê + fi))
= (cos2(Ê/2))N P (1 ≠ 2 sin2(Ê/2)) + (sin2(Ê/2))N P (1 ≠ 2 cos2(Ê/2)).

If we as in the proof of Theorem 7.10 define Q by Q(x) = P (1 ≠ 2x), we can
write this as

(cos2(Ê/2))N Q(sin2(Ê/2)) + (sin2(Ê/2))N Q(cos2(Ê/2)) = 2,

which again gives Equation (7.18) for finding Q. What we thus need to do
is to compute the polynomial Q

!
1

2

(1 ≠ cos Ê)
"

as before, and consider the
di�erent factorizations of this on the form f(eiÊ)f(e≠iÊ). Since this polynomial
is symmetric, a is a root if and only 1/a is, and if and only if ā is. If the real
roots are

b
1

, . . . ., bm, 1/b
1

, . . . , 1/bm,

and the complex roots are



CHAPTER 7. CONSTRUCTING INTERESTING WAVELETS 271

a
1

, . . . , an, a
1

, . . . , an and 1/a
1

, . . . , 1/an, 1/a
1

, . . . , 1/an,

we can write

Q

3
1
2(1 ≠ cos Ê)

4

= K(e≠iÊ ≠ b
1

) . . . (e≠iÊ ≠ bm)
◊ (e≠iÊ ≠ a

1

)(e≠iÊ ≠ a
1

)(e≠iÊ ≠ a
2

)(e≠iÊ ≠ a
2

) · · · (e≠iÊ ≠ an)(e≠iÊ ≠ an)
◊ (eiÊ ≠ b

1

) . . . (eiÊ ≠ bm)
◊ (eiÊ ≠ a

1

)(eiÊ ≠ a
1

)(eiÊ ≠ a
2

)(eiÊ ≠ a
2

) · · · (eiÊ ≠ an)(eiÊ ≠ an)

where K is a constant. We now can define the polynomial f by

f(eiÊ) =
Ô

K(eiÊ ≠ b
1

) . . . (eiÊ ≠ bm)
◊ (eiÊ ≠ a

1

)(eiÊ ≠ a
1

)(eiÊ ≠ a
2

)(eiÊ ≠ a
2

) · · · (eiÊ ≠ an)(eiÊ ≠ an)

in order to obtain a factorization Q
!

1

2

(1 ≠ cos Ê)
"

= f(eiÊ)f(e≠iÊ). This con-
cludes the proof.

In the previous proof we note that the polynomial f is not unique - we could
pair the roots in many di�erent ways. The new algorithm is thus as follows:

• As before, write Q
!

1

2

(1 ≠ cos Ê)
"

as a polynomial in eiÊ, and find the
roots.

• Split the roots into the two classes

{b
1

, . . . ., bm, a
1

, . . . , an, a
1

, . . . , an}
and

{1/b
1

, . . . , 1/bm, 1/a
1

, . . . , 1/an, 1/a
1

, . . . , 1/an},

and form the polynomial f as above.

• Compute ⁄G0(Ê) =
1

1+e≠iÊ

2

2N

f(e≠iÊ).

Clearly the filters obtained with this strategy are not symmetric since f is not
symmetric. In Section 7.6 we will take a closer look at wavelets constructed in
this way.
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7.3.3 The proof of Bezouts theorem
Theorem 7.12. Existence of polynomials.

If p
1

and p
2

are two polynomials, of degrees n
1

and n
2

respectively, with no
common zeros, then there exist unique polynomials q

1

, q
2

, of degree less than
n

2

, n
1

, respectively, so that

p
1

(x)q
1

(x) + p
2

(x)q
2

(x) = 1. (7.26)

Proof. We first establish the existence of q
1

, q
2

satisfying Equation (7.26). Denote
by deg(P ) the degree of the polynomial P . Renumber the polynomials if necessary,
so that n

1

Ø n
2

. By polynomial division, we can now write

p
1

(x) = a
2

(x)p
2

(x) + b
2

(x),

where deg(a
2

) = deg(p
1

) ≠ deg(p
2

), deg(b
2

) < deg(p
2

). Similarly, we can write

p
2

(x) = a
3

(x)b
2

(x) + b
3

(x),

where deg(a
3

) = deg(p
2

) ≠ deg(b
2

), deg(b
3

) < deg(b
2

). We can repeat this
procedure, so that we obtain a sequence of polynomials an(x), bn(x) so that

bn≠1

(x) = an+1

(x)bn(x) + bn+1

(x), (7.27)

where deg an+1

= deg(bn≠1

) ≠ deg(bn), deg(bn+1

< deg(bn). Since deg(bn) is
strictly decreasing, we must have that bN+1

= 0 and bN ”= 0 for some N ,
i.e. bN≠1

(x) = aN+1

(x)bN (x). Since bN≠2

= aN bN≠1

+ bN , it follows that bN≠2

can be divided by bN , and by induction that all bn can be divided by bN , in
particlar p

1

and p
2

can be divided by bN . Since p
1

and p
2

have no common
zeros, bN must be a nonzero constant.

Using Equation (7.27), we can write recursively

bN = bN≠2

≠ aN bN≠1

= bN≠2

≠ aN (bN≠3

≠ aN≠1

bN≠2

)
= (1 + aN aN≠1

)bN≠2

≠ aN bN≠3

.

By induction we can write

bN = a(1)

N,kbN≠k + a(2)

N,kbN≠k≠1

.

We see that the leading order term for a(1)

N,k is aN · · · aN≠k+1

, which has degree

(deg(bN≠2

)≠deg(bN≠1

)+· · ·+(deg(bN≠k≠1

)≠deg(bN≠k) = deg(bN≠k≠1

)≠deg(bN≠1

),

while the leading order term for a(2)

N,k is aN · · · aN≠k+2

, which similarly has order
deg(bN≠k) ≠ deg(bN≠1

). For k = N ≠ 1 we find
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bN = a(1)

N,N≠1

b
1

+ a(2)

N,N≠1

b
0

= a(1)

N,N≠1

p
2

+ a(2)

N,N≠1

p
1

, (7.28)

with deg(a(1)

N,N≠1

) = deg(p
1

) ≠ deg(bN≠1

) < deg(p
1

) (since by construction
deg(bN≠1

) > 0), and deg(a(2)

N,N≠1

) = deg(p
2

) ≠ deg(bN≠1

) < deg(p
2

). From
Equation (7.28) it follows that q

1

= a(2)

N,N≠1

/bN and q
2

a(1)

N,N≠1

/bN satisfies
Equation (7.26), and that they satisfy the required degree constraints.

Now we turn to uniquness of solutions q
1

, q
2

. Assume that r
1

, r
2

are two
other solutions to Equation (7.26). Then

p
1

(q
1

≠ r
1

) + p
2

(q
2

≠ r
2

) = 0.

Since p
1

and p
2

have no zeros in common this means that every zero of p
2

is a
zero of q

1

≠ r
1

, with at least the same multiplicity. If q
1

”= r
1

, this means that
deg(q

1

≠ r
1

) Ø deg(p
2

), which is impossible since deg(q
1

) < deg(p
2

), deg(r
1

) <
deg(p

2

). Hence q
1

= r
1

. Similarly q
2

= r
2

, establishing uniqueness.

Exercise 7.3: Compute filters
Compute the filters H

0

, G
0

in Theorem 7.10 when N = N
1

= N
2

= 4, and
Q

1

= Q(4), Q
2

= 1. Compute also filters H
1

, G
1

so that we have perfect
reconstruction (note that these are not unique).

7.4 A design strategy suitable for lossless com-
pression

We choose Q
1

= Q, Q
2

= 1. In this case there is no need to find factors in Q.
The frequency responses of the filters in the filter factorization are

⁄H0(Ê) =
3

1
2(1 + cos Ê)

4N1/2

Q(N)

3
1
2 (1 ≠ cos Ê)

4

⁄G0(Ê) =
3

1
2(1 + cos Ê)

4N2/2

, (7.29)

where N = (N
1

+N
2

)/2. Since Q(N) has degree N ≠1, ⁄H0 has degree N
1

+N
1

+
N

2

≠ 2 = 2N
1

+ N
2

≠ 2, and ⁄G0 has degree N
2

. These are both even numbers,
so that the filters have odd length. The names of these filters are indexed by
the filter lengths, and are called Spline wavelets, since, as we now now will show,
the scaling function for this design strategy is the B-spline of order N

2

: we have
that

⁄G0(Ê) = 1
2N2/2

(1 + cos Ê)N2/2 = cos(Ê/2)N2 .
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Letting s be the analog filter with convolution kernel „ we can as in Equation
(7.3) write

⁄s(f) = ⁄s(f/2k)
kŸ

i=1

⁄G0(2fif/2i)
2 = ⁄s(f/2k)

kŸ

i=1

cosN2(fif/2i)
2

= ⁄s(f/2k)
kŸ

i=1

3
sin(2fif/2i)
2 sin(fif/2i)

4N2

= ⁄s(f/2k)
3

sin(fif)
2k sin fif/2k

4N2

,

where we have used the identity cos Ê = sin(2Ê)

2 sin Ê . If we here let k æ Œ, and use
the identity limfæ0

sin f
f = 1, we get that

⁄s(f) = ⁄s(0)
3

sin(fif)
fif

4N2

.

On the other hand, the frequency response of ‰
[≠1/2,1/2)

(t)

=
⁄

1/2

≠1/2

e≠2fiiftdt =
5

1
≠2fiif

e≠2fiift

6
1/2

≠1/2

= 1
≠2fiif

(e≠fiif ≠ efiif ) = 1
≠2fiif

2i sin(≠fif) = sin(fif)
fif

.

Due to this
1

sin(fif)

fif

2N2
is the frequency response of úN2

k=1

‰
[≠1/2,1/2)

(t). By the
uniqueness of the frequency response we have that „(t) = „̂(0)úN2

k=1

‰
[≠1/2,1/2)

(t).
In Exercise 7.5 you will be asked to show that this scaling function gives rise to
the multiresolution analysis of functions which are piecewise polynomials which
are di�erentiable at the borders, also called splines. This explains why this type
of wavelet is called a spline wavelet. To be more precise, the resolution spaces
are as follows.

Definition 7.13. Resolution spaces of piecewise polynomials.
We define Vm as the subspace of functions which are r ≠ 1 times continuously

di�erentiable and equal to a polynomial of degree r on any interval of the form
[n2≠m, (n + 1)2≠m].

Note that the piecewise linear wavelet can be considered as the first Spline
wavelet. This is further considered in the following example.

7.4.1 The Spline 5/3 wavelet
For the case of N

1

= N
2

= 2 when the first design strategy is used, equations
(7.19) and (7.20) take the form
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⁄G0(Ê) = 1
2(1 + cos Ê) = 1

4eiÊ + 1
2 + 1

4e≠iÊ

⁄H0(Ê) = 1
2(1 + cos Ê)Q(1)

3
1
2(1 ≠ cos Ê)

4
= 1

4(2 + eiÊ + e≠iÊ)(4 ≠ eiÊ ≠ e≠iÊ)

= ≠1
4e2iÊ + 1

2eiÊ + 3
2 + 1

2e≠iÊ ≠ 1
4e≠2iÊ.

The filters G
0

, H
0

are thus

G
0

=
;

1
4 ,

1
2 ,

1
4

<
H

0

=
;

≠1
4 ,

1
2 ,

3
2 ,

1
2 , ≠1

4

<

The length of the filters are 3 and 5 in this case, so that this wavelet is called
the Spline 5/3 wavelet. Up to a constant, the filters are seen to be the same as
those of the alternative piecewise linear wavelet, see Example 6.3. Now, how do
we find the filters (G

1

, H
1

)? Previously we saw how to find the constant – in
Theorem 6.16 when we knew one of the two pairs (G

0

, G
1

), (H
0

, H
1

). This was
the last part of information we needed in order to construct the other two filters.
Here we know (G

0

, H
0

) instead. In this case it is even easier to find (G
1

, H
1

)
since we can set – = 1. This means that (G

1

, H
1

) can be obtained simply by
adding alternating signs to (G

0

, H
0

), i.e. they are the corresponding high-pass
filters. We thus can set

G
1

=
;

≠1
4 , ≠1

2 ,
3
2 , ≠1

2 , ≠1
4

<
H

1

=
;

≠1
4 ,

1
2 , ≠1

4

<
.

We have now found all the filters. It is clear that the forward and reverse filter
bank transforms here di�er only by multiplication with a constant from those of
the the alternative piecewise linear wavelet, so that this gives the same scaling
function and mother wavelet as that wavelet.

The coe�cients for the Spline wavelets are always dyadic fractions, and are
therefore suitable for lossless compression, as they can be computed using low
precision arithmetic and bitshift operations. The particular Spline wavelet from
Example 7.4.1 is used for lossless compression in the JPEG2000 standard.

Exercise 7.4: Viewing the frequency response
In this exercise we will see how we can view the frequency responses, scaling
functions and mother wavelets for any spline wavelet.

a) Plot the frequency responses of the filters of some of the spline wavelets in
this section.
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Exercise 7.5: Wavelets based on higher degree polynomials
Show that Br(t) = úr

k=1

‰
[≠1/2,1/2)

(t) is r ≠ 2 times di�erentiable, and equals a
polynomial of degree r ≠ 1 on subintervals of the form [n, n + 1]. Explain why
these functions can be used as basis for the spaces Vj of functions which are
piecewise polynomials of degree r ≠1 on intervals of the form [n2≠m, (n+1)2≠m],
and r ≠ 2 times di�erentiable. Br is also called the B-spline of order r.

7.5 A design strategy suitable for lossy compres-
sion

The factors of Q are split evenly among Q
1

and Q
2

. In this case we need to
factorize Q into a product of real polynomials. This can be done by finding
all roots, and pairing the complex conjugate roots into real second degree
polynomials (if Q is real, its roots come in conjugate pairs), and then distribute
these as evenly as possible among Q

1

and Q
2

. These filters are called the
CDF-wavelets, after Cohen, Daubechies, and Feauveau, who discovered them.

Example 7.6: The CDF 9/7 wavelet
We choose N

1

= N
2

= 4. In Equation (7.23) we pair inverse terms to obtain

Q(3)

3
1
2(1 ≠ cos Ê)

4
= 5

8
1

3.0407
1

7.1495(eiÊ ≠ 3.0407)(e≠iÊ ≠ 3.0407)

◊ (e2iÊ ≠ 4.0623eiÊ + 7.1495)(e≠2iÊ ≠ 4.0623e≠iÊ + 7.1495)

= 5
8

1
3.0407

1
7.1495(≠3.0407eiÊ + 10.2456 ≠ 3.0407e≠iÊ)

◊ (7.1495e2iÊ ≠ 33.1053eiÊ + 68.6168 ≠ 33.1053e≠iÊ + 7.1495e≠2iÊ).

We can write this as Q
1

Q
2

with Q
1

(0) = Q
2

(0) when

Q
1

(Ê) = ≠1.0326eiÊ + 3.4795 ≠ 1.0326e≠iÊ

Q
2

(Ê) = 0.6053e2iÊ ≠ 2.8026eiÊ + 5.8089 ≠ 2.8026e≠iÊ + 0.6053e≠2iÊ,

from which we obtain
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⁄G0(Ê) =
3

1
2(1 + cos Ê)

4
2

Q
1

(Ê)

= ≠0.0645e3iÊ ≠ 0.0407e2iÊ + 0.4181eiÊ + 0.7885
+ 0.4181e≠iÊ ≠ 0.0407e≠2iÊ ≠ 0.0645e≠3iÊ

⁄H0(Ê) =
3

1
2(1 + cos Ê)

4
2

40Q
2

(Ê)

= 0.0378e4iÊ ≠ 0.0238e3iÊ ≠ 0.1106e2iÊ + 0.3774eiÊ + 0.8527
+ 0.3774e≠iÊ ≠ 0.1106e≠2iÊ ≠ 0.0238e≠3iÊ + 0.0378e≠4iÊ.

The filters G
0

, H
0

are thus

G
0

= {0.0645, 0.0407, ≠0.4181, ≠0.7885, ≠0.4181, 0.0407, 0.0645}
H

0

= {≠0.0378, 0.0238, 0.1106, ≠0.3774, ≠0.8527, ≠0.3774, 0.1106, 0.0238, ≠0.0378}.

The corresponding frequency responses are plotted in Figure 7.1.

Figure 7.1: The frequency responses ⁄H0(Ê) (left) and ⁄G0(Ê) (right) for the
CDF 9/7 wavelet.

It is seen that both filters are low-pass filters also here, and that the are
closer to an ideal bandpass filter. Here, the frequency response acts even more
like the constant zero function close to fi, proving that our construction has
worked. We also get

G
1

= {≠0.0378, ≠0.0238, 0.1106, 0.3774, ≠0.8527, 0.3774, 0.1106, ≠0.0238, ≠0.0378}
H

1

= {≠0.0645, 0.0407, 0.4181, ≠0.7885, 0.4181, 0.0407, ≠0.0645}.

The length of the filters are 9 and 7 in this case, so that this wavelet is called
the CDF 9/7 wavelet. This wavelet is for instance used for lossy compression with
JPEG2000 since it gives a good tradeo� between complexity and compression.
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In Example 6.3 we saw that we had analytical expressions for the scaling
functions and the mother wavelet, but that we could not obtain this for the
dual functions. For the CDF 9/7 wavelet it turns out that none of the four
functions have analytical expressions. Let us therefore use the cascade algorithm
to plot these functions. Note first that since G

0

has 7 filter coe�cients, and
G

1

has 9 filter coe�cients, it follows from Theorem 6.9 that supp(„) = [≠3, 3],
supp(Â) = [≠3, 4], supp(„̃) = [≠4, 4], and supp(Ẫ) = [≠3, 4]. The scaling
functions and mother wavelets over these supports are shown in Figure 7.2.
Again they have irregular shapes, but now at least the functions and dual
functions more resemble each other.

Figure 7.2: Scaling functions and mother wavelets for the CDF 9/7 wavelet.

In the above example there was a unique way of factoring Q into a product
of real polynomials. For higher degree polynomials there is no unique way to
form to distribute the factors, and we will not go into what strategy can be used
for this. In general, the steps we must go through are as follows:

• Compute the polynomial Q, and find its roots.

• Pair complex conjugate roots into real second degree polynomials, and
form polynomials Q

1

, Q
2

.

• Compute the coe�cients in equations (7.19) and (7.20).
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7.6 Orthonormal wavelets
Since the filters here are not symmetric, the method of symmetric extension does
not work in the same simple way as before. This partially explains why symmetric
filters are used more often: They may not be as e�cient in representing functions,
since the corresponding basis is not orthogonal, but their simple implementation
still makes them attractive.

In Theorem 7.11 we characterized orthonormal wavelets where G
0

was causal.
All our filters have an even number, say 2L, of filter coe�cients. We can also
find an orthonormal wavelet where H

0

has a minimum possible overweight of
filter coe�cients with negative indices, H

1

a minimum possible overweight of
positive indices, i.e. that the filters can be written with the following compact
notation:

H
0

= {t≠L, . . . , t≠1

, t
0

, t
1

, . . . , tL≠1

} H
1

= {s≠L+1

, . . . , s≠1

, s
0

, s
1

, . . . , sL}.
(7.30)

To see why, Theorem 6.16 says that we first can shift the filter coe�cients of
H

0

so that it has this form (we then need to shift G
0

in the opposite direction).
H

1

, G
1

then can be defined by – = 1 and d = 0. We will follow this convention
for the orthonormal wavelets we look at.

The polynomials Q(0), Q(1), and Q(2) require no further action to obtain
the factorization f(eiÊ)f(e≠iÊ) = Q

!
1

2

(1 ≠ cos Ê)
"
. The polynomial Q(3) in

Equation (7.23) can be factored further as

Q(3)

3
1
2(1 ≠ cos Ê)

4
= 5

8
1

3.0407
1

7.1495(e≠3iÊ ≠ 7.1029e≠2iÊ + 19.5014≠iÊ ≠ 21.7391)

◊ (e3iÊ ≠ 7.1029e2iÊ + 19.5014iÊ ≠ 21.7391),

which gives that f(eiÊ) =
Ò

5

8

1

3.0407

1

7.1495

(e3iÊ≠7.1029e2iÊ+19.5014iÊ≠21.7391).
This factorization is not unique, however. This gives the frequency response
⁄G0(Ê) =

1
1+e≠iÊ

2

2N

f(e≠iÊ) as

1
2(e≠iÊ + 1)

Ô
2

1
4(e≠iÊ + 1)2

Ú
1

3.7321(e≠iÊ ≠ 3.7321)

1
8(e≠iÊ + 1)3

Ú
3
4

1
9.4438(e≠2iÊ ≠ 5.4255e≠iÊ + 9.4438)

1
16(e≠iÊ + 1)4

Ú
5
8

1
3.0407

1
7.1495(e≠3iÊ ≠ 7.1029e≠2iÊ + 19.5014≠iÊ ≠ 21.7391),
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which gives the filters

G
0

= (H
0

)T =(
Ô

2/2,
Ô

2/2)
G

0

= (H
0

)T =(≠0.4830, ≠0.8365, ≠0.2241, 0.1294)
G

0

= (H
0

)T =(0.3327, 0.8069, 0.4599, ≠0.1350, ≠0.0854, 0.0352)
G

0

= (H
0

)T =(≠0.2304, ≠0.7148, ≠0.6309, 0.0280, 0.1870, ≠0.0308, ≠0.0329, 0.0106)

so that we get 2, 4, 6 and 8 filter coe�cients in G
0

= (H
0

)T . We see that the
filter coe�cients when N = 1 are those of the Haar wavelet. The three next
filters we have not seen before. The filter G

1

= (H
1

)T can be obtained from the
relation ⁄G1(Ê) = ≠⁄G0(Ê + fi), i.e. by reversing the elements and adding an
alternating sign, plus an extra minus sign, so that

G
1

= (H
1

)T =(
Ô

2/2, ≠
Ô

2/2)
G

1

= (H
1

)T =(0.1294, 0.2241, ≠0.8365, 0.4830)
G

1

= (H
1

)T =(0.0352, 0.0854, ≠0.1350, ≠0.4599, 0.8069, ≠0.3327)
G

1

= (H
1

)T =(0.0106, 0.0329, ≠0.0308, ≠0.1870, 0.0280, 0.6309, ≠0.7148, 0.2304).

Frequency responses are shown in Figure 7.3 for N = 1 to N = 6. It is seen that
the frequency responses get increasingly flatter as N increases. The frequency
responses are now complex, so their magnitudes are plotted.

Figure 7.3: The magnitudes |⁄G0(Ê)| = |⁄H0(Ê)| for the first orthonormal
wavelets.

Clearly these filters have low-pass characteristic. We also see that the high-
pass characteristics resemble the low-pass characteristics. We also see that the
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frequency response gets flatter near the high and low frequencies, as N increases.
One can verify that this is the case also when N is increased further. The shapes
for higher N are very similar to the frequency responses of those filters used in
the MP3 standard (see Figure 3.10). One di�erence is that the support of the
latter is concentrated on a smaller set of frequencies.

The way we have defined the filters, one can show in the same way as in
the proof of Theorem 6.9 that, when all filters have 2N coe�cients, „ = „̃ has
support [≠N + 1, N ], Â = Ẫ has support [≠N + 1/2, N ≠ 1/2] (i.e. the support
of Â is symmetric about the origin). In particular we have that

• for N = 2: supp(„) = supp(Â) = [≠1, 2],

• for N = 3: supp(„) = supp(Â) = [≠2, 3],

• for N = 4: supp(„) = supp(Â) = [≠3, 4].

The scaling functions and mother wavelets are shown in Figure 7.4. All functions
have been plotted over [≠4, 4], so that all these support sizes can be verified.
Also here we have used the cascade algorithm to approximate the functions.
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Figure 7.4: The scaling functions and mother wavelets for orthonormal wavelets
with N vanishing moments, for di�erent values of N .

7.7 Summary
We started the section by showing how filters from filter bank matrices can give
rise to scaling functions and mother wavelets. We saw that we obtained dual
function pairs in this way, which satisfied a mutual property called biorthogonal-
ity. We then saw how di�erentiable scaling functions or mother wavelets with
vanishing moments could be constructed, and we saw how we could construct
the simplest such. These could be found in terms of the frequency responses
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of the involved filters. Finally we studied some examples with applications to
image compression.

For the wavelets we constructed in this chapter, we also plotted the cor-
responding scaling functions and mother wavelets (see figures 7.2, 7.4). The
importance of these functions are that they are particularly suited for approxi-
mation of regular functions, and providing a compact representation of these
functions which is localized in time. It seems di�cult to guess that these strange
shapes are connected to such approximation. Moreover, it may seem strange
that, although these functions are useful, we can’t write down exact expressions
for them, and they are only approximated in terms of the Cascade Algorithm.

In the literature, the orthonormal wavelets with compact support we have
constructed were first constructed in [12]. Biorthogonal wavelets were first
constructed in [7].



Chapter 8

The polyphase
representation and wavelets

In Chapter 6 we saw that we could express wavelet transformations and more
general transformations in terms of filters. Through this we obtained intuition
for what information the di�erent parts of a wavelet transformation represent,
in terms of lowpass and highpass filters. We also obtained some insight into the
filters used in the transformation used in the MP3 standard. We expressed the
DWT and IDWT implementations in terms of what we called kernel transforma-
tions, and these were directly obtained from the filters of the wavelet.

We have looked at many wavelets, however, but have only stated the kernel
transformation for the Haar wavelet. In order to use these wavelets in sound
and image processing, or in order to use the cascade algorithm to plot the
corresponding scaling functions and mother wavelets, we need to make these
kernel transformations. This will be one of the goals in this chapter. This will
be connected to what we will call the polyphase representation of the wavelet.
This representation will turn out to be useful for di�erent reasons than the
filter representation as well. First of all, with the polyphase representation,
transformations can be viewed as block matrices where the blocks are filters.
This allows us to prove results in a di�erent way than for filter bank transforms,
since we can prove results through block matrix manipulation. There will be
two major results we will prove in this way.

First, in Section 8.1 we obtain a factorization of a wavelet transformation
into sparse matrices, called elementary lifting matrices. We will show that this
factorization reduces the number of arithmetic operations, and also enables
us to compute the DWT in-place, in a similar way to how the FFT could
be computed in-place after a bit-reversal. This is important: recall that we
previously factored a filter into a product of smaller filters which is useful for
e�cient hardware implementations. But this did not address the fact that
only every second component of the filters needs to be evaluated in the DWT,
something any e�cient implementation of the DWT should take into account.

284
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The factorization into sparse matrices will be called the lifting factorization, and
it will be clear from this factorization how the wavelet kernels and their duals can
be implemented. We will also see how we can use the polyphase representation
to prove the remaining parts of Theorem 6.16.

Secondly, in Section 8.3 we will use the polyphase representation to analyze
how the forward and reverse filter bank transforms from the MP3 standard can
be chosen in order for us to have perfect or near perfect reconstruction. Actually,
we will obtain a factorization of the polyphase representation into block matrices
also here, and the conditions we need to put on the prototype filters will be clear
from this.

8.1 The polyphase representation and the lifting
factorization

Let us start by defining the basic concepts in the polyphase representation.

Definition 8.1. Polyphase components and representation.
Assume that S is a matrix, and that M is a number. By the polyphase

components of S we mean the matrices S(i,j) defined by S(i,j)

r1,r2 = Si+r1M,j+r2M ,
i.e. the matrices obtained by taking every M ’th component of S. By the polyphase
representation of S we mean the block matrix with entries S(i,j).

The polyphase representation applies in particular for vectors. Since a vector
x only has one column, we write x(p) for its polyphase components. As an
examples consider the 6 ◊ 6 MRA-matrix

S =

Q

cccccca

2 3 0 0 0 1
4 5 6 0 0 0
0 1 2 3 0 0
0 0 4 5 6 0
0 0 0 1 2 3
6 0 0 0 4 5

R

ddddddb
. (8.1)

The polyphase components of S are

S(0,0) =

Q

a
2 0 0
0 2 0
0 0 2

R

b S(0,1) =

Q

a
3 0 1
1 3 0
0 1 3

R

b

S(1,0) =

Q

a
4 6 0
0 4 6
6 0 4

R

b S(1,1) =

Q

a
5 0 0
0 5 0
0 0 5

R

b

We will mainly be concerned with polyphase representations of MRA matrices.
For such matrices we have the following result (this result can be stated more
generally for any filter bank transform).
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Theorem 8.2. Similarity.
When S is an MRA-matrix, the polyphase components S(i,j) are filters (in

general di�erent from the filters considered in Chapter 6), i.e. the polyphase
representation is a 2 ◊ 2-block matrix where all blocks are filters. Also, S is
similar to its polyphase representation, through a permutation matrix P which
places the even-indexed elements first.

To see why, note that when P is the permutation matrix defined above,
then PS consists of S with the even-indexed rows grouped first, and since
also SP T = (PST )T , SP T groups the even-indexed columns first. From these
observations it is clear that PSP T is the polyphase representation of S, so that
S is similar to its polyphase representation.

We also have the following result on the polyphase representation. This result
is easily proved from manipulation with block matrices, and is therefore left to
the reader.

Theorem 8.3. Products and transpose.
Let A and B be (forward or reverse) filter bank transforms, and denote the

corresponding polyphase components by A(i,j), B(i,j). The following hold

• C = AB is also a filter bank transform, with polyphase components
C(i,j) =

q
k A(i,k)B(k,j).

• AT is also a filter bank transform, with polyphase components ((AT )(i,j))k,l =
(A(j,i))l,k.

Also, the polyphase components of the identity matrix is the M ◊ M -block
matrix with the identity matrix on the diagonal, and 0 elsewhere.

To see an application of the polyphase representation, let us prove the final
ingredient of Theorem 6.16. We need to prove the following:

Theorem 8.4. Criteria for perfect reconstruction.
For any set of FIR filters H

0

, H
1

, G
0

, G
1

which give perfect reconstruction,
there exist – œ R and d œ Z so that

⁄H1(Ê) = –≠1e≠2idÊ⁄G0(Ê + fi) (8.2)
⁄G1(Ê) = –e2idÊ⁄H0(Ê + fi). (8.3)

Proof. Let H(i,j) be the polyphase components of H, G(i,j) the polyphase
components of G. GH = I means that

3
G(0,0) G(0,1)

G(1,0) G(1,1)

4 3
H(0,0) H(0,1)

H(1,0) H(1,1)

4
=

3
I 0
0 I

4
.

If we here multiply with
3

G(1,1) ≠G(0,1)

≠G(1,0) G(0,0)

4
on both sides to the left, or with

3
H(1,1) ≠H(0,1)

≠H(1,0) H(0,0)

4
on both sides to the right, we get
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3
G(1,1) ≠G(0,1)

≠G(1,0) G(0,0)

4
=

3
(G(0,0)G(1,1) ≠ G(1,0)G(0,1))H(0,0) (G(0,0)G(1,1) ≠ G(1,0)G(0,1))H(0,1)

(G(0,0)G(1,1) ≠ G(1,0)G(0,1))H(1,0) (G(0,0)G(1,1) ≠ G(1,0)G(0,1))H(1,1)

4

3
H(1,1) ≠H(0,1)

≠H(1,0) H(0,0)

4
=

3
(H(0,0)H(1,1) ≠ H(1,0)H(0,1))G(0,0) (H(0,0)H(1,1) ≠ H(1,0)H(0,1))G(0,1)

(H(0,0)H(1,1) ≠ H(1,0)H(0,1))G(1,0) (H(0,0)H(1,1) ≠ H(1,0)H(0,1))G(1,1)

4

Now since G(0,0)G(1,1) ≠ G(1,0)G(0,1) and H(0,0)H(1,1) ≠ H(1,0)H(0,1) also are
circulant Toeplitz matrices, the expressions above give that

l(H(0,0)) Æ l(G(1,1)) Æ l(H(0,0))
l(H(0,1)) Æ l(G(0,1)) Æ l(H(0,1))
l(H(1,0)) Æ l(G(1,0)) Æ l(H(1,0))

so that we must have equality here, and with both

G(0,0)G(1,1) ≠ G(1,0)G(0,1) and H(0,0)H(1,1) ≠ H(1,0)H(0,1)

having only one nonzero diagonal. In particular we can define the diagonal
matrix D = H(0,0)H(1,1) ≠ H(0,1)H(1,0) = –≠1Ed (for some –, d), and we have
that

3
G(0,0) G(0,1)

G(1,0) G(1,1)

4
=

3
–E≠dH(1,1) ≠–E≠dH(0,1)

≠–E≠dH(1,0) –E≠dH(0,0)

4
.

The first columns here state a relation between G
0

and H
1

, while the second
columns state a relation between G

1

and H
0

. It is straightforward to show that
these relations imply equation (8.2)-(8.3). The details for this can be found in
Exercise 8.1.

In the following we will find factorizations of 2 ◊ 2-block matrices where the
blocks are filters, into simpler such matrices. The importance of Theorem 8.2 is
then that MRA-matrices can be written as a product of simpler MRA matrices.
These simpler MRA matrices will be called elementary lifting matrices, and will
be of the following type.
Definition 8.5. Elementary lifting matrices.

A matrix on the form
3

I S
0 I

4

where S is a filter is called an elementary lifting matrix of even type. A matrix
on the form

3
I 0
S I

4

is called an elementary lifting matrix of odd type.
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The following are the most useful properties of elementary lifting matrices:

Lemma 8.6. Lifting lemma.
The following hold:

3
I S
0 I

4T

=
3

I 0
ST I

4
, and

3
I 0
S I

4T

=
3

I ST

0 I

4
,

3
I S

1

0 I

4 3
I S

2

0 I

4
=

3
I S

1

+ S
2

0 I

4
, and

3
I 0
S

1

I

4 3
I 0
S

2

I

4
=

3
I 0

S
1

+ S
2

I

4
,

3
I S
0 I

4≠1

=
3

I ≠S
0 I

4
, and

3
I 0
S I

4≠1

=
3

I 0
≠S I

4

These statements follow directly from Theorem 8.3. Due to Property 2, one
can assume that odd and even types of lifting matrices appear in alternating
order, since matrices of the same type can be grouped together. The following
result states why elementary lifting matrices can be used to factorize general
MRA-matrices:

Theorem 8.7. Multiplying.

Any invertible matrix on the form S =
3

S(0,0) S(0,1)

S(1,0) S(1,1)

4
, where the S(i,j) are

filters with a finite numer of filter coe�cients, can be written on the form

�
1

· · · �n

3
–

0

Ep 0
0 –

1

Eq

4
, (8.4)

where �i are elementary lifting matrices, p, q are integers, –
0

, –
1

are nonzero
scalars, and Ep, Eq are time delay filters. The inverse is given by

3
–≠1

0

E≠p 0
0 –≠1

1

E≠q

4
(�n)≠1 · · · (�

1

)≠1. (8.5)

Note that (�i)≠1 can be computed with the help of Property 3 of Lemma 8.6.

Proof. The proof will use the concept of the length of a filter, as defined in

Definition 3.3. Let S =
3

S(0,0) S(0,1)

S(1,0) S(1,1)

4
be an arbitrary invertible matrix. We

will incrementally find an elementary lifting matrix �i with filter Si in the lower
left or upper right corner so that �iS has filters of lower length in the first
column. Assume first that l(S(0,0)) Ø l(S(1,0)), where l(S) is the length of a
filter as given by Definition 3.3. If �i is of even type, then the first column in
�iS is

3
I Si

0 I

4 3
S(0,0)

S(1,0)

4
=

3
S(0,0) + SiS(1,0)

S(1,0)

4
. (8.6)
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Si can now be chosen so that l(S(0,0) + SiS(1,0)) < l(S(1,0)). To see how,
recall that we in Section 3.1 stated that multiplying filters corresponds to
multiplying polynomials. Si can thus be found from polynomial division with
remainder: when we divide S(0,0) by S(1,0), we actually find polynomials Si

and P with l(P ) < l(S(1,0)) so that S(0,0) = SiS(1,0) + P , so that the length of
P = S(0,0) ≠ SiS(1,0) is less than l(S(1,0)). The same can be said if �i is of odd
type, in which case the first and second components are simply swapped. This
procedure can be continued until we arrive at a product

�n · · · �
1

S

where either the first or the second component in the first column is 0. If the
first component in the first column is 0, the identity

3
I 0

≠I I

4 3
I I
0 I

4 3
0 X
Y Z

4
=

3
Y X + Z
0 ≠X

4

explains that we can bring the matrix to a form where the second element in
the first column is zero instead, with the help of the additional lifting matrices

�n+1

=
3

I I
0 I

4
and �n+2

=
3

I 0
≠I I

4
,

so that we always can assume that the second element in the first column is 0,
i.e.

�n · · · �
1

S =
3

P Q
0 R

4
,

for some matrices P, Q, R. From the proof of Theorem 6.16 we will see that
in order for S to be invertible, we must have that S(0,0)S(1,1) ≠ S(0,1)S(1,0) =
≠–≠1Ed for some nonzero scalar – and integer d. Since

3
P Q
0 R

4

is also invertible, we must thus have that PR must be on the form –En. When
the filters have a finite number of filter coe�cients, the only possibility for this
to happen is when P = –

0

Ep and R = –
1

Eq for some p, q, –
0

, –
1

. Using this,
and also isolating S on one side, we obtain that

S = (�
1

)≠1 · · · (�n)≠1

3
–

0

Ep Q
0 –

1

Eq

4
, (8.7)

Noting that
3

–
0

Ep Q
0 –

1

Eq

4
=

3
1 1

–1
E≠qQ

0 1

4 3
–

0

Ep 0
0 –

1

Eq

4
,

we can rewrite Equation (8.7) as
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S = (�
1

)≠1 · · · (�n)≠1

3
1 1

–1
E≠qQ

0 1

4 3
–

0

Ep 0
0 –

1

Eq

4
,

which is a lifting factorization of the form we wanted to arrive at. The last matrix
in the lifting factorization is not really a lifting matrix, but it too can easily be
inverted, so that we arrive at Equation (8.5). This completes the proof.

Factorizations on the form given by Equation (8.4) will be called lifting
factorizations. Assume that we have applied Theorem 8.7 in order to get a
factorization of the polyphase representation of the DWT kernel of the form

�n · · · �
2

�
1

H =
3

– 0
0 —

4
. (8.8)

Theorem 8.6 then immediately gives us the following factorizations.

H = (�
1

)≠1(�
2

)≠1 · · · (�n)≠1

3
– 0
0 —

4
(8.9)

G =
3

1/– 0
0 1/—

4
�n · · · �

2

�
1

(8.10)

HT =
3

– 0
0 —

4
((�n)≠1)T ((�n≠1

)≠1)T · · · ((�
1

)≠1)T (8.11)

GT = (�
1

)T (�
2

)T · · · (�n)T

3
1/– 0
0 1/—

4
. (8.12)

Since HT and GT are the kernel transformations of the dual IDWT and the
dual DWT, respectively, these formulas give us recipes for computing the DWT,
IDWT, dual IDWT, and the dual DWT, respectively. All in all, everything can
be computed by combining elementary lifting steps.

In practice, one starts with a given wavelet with certain proved properties
such as the ones from Chapter 7, and applies an algorithm to obtain a lifting
factorization of the polyphase representation of the kernels. The algorihtm can
easily be written down from the proof of Theorem 8.7. The lifting factorization
is far from unique, and the algorithm only gives one of them.

It is desirable for an implementation to obtain a lifting factorization where the
lifting steps are as simple as possible. Let us restrict to the case of wavelets with
symmetric filters, since the wavelets used in most applications are symmetric.
In particular this means that S(0,0) is a symmetric matrix, and that S(1,0) is
symmetric about ≠1/2 (see Exercise 8.8).

Assume that we in the proof of Theorem 8.7 add an elementary lifting of
even type. At this step we then compute S(0,0) + SiS(1,0) in the first entry of
the first column. Since S(0,0) is now assumed symmetric, SiS(1,0) must also be
symmetric in order for the length to be reduced. And since the filter coe�cients
of S(1,0) are assumed symmetric about ≠1/2, Si must be chosen with symmetry
around 1/2.
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For most of our wavelets we will consider in the following examples it will
turn out the filters in the first column di�er in the number of filter coe�cients
by 1 at all steps. When this is the case, we can choose a filter of length 2 to
reduce the length by 2, so that the Si in an even lifting step can be chosen on
the form Si = ⁄i{1, 1}. Similarly, for an odd lifting step, Si can be chosen on
the form Si = ⁄i{1, 1}. Let us summarize this as follows:

Theorem 8.8. Di�ering by 1.
When the filters in a wavelet are symmetric and the lengths of the filters in

the first column di�er by 1 at all steps in the lifting factorization, the lifting
steps of even and odd type take the simplified form

3
I ⁄i{1, 1}
0 I

4
and

3
I 0

⁄i{1, 1} I

4
,

respectively.

The lifting steps mentioned in this theorem are quickly computed due to
their simple structure.

Each lifting step leaves every second element unchanged, while for the remain-
ing elements, we simply add the two neighbours. Clearly these computations
can be computed in-place, without the need for extra memory allocations. From
this it is also clear how we can compute the entire DWT/IDWT in-place. We
simply avoid the reorganizing into the (�m≠1

, m≠1

)-basis until after all the
lifting steps. After the application of the matrices above, we have coordinates
in the Cm-basis. Here only the coordinates with indices (0, 2, 4, . . .) need to be
further transformed, so the next step in the algorithm should work directly on
these. After the next step only the coordinates with indices (0, 4, 8, . . .) need to
be further transformed, and so on. From this it is clear that

• the  m≠k coordinates are found at indices 2k≠1 + r2k, i.e. the last k bits
are 1 followed by k ≠ 1 zeros.

• the �
0

coordinates are found at indices r2m, i.e. the last m bits are 0.

If we place the last k bits of the  m≠k-coordinates in front in reverse order, and
the the last m bits of the �

0

-coordinates in front, the coordinates have the same
order as in the (�m≠1

, m≠1

)-basis. This is also called a partial bit-reverse, and
is related to the bit-reversal performed in the FFT algorithm.

Clearly, these lifting steps are also MRA-matrices with symmetric filters, so
that our procedure factorizes an MRA-matrix with symmetric filters into simpler
MRA-matrices which also have symmetric filters.

8.1.1 Reduction in the number of arithmetic operations
The number of arithmetic operations needed to apply matrices on the form
stated in Equation (6.10) is easily computed. The number of multiplications
is N/2 if symmetry is exploited as in Observation 4.20 (N if symmetry is not
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exploited). Similarly, the number of additions is N . Let K be the total number
of filter coe�cients in H

0

, H
1

. In the following we will see that each lifting step
can be chosen to reduce the number of filter coe�cients in the MRA matrix by 4,
so that a total number of K/4 lifting steps are required. Thus, a total number of
KN/8 (KN/4) multiplications, and KN/4 additions are required when a lifting
factorization is used. In comparison, a direct implementation would require
KN/4 (KN/2) multiplications, and KN/2 additions. For the examples we will
consider, we therefore have the following result.

Theorem 8.9. Reducing arithmetic operations.
The lifting factorization approximately halves the number of additions and

multiplications needed, when compared with a direct implementation (regardless
of whether symmetry is exploited or not).

Exercise 8.1: The frequency responses of the polyphase
components
Let H and G be MRA-matrices for a DWT/IDWT, with corresponding filters
H

0

, H
1

, G
0

, G
1

, and polyphase components H(i,j), G(i,j).

a) Show that

⁄H0(Ê) = ⁄H(0,0)(2Ê) + eiÊ⁄H(0,1)(2Ê)
⁄H1(Ê) = ⁄H(1,1)(2Ê) + e≠iÊ⁄H(1,0)(2Ê)
⁄G0(Ê) = ⁄G(0,0)(2Ê) + e≠iÊ⁄G(1,0)(2Ê)
⁄G1(Ê) = ⁄G(1,1)(2Ê) + eiÊ⁄G(0,1)(2Ê).

b) In the proof of the last part of Theorem 6.16, we defered the last part, namely
that equations (8.2)-(8.3) follow from

3
G(0,0) G(0,1)

G(1,0) G(1,1)

4
=

3
–E≠dH(1,1) ≠–E≠dH(0,1)

≠–E≠dH(1,0) –E≠dH(0,0)

4
.

Prove this based on the result from a).

Exercise 8.2: Finding new filters
Let S be a filter. Show that

a)

G

3
I 0
S I

4

is an MRA matrix with filters G̃
0

, G
1

, where

⁄
˜G0

(Ê) = ⁄G0(Ê) + ⁄S(2Ê)e≠iÊ⁄G1(Ê),
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b)

G

3
I S
0 I

4

is an MRA matrix with filters G
0

, G̃
1

, where

⁄
˜G1

(Ê) = ⁄G1(Ê) + ⁄S(2Ê)eiÊ⁄G0(Ê),

c) 3
I 0
S I

4
H

is an MRA-matrix with filters H
0

, H̃
1

, where

⁄
˜H1

(Ê) = ⁄H1(Ê) + ⁄S(2Ê)e≠iÊ⁄H0(Ê).

d) 3
I S
0 I

4
H

is an MRA-matrix with filters H̃
0

, H
1

, where

⁄
˜H0

(Ê) = ⁄H0(Ê) + ⁄S(2Ê)eiÊ⁄H1(Ê).

In summary, this exercise shows that one can think of the steps in the lifting
factorization as altering one of the filters of an MRA-matrix in alternating order.

Exercise 8.3: Relating to the polyphase components
Show that S is a filter of length kM if and only if the entries {Si,j}M≠1

i,j=0

in the
polyphase representation of S satisfy S(i+r) mod M,(j+r) mod M = Si,j . In other
words, S is a filter if and only if the polyphase representation of S is a “block-
circulant Toeplitz matrix”. This implies a fact that we will use: GH is a filter
(and thus provides alias cancellation) if blocks in the polyphase representations
repeat cyclically as in a Toeplitz matrix (in particular when the matrix is
block-diagonal with the same block repeating on the diagonal).

Exercise 8.4: QMF filter banks
Recall from Definition 6.18 that we defined a classical QMF filter bank as one
where M = 2, G

0

= H
0

, G
1

= H
1

, and ⁄H1(Ê) = ⁄H0(Ê + fi). Show that the
forward and reverse filter bank transforms of a classical QMF filter bank take
the form

H = G =
3

A ≠B
B A

4
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Exercise 8.5: Alternative QMF filter banks
Recall from Definition 6.19 that we defined an alternative QMF filter bank as
one where M = 2, G

0

= (H
0

)T , G
1

= (H
1

)T , and ⁄H1(Ê) = ⁄H0(Ê + fi). Show
that the forward and reverse filter bank transforms of an alternative QMF filter
bank take the form.

H =
3

AT BT

≠B A

4
G =

3
A ≠BT

B AT

4
=

3
AT BT

≠B A

4T

.

Exercise 8.6: Alternative QMF filter banks with additional
sign
Consider alternative QMF filter banks where we take in an additional sign, so
that ⁄H1(Ê) = ≠⁄H0(Ê + fi) (the Haar wavelet was an example of such a filter
bank). Show that the forward and reverse filter bank transforms now take the
form

H =
3

AT BT

B ≠A

4
G =

3
A BT

B ≠AT

4
=

3
AT BT

B ≠A

4T

.

It is straightforward to check that also these satisfy the alias cancellation con-
dition, and that the perfect reconstruction condition also here takes the form
|⁄H0(Ê)|2 + |⁄H0(Ê + fi)|2 = 2.

8.2 Examples of lifting factorizations
We have seen that the polyphase representations of wavelet kernels can be
factored into a product of elementary lifting matrices. In this section we will
compute the exact factorizations for the wavelets we have considered. In the
exercises we will then complete the implementations, so that we can make actual
experiments, such as listening to the low-resolution approximations in sound, or
using the cascade algorithm to plot scaling functions and mother wavelets. We
will omit the Haar wavelet. One can easily write down a lifting factorization for
this as well, but there is little to save in this factorization when compared to the
direct form of this we already have considered.

First we will consider the two piecewise linear wavelets we have looked at.
It turns out that their lifting factorizations can be obtained in a direct way by
considering the polyphase representations as a change of coordinates. To see
how, we first define

Dm = {„m,0, „m,2, „m,4 . . . , „m,1, „m,3, „m,5, . . .}, (8.13)
PDmΩ�m is clearly the permutation matrix P used in the similarity between
a matrix and its polyphase representation. Let now H and G be the kernel
transformations of a wavelet. The polyphase representation of H is
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PHP T = PDmΩ�m
PCmΩ�m

P
�mΩDm

= P
(�1, 1)Ω�m

P
�mΩDm

= P
(�1, 1)ΩDm

.

Taking inverses here we obtain that PGP T = PDmΩ(�1, 1)

. We therefore have
the following result:

Theorem 8.10. The polyphase representation.
The polyphase representation of H equals the change of coordinates ma-

trix P
(�1, 1)ΩDm

, and the polyphase representation of G equals the change of
coordinates matrix PDmΩ(�1, 1)

.

8.2.1 The piecewise linear wavelet

The polyphase representation of G is 1Ô
2

3
I 0

1

2

{1, 1} I

4
. Due to Theorem 8.6,

the polyphase representation of H is
Ô

2
3

I 0
≠ 1

2

{1, 1} I

4
We can summarize that

the polyphase representations of the kernels H and G for the piecewise linear
wavelet are

Ô
2

3
I 0

≠ 1

2

{1, 1} I

4
and 1Ô

2

3
I 0

1

2

{1, 1} I

4
, (8.14)

respectively.

Example 8.7: Lifting factorization of the alternative piece-
wise linear wavelet
The polyphase representation of H is

Ô
2

3
I 1

4

{1, 1}
0 I

4 3
I 0

≠ 1

2

{1, 1} I

4
.

In this case we required one additional lifting step. We can thus conclude that the
polyphase representations of the kernels H and G for the alternative piecewise
linear wavelet are

Ô
2

3
I 1

4

{1, 1}
0 I

4 3
I 0

≠ 1

2

{1, 1} I

4
and 1Ô

2

3
I 0

1

2

{1, 1} I

4 3
I ≠ 1

4

{1, 1}
0 I

4
,

(8.15)
respectively.

8.2.2 The Spline 5/3 wavelet
Let us consider the Spline 5/3 wavelet, which we defined in Example 7.4.1. Let
us start by looking at, and we recall that



CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS296

H
0

=
;

≠1
4 ,

1
2 ,

3
2 ,

1
2 , ≠1

4

<
H

1

=
;

≠1
4 ,

1
2 , ≠1

4

<
.

from which we see that the polyphase components of H are
3

H(0,0) H(0,1)

H(1,0) H(1,1)

4
=

3{≠ 1

4

, 3

2

, ≠ 1

4

} 1

2

{1, 1}
≠ 1

4

{1, 1} 1

2

I

4

We see here that the upper filter has most filter coe�cients in the first column,
so that we must start with an elementary lifting of even type. We need to find a
filter S

1

so that S
1

{≠1/4, ≠1/4} + {≠1/4, 3/2, ≠1/4} has fewer filter coe�cients
than {≠1/4, 3/2, ≠1/4}. It is clear that we can choose S

1

= {≠1, ≠1}, and that

�
1

H =
3

I {≠1, ≠1}
0 I

4 3{≠ 1

4

, 3

2

, ≠ 1

4

} 1

2

{1, 1}
≠ 1

4

{1, 1} 1

2

I

4
=

3
2I 0

≠ 1

4

{1, 1} 1

2

I

4

Now we need to apply an elementary lifting of odd type, and we need to find a
filter S

2

so that S
2

I ≠ 1

4

{1, 1} = 0. Clearly we can choose S
2

= {1/8, 1/8}, and
we get

�
2

�
1

H =
3

I 0
1

8

{1, 1} I

4 3
2I 0

≠ 1

4

{1, 1} 1

2

I

4
=

3
2I 0
0 1

2

I

4
.

Multiplying with inverses of elementary lifting steps, we now obtain that the
polyphase representations of the kernels for the Spline 5/3 wavelet are

H =
3

I {1, 1}
0 I

4 3
I 0

≠ 1

8

{1, 1} I

4 3
2I 0
0 1

2

I

4

and

G =
3

1

2

I 0
0 2I

4 3
I 0

1

8

{1, 1} I

4 3
I {≠1, ≠1}
0 I

4
,

respectively. Two lifting steps are thus required. We also see that the lifting
steps involve only dyadic fractions, just as the filter coe�cients did. This means
that the lifting factorization also can be used for lossless operations.

8.2.3 The CDF 9/7 wavelet
For the wavelet we considered in Example 7.6, it is more cumbersome to compute
the lifting factorization by hand. It is however, straightforward to write an
algorithm which computes the lifting steps, as these are performed in the proof
of Theorem 8.7. You will be spared the details of this algorithm. Also, when we
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use these wavelets in implementations later they will use precomputed values of
these lifting steps, and you can take these implementations for granted too. If
we run the algorithm for computing the lifting factorization we obtain that the
polyphase representations of the kernels H and G for the CDF 9/7 wavelet are

3
I 0.5861{1, 1}
0 I

4 3
I 0

0.6681{1, 1} I

4 3
I ≠0.0700{1, 1}
0 I

4

◊
3

I 0
≠1.2002{1, 1} I

4 3≠1.1496 0
0 ≠0.8699

4
and

3≠0.8699 0
0 ≠1.1496

4 3
I 0

1.2002{1, 1} I

4 3
I 0.0700{1, 1}
0 I

4

◊
3

I 0
≠0.6681{1, 1} I

4 3
I ≠0.5861{1, 1}
0 I

4
,

respectively. In this case four lifting steps were required.
Perhaps more important than the reduction in the number of arithmetic

operations is the fact that the lifting factorization splits the DWT and IDWT
into simpler components, each very attractive for hardware implementations
since a lifting step only requires the additional value ⁄i from Theorem 8.8. Lifting
actually provides us with a complete implementation strategy for the DWT and
IDWT, in which the ⁄i are used as precomputed values.

Finally we will find a lifting factorization for orthonormal wavelets. Note
that here the filters H

0

and H
1

are not symmetric, and each of them has an
even number of filter coe�cients. There are thus a di�erent number of filter
coe�cients with positive and negative indices, and in Section 7.6 we defined the
filters so that the filter coe�cients were as symmetric as possible when it came
to the number of nonzero filter coe�cients with positive and negative indices.

8.2.4 Orthonormal wavelets
We will attempt to construct a lifting factorization where the following property
is preserved after each lifting step:

P1: H(0,0), H(1,0) have a minimum possible overweight of filter coe�cients
with negative indices.

This property stems from the assumption in Section 7.6 that H
0

is assumed
to have a minimum possible overweight of filter coe�cients with negative indices.
To see that this holds at the start, assume as before that all the filters have 2L
nonzero filter coe�cients, so that H0 and H

1

are on the form given by Equation
(7.30). Assume first that L is even. It is clear that
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H(0,0) = {t≠L, . . . , t≠2

, t
0

, t
2

, . . . , tL≠2

}
H(0,1) = {t≠L+1

, . . . , t≠3

, t≠1

, t
1

, . . . , tL≠1

}
H(1,0) = {s≠L+1

, . . . , s≠1

, s
1

, s
3

, . . . , sL≠1

}
H(1,1) = {s≠L+2

, . . . , s≠2

, s
0

, s
2

, . . . , sL}.

Clearly P1 holds. Assume now that L is odd. It is now clear that

H(0,0) = {t≠L+1

, . . . , t≠2

, t
0

, t
2

, . . . , tL≠1

}
H(0,1) = {t≠L, . . . , t≠3

, t≠1

, t
1

, . . . , tL≠2

}
H(1,0) = {s≠L+2

, . . . , s≠1

, s
1

, s
3

, . . . , sL}
H(1,1) = {s≠L+1

, . . . , s≠2

, s
0

, s
2

, . . . , sL≠1

}.

In this case it is seen that all filters have equally many filter coe�cients with
positive and negative indices, so that P1 holds also here.

Now let us turn to the first lifting step. We will choose it so that the number
of filter coe�cients in the first column is reduced with 1, and so that H(0,0) has
an odd number of coe�cients. If L is even, we saw that H(0,0) and H(1,0) had
an even number of coe�cients, so that the first lifting step must be even. To
preserve P1, we must cancel t≠L, so that the first lifting step is

�
1

=
3

I ≠t≠L/s≠L+1

0 I

4
.

If L is odd, we saw that H(0,0) and H(1,0) had an odd number of coe�cients, so
that the first lifting step must be odd. To preserve P1, we must cancel sL, so
that the first lifting step is

�
1

=
3

I 0
≠sL/tL≠1

I

4
.

Now that we have a di�erence of one filter coe�cent in the first column, we
will reduce the entry with the most filter coe�cients with two with a lifting step,
until we have H(0,0) = {K}, H(1,0) = 0 in the first column.

Assume first that H(0,0) has the most filter coe�cients. We then need to
apply an even lifting step. Before an even step, the first column has the form

3 {t≠k, . . . , t≠1

, t
0

, t
1

, . . . , tk}
{s≠k, . . . , s≠1

, s
0

, s
1

, . . . , sk≠1

}
4

.

We can then choose �i =
3

I {≠t≠k/s≠k, ≠tk/sk≠1

}
0 I

4
as a lifting step.

Assume then that H(1,0) has the most filter coe�cients. We then need to
apply an odd lifting step. Before an odd step, the first column has the form
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3 {t≠k, . . . , t≠1

, t
0

, t
1

, . . . , tk}
{s≠k≠1

, . . . , s≠1

, s
0

, s
1

, . . . , sk}
4

.

We can then choose �i =
3

I 0
{≠s≠k≠1

/t≠k, ≠sk/tk} I

4
as a lifting step.

If L is even we end up with a matrix on the form
3

– {0, K}
0 —

4
, and we can

choose the final lifting step as �n =
3

I {0, ≠K/—}
0 I

4
.

If L is odd we end up with a matrix on the form
3

– K
0 —

4
,

and we can choose the final lifting step as �n =
3

I ≠K/—
0 I

4
. Again using

equations (8.9)-(8.10), this gives us the lifting factorizations.
In summary we see that all even and odd lifting steps take the form3

I {⁄
1

, ⁄
2

}
0 I

4
and

3
I 0

⁄
1

, ⁄
2

} I

4
. We see that symmetric lifting steps cor-

respond to the special case when ⁄
1

= ⁄
2

. The even and odd lifting matrices
now used are

Q

ccccccca

1 ⁄
1

0 0 · · · 0 0 ⁄
2

0 1 0 0 · · · 0 0 0
0 ⁄

2

1 ⁄
1

· · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · ⁄

2

1 ⁄
1

0 0 0 0 · · · 0 0 1

R

dddddddb

and

Q

ccccccca

1 0 0 0 · · · 0 0 0
⁄

2

1 ⁄
1

0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1 0
⁄

1

0 0 0 · · · 0 ⁄
2

1

R

dddddddb

,

(8.16)

respectively. We note that when we reduce elements to the left and right in
the upper and lower part of the first column, the same type of reductions must
occur in the second column, since the determinant H(0,0)H(1,1) ≠ H(0, 1)H(1,0)

is a constant after any number of lifting steps.
This example explains the procedure for finding the lifting factorization

into steps of the form given in Equation (8.16). You will be spared the details
of writing an implementation which applies this procedure. In order to use
orthornormal wavelets in implementations, we have implemented a function
liftingfactortho, which takes N as input, and computes the steps in a lifting
factorization so that (8.8) holds. These are written to file, and read from file
when needed (you need not call liftingfactortho yourself, this is handled
behind the curtains). In the exercises, you will be asked to implement both these
non-symmetric elementary lifting steps, as well as the full kernel transformations
for orthonormal wavelets.
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Exercise 8.8: Polyphase components for symmetric filters
Assume that the filters H

0

, H
1

of a wavelet are symmetric, and denote by S(i,j)

the polyphase components of the corresponding MRA-matrix H. Show that
S(0,0) and S(1,1) are symmetric filters, that the filter coe�cients of S(1,0) has
symmetry about ≠1/2, and that S(0,1) has symmetry about 1/2. Also show a
similar statement for the MRA-matrix G of the inverse DWT.

Exercise 8.9: Implementing kernels transformations using
lifting
Up to now in this chapter we have obtained lifting factorizations for four di�erent
wavelets where the filters are symmetric. Let us now implement the kernel
transformations for these wavelets. Your functions should call the functions from
Exercise 5.33 and Exercise 5.37. in order to compute the individual lifting steps.
Recall that the kernel transformations should take the input vector x, symm
(i.e. whether symmetric extension should be applied), and dual (i.e. whether
the dual wavelet transform should be applied) as input. You will need equations
(8.9)-(8.12) here, in order to complete the kernels for bot the transformations
and the dual transformations.

a) Write functions

dwt_kernel_53(x, bd_mode)
idwt_kernel_53(x, bd_mode)

which implement the DWT and IDWT kernel transformations for the Spline 5/3
wavelet. Use the lifting factorization obtained in Example 8.2.2.

b) Write functions

dwt_kernel_97(x, bd_mode)
idwt_kernel_97(x, bd_mode)

which implement the DWT and IDWT kernel transformations for the CDF 9/7
wavelet. Use the lifting factorization obtained in Example 8.2.3.

c) In Chapter 5, we listened to the low-resolution approximations and detail
components in sound for three di�erent wavelets. Repeat these experiments
with the Spline 5/3 and the CDF 9/7 wavelet, using the new kernels we have
implemented in this exercise.

d) Plot all scaling functions and mother wavelets for the Spline 5/3 and the CDF
9/7 wavelets, using the cascade algorithm and the kernels you have implemented.

Exercise 8.10: Lifting orthonormal wavelets
In this exercise we will implement the kernel transformations for orthonormal
wavelets.
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a) Write functions

lifting_even(lambda1, lambda2, x, bd_mode)
lifting_odd(lambda1, lambda2, x, bd_mode)

which apply the elementary lifting matrices (8.16) to x. Assume that N is even.

b) Write functions

dwt_kernel_ortho(x, filters, bd_mode)
idwt_kernel_ortho(x, filters, bd_mode)

which apply the DWT and IDWT kernel transformations for orthonormal
wavelets to x. You should call the functions lifting_even and lifting_odd.
You can assume that you can access the lifting steps so that the lifting factor-
ization (8.8) holds, through the object filters by writing filters.lambdas,
filters.alpha, and filters.beta. filters.lambdas is an n ◊ 2-matrix so
that the filter coe�cients {⁄

1

, ⁄
2

} or {⁄
1

, ⁄
2

} in the i’th lifting step is found in
row i. Recall that the last lifting step was even.

Due to the filters object, the functions dwt_kernel_ortho and idwt_kernel_ortho
do not abide to the signature we have required for kernel functions up to now.
The code base creates such functions based on the functions above in the following
way:

filters = ...
dwt_kernel = @(x, bd_mode) dwt_kernel_ortho(x, filters, bd_mode);

c) Listen to the low-resolution approximations and detail components in sound
for orthonormal wavelets for N = 1, 2, 3, 4.

d) Plot all scaling functions and mother wavelets for the orthonormal wavelets for
N = 1, 2, 3, 4, using the cascade algorithm. Since the wavelets are orthonormal,
we should have that „ = „̃, and Â = Ẫ. In other words, you should see that the
bottom plots equal the upper plots.

Exercise 8.11: 4 vanishing moments
In Exercise 5.39 we found constants –, —, “, ” which give the coordinates of Â̂ in
(�

1

,  ̂
1

), where Â̂ had four vanishing moments, and where we worked with the
multiresolution analysis of piecewise constant functions.

a) Show that the polyphase representation of G when Â̂ is used as mother
wavelet can be factored as

1Ô
2

3
I 0

{1/2, 1/2} I

4 3
I {≠“, ≠–, ≠—, ≠”}
0 I

4
. (8.17)

You here need to reconstruct what you did in the lifting factorization for the
alternative piecewise linear wavelet, i.e. write
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PD1Ω(�1, ˆ

 1)

= PD1Ω(�1, 1)

P
(�1, 1)Ω(�1, ˆ

 1)

.

By inversion, find also a lifting factorization of H.

Exercise 8.12: Wavelet based on piecewise quadratic scaling
function
In Exercise 7.3 you should have found the filters

H
0

= 1
128{≠5, 20, ≠1, ≠96, 70, 280, 70, ≠96, ≠1, 20, ≠5}

H
1

= 1
16{1, ≠4, 6, ≠4, 1}

G
0

= 1
16{1, 4, 6, 4, 1}

G
1

= 1
128{5, 20, 1, ≠96, ≠70, 280, ≠70, ≠96, 1, 20, 5}.

a) Show that

3
I ≠ 1

128

{5, ≠29, ≠29, 5}
0 I

4 3
I 0

≠{1, 1} I

4 3
I ≠ 1

4

{1, 1}
0 I

4
G =

3
1

4

0
0 4

4
.

From this we can easily derive the lifting factorization of G.

b) Listen to the low-resolution approximations and detail components in sound
for this wavelet.

c) Plot all scaling functions and mother wavelets for this wavelet, using the
cascade algorithm.

8.3 Cosine-modulated filter banks and the MP3
standard

Previously we saw that the MP3 standard used a certain filter bank, called a
cosine-modulated filter bank. We also illustrated that, surprisingly for a much
used international standard, the synthesis system did not exactly invert the
analysis system, i.e. we do not have perfect reconstruction, only “near-perfect
reconstruction”. In this section we will first explain how this filter bank can be
constructed, and why it can not give perfect reconstruction. In particular it will
be clear how the prototype filter can be constructed. We will then construct a
very similar filter bank, which actually can give perfect reconstruction. It may
seem very surprising that the MP3 standard does not use this filter bank instead
due to this. The explanation may lie in that the MP3 standard was established
at about the same time as these filter banks were developed, so that the standard
did not capture this very similar filter bank with perfect reconstruction.
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8.3.1 Polyphase representations of the filter bank trans-
forms

The main idea is to find the polyphase representations of the forward and reverse
filter bank transforms of the MP3 standard. We start with the expression

z
32(s≠1)+n =

511ÿ

k=0

cos((n + 1/2)(k ≠ 16)fi/32)hkx
32s≠k≠1

, (8.18)

which lead to the expression of the forward filter bank transform (Theorem 6.24).
Using that any k < 512 can be written uniquely on the form k = m + 64r, where
0 Æ m < 64, and 0 Æ r < 8, we can rewrite this as

=
63ÿ

m=0

7ÿ

r=0

(≠1)r cos (2fi(n + 1/2)(m ≠ 16)/64) hm+64rx
32s≠(m+64r)≠1

=
63ÿ

m=0

cos (2fi(n + 1/2)(m ≠ 16)/64)
7ÿ

r=0

(≠1)rhm+32·2rx
32(s≠2r)≠m≠1

.

Here we also used Property (6.35). If we write

V (m) = {(≠1)0hm, 0, (≠1)1hm+64

, 0, (≠1)2hm+128

, . . . , (≠1)7hm+7·64

, 0},
(8.19)

for 0 Æ m Æ 63, and we can write the expression above as

63ÿ

m=0

cos (2fi(n + 1/2)(m ≠ 16)/64)
15ÿ

r=0

V (m)

r x
32(s≠r)≠m≠1

=
63ÿ

m=0

cos (2fi(n + 1/2)(m ≠ 16)/64)
15ÿ

r=0

V (m)

r x
(32≠m≠1)

s≠1≠r

=
63ÿ

m=0

cos (2fi(n + 1/2)(m ≠ 16)/64) (V (m)x(32≠m≠1))s≠1

,

where we recognized x
32(s≠r)≠m≠1

in terms of the polyphase components of
x, and the inner sum as a convolution. We remark that the inner terms
{(V (m)x(32≠m≠1))s≠1

}63

m=0

here are what the standard calls partial calculations
(windowing refers to multiplication with the combined set of filter coe�cients of
the V (m)), and that matrixing here represents the multiplication with the cosine
entries. Since z(n) = {z

32(s≠1)+n}Œ
s=0

is the n’th polyphase component of z, this
can be written as

z(n) =
63ÿ

m=0

cos (2fi(n + 1/2)(m ≠ 16)/64) IV (m)x(32≠m≠1).



CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS304

In terms of matrices this can be written as

z =

Q

ca
cos (2fi(0 + 1/2) · (≠16)/64) I · · · cos (2fi(0 + 1/2) · (47)/64) I

... . . . ...
cos (2fi(31 + 1/2) · (≠16)/64) I · · · cos (2fi(31 + 1/2) · (47)/64) I

R

db

◊

Q

ccccca

V (0) 0 · · · 0 0
0 V (1) · · · 0 0
...

...
...

...
...

0 0 · · · V (62) 0
0 0 · · · 0 V (63)

R

dddddb

Q

ccca

x(31)

x(30)

...
x(≠32)

R

dddb
.

If we place the 15 first columns in the cosine matrix last using Property (6.35)
(we must then also place the 15 first rows last in the second matrix), we obtain

z =

Q

ca
cos (2fi(0 + 1/2) · (0)/64) I · · · cos (2fi(0 + 1/2) · (63)/64) I

... . . . ...
cos (2fi(31 + 1/2) · (0)/64) I · · · cos (2fi(31 + 1/2) · (63)/64) I

R

db

◊

Q

cccccccca

0 · · · 0 V (16) · · · 0
...

...
...

... . . . ...
0 · · · 0 0 · · · V (63)

≠V (0) · · · · · · 0 · · · 0
... . . . ...

...
... 0

0 · · · ≠V (15) 0 · · · 0

R

ddddddddb

Q

ccca

x(31)

x(30)

...
x(≠32)

R

dddb
.

Using Equation (6.36) to combine column k and 64 ≠ k in the cosine matrix (as
well as row k and 64 ≠ k in the second matrix), we can write this as

Q

ca
cos (2fi(0 + 1/2) · (0)/64) I · · · cos (2fi(0 + 1/2) · (31)/64) I

... . . . ...
cos (2fi(31 + 1/2) · (0)/64) I · · · cos (2fi(31 + 1/2) · (31)/64) I

R

db
!
AÕ BÕ"

Q

ccca

x(31)

x(30)

...
x(≠32)

R

dddb
.

where
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AÕ =

Q

cccccccccccca

0 0 · · · 0 V (16) 0 · · · 0
0 0 · · · V (15) 0 V (17) · · · 0
...

... . . . ...
...

... . . . 0
0 V (1) · · · 0 0 0 · · · V (31)

V (0) 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0

R

ddddddddddddb

BÕ =

Q

cccccccca

0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
V

(32)

0 · · · 0 0 0 · · · 0
0 V (33) · · · 0 0 0 · · · ≠V (63)

...
... . . . ...

...
... . . . ...

0 0 · · · V (47) 0 ≠V (49) · · · 0

R

ddddddddb

.

Using Equation (4.3), the cosine matrix here can be written as

Ú
M

2 (DM )T

Q

ccca

Ô
2 0 · · · 0

0 1 · · · 0
...

...
...

...
0 0 · · · 1

R

dddb
.

The above can thus be written as

4(D
32

)T
!
A B

"

Q

ccca

x(31)

x(30)

...
x(≠32)

R

dddb
,

where A and B are the matrices AÕ, BÕ with the first row multiplied by
Ô

2
(i.e. replace V (16) with

Ô
2V (16) in the matrix AÕ). Using that x(≠i) = E

1

xi for
1 Æ i Æ 32, we can write this as

4(D
32

)T
!
A B

"

Q

cccccccca

x(31)

...
x(0)

E
1

x(31)

...
E

1

x(0)

R

ddddddddb

= 4(D
32

)T

Q

caA

Q

ca
x(31)

...
x(0)

R

db + B

Q

ca
E

1

x(31)

...
E

1

x(0)

R

db

R

db ,
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which can be written as

4(D
32

)T

Q

cccccccccccca

0 0 · · · 0
Ô

2V (16) 0 · · · 0
0 0 · · · V (15) 0 V (17) · · · 0
...

... . . . ... . . . ...
...

0 V (1) · · · 0 0 0 · · · V (31)

V (0) + E
1

V (32) 0 · · · 0 0 0 · · · 0
0 E

1

V (33) · · · 0 0 0 · · · ≠E
1

V (63)

...
... . . . ...

...
... . . . ...

0 0 · · · E
1

V (47) 0 ≠E
1

V (49) · · · 0

R

ddddddddddddb

Q

ca
x(31)

...
x(0)

R

db ,

which also can be written as

4(D
32

)T

Q

cccccccccccca

0 · · · 0
Ô

2V (16) 0 · · · 0 0
0 · · · V (17) 0 V (15) · · · 0 0
... . . . ... . . . ...

...
...

...
V (31) · · · 0 0 0 · · · V (1) 0
0 · · · 0 0 0 · · · 0 V (0) + E

1

V (32)

≠E
1

V (63) · · · 0 0 0 · · · E
1

V (33) 0
... . . . ...

...
... . . . ...

...
0 · · · ≠E

1

V (49) 0 E
1

V (47) · · · 0 0

R

ddddddddddddb

Q

ca
x(0)

...
x(31)

R

db .

We have therefore proved the following result.

Theorem 8.11. Polyphase factorization of a forward filter bank transform based
on a prototype filter.

The polyphase form of a forward filter bank transform based on a prototype
filter can be factored as

4(D
32

)T

Q

cccccccccccca

0 · · · 0
Ô

2V (16) 0 · · · 0 0
0 · · · V (17) 0 V (15) · · · 0 0
... . . . ... . . . ...

...
...

...
V (31) · · · 0 0 0 · · · V (1) 0
0 · · · 0 0 0 · · · 0 V (0) + E

1

V (32)

≠E
1

V (63) · · · 0 0 0 · · · E
1

V (33) 0
... . . . ...

...
... . . . ...

...
0 · · · ≠E

1

V (49) 0 E
1

V (47) · · · 0 0

R

ddddddddddddb

(8.20)

Due to Theorem 6.26, it is also very simple to write down the polyphase
factorization of the reverse filter bank transform as well. Since E

481

GT is a
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forward filter bank transform where the prototype filter has been reversed,
E

481

GT can be factored as above, with V (m) replaced by W (m), with W (m)

being the filters derived from the synthesis prototype filter in reverse order. This
means that the polyphase form of G can be factored as

4

Q

cccccccccccca

0 0 · · · (W (31))T 0 ≠E≠1

(W (63))T · · · 0
...

... . . . ... . . . ...
...

...
0 (W (17))T · · · 0 0 0 · · · ≠E≠1

(W (49))TÔ
2(W (16))T 0 · · · 0 0 0 · · · 0

0 (W (15))T · · · 0 0 0 · · · E≠1

(W (47))T

...
... . . . ...

...
... . . . ...

0 0 · · · (W (1))T 0 E≠1

(W (33))T · · · 0
0 0 · · · 0 (W (0))T + E≠1

(W (32))T 0 · · · 0

R

ddddddddddddb

◊ D
32

E
481

. (8.21)

Now, if we define U (m) as the filters derived from the synthesis prototype filter
itself, we have that

(W (k))T = ≠E≠14

V (64≠k), 1 Æ k Æ 15 (W (0))T = E≠16

V (0).

Inserting this in Equation (8.21) we get the following result:

Theorem 8.12. Polyphase factorization of a reverse filter bank transform based
on a prototype filter.

Assume that G is a reverse filter filter bank transform based on a prototype
filter, and that U (m) are the filters derived from this prototype filter. Then the
polyphase form of G can be factored as

4

Q

cccccccccccca

0 0 · · · ≠U (33) 0 E≠1

U (1) · · · 0
...

... . . . ... . . . ...
...

...
0 ≠U (47) · · · 0 0 0 · · · E≠1

U (15)

≠Ô
2U (48) 0 · · · 0 0 0 · · · 0
0 ≠U (49) · · · 0 0 0 · · · ≠E≠1

U (17)

...
... . . . ...

...
... . . . ...

0 0 · · · ≠U (63) 0 ≠E≠1

U (31) · · · 0
0 0 · · · 0 E≠2

U (0) ≠ E≠1

U (32) 0 · · · 0

R

ddddddddddddb

◊ D
32

E
33

. (8.22)

Now, consider the matrices

3
V (32≠i) V (i)

≠E
1

V (64≠i) E
1

V (32+i)

4
and

3≠U (32+i) E≠1

U (i)

≠U (64≠i) ≠E≠1

U (32≠i)

4
. (8.23)
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for 1 Æ i Æ 15. These make out submatrices in the matrices in equations (8.20)
and (8.22). Clearly, only the product of these matrices influence the result. Since

3≠U (32+i) E≠1

U (i)

≠U (64≠i) ≠E≠1

U (32≠i)

4 3
V (32≠i) V (i)

≠E
1

V (64≠i) E
1

V (32+i)

4

=
3≠U (32+i) U (i)

≠U (64≠i) ≠U (32≠i)

4 3
V (32≠i) V (i)

≠V (64≠i) V (32+i)

4
(8.24)

we have the following result.

Theorem 8.13. Filter bank transforms.
Let H, G be forward and reverse filter bank transforms defined from analysis

and synthesis prototype filters. Let also V (k) be the prototype filter of H, and
U (k) the reverse of the prototype filter of G. If

3≠U (32+i) U (i)

≠U (64≠i) ≠U (32≠i)

4 3
V (32≠i) V (i)

≠V (64≠i) V (32+i)

4
= c

3
Ed 0
0 Ed

4

(
Ô

2V (16))(≠
Ô

2U (48)) = cEd

(V (0) + E
1

V (32))(E≠2

U (0) ≠ E≠1

U (32)) = cEd (8.25)

for 1 Æ i Æ 15, then GH = 16cE
33+32d.

This result is the key ingredient we need in order to construct forward and
reverse systems which together give perfect reconstuction. In Exercise 8.15 we
go through how we can use lifting in order to express a wide range of possible
(U, V ) matrix pairs which satisfy Equation (8.25). This turns the problem of
constructing cosine-modulated filter banks which are useful for audio coding
into an optimization problem: the optimization variables are values ⁄i which
characterize lifting steps, and the objective function is the deviation of the
corresponding prototype filter from an ideal bandpass filter. This optimization
problem has been subject to a lot of research, and we will not go into details on
this.

8.3.2 The prototype filters
Now, let us return to the MP3 standard. We previously observed that in this
standard the coe�cients in the synthesis prototype filter seemed to equal 32
times the analysis prototype filter. This indicates that U (k) = 32V (k). A closer
inspection also yields that there is a symmetry in the values of the prototype
filter: We see that Ci = ≠C

512≠i (i.e. antisymmetry) for most values of i. The
only exception is for i = 64, 128, . . . , 448, for which Ci = C

512≠i (i.e. symmetry).
The antisymmetry can be translated to that the filter coe�cients of V (k) equal
those of V (64≠k) in reverse order, with a minus sign. The symmetry can be
translated to that V (0) is symmetric. These observations can be rewritten as
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V (64≠k) = ≠E
14

(V (k))T , 1 Æ k Æ 15. (8.26)
V (0) = E

16

(V (0))T . (8.27)

Inserting first that U (k) = 32V (k) in Equation (8.24) gives

3≠U (32+i) U (i)

≠U (64≠i) ≠U (32≠i)

4 3
V (32≠i) V (i)

≠V (64≠i) V (32+i)

4

=32
3≠V (32+i) V (i)

≠V (64≠i) ≠V (32≠i)

4 3
V (32≠i) V (i)

≠V (64≠i) V (32+i)

4
.

Substituting for V (32+i) and V (64≠i) after what we found by inspection now
gives

32
3

E
14

(V (32≠i))T V (i)

E
14

(V (i))T ≠V (32≠i)

4 3
V (32≠i) V (i)

E
14

(V (i))T ≠E
14

(V (32≠i))T

4

=32
3

E
14

0
0 E

14

4 3
(V (32≠i))T V (i)

(V (i))T ≠V (32≠i)

4 3
V (32≠i) V (i)

(V (i))T ≠(V (32≠i))T

4

=32
3

E
14

0
0 E

14

4 3
V (32≠i) V (i)

(V (i))T ≠(V (32≠i))T

4T 3
V (32≠i) V (i)

(V (i))T ≠(V (32≠i))T

4

=32
3

E
14

0
0 E

14

4 3
V (i)(V (i))T + V (32≠i)(V (32≠i))T 0

0 V (i)(V (i))T + V (32≠i)(V (32≠i))T

4
.

(8.28)

Due to Exercise 8.6 (set A = (V (32≠i))T , B = (V (i))T ), with

H =
3

V (32≠i) V (i)

(V (i))T ≠(V (32≠i))T

4
G =

3
(V (32≠i))T V (i)

(V (i))T ≠V (32≠i)

4

we recognize an alternative QMF filter bank. We thus have alias cancellation,
with perfect reconstruction only if |⁄H0(Ê)|2 + |⁄H0(Ê + fi)|2. For the two
remaining filters we compute

(
Ô

2V (16))(≠
Ô

2U (48))
= ≠64V (16)V (48) = 64E

14

V (16)(V (16))T = 32E
14

(V (16)(V (16))T + V (16)(V (16))T )
(8.29)

and

(V (0) + E
1

V (32))(E≠2

U (0) ≠ E≠1

U (32))
= 32(V (0) + E

1

V (32))(E≠2

V (0) ≠ E≠1

V (32)) = 32E≠2

(V (0) + E
1

V (32))(V (0) ≠ E
1

V (32))
= 32E≠2

(V (0))2 ≠ (V (32))2) = 32E
14

((V (0)(V (0))T + V (32)(V (32))T )). (8.30)
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We see that the filters from equations (8.28)-(8.30) are similar, and that we thus
can combine them into

{V (i)(V (i))T + V (32≠i)(V (32≠i))T }16

i=0

. (8.31)
All of these can be the identity, expect for 1024V (16)(V (16))T , since we know
that the product of two FIR filters is never the identity, except when both are
delays (And all V (m) are FIR, since the prototype filters defined by the MP3
standard are FIR). This single filter is thus what spoils for perfect reconstruction,
so that we can only hope for alias cancellation, and this happens when the filters
from Equation (8.31) all are equal. Ideally this is close to cI for some scalar c,
and we then have that

GH = 16 · 32cE
33+448

= 512cE
481

I.

This explains the observation from the MP3 standard that GH seems to be close
to E

481

. Since all the filters V (i)(V (i))T + V (32≠i)(V (32≠i))T are symmetric, GH
is also a symmetric filter due to Theorem 8.3, so that its frequency response is
real, so that we have no phase distortion. We can thus summarize our findings
as follows.
Observation 8.14. MP3 standard.

The prototype filters from the MP3 standard do not give perfect reconstruc-
tion. They are found by choosing 17 filters {V (k)}16

k=0

so that the filters from
Equation (8.31) are equal, and so that their combination into a prototype filter
using equations (8.19) and (8.26) is as close to an ideal bandpass filter as possible.
When we have equality the alias cancellation condition is satisfied, and we also
have no phase distortion. When the common value is close to 1

512

I, GH is close
to E

481

, so that we have near-perfect reconstruction.
This states clearly the optimization problem which the values stated in the

MP3 standard solves.

8.3.3 Perfect reconstruction
How can we overcome the problem that 1024V (16)(V (16))T ”= I, which spoiled
for perfect reconstruction in the MP3 standard? It turns out that we can address
this a simple change in our procedure. In Equation (8.18) we replace with

z
32(s≠1)+n =

511ÿ

k=0

cos((n + 1/2)(k + 1/2 ≠ 16)fi/32)hkx
32s≠k≠1

, (8.32)

i.e. 1/2 is added inside the cosine. We now have the properties

cos (2fi(n + 1/2)(k + 64r + 1/2)/(2N)) = (≠1)r cos (2fi(n + 1/2)(k + 1/2)/(2N))
(8.33)

cos (2fi(n + 1/2)(2N ≠ k ≠ 1 + 1/2)/(2N)) = ≠ cos (2fi(n + 1/2)(k + 1/2)/(2N)) .
(8.34)



CHAPTER 8. THE POLYPHASE REPRESENTATION AND WAVELETS311

Due to the first property, we can deduce as before that

z(n) =
63ÿ

m=0

cos (2fi(n + 1/2)(m + 1/2 ≠ 16)/64) IV (m)x(32≠m≠1),

where the filters V (m) are defined as before. As before placing the 15 first
columns of the cosine-matrix last, but instead using Property (8.34) to combine
columns k and 64 ≠ k ≠ 1 of the cosine-matrix, we can write this as

Q

ca
cos (2fi(0 + 1/2) · (0 + 1/2)/64) I · · · cos (2fi(0 + 1/2) · (31 + 1/2)/64) I

... . . . ...
cos (2fi(31 + 1/2) · (0 + 1/2)/64) I · · · cos (2fi(31 + 1/2) · (31 + 1/2)/64) I

R

db
!
A B

"
Q

ca
x(31)

...
x(≠32)

R

db

where

A =

Q

cccccccccca

0 0 · · · V (15) V (16) · · · · · · 0
...

... . . . ...
... . . . ...

...
0 V (1) · · · 0 0 · · · V (30) 0

V (0) 0 · · · 0 0 · · · · · · V (31)

0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0

R

ddddddddddb

B =

Q

cccccccca

0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
V

(32)

0 · · · 0 0 0 · · · ≠V (63)

0 V (33) · · · 0 0 · · · ≠V (62) 0
...

... . . . ...
... . . . ...

...
0 0 · · · V (47) ≠V (48) · · · · · · 0

R

ddddddddb

.

Since the cosine matrix can be written as
Ò

M
2

D(iv)

M , the above can be written as

4D(iv)

M

!
A B

"
Q

ca
x(31)

...
x(≠32)

R

db .

As before we can rewrite this as
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4D(iv)

M

!
A B

"

Q

cccccccca

x(31)

...
x(0)

E
1

x(31)

...
E

1

x(0)

R

ddddddddb

= 4D(iv)

M

Q

caA

Q

ca
x(31)

...
x(0)

R

db + B

Q

ca
E

1

x(31)

...
E

1

x(0)

R

db

R

db ,

which can be written as

4D(iv)

M

Q

cccccccccccca

0 0 · · · V (15) V (16) · · · · · · 0
...

... . . . ...
... . . . ...

...
0 V (1) · · · 0 0 · · · V (30) 0

V (0) 0 · · · 0 0 · · · · · · V (31)

E
1

V
(32)

0 · · · 0 0 · · · · · · ≠E
1

V (63)

0 E
1

V (33) · · · 0 0 · · · ≠E
1

V (62) 0
...

... . . . ...
... . . . ...

...
0 0 · · · E

1

V (47) ≠E
1

V (48) · · · · · · 0

R

ddddddddddddb

Q

ca
x(31)

...
x(0)

R

db ,

which also can be written as

4D(iv)

M

Q

cccccccccccca

0 0 · · · V (16) V (15) · · · · · · 0
...

... . . . ...
... . . . ...

...
0 V (30) · · · 0 0 · · · V (1) 0

V (31) 0 · · · 0 0 · · · · · · V (0)

≠E
1

V
(63)

0 · · · 0 0 · · · · · · E
1

V (32)

0 ≠E
1

V (62) · · · 0 0 · · · E
1

V (33) 0
...

... . . . ...
... . . . ...

...
0 0 · · · ≠E

1

V (48) E
1

V (47) · · · · · · 0

R

ddddddddddddb

Q

ca
x(0)

...
x(31)

R

db .

We therefore have the following result

Theorem 8.15. Polyphase factorization of a forward filter bank transform based
on a prototype filter, modified version.

The modified version of the polyphase form of a forward filter bank transform
based on a prototype filter can be factored as
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4D(iv)

M

Q

cccccccccccca

0 0 · · · V (16) V (15) · · · · · · 0
...

... . . . ...
... . . . ...

...
0 V (30) · · · 0 0 · · · V (1) 0

V (31) 0 · · · 0 0 · · · · · · V (0)

≠E
1

V
(63)

0 · · · 0 0 · · · · · · E
1

V (32)

0 ≠E
1

V (62) · · · 0 0 · · · E
1

V (33) 0
...

... . . . ...
... . . . ...

...
0 0 · · · ≠E

1

V (48) E
1

V (47) · · · · · · 0

R

ddddddddddddb

(8.35)

Clearly this factorization avoids having two blocks of filters: There are now
16 2 ◊ 2-polyphase matrices, and as we know, each of them can be invertible, so
that the full matrix can be inverted in a similar fashion as before. It is therefore
now possible to obtain perfect reconstruction. Although we do not state recipes
for implementing this, one has just as e�cient implementations as in the MP3
standard.

Since we ended up with the 2 ◊ 2 polyphase matrices Mk, we can apply the
lifting factorization in order to halve the number of multiplications/additions.
This is not done in practice, since a lifting factorization requires that we compute
all outputs at once. In audio coding it is required that we compute the output
progressively, due to the large size of the input vector. The procedure above is
therefore mostly useful for providing the requirements for the filters, while the
preceding comments can be used for the implementation.

Exercise 8.13: Run forward and reverse transform
Run the forward and then the reverse transform from Exercise 6.26 on the vector
(1, 2, 3, . . . , 8192). Verify that there seems to be a delay on 481 elements, as
promised by Therorem 8.14. Do you get the exact same result back?

Exercise 8.14: Verify statement of filters
Use your computer to verify the symmetries we have stated for the symmetries
in the prototype filters, i.e. that

Ci =
I

≠C
512≠i i ”= 64, 128, . . . , 448

C
512≠i i = 64, 128, . . . , 448.

Explain also that this implies that hi = h
512≠i for i = 1, . . . , 511. In other words,

the prototype filter has symmetry around (511 + 1)/2 = 256, so that it has linear
phase.
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Exercise 8.15: Lifting
We mentioned that we could use the lifting factorization to construct filters on
the form stated in Equation (8.19), so that the matrices on the form given by
Equation (8.23), i.e.

3
V (32≠i) V (i)

≠V (64≠i) V (32+i)

4
,

are invertible. Let us see what kind of lifting steps produce such matrices.

a) Show that the lifting steps
3

I ⁄E
2

0 I

4
and

3
I 0

⁄I I

4

applied in alternating order to a matrix on the form given by Equation (8.23),
where the filters are on the from given by Equation (8.19), again produces
matrices and filters on these forms. This explains how we can parametrize a
larger number of such matrices with the help of lifting steps.It also explain why
the inverse matrix is on the form stated in Equation (8.23) with filters on the
same form, since the inverse lifting steps are of the same type.

b) Explain that 16 numbers {⁄i}16

i=1

are needed (together with what we start
with on the diagonal in the lifting construction), in order to construct filters so
that the prototype filter has 512 coe�cients. Since there are 15 submatrices,
this gives 240 optimization variables.

Lifting gives the following strategy for finding a corresponding synthesis
prototype filter which gives perfect reconstruction: First compute matrices V, W
which are inverses of oneanother using lifting (using the lifting steps of this
exercise ensures that all filters will be on the form stated in Equation (8.19)),
and write

V W =
3

V (1) V (2)

≠V (3) V (4)

4 3
W (1) ≠W (3)

W (2) W (4)

4
=

3
V (1) V (2)

≠V (3) V (4)

4 3
(W (1))T (W (2))T

≠(W (3))T (W (4))T

4T

=
3

V (1) V (2)

≠V (3) V (4)

4 3
E

15

(W (1))T E
15

(W (2))T

≠E
15

(W (3))T E
15

(W (4))T

4T 3
E

15

0
0 E

15

4
= I.

Now, the matrices U (i) = E
15

(W (i))T are on the form stated in Equation (8.19),
and we have that

3
V (1) V (2)

≠V (3) V (4)

4 3
U (1) U (2)

≠U (3) U (4)

4
=

3
E≠15

0
0 E≠15

4

We can now conclude from Theorem 8.13 that if we define the synthesis prototype
filter as therein, and set c = 1, d = ≠15, we have that GH = 16E

481≠32·15

=
16E

1

.
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8.4 Summary
We defined the polyphase representation of a matrix, and proved some useful
properties. For filter bank transforms, the polyphase representation was a block
matrix where the blocks are filters, and these blocks/filters were called polyphase
components. In particular, the filter bank transforms of wavelets were 2◊2-block
matrices of filters. We saw that, for wavelets, the polyphase representation could
be realized through a rearrangement of the wavelet bases, and thus paralleled
the development in Chapter 6 for expressing the DWT in terms of filters, where
we instead rearranged the target base of the DWT.

We showed with two examples that factoring the polyphase representation
into simpler matrices (also refered to as a polyphase factorization) could be
a useful technique. First, for wavelets (M = 2), we established the lifting
factorization. This is useful not only since it factorizes the DWT and the IDWT
into simpler operations, but also since it reduces the number of arithmetic
operations in these. The lifting factorization is therefore also used in practical
implementations, and we applied it to some of the wavelets we constructed in
Chapter 7. The JPEG2000 standard document [21] explains a procedure for
implementing some of these wavelet transforms using lifting, and the values of
the lifting steps used in the standard thus also appear here.

The polyphase representation was also useful for proving the characterization
of wavelets we encountered in Chapter 7, which we used to find expressions for
many useful wavelets.

The polyphase representation was also useful to explain how the prototype
filters of the MP3 standard should be chosen, in order for the reverse filter bank
transform to invert the forward filter bank transform. Again this was attacked
by factoring the polyphase representation of the forward and reverse filter bank
transforms. The parts of the factorization which represented the prototype
filters were represented by a sparse matrix, and it was clear from this matrix
what properties we needed to put on the prototype filter, in order to have alias
cancellation, and no phase distortion. In fact, we proved that the MP3 standard
could not possible give perfect reconstruction, but it was very clear from our
construction how the filter bank could be modified in order for the overall system
to provide perfect reconstruction.

The lifting scheme as introduced here was first proposed by Sweldens [45].
How to use lifting for in-place calculation for the DWT was also suggested by
Sweldens [44].

This development concludes the one-dimensional aspect of wavelets in this
book. In the following we will extend our theory to also apply for images. Images
will be presented in Chapter 9. After that we will define the tensor product
concept, which will be the key ingredient to apply wavelets to two-dimensional
objects such as images.



Chapter 9

Digital images

Upto now we have presented wavelets in a one-dimensional setting. Images,
however, are two-dimensional by nature. This poses another challenge, which we
did not encounter in the case of sound signals. In this chapter we will establish
the mathematics to handle this, but first we will present some basics on images,
as well as how they can be represented and manipulated with simple mathematics.
Images are a very important type of digital media, and this material is thus useful,
general knowledge for anyone with a digital camera and a computer. For many
scientists this material is also an essential tool. As an example, in astrophysics
data from both satellites and distant stars and galaxies is collected in the form
of images, and information is extracted from the images with advanced image
processing techniques. As another example, medical imaging makes it possible
to gather di�erent kinds of information in the form of images, even from the
inside of the body. By analysing these images it is possible to discover tumours
and other disorders.

We will see how filter-based operations extend naturally to the two-dimensional
setting of images. Smoothing and edge detections are the two main examples
of filter-based operations we will concider for images. The key mathematical
concept in this extension is the tensor product, which can be thought of as
a general tool for constructing two-dimensional objects from one-dimensional
counterparts. We will also see that the tensor product allows us to establish an
e�cient implementation of filtering for images, e�cient meaning a complexity
substantially less than what is required by general linear transformations.

We will finally consider useful coordinate changes for images. Recall that
the DFT, the DCT, and the wavelet transform were all defined as changes of
coordinates for vectors or functions of one variable, and therefore cannot be
directly applied to two-dimensional data like images. It turns out that the tensor
product can also be used to extend changes of coordinates to a two-dimensional
setting.

316
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9.1 What is an image?
Before we do computations with images, it is helpful to be clear about what an
image really is. Images cannot be perceived unless there is some light present,
so we first review superficially what light is.

Light.

Fact 9.1. Light.
Light is electromagnetic radiation with wavelengths in the range 400–700 nm

(1 nm is 10≠9 m): Violet has wavelength 400 nm and red has wavelength 700
nm. White light contains roughly equal amounts of all wave lengths.

Other examples of electromagnetic radiation are gamma radiation, ultraviolet
and infrared radiation and radio waves, and all electromagnetic radiation travel
at the speed of light (¥ 3 ◊ 108 m/s). Electromagnetic radiation consists of
waves and may be reflected and refracted, just like sound waves (but sound
waves are not electromagnetic waves).

We can only see objects that emit light, and there are two ways that this
can happen. The object can emit light itself, like a lamp or a computer monitor,
or it reflects light that falls on it. An object that reflects light usually absorbs
light as well. If we perceive the object as red it means that the object absorbs
all light except red, which is reflected. An object that emits light is di�erent; if
it is to be perceived as being red it must emit only red light.

Digital output media. Our focus will be on objects that emit light, for
example a computer display. A computer monitor consists of a matrix of small
dots which emit light. In most technologies, each dot is really three smaller dots,
and each of these smaller dots emit red, green and blue light. If the amounts of
red, green and blue is varied, our brain merges the light from the three small
light sources and perceives light of di�erent colors. In this way the color at each
set of three dots can be controlled, and a color image can be built from the total
number of dots.

It is important to realise that it is possible to generate most, but not all,
colors by mixing red, green and blue. In addition, di�erent computer monitors
use slightly di�erent red, green and blue colors, and unless this is taken into
consideration, colors will look di�erent on the two monitors. This also means
that some colors that can be displayed on one monitor may not be displayable
on a di�erent monitor.

Printers use the same principle of building an image from small dots. On
most printers however, the small dots do not consist of smaller dots of di�erent
colors. Instead as many as 7–8 di�erent inks (or similar substances) are mixed
to the right color. This makes it possible to produce a wide range of colors, but
not all, and the problem of matching a color from another device like a monitor
is at least as di�cult as matching di�erent colors across di�erent monitors.
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Video projectors builds an image that is projected onto a wall. The final
image is therefore a reflected image and it is important that the surface is white
so that it reflects all colors equally.

The quality of a device is closely linked to the density of the dots.

Fact 9.2. Resolution.
The resolution of a medium is the number of dots per inch (dpi). The number

of dots per inch for monitors is usually in the range 70–120, while for printers it is
in the range 150–4800 dpi. The horizontal and vertical densities may be di�erent.
On a monitor the dots are usually referred to as pixels (picture elements).

Digital input media. The two most common ways to acquire digital images
is with a digital camera or a scanner. A scanner essentially takes a photo of a
document in the form of a matrix of (possibly colored) dots. As for printers, an
important measure of quality is the number of dots per inch.

Fact 9.3. Printers.
The resolution of a scanner usually varies in the range 75 dpi to 9600 dpi,

and the color is represented with up to 48 bits per dot.

For digital cameras it does not make sense to measure the resolution in dots
per inch, as this depends on how the image is printed (its size). Instead the
resolution is measured in the number of dots recorded.

Fact 9.4. Pixels.
The number of pixels recorded by a digital camera usually varies in the range

320 ◊ 240 to 6000 ◊ 4000 with 24 bits of color information per pixel. The total
number of pixels varies in the range 76 800 to 24 000 000 (0.077 megapixels to
24 megapixels).

For scanners and cameras it is easy to think that the more dots (pixels), the
better the quality. Although there is some truth to this, there are many other
factors that influence the quality. The main problem is that the measured color
information is very easily polluted by noise. And of course high resolution also
means that the resulting files become very big; an uncompressed 6000 ◊ 4000
image produces a 72 MB file. The advantage of high resolution is that you can
magnify the image considerably and still maintain reasonable quality.

Definition of digital image. We have already talked about digital images,
but we have not yet been precise about what they are. From a mathematical
point of view, an image is quite simple.

Fact 9.5. Digital image.
A digital image P is a matrix of intensity values {pi,j}M,N

i,j=1

. For grey-level
images, the value pi,j is a single number, while for color images each pi,j is a
vector of three or more values. If the image is recorded in the rgb-model, each
pi,j is a vector of three values,

pi,j = (ri,j , gi,j , bi,j),
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that denote the amount of red, green and blue at the point (i, j).

Note that, when referring to the coordinates (i, j) in an image, i will refer to
row index, j to column index, in the same was as for matrices. In particular,
the top row in the image have coordinates {(0, j)}N≠1

j=0

, while the left column in
the image has coordinates {(i, 0)}M≠1

i=0

. With this notation, the dimension of the
image is M ◊ N . The value pi,j gives the color information at the point (i, j).
It is important to remember that there are many formats for this. The simplest
case is plain black and white images in which case pi,j is either 0 or 1. For
grey-level images the intensities are usually integers in the range 0–255. However,
we will assume that the intensities vary in the interval [0, 1], as this sometimes
simplifies the form of some mathematical functions. For color images there are
many di�erent formats, but we will just consider the rgb-format mentioned in
the fact box. Usually the three components are given as integers in the range
0–255, but as for grey-level images, we will assume that they are real numbers
in the interval [0, 1] (the conversion between the two ranges is straightforward,
see Example 9.3 below).

Figure 9.1: Our test image.

In Figure 9.1 we have shown the test image we will work with, called the
Lena image. It is named after the girl in the image. This image is also used as a
test image in many textbooks on image processing.

In Figure 9.2 we have shown the corresponding black and white, and grey-level
versions of the test image.

Fact 9.6. Intensity.
In these notes the intensity values pi,j are assumed to be real numbers in the

interval [0, 1]. For color images, each of the red, green, and blue intensity values
are assumed to be real numbers in [0, 1].
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Figure 9.2: Black and white (left), and grey-level (right) versions of the image
in Figure 9.1.

Figure 9.3: 18 ◊ 18 pixels excerpt of the color image in Figure 9.1. The grid
indicates the borders between the pixels.

If we magnify the part of the color image in Figure 9.1 around one of the
eyes, we obtain the images in figures 9.3-9.4. As we can see, the pixels have
been magnified to big squares. This is a standard representation used by many
programs — the actual shape of the pixels will depend on the output medium.
Nevertheless, we will consider the pixels to be square, with integer coordinates
at their centers, as indicated by the grids in figures 9.3-9.4.

Fact 9.7. Shape of pixel.



CHAPTER 9. DIGITAL IMAGES 321

Figure 9.4: 50 ◊ 50 pixels excerpt of the color image in Figure 9.1.

The pixels of an image are assumed to be square with sides of length one,
with the pixel with value pi,j centered at the point (i, j).

9.2 Some simple operations on images with Mat-
lab

Images are two-dimensional matrices of numbers, contrary to the sound signals
we considered in the previous section. In this respect it is quite obvious that we
can manipulate an image by performing mathematical operations on the numbers.
In this section we will consider some of the simpler operations. In later sections
we will go through more advanced operations, and explain how the theory for
these can be generalized from the corresponding theory for one-dimensional
(sound) signals (which we will go through first).

In order to perform these operations, we need to be able to use images with
a programming environment.

An image can also be thought of as a matrix, by associating each pixel with
an element in a matrix. The matrix indices thus correspond to positions in the
pixel grid. Black and white images correspond to matrices where the elements
are natural numbers between 0 and 255. To store a color image, we need 3
matrices, one for each color component. We will also view this as a 3-dimensional
matrix. In the following, operations on images will be implemented in such
a way that they are applied to each color component simultaneously. This is
similar to the FFT and the DWT, where the operations were applied to each
sound channel simultaneously.

Since images are viewed as 2-dimensional or 3-dimensional matrices, we can
use any linear algebra software in order to work with images. After we now have
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made the connection with matrices, we can create images from mathematical
formulas, just as we could with sound in the previous sections. But what we also
need before we go through operations on images, is, as in the sections on sound,
means of reading an image from a file so that its contents are accessible as a
matrix, and write images represented by a matrix which we have constructed
ourself to file. Reading a function from file can be done with help of the function
imread. If we write

X = double(imread(’filename.fmt’, ’fmt’))

the image with the given path and format is read, and stored in the matrix
which we call X. ’fmt’ can be ’jpg’,’tif’, ’gif’, ’png’, and so on. This parameter is
optional: If it is not present, the program will attempt to determine the format
from the first bytes in the file, and from the filename. After the call to imread,
we have a matrix where the entries represent the pixel values, and of integer
data type (more precisely, the data type uint8). To perform operations on the
image, we must first convert the entries to the data type double, as shown above.
Similarly, the function imwrite

can be used to write the image represented by a matrix to file. If we write

imwrite(uint8(X), ’filename.fmt’, ’fmt’)

the image represented by the matrix X is written to the given path, in the given
format. Before the image is written to file, you see that we have converted the
matrix values back to the integer data type. In other words: imread and imwrite
both assume integer matrix entries, while operations on matrices assume double
matrix entries. If you want to print images you have created yourself, you can
use this function first to write the image to a file, and then send that file to
the printer using another program. Finally, we need an alternative to playing a
sound, namely displaying an image. The function imshow(uint8(X)) displays
the matrix X as an image in a separate window. Also here we needed to convert
the samples using the function uint8.

The following examples go through some much used operations on images.

Example 9.1: Normalising the intensities
We have assumed that the intensities all lie in the interval [0, 1], but as we noted,
many formats in fact use integer values in the range [0,255]. And as we perform
computations with the intensities, we quickly end up with intensities outside
[0, 1] even if we start out with intensities within this interval. We therefore need
to be able to normalise the intensities. This we can do with the simple linear
function

g(x) = x ≠ a

b ≠ a
, a < b,

which maps the interval [a, b] to [0, 1]. A simple case is mapping [0, 255] to [0, 1]
which we accomplish with the scaling g(x) = x/255. More generally, we typically
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perform computations that result in intensities outside the interval [0, 1]. We
can then compute the minimum and maximum intensities p

min

and p
max

and
map the interval [p

min

, p
max

] back to [0, 1]. Below we have shown a function
mapto01 which achieves this task.

function Z=mapto01(X)
minval = min(min(min(X)));
maxval = max(max(max(X)));
Z = (X - minval)/(maxval-minval);

Several examples of using this function will be shown below. A good question
here is why the functions min and max are called three times in succession. The
reason is that there is a third “dimension” in play, besides the spatial x- and
y-directions. This dimension describes the color components in each pixel, which
are usually the red-, green-, and blue color components.

Example 9.2: Extracting the di�erent colors
If we have a color image

P = (ri,j , gi,j , bi,j)m,n
i,j=1

,

it is often useful to manipulate the three color components separately as the
three images

Pr = (ri,j)m,n
i,j=1

, Pr = (gi,j)m,n
i,j=1

, Pr = (bi,j)m,n
i,j=1

.

As an example, let us first see how we can produce three separate images, showing
the R,G, and B color components, respectively. Let us take the image lena.png
used in Figure 9.1. When the image is read (first line below), the returned
object has three dimensions. The first two dimensions represent the spatial
directions (the row-index and column-index). The third dimension represents
the color component. One can therefore view images representing the di�erent
color components with the help of the following code:

X1 = zeros(size(img));
X1(:,:,1) = img(:,:,1);

X2 = zeros(size(img));
X2(:,:,2) = img(:,:,2);

X3=zeros(size(img));
X3(:,:,3) = img(:,:,3);

The resulting images are shown in Figure 9.5.

Example 9.3: Converting from color to grey-level
If we have a color image we can convert it to a grey-level image. This means
that at each point in the image we have to replace the three color values (r, g, b)
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Figure 9.5: The red, green, and blue components of the color image in Figure 9.1.

by a single value p that will represent the grey level. If we want the grey-level
image to be a reasonable representation of the color image, the value p should
somehow reflect the intensity of the image at the point. There are several ways
to do this.

It is not unreasonable to use the largest of the three color components as a
measure of the intensity, i.e, to set p = max(r, g, b). An alternative is to use the
sum of the three values as a measure of the total intensity at the point. This
corresponds to setting p = r + g + b. Here we have to be a bit careful with a
subtle point. We have required each of the r, g and b values to lie in the range
[0, 1], but their sum may of course become as large as 3. We also require our
grey-level values to lie in the range [0, 1] so after having computed all the sums
we must normalise as explained above. A third possibility is to think of the
intensity of (r, g, b) as the length of the color vector, in analogy with points in
space, and set p =


r2 + g2 + b2. Again, we may end up with values in the

range [0,
Ô

3] so we have to normalise like we did in the second case.
Let us sum this up as follows: A color image P = (ri,j , gi,j , bi,j)m,n

i,j=1

can be
converted to a grey level image Q = (qi,j)m,n

i,j=1

by one of the following three
operations:

• Set qi,j = max(ri,j , gi,j , bi,j) for all i and j.

• Compute q̂i,j = ri,j + gi,j + bi,j for all i and j.

• Transform all the values to the interval [0, 1] by setting

qi,j = q̂i,j

maxk,l q̂k,l
.

• Compute q̂i,j =
Ò

r2

i,j + g2

i,j + b2

i,j for all i and j.

• Transform all the values to the interval [0, 1] by setting

qi,j = q̂i,j

maxk,l q̂k,l
.
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In practice one of the last two methods are preferred, perhaps with a preference
for the last method, but the actual choice depends on the application. These
can be implemented as follows.

X1 = max(img, [], 3);

X2 = img(:, :, 1) + img(:, :, 2) + img(:, :, 3);
X2 = 255*mapto01(X2);

X3 = sqrt(img(:,:,1).^2 + img(:,:,2).^2 + img(:,:,3).^2);
X3 = 255*mapto01(X3);

The results of applying these three operations can be seen in Figure 9.6.

Figure 9.6: Alternative ways to convert the color image in Figure 9.1 to a grey
level image.

Example 9.4: Computing the negative image
In film-based photography a negative image was obtained when the film was
developed, and then a positive image was created from the negative. We can
easily simulate this and compute a negative digital image.

Suppose we have a grey-level image P = (pi,j)m,n
i,j=1

with intensity values in
the interval [0, 1]. Here intensity value 0 corresponds to black and 1 corresponds
to white. To obtain the negative image we just have to replace an intensity p
by its ’mirror value’ 1 ≠ p. This is also easily translated to code as above. The
resulting image is shown in Figure 9.7.

Example 9.5: Increasing the contrast
A common problem with images is that the contrast often is not good enough.
This typically means that a large proportion of the grey values are concentrated
in a rather small subinterval of [0, 1]. The obvious solution to this problem is
to somehow spread out the values. This can be accomplished by applying a
monotone function f which maps [0, 1] onto [0, 1]. If we choose f so that its
derivative is large in the area where many intensity values are concentrated, we
obtain the desired e�ect. We will consider two such families of functions:
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Figure 9.7: The negative versions of the corresponding images in Figure 9.6.

fn(x) = arctan(n(x ≠ 1/2))
2 arctan(n/2) + 1

2 (9.1)

g‘(x) = ln(x + ‘) ≠ ln ‘

ln(1 + ‘) ≠ ln ‘
. (9.2)

The first type of functions have quite large derivatives near x = 0.5 and will
therefore increase the contrast in images with a concentration of intensities with
value around 0.5. The second type of functions have a large derivative near
x = 0 and will therefore increase the contrast in images with a large proportion
of small intensity values, i.e., very dark images. Figure 9.8 shows some examples
of these functions. The three functions in the left plot in Figure 9.8 are f

4

, f
10

,
and f

100

, the ones shown in the plot are g
0.1, g

0.01

, and g
0.001

.

Figure 9.8: Some functions that can be used to improve the contrast of an
image.

In Figure 9.9 f
10

and g
0.01

have been applied to the image in the right part
of Figure 9.6. Since the image was quite well balanced, f

10

made the dark areas
too dark and the bright areas too bright. g

0.01

on the other hand has made the
image as a whole too bright.

Increasing the contrast is easy to implement. The following function uses the
contrast adjusting function from Equation (9.2), with ‘ as parameter.
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Figure 9.9: The result after applying f
10

and g
0.01

to the test image.

function Z=contrastadjust(X,epsilon)
Z = X/255; % Maps the pixel values to [0,1]
Z = (log(Z+epsilon) - log(epsilon))/...

(log(1+epsilon)-log(epsilon));
Z = Z*255; % Maps the values back to [0,255]

This has been used to generate the right image in Figure 9.9.

Exercise 9.6: Generate black and white images
Black and white images can be generated from greyscale images (with values
between 0 and 255) by replacing each pixel value with the one of 0 and 255
which is closest. Use this strategy to generate the black and white image shown
in the right part of Figure 9.2.

Exercise 9.7: Adjust contrast in images
a) Write a function contrastadjust0 which instead uses the function from
Equation (9.1) to increase the contrast. n should be a parameter to the function.

b) Generate the left and right images in Figure 9.9 on your own by writing code
which uses the two functions contrastadjust0 and contrastadjust.

Exercise 9.8: Adjust contrast with another function
In this exercise we will look at another function for increasing the contrast of a
picture.



CHAPTER 9. DIGITAL IMAGES 328

a) Show that the function f : R æ R given by

fn(x) = xn,

for all n maps the interval [0, 1] æ [0, 1], and that f Õ(1) æ Œ as n æ Œ.

b) The color image secret.jpg,shown in Figure 9.10, contains some informa-
tion that is nearly invisible to the naked eye on most computer monitors. Use
the function f(x), to reveal the secret message.

Figure 9.10: Secret message.

Hint. You will first need to convert the image to a greyscale image. You can
then use the function contrastadjust as a starting point for your own program.

9.3 Filter-based operations on images
The next examples of operations on images we consider will use filters. These
examples define what it means to apply a filter to two-dimensional data. We
start with the following definition of a computational molecule. This term stems
from image processing, and seems at the outset to be unrelated to filters.

Definition 9.8. Computational molecules.
We say that an operation S on an image X is given by the computational

molecule
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A =

Q

cccccca

...
...

...
...

...
· · · a≠1,≠1

a≠1,0 a≠1,1 · · ·
· · · a

0,≠1

a
0,0 a

0,1 · · ·
· · · a

1,≠1

a
1,0 a

1,1 · · ·
...

...
...

...
...

R

ddddddb

if we have that

(SX)i,j =
ÿ

k1,k2

ak1,k2Xi≠k1,j≠k2 . (9.3)

In the molecule, indices are allowed to be both positive and negative, we underline
the element with index (0, 0) (the center of the molecule), and assume that ai,j

with indices falling outside those listed in the molecule are zero (as for compact
filter notation).

In Equation (9.3), it is possible for the indices i ≠ k
1

and j ≠ k
2

to fall
outside the legal range for X. We will solve this case in the same way as we
did for filters, namely that we assume that X is extended (either periodically
or symmetrically) in both directions. The interpretation of a computational
molecule is that we place the center of the molecule on a pixel, multiply the
pixel and its neighbors by the corresponding weights ai,j in reverse order, and
finally sum up in order to produce the resulting value. This type of operation
will turn out to be particularly useful for images. The following result expresses
how computational molecules and filters are related. It states that, if we apply
one filter to all the columns, and then another filter to all the rows, the end
result can be expressed with the help of a computational molecule.

Theorem 9.9. Filtering and computational molecules.
Let S

1

and S
2

be filters with compact filter notation t
1

and t
2

, respectively,
and consider the operation S where S

1

is first applied to the columns in the
image, and then S

2

is applied to the rows in the image. Then S is an operation
which can be expressed in terms of the computational molecule ai,j = (t

1

)i(t2

)j .

Proof. Let Xi,j be the pixels in the image. When we apply S
1

to the columns
of X we get the image Y defined by

Yi,j =
ÿ

k1

(t
1

)k1Xi≠k1,j .

When we apply S
2

to the rows of Y we get the image Z defined by

Zi,j =
ÿ

k2

(t
2

)k2Yi,j≠k2 =
ÿ

k2

(t
2

)k2

ÿ

k1

(t
1

)k1Xi≠k1,j≠k2

=
ÿ

k1

ÿ

k2

(t
1

)k1(t
2

)k2Xi≠k1,j≠k2 .
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Comparing with Equation (9.3) we see that S is given by the computational
molecule with entries ai,j = (t

1

)i(t2

)j .

Note that, when we filter an image with S
1

and S
2

in this way, the order
does not matter: since computing S

1

X is the same as applying S
1

to all columns
of X, and computing Y (S

2

)T is the same as applying S
2

to all rows of Y , the
combined filtering operation, denoted S, takes the form

S(X) = S
1

X(S
2

)T , (9.4)

and the fact that the order does not matter simply boils down to the fact that
it does not matter which of the left or right multiplications we perform first.
Applying S

1

to the columns of X is what we call a vertical filtering operation,
while applying S

2

to the rows of X is what we call a horizontal filtering operation.
We can thus state the following.

Observation 9.10. Order of vertical and horizontal filtering.
The order of vertical and horizontal filtering of an image does not matter.

Most computational molecules we will consider in the following can be
expressed in terms of filters as in this theorem, but clearly there exist also
computational molecules which are not on this form, since the matrix A with
entries ai,j = (t

1

)i(t2

)j has rank one, and a general computational molecule can
have any rank. In most of the examples the filters are symmetric.

Assume that the image is stored as the matrix X. In Exercise 9.13 you will be
asked to implement a function tensor_impl which computes the transformation
S(X) = S

1

X(S
2

)T , where X, S1, and S2 are input. If the computational molecule
is obtained by applying the filter S

1

to the columns, and the filter S
2

to the
rows, we can compute it with the following code: (we have assumed that the
filter lengths are odd, and that the middle filter coe�cient has index 0):

function y = S1(x):
y = filterS(S1, x, 1)

function y = S2(x):
y = filterS(S2, x, 1)

Y = tensor_impl(X, S1, S2)

We have here used the function filterS to implement the filtering, so that we
assume that the image is periodically or symmetrically extended. The above
code uses symmetric extension, and can thus be used for symmetric filters. If
the filter is non-symmetric, we should use a periodic extension instead, for which
the last parameter to filterS should be changed.

9.3.1 Tensor product notation for operations on images
Filter-based operations on images can be written compactly using what we
will call tensor product notation. This is part of a very general tensor product
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framework, and we will review parts of this framework for the sake of completeness.
Let us first define the tensor product of vectors.
Definition 9.11. Tensor product of vectors.

If x,y are vectors of length M and N , respectively, their tensor product
x ¢ y is defined as the M ◊ N -matrix defined by (x ¢ y)i,j = xiyj . In other
words, x ¢ y = xyT .

The tensor product xyT is also called the outer product of x and y (contrary
to the inner product Èx,yÍ = xTy). In particular x ¢ y is a matrix of rank 1,
which means that most matrices cannot be written as a tensor product of two
vectors. The special case ei ¢ej is the matrix which is 1 at (i, j) and 0 elsewhere,
and the set of all such matrices forms a basis for the set of M ◊ N -matrices.
Observation 9.12. Standard basis for LM,N (R).

Let EM = {ei}M≠1

i=0

EN = {ei}N≠1

i=0

be the standard bases for RM and RN .
Then

EM,N = {ei ¢ ej}(M≠1,N≠1)

(i,j)=(0,0)

is a basis for LM,N (R), the set of M ◊ N -matrices. This basis is often referred
to as the standard basis for LM,N (R).

The standard basis thus consists of rank 1-matrices. An image can simply be
thought of as a matrix in LM,N (R), and a computational molecule is simply a
special type of linear transformation from LM,N (R) to itself. Let us also define
the tensor product of matrices.
Definition 9.13. Tensor product of matrices.

If S
1

: RM æ RM and S
2

: RN æ RN are matrices, we define the linear
mapping S

1

¢ S
2

: LM,N (R) æ LM,N (R) by linear extension of (S
1

¢ S
2

)(ei ¢
ej) = (S

1

ei) ¢ (S
2

ej). The linear mapping S
1

¢ S
2

is called the tensor product
of the matrices S

1

and S
2

.
A couple of remarks are in order. First, from linear algebra we know that,

when S is linear mapping from V and S(vi) is known for a basis {vi}i of V , S is
uniquely determined. In particular, since the {ei¢ej}i,j form a basis, there exists
a unique linear transformation S

1

¢S
2

so that (S
1

¢S
2

)(ei¢ej) = (S
1

ei)¢(S
2

ej).
This unique linear transformation is what we call the linear extension from
the values in the given basis. Clearly, by linearity, also (S

1

¢ S
2

)(x ¢ y) =
(S

1

x) ¢ (S
2

y), since

(S
1

¢ S
2

)(x ¢ y) = (S
1

¢ S
2

)((
ÿ

i

xiei) ¢ (
ÿ

j

yjej)) = (S
1

¢ S
2

)(
ÿ

i,j

xiyj(ei ¢ ej))

=
ÿ

i,j

xiyj(S
1

¢ S
2

)(ei ¢ ej) =
ÿ

i,j

xiyj(S
1

ei) ¢ (S
2

ej)

=
ÿ

i,j

xiyjS
1

ei((S2

ej))T = S
1

(
ÿ

i

xiei)(S2

(
ÿ

j

yjej))T

= S
1

x(S
2

y)T = (S
1

x) ¢ (S
2

y).
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Here we used the result from Exercise 9.17. We can now prove the following.

Theorem 9.14. Compact filter notation and computational molecules.
If S

1

: RM æ RM and S
2

: RN æ RN are matrices of linear transformations,
then (S

1

¢ S
2

)X = S
1

X(S
2

)T for any X œ LM,N (R). In particular S
1

¢ S
2

is
the operation which applies S

1

to the columns of X, and S
2

to the resulting rows.
In other words, if S

1

, S
2

have compact filter notations t
1

and t
2

, respectively,
then S

1

¢ S
2

has computational molecule t
1

¢ t
2

.

We have not formally defined the tensor product of compact filter notations.
This is a straightforward extension of the usual tensor product of vectors, where
we additionally mark the element at index (0, 0).

Proof. We have that

(S
1

¢ S
2

)(ei ¢ ej) = (S
1

ei) ¢ (S
2

ej) = S
1

ei((S2

ej))T

= S
1

ei(ej)T (S
2

)T = S
1

(ei ¢ ej)(S
2

)T .

This means that (S
1

¢ S
2

)X = S
1

X(S
2

)T for any X œ LM,N (R) also, since
equality holds on the basis vectors ei ¢ ej . Since the matrix A with entries
ai,j = (t

1

)i(t2

)j also can be written as t
1

¢ t
2

, the result follows.

We have thus shown that we alternatively can write S
1

¢S
2

for the operations
we have considered. This notation also makes it easy to combine several two-
dimensional filtering operations:

Corollary 9.15. Composing tensor products.
We have that (S

1

¢ T
1

)(S
2

¢ T
2

) = (S
1

S
2

) ¢ (T
1

T
2

).

Proof. By Theorem 9.14 we have that

(S
1

¢T
1

)(S
2

¢T
2

)X = S
1

(S
2

XT T
2

)T T
1

= (S
1

S
2

)X(T
1

T
2

)T = ((S
1

S
2

)¢(T
1

T
2

))X.

for any X œ LM,N (R). This proves the result.

Suppose that we want to apply the operation S
1

¢ S
2

to an image. We can
factorize S

1

¢ S
2

as

S
1

¢ S
2

= (S
1

¢ I)(I ¢ S
2

) = (I ¢ S
2

)(S
1

¢ I). (9.5)
Moreover, since

(S
1

¢ I)X = S
1

X (I ¢ S
2

)X = X(S
2

)T = (S
2

XT )T ,

S
1

¢ I is a vertical filtering operation, and I ¢ S
2

is a horizontal filtering
operation in this factorization. For filters we have an even stronger result: If
S

1

, S
2

, S
3

, S
4

all are filters, we have from Corollary 9.15 that (S
1

¢S
2

)(S
3

¢S
4

) =
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(S
3

¢ S
4

)(S
1

¢ S
2

), since all filters commute. This does not hold in general since
general matrices do not commute.

We will now consider two important examples of filtering operations on
images: smoothing and edge detection/computing partical derivatives. For all
examples we will use the tensor product notation for these operations.

Example 9.9: Smoothing an image
When we considered filtering of digital sound, low-pass filters dampened high
frequencies. We will here similarly see that an image can be smoothed by
applying a low-pass filters to the rows and the columns. Let us consider such
computational molecules. In particular, let us as before take filter coe�cients
taken from Pascal’s triangle. If we use the filter S = 1

4

{1, 2, 1} (row 2 from
Pascal’s triangle), Theorem 9.9 gives the computational molecule

A = 1
16

Q

a
1 2 1
2 4 2
1 2 1

R

b . (9.6)

If the pixels in the image are pi,j , this means that we compute the new pixels by

p̂i,j = 1
16

!
4pi,j + 2(pi,j≠1

+ pi≠1,j + pi+1,j + pi,j+1

)

+ pi≠1,j≠1

+ pi+1,j≠1

+ pi≠1,j+1

+ pi+1,j+1

"
.

If we instead use the filter S = 1

64

{1, 6, 15, 20, 15, 6, 1} (row 6 from Pascal’s
triangle), we get the computational molecule

1
4096

Q

cccccccca

1 6 15 20 15 6 1
6 36 90 120 90 36 6
15 90 225 300 225 90 15
20 120 300 400 300 120 20
15 90 225 300 225 90 15
6 36 90 120 90 36 6
1 6 15 20 15 6 1

R

ddddddddb

. (9.7)

We anticipate that both molecules give a smoothing e�ect, but that the second
molecules provides more smoothing. The result of applying the two molecules
in (9.6) and (9.7) to our greyscale-image is shown in the two right images in
Figure 9.11. With the help of the function tensor_impl, smoothing with the
first molecule (9.6) above can be obtained by writing

function y = S(x)
y = filterS([1 2 1]/4, x, 1);

Y = tensor_impl(X, @S, @S);
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Figure 9.11: The two right images show the e�ect of smoothing the left image.

To make the smoothing e�ect visible, we have zoomed in on the face in the
image. The smoothing e�ect is clarly best visible in the second image.

Smoothing e�ects are perhaps more visible if we use a simple image, as the
one in the left part of Figure 9.12.

Figure 9.12: The results of smoothing the simple image to the left in three
di�erent ways.

Again we have used the filter S = 1

4

{1, 2, 1}. Here we also have shown what
happens if we only smooth the image in one of the directions. In the right
image we have smoothed in both directions. We clearly see the union of the two
one-dimensional smoothing operations then.

Example 9.10: Edge detection
Another operation on images which can be expressed in terms of computational
molecules is edge detection. An edge in an image is characterised by a large
change in intensity values over a small distance in the image. For a continuous
function this corresponds to a large derivative. An image is only defined at
isolated points, so we cannot compute derivatives, but since a grey-level image
is a scalar function of two variables, we have a perfect situation for applying
numerical di�erentiation techniques.

Partial derivative in x-direction. Let us first consider computation of
the partial derivative ˆP/ˆx at all points in the image. Note first that it is
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the second coordinate in an image which refers to the x-direction used when
plotting functions. This means that the familiar symmetric Newton quotient
approximation for the partial derivative [31] takes the form

ˆP

ˆx
(i, j) ¥ pi,j+1

≠ pi,j≠1

2 , (9.8)

where we have used the convention h = 1 which means that the derivative is
measured in terms of ’intensity per pixel’. This corresponds to applying the
bass-reducing filter S = 1

2

{1, 0, ≠1} to all the rows (alternatively, applying the
tensor product I ¢ S to the image). We can thus express this in terms of the
computational molecule.

1
2

Q

a
0 0 0
1 0 ≠1
0 0 0

R

b .

We have included the two rows of 0s just to make it clear how the computa-
tional molecule is to be interpreted when we place it over the pixels. Let us first
apply this molecule to the usual excerpt of the Lena image. This gives the first
image in Figure 9.13. This images shows many artefacts since the pixel values
lie outside the legal range: many of the intensities are in fact negative. More
specifically, the intensities turn out to vary in the interval [≠0.424, 0.418]. Let
us therefore normalise and map all intensities to [0, 1]. This gives the second
image in Figure 9.13. The predominant color of this image is an average grey,
i.e. an intensity of about 0.5. To get more detail in the image we therefore try
to increase the contrast by applying the function f

50

in equation (9.1) to each
intensity value. The result is shown in the third image in Figure 9.13. This does
indeed show more detail.

Figure 9.13: Experimenting with the partial derivative in the x-direction for
the image in 9.6. The left image has artefacts, since the pixel values are outside
the legal range. We therefore normalize the intensities to lie in [0, 255] (middle),
before we increase the contrast (right).

It is important to understand the colors in these images. We have computed
the derivative in the x-direction, and we recall that the computed values varied
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in the interval [≠0.424, 0.418]. The negative value corresponds to the largest
average decrease in intensity from a pixel pi≠1,j to a pixel pi+1,j . The positive
value on the other hand corresponds to the largest average increase in intensity.
A value of 0 in the left image in Figure 9.13 corresponds to no change in intensity
between the two pixels.

When the values are mapped to the interval [0, 1] in the second image, the
small values are mapped to something close to 0 (almost black), the maximal
values are mapped to something close to 1 (almost white), and the values near 0
are mapped to something close to 0.5 (grey). In the third image these values
have just been emphasised even more.

The third image tells us that in large parts of the image there is very little
variation in the intensity. However, there are some small areas where the intensity
changes quite abruptly, and if you look carefully you will notice that in these
areas there is typically both black and white pixels close together, like down the
vertical front corner of the bus. This will happen when there is a stripe of bright
or dark pixels that cut through an area of otherwise quite uniform intensity.

Partial derivative in y-direction. The partial derivative ˆP/ˆy can be
computed analogously to ˆP/ˆx, i.e. we apply the filter ≠S = 1

2

{≠1, 0, 1} to
all columns of the image (alternatively, apply the tensor product ≠S ¢ I to the
image), where S is the filter which we used for edge detection in the x-direction.
Note that the positive direction of this axis in an image is opposite to the
direction of the y-axis we use when plotting functions. We can express this in
terms of the computational molecule

1
2

Q

a
0 1 0
0 0 0
0 ≠1 0

R

b .

Let us compare the partial derivatives in both directions. The result is shown in
Figure 9.14.

The intensities have been normalised and the contrast enhanced by the
function f

50

from Equation (9.1).

The gradient. The gradient of a scalar function is often used as a measure of
the size of the first derivative. The gradient is defined by the vector

ÒP =
A

ˆP

ˆx
,

ˆP

ˆy

B
,

so its length is given by

|ÒP | =
ı̂ıÙ

A
ˆP

ˆx

B
2

+
A

ˆP

ˆy

B
2

.

When the two first derivatives have been computed it is a simple matter to
compute the gradient vector and its length. Note that, as for the first order
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Figure 9.14: The first-order partial derivatives in the x- and y-direction,
respectively. In both images, the computed numbers have been normalised and
the contrast enhanced.

derivatives, it is possible for the length of the gradient to be outside the legal
range of values. The computed gradient values, the gradient mapped to the legal
range, and the gradient with contrast adjusted, are shown in Figure 9.15.

Figure 9.15: The computed gradient (left). In the middle the intensities have
been normalised to the [0, 255], and to the right the contrast has been increased.

The image of the gradient looks quite di�erent from the images of the two
partial derivatives. The reason is that the numbers that represent the length of
the gradient are (square roots of) sums of squares of numbers. This means that
the parts of the image that have virtually constant intensity (partial derivatives
close to 0) are colored black. In the images of the partial derivatives these
values ended up in the middle of the range of intensity values, with a final color
of grey, since there were both positive and negative values. To enhance the
contrast for this image we should thus do something di�erent from what was
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done in the other images, since we now have a large number of intensities near
0. The solution was to apply a function like the ones shown in the right plot in
Figure 9.8. Here we have used the function g

0.01

.
Figure 9.14 shows the two first-order partial derivatives and the gradient. If

we compare the two partial derivatives we see that the x-derivative seems to
emphasise vertical edges while the y-derivative seems to emphasise horizontal
edges. This is precisely what we must expect. The x-derivative is large when
the di�erence between neighbouring pixels in the x-direction is large, which is
the case across a vertical edge. The y-derivative enhances horizontal edges for a
similar reason.

The gradient contains information about both derivatives and therefore
emphasises edges in all directions. It also gives a simpler image since the sign of
the derivatives has been removed.

Example 9.11: Second-order derivatives
To compute the three second order derivatives we can combine the two com-
putational molecules which we already have described. For the mixed second
order derivative we get (I ¢ S)((≠S) ¢ I) = ≠S ¢ S. For the last two second
order derivative ˆ2P

ˆx2 , ˆ2P
ˆy2 , we can also use the three point approximation to the

second derivative [31]

ˆP

ˆx2

(i, j) ¥ pi,j+1

≠ 2pi,j + pi,j≠1

(9.9)

(again we have set h = 1). This gives a smaller molecule than if we combine
the two molecules for order one di�erentiation (i.e. (I ¢ S)(I ¢ S) = (I ¢ S2)
and ((≠S) ¢ I)((≠S) ¢ I) = (S2 ¢ I)), since S2 = 1

2

{1, 0, ≠1} 1

2

{1, 0, ≠1} =
1

4

{1, 0, ≠2, 0, 1}. The second order derivatives of an image P can thus be
computed by applying the computational molecules

ˆ2P

ˆx2

:

Q

a
0 0 0
1 ≠2 1
0 0 0

R

b , (9.10)

ˆ2P

ˆyˆx
: 1

4

Q

a
≠1 0 1
0 0 0
1 0 ≠1

R

b , (9.11)

ˆ2P

ˆy2

:

Q

a
0 1 0
0 ≠2 0
0 1 0

R

b . (9.12)

With these molecules it is quite easy to compute the second-order derivatives.
The results are shown in Figure 9.16.

The computed derivatives were first normalised and then the contrast en-
hanced with the function f

100

in each image, see equation (9.1).
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Figure 9.16: The second-order partial derivatives in the xx-, xy-, and yy-
directions, respectively. In all images, the computed numbers have been nor-
malised and the contrast enhanced.

As for the first derivatives, the xx-derivative seems to emphasise vertical
edges and the yy-derivative horizontal edges. However, we also see that the
second derivatives are more sensitive to noise in the image (the areas of grey are
less uniform). The mixed derivative behaves a bit di�erently from the other two,
and not surprisingly it seems to pick up both horizontal and vertical edges.

This procedure can be generalized to higher order derivatives also. To apply
ˆk+lP
ˆxkˆyl to an image we can compute Sl ¢ Sk where Sr corresponds to any point
method for computing the r’th order derivative. We can also compute (Sl)¢(Sk),
where we iterate the filter S = 1

2

{1, 0, ≠1} for the first derivative, but this gives
longer filters.

Example 9.12: Chess pattern image
Let us apply the molecules for di�erentiation to a chess pattern test image. In
Figure 9.17 we have applied S ¢ I, I ¢ S, and S ¢ S, I ¢ S2, and S2 ¢ I to the
example image shown in the upper left.

These images make it is clear that S ¢ I detects all horizontal edges, I ¢ S
detects all vertical edges, and that S ¢ S detects all points where abrupt changes
appear in both directions. We also see that the second order partial derivative
detects exactly the same edges which the first order partial derivative found.
Note that the edges detected with I ¢ S2 are wider than the ones detected
with I ¢ S. The reason is that the filter S2 has more filter coe�cients than
S. Also, edges are detected with di�erent colors. This reflects whether the
di�erence between the neighbouring pixels is positive or negative. The values
after we have applied the tensor product may thus not lie in the legal range
of pixel values (since they may be negative). The figures have taken this into
account by mapping the values back to a legal range of values, as we did in
Chapter 9. Finally, we also see additional edges at the first and last rows/edges
in the images. The reason is that the filter S is defined by assuming that the
pixels repeat periodically (i.e. it is a circulant Toeplitz matrix). Due to this, we
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Figure 9.17: Di�erent tensor products applied to the simple chess pattern image
shown in the upper left.

have additional edges at the first/last rows/edges. This e�ect can also be seen in
Chapter 9, although there we did not assume that the pixels repeat periodically.

Defining a two-dimensional filter by filtering columns and then rows is not
the only way we can define a two-dimensional filter. Another possible way is
to let the MN ◊ MN -matrix itself be a filter. Unfortunately, this is a bad way
to define filtering of an image, since there are some undesirable e�ects near the
boundaries between rows: in the vector we form, the last element of one row
is followed by the first element of the next row. These boundary e�ects are
unfortunate when a filter is applied.

Exercise 9.13: Implement a tensor product
Implement a function tensor_impl which takes a matrix X, and functions S1
and S2 as parameters, and applies S1 to the columns of X, and S2 to the rows of
X.

Exercise 9.14: Generate images
Write code which calls the function tensor_impl with appropriate filters and
which generate the following images:

a) The right image in Figure 9.11.
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b) The right image in Figure 9.13.

c) The images in Figure 9.15.

d) The images in Figure 9.14.

e) The images in Figure 9.16.

Exercise 9.15: Interpret tensor products
Let the filter S be defined by S = {≠1, 1}.

a) Let X be a matrix which represents the pixel values in an image. What can
you say about how the new images (S ¢ I)X og (I ¢ S)X look? What are the
interpretations of these operations?

b) Write down the 4 ¢ 4-matrix X = (1, 1, 1, 1) ¢ (0, 0, 1, 1). Compute (S ¢ I)X
by applying the filters to the corresponding rows/columns of X as we have
learned, and interpret the result. Do the same for (I ¢ S)X.

Exercise 9.16: Computational molecule of moving average
filter
Let S be the moving average filter of length 2L+1, i.e. T = 1

L {1, · · · , 1, 1, 1, · · · , 1¸ ˚˙ ˝
2L+1 times

}.

What is the computational molecule of S ¢ S?

Exercise 9.17: Bilinearity of the tensor product
Show that the mapping F (x,y) = x¢y is bi-linear, i.e. that F (–x

1

+ —x
2

,y) =
–F (x

1

,y) + —F (x
2

,y), and F (x, –y
1

+ —y
2

) = –F (x,y
1

) + —F (x,y
2

).

Exercise 9.18: Attempt to write as tensor product
Attempt to find matrices S

1

: RM æ RM and S
2

: RN æ RN so that the
following mappings from LM,N (R) to LM,N (R) can be written on the form
X æ S

1

X(S
2

)T = (S
1

¢ S
2

)X. In all the cases, it may be that no such S
1

, S
2

can be found. If this is the case, prove it.

a) The mapping which reverses the order of the rows in a matrix.

b) The mapping which reverses the order of the columns in a matrix.

c) The mapping which transposes a matrix.

Exercise 9.19: Computational molecules
Let the filter S be defined by S = {1, 2, 1}.

a) Write down the computational molecule of S ¢ S.
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b) Let us define x = (1, 2, 3), y = (3, 2, 1), z = (2, 2, 2), and w = (1, 4, 2).
Compute the matrix A = x ¢ y + z ¢ w.

c) Compute (S ¢ S)A by applying the filter S to every row and column in the
matrix the way we have learned. If the matrix A was more generally an image,
what can you say about how the new image will look?

Exercise 9.20: Computational molecules 2
Let S = 1

4

{1, 2, 1} be a filter.

a) What is the e�ect of applying the tensor products S ¢ I, I ¢ S, and S ¢ S
on an image represented by the matrix X?

b) Compute (S ¢ S)(x ¢ y), where x = (4, 8, 8, 4), y = (8, 4, 8, 4) (i.e. both x
and y are column vectors).

Exercise 9.21: Comment on code
Suppose that we have an image given by the M ◊ N -matrix X, and consider the
following code:

for n=1:N
X(1, n) = 0.25*X(N, n) + 0.5*X(1, n) + 0.25*X(2, n);
X(2:(N-1), n) = 0.25*X(1:(N-2), n) + 0.5*X(2:(N-1), n) ...

+ 0.25*X(3:N, n);
X(N, n) = 0.25*X(N-1, n) + 0.5*X(N, n) + 0.25*X(1, n);

end
for m=1:M

X(m, 1) = 0.25*X(m, M) + 0.5*X(m, 1) + 0.25*X(m, 2);
X(m, 2:(M-1)) = 0.25*X(m, 1:(M-2)) + 0.5*X(m, 2:(M-1),) ...

+ 0.25*X(m, 3:M);
X(m, M) = 0.25*X(m, M-1) + 0.5*X(m, M) + 0.25*X(m, 1);

end

Which tensor product is applied to the image? Comment what the code does, in
particular the first and third line in the inner for-loop. What e�ect does the
code have on the image?

Exercise 9.22: Eigenvectors of tensor products
Let vA be an eigenvector of A with eigenvalue ⁄A, and vB an eigenvector of
B with eigenvalue ⁄B. Show that vA ¢ vB is an eigenvector of A ¢ B with
eigenvalue ⁄A⁄B . Explain from this why ÎA¢BÎ = ÎAÎÎBÎ, where Î ·Î denotes
the operator norm of a matrix.

Exercise 9.23: The Kronecker product
The Kronecker tensor product of two matrices A and B, written A ¢k B, is
defined as
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A ¢k B =

Q

ccca

a
1,1B a

1,2B · · · a
1,M B

a
2,1B a

2,2B · · · a
2,M B

...
... . . . ...

ap,1B ap,2B · · · ap,M B

R

dddb
,

where the entries of A are ai,j . The tensor product of a p ◊ M -matrix, and a
q ◊ N -matrix is thus a (pq) ◊ (MN)-matrix. Note that this tensor product in
particular gives meaning for vectors: if x œ RM , y œ RN are column vectors,
then x ¢k y œ RMN is also a column vector. In this exercise we will investigate
how the Kronecker tensor product is related to tensor products as we have
defined them in this section.

a) Explain that, if x œ RM , y œ RN are column vectors, then x ¢k y is the
column vector where the rows of x ¢ y have first been stacked into one large
row vector, and this vector transposed. The linear extension of the operation
defined by

x ¢ y œ RM,N æ x ¢k y œ RMN

thus stacks the rows of the input matrix into one large row vector, and transposes
the result.

b) Show that (A ¢k B)(x ¢k y) = (Ax) ¢k (By). We can thus use any of
the defined tensor products ¢, ¢k to produce the same result, i.e. we have the
commutative diagram shown in Figure 9.18, where the vertical arrows represent
stacking the rows in the matrix, and transposing, and the horizontal arrows
represent the two tensor product linear transformations we have defined. In
particular, we can compute the tensor product in terms of vectors, or in terms
of matrices, and it is clear that the Kronecker tensor product gives the matrix
of tensor product operations.

x⌦ y
A⌦B//

✏✏

(Ax)⌦ (By)

✏✏
x⌦k y

A⌦kB// (Ax)⌦k (By),

Figure 9.18: Tensor products

c) Using the Euclidean inner product on L(M, N) = RMN , i.e.

ÈX, Y Í =
M≠1ÿ

i=0

N≠1ÿ

j=0

Xi,jYi,j .

and the correspondence in a) we can define the inner product of x
1

¢ y
1

and
x

2

¢ y
2

by
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Èx
1

¢ y
1

,x
2

¢ y
2

Í = Èx
1

¢k y
1

,x
2

¢k y
2

Í.
Show that

Èx
1

¢ y
1

,x
2

¢ y
2

Í = Èx
1

,x
2

ÍÈy
1

,y
2

Í.
Clearly this extends linearly to an inner product on LM,N .

d) Show that the FFT factorization can be written as
3

FN/2

DN/2

FN/2

FN/2

≠DN/2

FN/2

4
=

3
IN/2

DN/2

IN/2

≠DN/2

4
(I

2

¢k FN/2

).

Also rewrite the sparse matrix factorization for the FFT from Equation (2.18)
in terms of tensor products.

9.4 Change of coordinates in tensor products
Filter-based operations were not the only operations we considered for sound.
We also considered the DFT, the DCT, and the wavelet transform, which
were changes of coordinates which gave us useful frequency- or time-frequency
information. We would like to define similar changes of coordinates for images,
which also give useful such information. Tensor product notation will also be
useful in this respect, and we start with the following result.
Theorem 9.16. The basis B

1

¢ B
2

.
If B

1

= {vi}M≠1

i=0

is a basis for RM , and B
2

= {wj}N≠1

j=0

is a basis for RN , then
{vi ¢ wj}(M≠1,N≠1)

(i,j)=(0,0)

is a basis for LM,N (R). We denote this basis by B
1

¢ B
2

.

Proof. Suppose that
q

(M≠1,N≠1)

(i,j)=(0,0)

–i,j(vi ¢wj) = 0. Setting hi =
qN≠1

j=0

–i,jwj

we get

N≠1ÿ

j=0

–i,j(vi ¢ wj) = vi ¢ (
N≠1ÿ

j=0

–i,jwj) = vi ¢ hi.

where we have used the bi-linearity of the tensor product mapping (x,y) æ x¢y
(Exercise 9.17). This means that

0 =
(M≠1,N≠1)ÿ

(i,j)=(0,0)

–i,j(vi ¢ wj) =
M≠1ÿ

i=0

vi ¢ hi =
M≠1ÿ

i=0

vih
T
i .

Column k in this matrix equation says 0 =
qM≠1

i=0

hi,kvi, where hi,k are the
components in hi. By linear independence of the vi we must have that h

0,k =
h

1,k = · · · = hM≠1,k = 0. Since this applies for all k, we must have that all
hi = 0. This means that

qN≠1

j=0

–i,jwj = 0 for all i, from which it follows by
linear independence of the wj that –i,j = 0 for all j, and for all i. This means
that B

1

¢ B
2

is a basis.
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In particular, as we have already seen, the standard basis for LM,N (R) can be
written EM,N = EM ¢ EN . This is the basis for a useful convention: For a tensor
product the bases are most naturally indexed in two dimensions, rather than
the usual sequential indexing. This di�erence translates also to the meaning
of coordinate vectors, which now are more naturally thought of as coordinate
matrices:

Definition 9.17. Coordinate matrix.
Let B = {bi}M≠1

i=0

, C = {cj}N≠1

j=0

be bases for RM and RN , and let A œ
LM,N (R). By the coordinate matrix of A in B ¢ C we mean the M ◊ N -matrix
X (with components Xkl) such that A =

q
k,l Xk,l(bk ¢ cl).

We will have use for the following theorem, which shows how change of
coordinates in RM and RN translate to a change of coordinates in the tensor
product:

Theorem 9.18. Change of coordinates in tensor products.
Assume that

• B
1

, C
1

are bases for RM , and that S
1

is the change of coordinates matrix
from B

1

to C
1

,

• B
2

, C
2

are bases for RN , and that S
2

is the change of coordinates matrix
from B

2

to C
2

.

Both B
1

¢ B
2

and C
1

¢ C
2

are bases for LM,N (R), and if X is the coordinate
matrix in B

1

¢ B
2

, and Y the coordinate matrix in C
1

¢ C
2

, then the change of
coordinates from B

1

¢ B
2

to C
1

¢ C
2

can be computed as

Y = S
1

X(S
2

)T . (9.13)

Proof. Denote the change of coordinates from B
1

¢ B
2

to C
1

¢ C
2

by S. Since
any change of coordinates is linear, it is enough to show that S(ei ¢ ej) =
S

1

(ei ¢ ej)(S
2

)T for any i, j. We can write

b
1i ¢ b

2j =
A

ÿ

k

(S
1

)k,ic1k

B
¢

A
ÿ

l

(S
2

)l,jc2l

B
=

ÿ

k,l

(S
1

)k,i(S2

)l,j(c
1k ¢ c

2l)

=
ÿ

k,l

(S
1

)k,i((S2

)T )j,l(c1k ¢ c
2l) =

ÿ

k,l

(S
1

ei(ej)T (S
2

)T )k,l(c1k ¢ c
2l)

=
ÿ

k,l

(S
1

(ei ¢ ej)(S
2

)T )k,l(c1k ¢ c
2l)

This shows that the coordinate matrix of b
1i ¢ b

2j in C
1

¢ C
2

is S
1

(ei ¢ej)(S
2

)T .
Since the coordinate matrix of b

1i ¢ b
2j in B

1

¢ B
2

is ei ¢ ej , this shows that
S(ei ¢ ej) = S

1

(ei ¢ ej)(S
2

)T . The result follows.
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In both cases of filtering and change of coordinates in tensor products, we
see that we need to compute the mapping X æ S

1

X(S
2

)T . As we have seen,
this amounts to a row/column-wise operation, which we restate as follows:

Observation 9.19. Change of coordinates in tensor products.
The change of coordinates from B

1

¢ B
2

to C
1

¢ C
2

can be implemented as
follows:

• For every column in the coordinate matrix in B
1

¢ B
2

, perform a change
of coordinates from B

1

to C
1

.

• For every row in the resulting matrix, perform a change of coordinates
from B

2

to C
2

.

We can again use the function tensor_impl in order to implement change
of coordinates for a tensor product. We just need to replace the filters with the
functions S1 and S2 for computing the corresponding changes of coordinates:

Y = tensor_impl(X, S1, S2)

The operation X æ (S
1

)X(S
2

)T , which we now have encountered in two di�erent
ways, is one particular type of linear transformation from RN2 to itself (see
Exercise 9.23 for how the matrix of this linear transformation can be constructed).
While a general such linear transformation requires N4 multiplications (i.e. when
we perform a full matrix multiplication), X æ (S

1

)X(S
2

)T can be implemented
generally with only 2N3 multiplications (since multiplication of two N ◊ N -
matrices require N3 multiplications in general). The operation X æ (S

1

)X(S
2

)T

is thus computationally simpler than linear transformations in general. In
practice the operations S

1

and S
2

are also computationally simpler, since they
can be filters, FFT’s, or wavelet transformations, so that the complexity in
X æ (S

1

)X(S
2

)T can be even lower.
In the following examples, we will interpret the pixel values in an image as

coordinates in the standard basis, and perform a change of coordinates.

Example 9.24: Change of coordinates with the DFT
The DFT is one particular change of coordinates which we have considered.
It was the change of coordinates from the standard basis to the Fourier basis.
A corresponding change of coordinates in a tensor product is obtained by
substituting the DFT as the functions S

1

, S
2

for implementing the changes
of coordinates above. The change of coordinates in the opposite direction is
obtained by using the IDFT instead of the DFT.

Modern image standards do typically not apply a change of coordinates to
the entire image. Rather the image is split into smaller squares of appropriate
size, called blocks, and a change of coordinates is performed independently for
each block. In this example we have split the image into blocks of size 8 ◊ 8.
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Recall that the DFT values express frequency components. The same applies
for the two-dimensional DFT and thus for images, but frequencies are now
represented in two di�erent directions. Let us introduce a neglection threshold
in the same way as in Example 2.17, to view the image after we set certain
frequencies to zero. As for sound, this has little e�ect on the human perception
of the image, if we use a suitable neglection threshold. After we have performed
the two-dimensional DFT on an image, we can neglect DFT-coe�cients below a
threshold on the resulting matrix X with the following code:

X = X.*(abs(X) >= threshold);

abs(X)>=threshold now instead returns a threshold matrix with 1 and 0 of the
same size as X.

In Figure 9.19 we have applied the two-dimensional DFT to our test image.
We have then neglected DFT coe�cients which are below certain thresholds,
and transformed the samples back to reconstruct the image. When increasing
the threshold, the image becomes more and more unclear, but the image is quite
clear in the first case, where as much as more than 76.6% of the samples have
been zeroed out. A blocking e�ect at the block boundaries is clearly visible.

Figure 9.19: The e�ect on an image when it is transformed with the DFT, and
the DFT-coe�cients below a certain threshold are zeroed out. The threshold
has been increased from left to right, from 100, to 200, and 400. The percentage
of pixel values that were zeroed out are 76.6, 89.3, and 95.3, respectively.

Example 9.25: Change of coordinates with the DCT
Similarly to the DFT, the DCT was the change of coordinates from the standard
basis to what we called the DCT basis. Change of coordinates in tensor products
between the standard basis and the DCT basis is obtained by substituting with
the DCT and the IDCT for the changes of coordinates S

1

, S
2

above.
The DCT is used more than the DFT in image processing. In particular, the

JPEG standard applies a two-dimensional DCT, rather than a two-dimensional
DFT. With the JPEG standard, the blocks are always 8 ◊ 8, as in the previous
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example. It is of course not a coincidence that a power of 2 is chosen here: the
DCT, as the DFT, has an e�cient implementation for powers of 2.

If we follow the same strategy for the DCT as for the DFT example, so that
we zero out DCT-coe�cients which are below a given threshold 1, and use the
same block sizes, we get the images shown in Figure 9.20. We see similar e�ects
as with the DFT.

Figure 9.20: The e�ect on an image when it is transformed with the DCT, and
the DCT-coe�cients below a certain threshold are zeroed out. The threshold
has been increased from left to right, from 30, to 50, and 100. The percentage of
pixel values that were zeroed out are 93.2, 95.8, and 97.7, respectively.

It is also interesting to compare with what happens when we drop splitting
the image into blocks. Of course, when we neglect many of the DCT-coe�cients,
we should see some artifacts, but there is no reason to believe that these should
be at the old block boundaries. The new artifacts can be seen in Figure 9.21,
where the same thresholds as before have been used. Clearly, the new artifacts
take a completely di�erent shape.

In the exercises you will be asked to implement functions which generate the
images shown in these examples.

Exercise 9.26: Implement DFT and DCT on blocks
In this section we have used functions which apply the DCT and the DFT either
to subblocks of size 8 ◊ 8, or to the full image. Implement functions DFTImpl8,
IDFTImpl8, DCTImpl8, and IDCTImpl8 which apply the DFT, IDFT, DCT, and
IDCT, to consecutive segments of length 8.

Exercise 9.27: Implement two-dimensional FFT and DCT
Implement functions DFTImplFull, IDFTImplFull, DCTImplFull, and IDCTImplFull
which applies the DFT, IDFT, DCT, and IDCT, to the entire vector, and use
these to implement. FFT2, IFFT2, DCT2, and IDCT2 on an image, with the
help of the function tensor_impl.

1
The JPEG standard does not do exactly the kind of thresholding described here. Rather

it performs what is called a quantization.
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Figure 9.21: The e�ect on an image when it is transformed with the DCT, and
the DCT-coe�cients below a certain threshold are zeroed out. The image has
not been split into blocks here, and the same thresholds as in Figure 9.20 were
used. The percentage of pixel values that were zeroed out are 93.2, 96.6, and
98.8, respectively.

Exercise 9.28: Zeroing out DCT coe�cients
The function forw_comp_rev_DCT2 in the module forw_comp_rev applies the
DCT to a part of our sample image, and sets DCT coe�cients below a certain
threshold to be zero. This is very similar to what the JPEG standard does.

Run forw_comp_rev_DCT2 for di�erent threshold parameters, and with the
functions DCTImpl8, IDCTImpl8, DCTImplFull, and IDCTImplFull as parame-
ters. Check that this reproduces the DCT test images of this section, and that
the correct numbers of values which have been neglected (i.e. which are below
the threshold) are printed on screen.

Exercise 9.29: Comment code
Suppose that we have given an image by the matrix X. Consider the following
code:

threshold = 30;
[M, N] = size(X);
for n = 1:N

X(:, n) = FFTImpl(X(:, n), @FFTKernelStandard);
end
for m = 1:M

X(m, :) = FFTImpl((X(m, :))’, @FFTKernelStandard);
end

X = X.*(abs(X) >= threshold);

for n = 1:N
X(:, n) = FFTImpl(X(:, n), @FFTKernelStandard, 0);

end
for m = 1:M

X(m, :) = FFTImpl((X(m, :))’, @FFTKernelStandard, 0);
end
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Comment what the code does. Comment in particular on the meaning of the
parameter threshold, and what e�ect this has on the image.

9.5 Summary
We started by discussing the basic question what an image is, and took a closer
look at digital images. We then went through several operations which give
meaning for digital images. Many of these operations could be described in
terms of a row/column-wise application of filters, and more generally in term
of what we called computational molecules. We defined the tensor product,
and saw how our operations could be expressed within this framework. The
tensor product framework could also be used to state change of coordinates for
images, so that we could consider changes of coordinates such as the DFT and
the DCT also for images. The algorithm for computing filtering operations or
changes of coordinates for images turned out to be similar, in the sense that the
one-dimensional counterparts were simply assplied to the rows and the columns
in the image.

In introductory image processing textbooks, many other image processing
methods are presented. We have limited to the techniques presented here, since
our interest in images is mainly for transformation operations which are useful
for compression. An excellent textbook on image processing which uses Matlab is
[18]. This contains important topics such as image restoration and reconstruction,
geometric transformations, morphology, and object recognition. None of these
are considered in this book.

In much literature, one only mentions that filtering can be extended to images
by performing one-dimensional filtering for the rows, followed by one-dimensional
filtering for the columns, without properly explaining why this is the natural
thing to do. The tensor product may be the most natural concept to explain this,
and a concept which is firmly established in mathematical literature. Tensor
products are usually not part of beginning courses in linear algebra. We have
limited the focus here to an introduction to tensor products, and the theory
needed to explain filtering an image, and computing the two-dimensional wavelet
transform. Some linear algebra books (such as [30]) present tensor products in
exercise form only, and often only mentions the Kronecker tensor product, as we
defined it.

Many international standards exist for compression of images, and we will
take a closer look at two of them in this book. The JPEG standard, perhaps the
most popular format for images on the Internet, applies a change of coordinates
with a two-dimensional DCT, as described in this chapter. The compression
level in JPEG images is selected by the user and may result in conspicuous
artefacts if set too high. JPEG is especially prone to artefacts in areas where
the intensity changes quickly from pixel to pixel. JPEG is usually lossy, but may
also be lossless and has become. The standard defines both the algorithms for
encoding and decoding and the storage format. The extension of a JPEG-file is
.jpg or .jpeg. JPEG is short for Joint Photographic Experts Group, and was
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approved as an international standard in 1994. A more detailed description of
the standard can be found in [36].

The second standard we will consider is JPEG2000. It was developed to
address some of the shortcomings of JPEG, and is based on wavelets. The
standard document for this [21] does not focus on explaining the theory behind
the standard. As the MP3 standard document, it rather states step-by-step
procedures for implementing the standard.

The theory we present related to these image standards concentrate on
transforming the image (either with a DWT or a DCT) to obtain something
which is more suitable for (lossless or lossy) compression. However, many other
steps are also needed in order to obtain a full image compression system. One of
these is quantization. In the simplest form of quantization, every resulting sample
from the transformation is rounded to a fixed number of bits. Quantization can
also be done in more advanced ways than this: We have already mentioned that
the MP3 standard may use di�erent number of bits for values in the di�erent
subbands, depending on the importance of the samples for the human perception.
The JPEG2000 standard quantizes in such a way that there is bigger interval
around 0 which is quantized to 0, i.e. the rounding error is allowed to be bigger
in an interval around 0. Standards which are lossless do not apply quantization,
since this always leads to loss.

Somewhere in the image processing or sound processing pipeline, we also
need a step which actually achieves compression of the data. Di�erent standards
use di�erent lossless coding techniques for this. JPEG2000 uses an advances
type of arithmetic coding for this. JPEG can also use arithmetic coding, but
also Hu�man coding.

Besides transformation, quantization, and coding, many other steps are
used, which have di�erent tasks. Many standards preprocess the pixel values
before a transform is applied. Preprocessing may mean to center the pixel
values around a certain value (JPEG2000 does this), or extracting the di�erent
image components before they are processed separately. Also, the image is often
split into smaller parts (often called tiles), which are processed separately. For
big images this is very important, since it allows users to zoom in on a small
part of the image, without processing larger uninteresting parts of the image.
Independent processing of the separate tiles makes the image compression what
we call error-resilient, to errors such as transmission errors, since errors in one
tile does not propagate to errors in the other tiles. It is also much more memory-
friendly to process the image in several smaller parts, since it is not required
to have the entire image in memory at any time. It also gives possibilities for
parallel computing. For standards such as JPEG and JPEG2000, tiles are split
into even smaller parts, called blocks, where parts of the processing within each
block also is performed independently. This makes the possibilities for parallel
computing even bigger.

An image standard also defines how to store metadata about an image, and
what metadata is accepted, like resolution, time when the image was taken,
where the image was taken (such as GPS coordinates), and similar information.
Metadata can also tell us how the color in the image are represented. As we have
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already seen, in most color images the color of a pixel is represented in terms of
the amount of red, green and blue or (r, g, b). But there are other possibilities
as well: Instead of storing all 24 bits of color information in cases where each of
the three color components needs 8 bits, it is common to create a table of up to
256 colors with which a given image could be represented quite well. Instead of
storing the 24 bits, one then just stores a color table in the metadata, and at
each pixel, the eight bits corresponding to the correct entry in the table. This is
usually referred to as eight-bit color, and the table is called a look-up table or
palette. For large photographs, however, 256 colors is far from su�cient to obtain
reasonable colour reproduction. Metadata is usually stored in the beginning of
the file, formatted in a very specific way.

What you should have learned in this chapter.

• How to read, write, and show images on your computer.

• How to extract di�erent color components.

• How to convert from color to grey-level images.

• How to use functions for adjusting the contrast.

• The operation X æ S
1

X(S
2

)T can be used to define operations on images,
based on one-dimensional operations S

1

and S
2

. This amounts to applying
S

1

to all columns in the image, and then S
2

to all rows in the result. You
should know how this operation can be conveniently expressed with tensor
product notation, and that in the typical case when S

1

and S
2

are filters,
this can equivalently be expressed in terms of computational molecules.

• The case when the Si are smoothing filters gives rise to smoothing opera-
tions on images.

• A simple highpass filter, corresponding to taking the derivative, gives rise
to edge-detection operations on images.

• The operation X æ S
1

X(S
2

)T can also be used to facilitate change of
coordinates in images, in addition to filtering images. In other words,
change of coordinates is done first column by column, then row by row.
The DCT and the DFT are particular changes of coordinates used for
images.



Chapter 10

Using tensor products to
apply wavelets to images

Previously we have used the theory of wavelets to analyze sound. We would also
like to use wavelets in a similar way to analyze images. Since the tensor product
concept constructs two dimensional objects (matrices) from one-dimensional
objects (vectors), we are lead to believe that tensor products can also be used to
apply wavelets to images. In this chapter we will see that this can indeed be
done. The vector spaces we Vm encountered for wavelets were function spaces,
however. What we therefore need first is to establish a general definition of
tensor products of function spaces. This will be done in the first section of this
chapter. In the second section we will then specialize the function spaces to the
spaces Vm we use for wavelets, and interpret the tensor product of these and the
wavelet transform applied to images more carefully. Finally we will look at some
examples on this theory applied to some example images.

The examples in this chapter can be run from the notebook applinalgnbchap10.m.

10.1 Tensor product of function spaces
In the setting of functions, it will turn out that the tensor product of two
univariate functions can be most intiutively defined as a function in two variables.
This seems somewhat di�erent from the strategy of Chapter 9, but we will see
that the results we obtain will be very similar.

Definition 10.1. Tensor product of function spaces.
Let U

1

and U
2

be vector spaces of functions, defined on the intervals [0, M)
and [0, N), respectively, and suppose that f

1

œ U
1

and f
2

œ U
2

. The tensor
product of f

1

and f
2

, denoted f
1

¢ f
2

, is the function in two variables defined
on [0, M) ◊ [0, N) by

(f
1

¢ f
2

)(t
1

, t
2

) = f
1

(t
1

)f
2

(t
2

).

353
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f
1

¢ f
2

is also called the separable extension of f
1

and f
2

to two variables.
The tensor product of the spaces U

1

¢ U
2

is the vector space spanned by the
two-variable functions {f

1

¢ f
2

}f1œU1,f2œU2 .

We will always assume that the spaces U
1

and U
2

consist of functions which
are at least integrable. In this case U

1

¢ U
2

is also an inner product space, with
the inner product given by a double integral,

Èf, gÍ =
⁄ N

0

⁄ M

0

f(t
1

, t
2

)g(t
1

, t
2

)dt
1

dt
2

. (10.1)

In particular, this says that

Èf
1

¢ f
2

, g
1

¢ g
2

Í =
⁄ N

0

⁄ M

0

f
1

(t
1

)f
2

(t
2

)g
1

(t
1

)g
2

(t
2

)dt
1

dt
2

=
⁄ M

0

f
1

(t
1

)g
1

(t
1

)dt
1

⁄ N

0

f
2

(t
2

)g
2

(t
2

)dt
2

= Èf
1

, g
1

ÍÈf
2

, g
2

Í.
(10.2)

This means that for tensor products, a double integral can be computed as the
product of two one-dimensional integrals. This formula also ensures that inner
products of tensor products of functions obey the same rule as we found for
tensor products of vectors in Exercise 9.23.

The tensor product space defined in Definition 10.1 is useful for approximation
of functions of two variables if each of the two spaces of univariate functions
have good approximation properties.

Idea 10.2. Using tensor products for approximation.
If the spaces U

1

and U
2

can be used to approximate functions in one variable,
then U

1

¢ U
2

can be used to approximate functions in two variables.

We will not state this precisely, but just consider some important examples.

10.1.1 Tensor products of polynomials
Let U

1

= U
2

be the space of all polynomials of finite degree. We know that
U

1

can be used for approximating many kinds of functions, such as continuous
functions, for example by Taylor series. The tensor product U

1

¢ U
1

consists of
all functions on the form

q
i,j –i,jti

1

tj
2

. It turns out that polynomials in several
variables have approximation properties analogous to univariate polynomials.

10.1.2 Tensor products of Fourier spaces
Let U

1

= U
2

= VN,T be the Nth order Fourier space which is spanned by the
functions

e≠2fiiNt/T , . . . , e≠2fiit/T , 1, e2fiit/T , . . . , e2fiiNt/T
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The tensor product space U
1

¢ U
1

now consists of all functions on the form

Nÿ

k,l=≠N

–k,le
2fiikt1/T e2fiilt2/T .

One can show that this space has approximation properties similar to VN,T for
functions in two variables. This is the basis for the theory of Fourier series in
two variables.

In the following we think of U
1

¢ U
2

as a space which can be used for
approximating a general class of functions. By associating a function with the
vector of coordinates relative to some basis, and a matrix with a function in two
variables, we have the following parallel to Theorem 9.16:

Theorem 10.3. Bases for tensor products of function spaces.
If {fi}M≠1

i=0

is a basis for U
1

and {gj}N≠1

j=0

is a basis for U
2

, then {fi ¢
gj}(M≠1,N≠1)

(i,j)=(0,0)

is a basis for U
1

¢ U
2

. Moreover, if the bases for U
1

and U
2

are
orthogonal/orthonormal, then the basis for U

1

¢ U
2

is orthogonal/orthonormal.

Proof. The proof is similar to that of Theorem 9.16: if

(M≠1,N≠1)ÿ

(i,j)=(0,0)

–i,j(fi ¢ gj) = 0,

we define hi(t2

) =
qN≠1

j=0

–i,jgj(t
2

). It follows as before that
qM≠1

i=0

hi(t2

)fi = 0
for any t

2

, so that hi(t2

) = 0 for any t
2

due to linear independence of the fi. But
then –i,j = 0 also, due to linear independene of the gj . The statement about
orthogonality follows from Equation (10.2).

We can now define the tensor product of two bases of functions as before,
and coordinate matrices as before:

Definition 10.4. Coordinate matrix.
if B = {fi}M≠1

i=0

and C = {gj}N≠1

j=0

, we define B ¢ C as the basis {fi ¢
gj}(M≠1,N≠1)

(i,j)=(0,0)

for U
1

¢ U
2

. We say that X is the coordinate matrix of f if
f(t

1

, t
2

) =
q

i,j Xi,j(fi ¢ gj)(t
1

, t
2

), where Xi,j are the elements of X.

Theorem 9.18 can also be proved in the same way in the context of function
spaces. We state this as follows:

Theorem 10.5. Change of coordinates in tensor products of function spaces.
Assume that U

1

and U
2

are function spaces, and that

• B
1

, C
1

are bases for U
1

, and that S
1

is the change of coordinates matrix
from B

1

to C
1

,

• B
2

, C
2

are bases for U
2

, and that S
2

is the change of coordinates matrix
from B

2

to C
2

.
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Both B
1

¢B
2

and C
1

¢C
2

are bases for U
1

¢U
2

, and if X is the coordinate matrix
in B

1

¢ B
2

, Y the coordinate matrix in C
1

¢ C
2

, then the change of coordinates
from B

1

¢ B
2

to C
1

¢ C
2

can be computed as

Y = S
1

X(S
2

)T . (10.3)

10.2 Tensor product of function spaces in a wavelet
setting

We will now specialize the spaces U
1

, U
2

from Definition 10.1 to the resolution
spaces Vm and the detail spaces Wm, arising from a given wavelet. We can in
particular form the tensor products „

0,n1 ¢ „
0,n2 . We will assume that

• the first component „
0,n1 has period M (so that {„

0,n1}M≠1

n1=0

is a basis for
the first component space),

• the second component „
0,n2 has period N (so that {„

0,n2}N≠1

n2=0

is a basis
for the second component space).

When we speak of V
0

¢ V
0

we thus mean an MN -dimensional space with basis
{„

0,n1 ¢ „
0,n2}(M≠1,N≠1)

(n1,n2)=(0,0)

, where the coordinate matrices are M ◊ N . This
di�erence in the dimension of the two components is done to allow for images
where the number of rows and columns may be di�erent. In the following we
will implicitly assume that the component spaces have dimension M and N , to
ease notation. If we use that (�m≠1

, m≠1

) also is a basis for Vm, we get the
following corollary to Theorem 10.3:

Corollary 10.6. Bases for tensor products.
Let „, Â be a scaling function and a mother wavelet. Then the two sets of

tensor products given by

�m ¢ �m = {„m,n1 ¢ „m,n2}n1,n2

and

(�m≠1

, m≠1

) ¢ (�m≠1

, m≠1

)
= {„m≠1,n1 ¢ „m≠1,n2 ,

„m≠1,n1 ¢ Âm≠1,n2 ,

Âm≠1,n1 ¢ „m≠1,n2 ,

Âm≠1,n1 ¢ Âm≠1,n2}n1,n2

are both bases for Vm ¢ Vm. This second basis is orthogonal/orthonormal
whenever the first basis is.
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From this we observe that, while the one-dimensional wavelet decomposition
splits Vm into a direct sum of the two vector spaces Vm≠1

and Wm≠1

, the
corresponding two-dimensional decomposition splits Vm ¢ Vm into a direct sum
of four tensor product vector spaces. These vector spaces deserve individual
names:

Definition 10.7. Tensor product spaces.
We define the following tensor product spaces:

• The space W (0,1)

m spanned by {„m,n1 ¢ Âm,n2}n1,n2 ,

• The space W (1,0)

m spanned by {Âm,n1 ¢ „m,n2}n1,n2 ,

• The space W (1,1)

m spanned by {Âm,n1 ¢ Âm,n2}n1,n2 .

Since these spaces are linearly independent, we can write

Vm ¢ Vm = (Vm≠1

¢ Vm≠1

) ü W (0,1)

m≠1

ü W (1,0)

m≠1

ü W (1,1)

m≠1

. (10.4)
Also in the setting of tensor products we refer to Vm≠1

¢ Vm≠1

as the space of
low-resolution approximations. The remaining parts, W (0,1)

m≠1

, W (1,0)

m≠1

, and W (1,1)

m≠1

,
are refered to as detail spaces. The coordinate matrix of

2

m≠1Nÿ

n1,n2=0

(cm≠1,n1,n2(„m≠1,n1 ¢ „m≠1,n2) + w(0,1)

m≠1,n1,n2(„m≠1,n1 ¢ Âm≠1,n2)+

w(1,0)

m≠1,n1,n2(Âm≠1,n1 ¢ „m≠1,n2) + w(1,1)

m≠1,n1,n2(Âm≠1,n1 ¢ Âm≠1,n2))
(10.5)

in the basis (�m≠1

, m≠1

) ¢ (�m≠1

, m≠1

) is
Q

ccccca

cm≠1,0,0 · · · w(0,1)

m≠1,0,0 · · ·
...

...
...

...
w(1,0)

m≠1,0,0 · · · w(1,1)

m≠1,0,0 · · ·
...

...
...

...

R

dddddb
. (10.6)

The coordinate matrix is thus split into four submatrices:

• The cm≠1

-values, i.e. the coordinates for Vm≠1

ü Vm≠1

. This is the upper
left corner in Equation (10.6).

• The w(0,1)

m≠1

-values, i.e. the coordinates for W (0,1)

m≠1

. This is the upper right
corner in Equation (10.6).

• The w(1,0)

m≠1

-values, i.e. the coordinates for W (1,0)

m≠1

. This is the lower left
corner in Equation (10.6).



CHAPTER 10. USING TENSOR PRODUCTS TO APPLY WAVELETS TO IMAGES358

• The w(1,1)

m≠1

-values, i.e. the coordinates for W (1,1)

m≠1

. This is the lower right
corner in Equation (10.6).

The w(i,j)

m≠1

-values are as in the one-dimensional situation often refered to as
wavelet coe�cients. Let us consider the Haar wavelet as an example.

Example 10.1: Piecewise constant functions
If Vm is the vector space of piecewise constant functions on any interval of the
form [k2≠m, (k + 1)2≠m) (as in the piecewise constant wavelet), Vm ¢ Vm is the
vector space of functions in two variables which are constant on any square of
the form [k

1

2≠m, (k
1

+ 1)2≠m) ◊ [k
2

2≠m, (k
2

+ 1)2≠m). Clearly „m,k1 ¢ „m,k2

is constant on such a square and 0 elsewhere, and these functions are a basis for
Vm ¢ Vm.

Let us compute the orthogonal projection of „
1,k1 ¢ „

1,k2 onto V
0

¢ V
0

. Since
the Haar wavelet is orthonormal, the basis functions in (10.4) are orthonormal,
and we can thus use the orthogonal decomposition formula to find this projection.
Clearly „

1,k1 ¢ „
1,k2 has di�erent support from all except one of „

0,n1 ¢ „
0,n2 .

Since

È„
1,k1 ¢ „

1,k2 , „
0,n1 ¢ „

0,n2Í = È„
1,k1 , „

0,n1ÍÈ„
1,k2 , „

0,n2Í =
Ô

2
2

Ô
2

2 = 1
2

when the supports intersect, we obtain

projV0¢V0(„
1,k1¢„

1,k2) =

Y
___]

___[

1

2

(„
0,k1/2

¢ „
0,k2/2

) when k
1

, k
2

are even
1

2

(„
0,k1/2

¢ „
0,(k2≠1)/2

) when k
1

is even, k
2

is odd
1

2

(„
0,(k1≠1)/2

¢ „
0,k2/2

) when k
1

is odd, k
2

is even
1

2

(„
0,(k1≠1)/2

¢ „
0,(k2≠1)/2

) when k
1

, k
2

are odd

So, in this case there were 4 di�erent formulas, since there were 4 di�erent
combinations of even/odd. Let us also compute the projection onto the orthogonal
complement of V

0

¢V
0

in V
1

¢V
1

, and let us express this in terms of the „
0,n, Â

0,n,
like we did in the one-variable case. Also here there are 4 di�erent formulas.
When k

1

, k
2

are both even we obtain
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„
1,k1 ¢ „

1,k2 ≠ projV0¢V0(„
1,k1 ¢ „

1,k2)

= „
1,k1 ¢ „

1,k2 ≠ 1
2(„

0,k1/2

¢ „
0,k2/2

)

=
3

1Ô
2

(„
0,k1/2

+ Â
0,k1/2

)
4

¢
3

1Ô
2

(„
0,k2/2

+ Â
0,k2/2

)
4

≠ 1
2(„

0,k1/2

¢ „
0,k2/2

)

= 1
2(„

0,k1/2

¢ „
0,k2/2

) + 1
2(„

0,k1/2

¢ Â
0,k2/2

)

+ 1
2(Â

0,k1/2

¢ „
0,k2/2

) + 1
2(Â

0,k1/2

¢ Â
0,k2/2

) ≠ 1
2(„

0,k1/2

¢ „
0,k2/2

)

= 1
2(„

0,k1/2

¢ Â
0,k2/2

) + 1
2(Â

0,k1/2

¢ „
0,k2/2

) + 1
2(Â

0,k1/2

¢ Â
0,k2/2

).

Here we have used the relation „
1,ki

= 1Ô
2

(„
0,ki/2

+ Â
0,ki/2

), which we have from
our first analysis of the Haar wavelet. Checking the other possibilities we find
similar formulas for the projection onto the orthogonal complement of V

0

¢ V
0

in V
1

¢ V
1

when either k
1

or k
2

is odd. In all cases, the formulas use the basis
functions for W (0,1)

0

, W (1,0)

0

, W (1,1)

0

. These functions are shown in Figure 10.1,
together with the function „ ¢ „ œ V

0

¢ V
0

.

Figure 10.1: The functions „ ¢ „, „ ¢ Â, Â ¢ „, Â ¢ Â, which are bases for
(V

0

¢ V
0

) ü W (0,1)

0

ü W (1,0)

0

ü W (1,1)

0

for the Haar wavelet.
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Example 10.2: Piecewise linear functions
If we instead use any of the wavelets for piecewise linear functions, the wavelet
basis functions are not orthogonal anymore, just as in the one-dimensional case.
The new basis functions are shown in Figure 10.2 for the alternative piecewise
linear wavelet.

Figure 10.2: The functions „ ¢ „, „ ¢ Â, Â ¢ „, Â ¢ Â, which are bases for
(V

0

¢ V
0

) ü W (0,1)

0

ü W (1,0)

0

ü W (1,1)

0

for the alternative piecewise linear wavelet.

10.2.1 Interpretation
An immediate corollary of Theorem 10.5 is the following:
Corollary 10.8. Implementing tensor product.

Let

Am = P
(�m≠1, m≠1)Ω�m

Bm = P
�mΩ(�m≠1, m≠1)

be the stages in the DWT and the IDWT, and let

X = (cm,i,j)i,j Y =
A

(cm≠1,i,j)i,j (w(0,1)

m≠1,i,j)i,j

(w(1,0)

m≠1,i,j)i,j (w(1,1)

m≠1,i,j)i,j

B
(10.7)
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be the coordinate matrices in �m ¢ �m, and (�m≠1

, m≠1

) ¢ (�m≠1

, m≠1

),
respectively. Then

Y = AmXAT
m (10.8)

X = BmY BT
m (10.9)

By the m-level two-dimensional DWT/IDWT (or DWT2/IDWT2) we mean the
change of coordinates where this is repeated m times as in a DWT/IDWT.

It is straightforward to make implementations of DWT2 and IDWT2, in the
same way we implemented DWTImpl and IDWTImpl. In Exercise 10.7 you will
be asked to program functions DW2TImpl and IDW2TImpl for this. Each stage
in DWT2 and IDWT2 can now be implemented by substituting the matrices
Am, Bm above into the code following Theorem 9.18. When using many levels
of the DWT2, the next stage is applied only to the upper left corner of the
matrix, just as the DWT at the next stage only is applied to the first part of
the coordinates. At each stage, the upper left corner of the coordinate matrix
(which gets smaller at each iteration), is split into four equally big parts. This is
illustrated in Figure 10.3, where the di�erent types of coordinates which appear
in the first two stages in a DWT2 are indicated.

Figure 10.3: Illustration of the di�erent coordinates in a two level DWT2 before
the first stage is performed (left), after the first stage (middle), and after the
second stage (right).

It is instructive to see what information the di�erent types of coordinates
in an image represent. In the following examples we will discard some types of
coordinates, and view the resulting image. Discarding a type of coordinates will
be illustrated by coloring the corresponding regions from Figure 10.3 black. As
an example, if we perform a two-level DWT2 (i.e. we start with a coordinate
matrix in the basis �

2

¢ �
2

), Figure 10.4 illustrates first the collection of all
coordinates, and then the resulting collection of coordinates after removing
subbands at the first level successively.

Figure 10.5 illustrates in the same way incremental removal of the subbands
at the second level.
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Figure 10.4: Graphical representation of neglecting the wavelet coe�cients
at the first level. After applying DWT2, the wavelet coe�cients are split into
four parts, as shown in the left figure. In the following figures we have removed
coe�cients from W (1,1)

1

, W (1,0)

1

, and W (0,1)

1

, in that order.

Figure 10.5: Graphical representation of neglecting the wavelet coe�cients
at the second level. After applying the second stage in DWT2, the wavelet
coe�cients from the upper left corner are also split into four parts, as shown in
the left figure. In the following figures we have removed coe�cients from W (1,1)

2

,
W (1,0)

2

, and W (0,1)

2

, in that order.

Before we turn to experiments on images using wavelets, we would like to make
another interpretation on the corners in the matrices after the DWT2, which cor-
respond to the di�erent coordinates (cm≠1,i,j)i,j , (w(0,1))m≠1,i,j , (w(1,0))m≠1,i,j ,
and (w(1,1))m≠1,i,j . It turns out that these corners have natural interpretations
in terms of the filter characterization of wavelets, as given in Chapter 6. Recall
again that in a DWT2, the DWT is first applied to the columns in the image,
then to the rows in the image. Recall first that the DWT2 applies first the DWT
to all columns, and then to all rows in the resulting matrix.

First the DWT is applied to all columns in the image. Since the first half of
the coordinates in a DWT are outputs from a lowpass filter H

0

(Theorem 6.3),
the upper half after the DWT has now been subject to a lowpass filter to the
columns. Similarly, the second half of the coordinates in a DWT are outputs
from a highpass filter H

1

(Theorem 6.3 again), so that the bottom half after the
DWT has been subject to a highpass filter to the columns.

Then the DWT is applied to all rows in the image. Similarly as when we
applied the DWT to the columns, the left half after the DWT has been subject
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to the same lowpass filter to the rows, and the right half after the DWT has
been subject to the same highpass filter to the rows.

These observations split the resulting matrix after DWT2 into four blocks,
with each block corresponding to a combination of lowpass and highpass filters.
The following names are thus given to these blocks:

• The upper left corner is called the LL-subband,

• The upper right corner is called the LH-subband,

• The lower left corner is called the HL-subband,

• The lower right corner is called the HH-subband.

The two letters indicate the type of filters which have been applied (L=lowpass,
H=highpass). The first letter indicates the type of filter which is applied to the
columns, the second indicates which is applied to the rows. The order is therefore
important. The name subband comes from the interpretation of these filters as
being selective on a certain frequency band. In conclusion, a block in the matrix
after the DWT2 corresponds to applying a combination of lowpass/higpass filters
to the rows of the columns of the image. Due to this, and since lowpass filters
extract slow variations, highpass filters abrupt changes, the following holds:

Observation 10.9. Visual interpretation of the DWT2.
After the DWT2 has been applied to an image, we expect to see the following:

• In the upper left corner, slow variations in both the vertical and horizontal
directions are captured, i.e. this is a low-resolution version of the image.

• In the upper right corner, slow variations in the vertical direction are
captured, together with abrupt changes in the horizontal direction.

• In the lower left corner, slow variations in the horizontal direction are
captured, together with abrupt changes in the vertical direction.

• In the lower right corner, abrupt changes in both directions appear are
captured.

These e�ects will be studied through examples in the next section.

10.3 Experiments with images using wavelets
In this section we will make some experiments with images using the wavelets we
have considered 1. The wavelet theory is applied to images in the following way:
We first visualize the pixels in the image as coordinates in the basis �m ¢ �m

(so that the image has size (2mM) ◊ (2mN)). As in the case for sound, this will
1
Note also that Matlab has a wavelet toolbox which could be used for these purposes. We

will however not go into the usage of this, since we implement the DWT from scratch.
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represent a good approximation wehn m is large. We then perform a change
of coordinates with the DWT2. As we did for sound, we can then either set
the detail components from the W (i,j)

k -spaces to zero, or the low-resolution
approximation from V

0

¢ V
0

to zero, depending on whether we want to inspect
the detail components or the low-resolution approximation. Finally we apply
the IDWT2 to end up with coordinates in �m ¢ �m again, and display the new
image with pixel values equal to these coordinates.

Example 10.3: Applying the Haar wavelet to a very simple
example image
Let us apply the Haar wavelet to the sample chess pattern example image from
Figure 9.17. The lowpass filter of the Haar wavelet was essentially a smoothing
filter with two elements. Also, as we have seen, the highpass filter essentially
computes an approximation to the partial derivative. Clearly, abrupt changes in
the vertical and horizontal directions appear here only at the edges in the chess
pattern, and abrupt changes in both directions appear only at the grid points in
the chess pattern. Due to Observation 10.9, after a DWT2 we expect to see the
following:

• In the upper left corner, we should see a low-resolution version of the
image.

• In the upper right corner, only the vertical edges in the chess pattern
should be visible.

• In the lower left corner, only the horizontal edges in the chess pattern
should be visible.

• In the lower right corner, only the grid points in the chess pattern should
be visible.

These e�ects are seen clearly if we apply one level of the DWT2 to the chess
pattern example image. The result of this can be seen in Figure 10.6.

Example 10.4: Creating thumbnail images
Let us apply the Haar wavelet to our sample image. After the DWT2, the upper
left submatrices represent the low-resolution approximations from Vm≠1

¢ Vm≠1

,
Vm≠2

¢ Vm≠2

, and so on. We can now use the following code to store the
low-resolution approximation for m = 1:

X = DWT2Impl(X, 1, ’Haar’);
X = X(1:(size(X,1)/2), 1:(size(X,2)/2),:);
X = mapto01(X); X = X*255;

Note that here it is necessary to map the result back to [0, 255].
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Figure 10.6: The chess pattern example image after application of the DWT2.
The Haar wavelet was used.

Figure 10.7: The corresponding thumbnail images for the Image of Lena,
obtained with a DWT of 1, 2, 3, and 4 levels.

In Figure 10.7 the results are shown up to 4 resolutions. In Figure 10.8 we
have also shown the entire result after a 1- and 2-stage DWT2 on the image.
The first two thumbnail images can be seen as the the upper left corners of the
first two images. The other corners represent detail.

Example 10.5: Detail and low-resolution approximations
for di�erent wavelets
Let us take a closer look at the images generated when we use di�erent wavelets.
Above we viewed the low-resolution approximation as a smaller image. Let us
compare with the image resulting from setting the wavelet detail coe�cients to
zero, and viewing the result as an image of the same size. In particular, let us
neglect the wavelet coe�cients as pictured in Figure 10.4 and Figure 10.5. We
should expect that the lower order resolution approximations from V

0

are worse
when m increase.
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Figure 10.8: The corresponding image resulting from a wavelet transform with
the Haar-wavelet for m = 1 and m = 2.

Figure 10.9 confirms this for the lower order resolution approximations for
the Haar wavelet. Alternatively, we should see that the higher order detail spaces
contain more information as m increases. The result is shown in Figure 10.10.

Figures 10.11 and 10.12 confirms the same for the CDF 9/7 wavelet, which
also shows some improvement in the low resolution approximations. The black
color indicates values which are close to 0. In other words, most of the coe�cients
are close to 0.

Example 10.6: The Spline 5/3 wavelet and removing bands
in the detail spaces
Since the detail components in images are split into three bands, another thing
we can try is to neglect only parts of the detail components (i.e.e some of W (1,1)

m ,
W (1,0)

m , W (0,1)

m ), contrary to the one-dimensional case. Let us use the Spline 5/3
wavelet.

The resulting images when the bands on the first level indicated in Figure 10.4
are removed are shown in Figure 10.13. The corresponding plot for the second
level is shown in Figure 10.14.

The image is seen still to resemble the original one, even after two levels of
wavelets coe�cients have been neglected. This in itself is good for compression
purposes, since we may achieve compression simply by dropping the given
coe�cients. However, if we continue to neglect more levels of coe�cients, the
result will look poorer.

In Figure 10.15 we have also shown the resulting image after the third and
fourth levels of detail have been neglected. Although we still can see details in
the image, the quality in the image is definitely poorer. Although the quality is
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Figure 10.9: Low resolution approximations of the Lena image, for the Haar
wavelet.

poorer when we neglect levels of wavelet coe�cients, all information is kept if
we additionally include the detail/bands.

In Figure 10.16, we have shown the corresponding detail for DWT’s with 1,
2, 3, and 4 levels. Clearly, more detail can be seen in the image when more of
the detail is included.

As mentioned, the procedure developed in this section for applying a wavelet
transform to an image with the help of the tensor product construction, is
adopted in the JPEG2000 standard. This lossy (can also be used as lossless)
image format was developed by the Joint Photographic Experts Group and
published in 2000. After significant processing of the wavelet coe�cients, the
final coding with JPEG2000 uses an advanced version of arithmetic coding.
At the cost of increased encoding and decoding times, JPEG2000 leads to as
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Figure 10.10: Detail of the Lena image, for the Haar wavelet.

much as 20 % improvement in compression ratios for medium compression rates,
possibly more for high or low compression rates. The artefacts are less visible
than in JPEG and appear at higher compression rates. Although a number of
components in JPEG2000 are patented, the patent holders have agreed that the
core software should be available free of charge, and JPEG2000 is part of most
Linux distributions. However, there appear to be some further, rather obscure,
patents that have not been licensed, and this may be the reason why JPEG2000
is not used more. The extension of JPEG2000 files is .jp2.

Exercise 10.7: Implement two-dimensional DWT
Implement functions
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Figure 10.11: Low resolution approximations of the Lena image, for the CDF
9/7 wavelet.

DWT2Impl_internal(x, nres, f, bd_mode)
IDWT2Impl_internal(x, nres, f, bd_mode)

which perform the m-level DWT2 and the IDWT2, respectively, on an image.
The arguments are the as those in DWTImpl_internal and IDWTImpl_internal,
with the input vector x replaced with a two-dimensional object/image. The
functions should at each stage apply the kernel function f to the appropriate
rows and columns. If the image has several color components, the functions
should be applied to each color component (there are three color components in
the test image ’lena.png’).
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Figure 10.12: Detail of the Lena image, for the CDF 9/7 wavelet.

Exercise 10.8: Comment code
Assume that we have an image represented by the M ◊N -matrix X, and consider
the following code:

for n = 1:N
c = (X(1:2:M, n) + X(2:2:M, n))/sqrt(2);
w = (X(1:2:M, n) - X(2:2:M, n))/sqrt(2);
X(:, n) = [c; w];

for m = 1:M
c = (X(m, 1:2:N) + X(m, 2:2:N))/sqrt(2);
w = (X(m, 1:2:N) - X(m, 2:2:N))/sqrt(2);
X(m, :) = [c w];
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Figure 10.13: Image of Lena, with various bands of detail at the first level
zeroed out. From left to right, the detail at W (1,1)

1

, W (1,0)

1

, W (0,1)

1

, as illustrated
in Figure 10.4. The Spline 5/3 wavelet was used.

Figure 10.14: Image of Lena, with various bands of detail at the second level
zeroed out. From left to right, the detail at W (1,1)

2

, W (1,0)

2

, W (0,1)

2

, as illustrated
in Figure 10.5. The Spline 5/3 wavelet was used.

a) Comment what the code does, and explain what you will see if you display X
as an image after the code has run.

b) The code above has an inverse transformation, which reproduce the original
image from the transformed values which we obtained. Assume that you zero
out the values in the lower left and the upper right corner of the matrix X after
the code above has run, and that you then reproduce the image by applying this
inverse transformation. What changes can you then expect in the image?

Exercise 10.9: Comment code
In this exercise we will use the filters G

0

= {1, 1}, G
1

= {1, ≠1}.

a) Let X be a matrix which represents the pixel values in an image. Define
x = (1, 0, 1, 0) and y = (0, 1, 0, 1). Compute (G

0

¢ G
0

)(x ¢ y).

b) For a general image X, describe how the images (G
0

¢ G
0

)X, (G
0

¢ G
1

)X,
(G

1

¢ G
0

)X, and (G
1

¢ G
1

)X may look.
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Figure 10.15: Image of Lena, with detail including level 3 and 4 zeroed out.
The Spline 5/3 wavelet was used.

c) Assume that we run the following code on an image represented by the matrix
X:

[M, N]=size(X);
for n=1:N

c = X(1:2:M, n) + X(2:2:M, n);
w = X(1:2:M, n) - X(2:2:M, n);
X(:, n) = [c; w];

end

for m=1:M
c = X(m, 1:2:N) + X(m, 2:2:N);
w = X(m, 1:2:N) - X(m, 2:2:N);
X(m, :) = [c w];

end

Comment the code. Describe what will be shown in the upper left corner of
X after the code has run. Do the same for the lower left corner of the matrix.
What is the connection with the images (G

0

¢ G
0

)X, (G
0

¢ G
1

)X, (G
1

¢ G
0

)X,
and (G

1

¢ G
1

)X?

Exercise 10.10: Experiments on a test image
In Figure 10.17 we have applied the DWT2 with the Haar wavelet to an image
very similar to the one you see in Figure 10.6. You see here, however, that there
seems to be no detail components, which is very di�erent from what you saw
in Example 10.3, even though the images are very similar. Attempt to explain
what causes this to happen.

Hint. Compare with Exercise 5.21.
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Figure 10.16: The corresponding detail for the image of Lena. The Spline 5/3
wavelet was used.
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Figure 10.17: A simple image before and after one level of the DWT2. The
Haar wavelet was used.
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10.4 An application to the FBI standard for com-
pression of fingerprint images

In the beginning of the 1990s, the FBI had a major problem when it came to their
archive of fingerprint images. With more than 200 million fingerprint records,
their digital storage exploded in size, so that some compression strategy needed
to be employed. Several strategies were tried, for instance the widely adopted
JPEG standard. The problem with JPEG had to do with the blocking artefacts,
which we saw in Section 9.4. Among other strategies, FBI chose a wavelet-based
strategy due to its nice properties. The particular way wavelets are applied in
this strategy is called Wavelet transform/scalar quantization (WSQ).

Figure 10.18: A typical fingerprint image.

Fingerprint images are a very specific type of images, as seen in Figure 10.18.
They di�er from natural images by having a large number of abrupt changes.
One may ask whether other wavelets than the ones we have used up to now are
more suitable for compressing such images. After all, the technique of vanishing
moments we have used for constructing wavelets are most suitable when the
images display some regularity (as many natural images do). Extensive tests
were undertaken to compare di�erent wavelets, and the CDF 9/7 wavelet used
by JPEG2000 turned out to perform very well, also for fingerprint images. One
advantage with the choice of this wavelet for the FBI standard is that one then
can exploit existing wavelet transformations from the JPEG2000 standard.

Besides the choice of wavelet, one can also ask other questions in the quest to
compress fingerprint images: What number of levels is optimal in the application
of the DWT2? And, while the levels in a DWT2 (see Figure 10.3) have an
interpretation as change of coordinates, one can apply a DWT2 to the other
subbands as well. This can not be interpreted as a change of coordinates, but
if we assume that these subbands have the same characteristics as the original
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image, the DWT2 will also help us with compression when applied to them.
Let us illustrate how the FBI standard applies the DWT2 to the di�erent
subbands. We will split this process into five stages. The subband structures
and the resulting images after stage 1-4 are illustrated in Figure 10.19 and in
Figure 10.20, respectively.

Figure 10.19: Subband structure after the di�erent stages of the wavelet
applications in the FBI fingerprint compression scheme.

1. First apply the first stage in a DWT2. This gives the upper left corners in
the two figures.

2. Then apply a DWT2 to all four resulting subbands. This is di�erent from
the DWT2, which only continues on the upper left corner. This gives the
upper right corners in the two figures.
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Figure 10.20: The fingerprint image after several DWT’s.

3. Then apply a DWT2 in three of the four resulting subbands. This gives
the lower left corners.

4. In all remaining subbands, the DWT2 is again applied. This gives the
lower right corners.

Now for the last stage. A DWT2 is again applied, but this time only to the upper
left corner. The subbands are illustrated in Figure 10.21, and in Figure 10.22
the resulting image is shown.

When establishing the standard for compression of fingerprint images, the
FBI chose this subband decomposition. In Figure 10.23 we also show the
corresponding low resolution approximation and detail.

As can be seen from the subband decomposition, the low-resolution approxi-
mation is simply the approximation after a five stage DWT2.
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Figure 10.21: Subbands structure after all stages.

Figure 10.22: The resulting image obtained with the subband decomposition
employed by the FBI.

The original JPEG2000 standard did not give the possibility for this type
of subband decomposition. This has been added to a later extension of the
standard, which makes the two standards more compatible. IN FBI’s system,
there are also other important parts besides the actual compression strategy,
such as fingerprint pattern matching: In order to match a fingerprint quickly
with the records in the database, several characteristics of the fingerprints are
stored, such as the number of lines in the fingerprint, and points where the lines
split or join. When the database is indexed with this information, one may not
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Figure 10.23: The low-resolution approximation and the detail obtained by the
FBI standard for compression of fingerprint images, when applied to our sample
fingerprint image.

need to decompress all images in the database to perform matching. We will
not go into details on this here.

Exercise 10.11: Implement the fingerprint compression scheme
Write code which generates the images shown in figures 10.20, 10.22, and 10.23.
Use the functions DW2TImpl and IDW2TImpl with the CDF 9/7 wavelet kernel
functions as input.

10.5 Summary
We extended the tensor product construction to functions by defining the tensor
product of functions as a function in two variables. We explained with some
examples that this made the tensor product formalism useful for approximation
of functions in several variables. We extended the wavelet transform to the tensor
product setting, so that it too could be applied to images. We also performed
several experiments on our test image, such as creating low-resolution images and
neglecting wavelet coe�cients. We also used di�erent wavelets, such as the Haar
wavelet, the Spline 5/3 wavelet, and the CDF 9/7 wavelet. The experiments
confirmed what we previously have proved, that wavelets with many vanishing
moments are better suited for compression purposes.

The specification of the JPGE2000 standard can be found in [21]. In [46],
most details of this theory is covered, in particular details on how the wavelet
coe�cients are coded (which is not covered here).

One particular application of wavelets in image processing is the compression
of fingerprint images. The standard which describes how this should be performed
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can be found in [15]. In [4], the theory is described. The book [16] uses the
application to compression of fingerprint images as an example of the usefulness
of recent developments in wavelet theory.

What you should have learned in this chapter.

• The special interpretation of DWT2 applied to an image as splitting into
four types of coordinates (each being one corner of the image), which rep-
resent lowpass/highpass combinations in the horizontal/vertical directions.

• How to call functions which perform di�erent wavelet transformations on
an image.

• Be able to interpret the detail components and low-resolution approxima-
tions in what you see.


