
Linear algebra, signal processing, and
wavelets. A unified approach.

Python version

Øyvind Ryan

Jan 11, 2017



Contents

1 Sound and Fourier series 1
1.1 Sound and digital sound: Loudness and frequency . . . . . . . . 3

1.1.1 The frequency of a sound . . . . . . . . . . . . . . . . . . 5
1.1.2 Working with digital sound on a computer . . . . . . . . . 6

1.2 Fourier series: Basic concepts . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Fourier series for symmetric and antisymmetric functions 19

1.3 Complex Fourier series . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 Some properties of Fourier series . . . . . . . . . . . . . . . . . . 28

1.4.1 Rate of convergence for Fourier series . . . . . . . . . . . 31
1.4.2 Differentiating Fourier series . . . . . . . . . . . . . . . . 32

1.5 Operations on sound: filters . . . . . . . . . . . . . . . . . . . . . 36
1.6 Convergence of Fourier series* . . . . . . . . . . . . . . . . . . . . 38

1.6.1 Interpretation in terms of filters . . . . . . . . . . . . . . . 42
1.7 The MP3 standard . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Digital sound and Discrete Fourier analysis 49
2.1 Discrete Fourier analysis and the discrete Fourier transform . . . 49
2.2 Connection between the DFT and Fourier series. Sampling and

the sampling theorem . . . . . . . . . . . . . . . . . . . . . . . . 59
2.3 The Fast Fourier Transform (FFT) . . . . . . . . . . . . . . . . . 69

2.3.1 Reduction in the number of arithmetic operations . . . . 74
2.3.2 The FFT when N is not a power of 2 . . . . . . . . . . . 77

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Nomenclature 87

Bibliography 88

Index 89

ii



List of Examples and
Exercises

Example 1.1: Listen to different channels . . . . . . . . . . . . . . . . . . 7
Example 1.2: Playing the sound backwards . . . . . . . . . . . . . . . . . 7
Example 1.3: Playing pure tones. . . . . . . . . . . . . . . . . . . . . . . . 7
Example 1.4: The square wave . . . . . . . . . . . . . . . . . . . . . . . . 8
Example 1.5: The triangle wave . . . . . . . . . . . . . . . . . . . . . . . . 9
Exercise 1.6: The Krakatoa explosion . . . . . . . . . . . . . . . . . . . . 9
Exercise 1.7: Sum of two pure tones . . . . . . . . . . . . . . . . . . . . . 9
Exercise 1.8: Sum of two pure tones . . . . . . . . . . . . . . . . . . . . . 9
Exercise 1.9: Playing with different sample rates . . . . . . . . . . . . . . 9
Exercise 1.10: Play sound with added noise . . . . . . . . . . . . . . . . . 10
Exercise 1.11: Playing the triangle wave . . . . . . . . . . . . . . . . . . . 10
Example 1.12: Fourier coefficients of the square wave . . . . . . . . . . . . 14
Example 1.13: Fourier coefficients of the triangle wave . . . . . . . . . . . 17
Example 1.14: Fourier coefficients of a simple function . . . . . . . . . . . 19
Exercise 1.15: Shifting the Fourier basis vectors . . . . . . . . . . . . . . . 20
Exercise 1.16: Playing the Fourier series of the triangle wave . . . . . . . 20
Exercise 1.17: Riemann-integrable functions which are not square-integrable 20
Exercise 1.18: When are Fourier spaces included in each other? . . . . . . 20
Exercise 1.19: antisymmetric functions are sine-series . . . . . . . . . . . 20
Exercise 1.20: More connections between symmetric-/antisymmetric func-

tions and sine-/cosine series . . . . . . . . . . . . . . . . . 21
Exercise 1.21: Fourier series for low-degree polynomials . . . . . . . . . . 21
Exercise 1.22: Fourier series for polynomials . . . . . . . . . . . . . . . . . 21
Exercise 1.23: Fourier series of a given polynomial . . . . . . . . . . . . . 21
Example 1.24: Complex Fourier coefficients of a simple function . . . . . 24
Example 1.25: Complex Fourier coefficients of composite function . . . . 24
Example 1.26: Complex Fourier coefficients of f(t) = cos3(2πt/T ) . . . . 26
Exercise 1.27: Orthonormality of Complex Fourier basis . . . . . . . . . . 27
Exercise 1.28: Complex Fourier series of f(t) = sin2(2πt/T ) . . . . . . . . 27
Exercise 1.29: Complex Fourier series of polynomials . . . . . . . . . . . . 27
Exercise 1.30: Complex Fourier series and Pascals triangle . . . . . . . . . 27
Exercise 1.31: Complex Fourier coefficients of the square wave . . . . . . 27

iii



List of Examples and Exercises iv

Exercise 1.32: Complex Fourier coefficients of the triangle wave . . . . . . 27
Exercise 1.33: Complex Fourier coefficients of low-degree polynomials . . 28
Exercise 1.34: Complex Fourier coefficients for symmetric and antisym-

metric functions . . . . . . . . . . . . . . . . . . . . . . . . 28
Example 1.35: Periodic extension . . . . . . . . . . . . . . . . . . . . . . . 34
Exercise 1.36: Fourier series of a delayed square wave . . . . . . . . . . . 35
Exercise 1.37: Find function from its Fourier series . . . . . . . . . . . . . 36
Exercise 1.38: Relation between complex Fourier coefficients of f and

cosine-coefficients of f̆ . . . . . . . . . . . . . . . . . . . . . 36
Exercise 1.39: Filters preserve sine- and cosine-series . . . . . . . . . . . . 37
Exercise 1.40: Approximation in norm with continuous functions . . . . . 44
Exercise 1.41: The Dirichlet kernel . . . . . . . . . . . . . . . . . . . . . . 44
Exercise 1.42: The Fejer summability kernel . . . . . . . . . . . . . . . . . 44
Example 2.1: DFT of a cosine . . . . . . . . . . . . . . . . . . . . . . . . . 52
Example 2.2: DFT on a square wave . . . . . . . . . . . . . . . . . . . . . 53
Example 2.3: Computing the DFT by hand . . . . . . . . . . . . . . . . . 54
Example 2.4: Direct implementation of the DFT . . . . . . . . . . . . . . 55
Example 2.5: Computing the DFT when multiplying with a complex

exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Exercise 2.6: Computing the DFT by hand . . . . . . . . . . . . . . . . . 57
Exercise 2.7: Exact form of low-order DFT matrix . . . . . . . . . . . . . 57
Exercise 2.8: DFT of a delayed vector . . . . . . . . . . . . . . . . . . . . 57
Exercise 2.9: Using symmetry property . . . . . . . . . . . . . . . . . . . 57
Exercise 2.10: DFT of cos2(2πk/N) . . . . . . . . . . . . . . . . . . . . . 58
Exercise 2.11: DFT of ckx . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Exercise 2.12: Rewrite a complex DFT as real DFT’s . . . . . . . . . . . 58
Exercise 2.13: DFT implementation . . . . . . . . . . . . . . . . . . . . . 58
Exercise 2.14: Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Exercise 2.15: DFT on complex and real data . . . . . . . . . . . . . . . . 59
Example 2.16: Using the DFT to adjust frequencies in sound . . . . . . . 65
Example 2.17: Compression by zeroing out small DFT coefficients . . . . 67
Example 2.18: Compression by quantizing DFT coefficients . . . . . . . . 68
Exercise 2.19: Comment code . . . . . . . . . . . . . . . . . . . . . . . . . 69
Exercise 2.20: Which frequency is changed? . . . . . . . . . . . . . . . . . 69
Exercise 2.21: Implement interpolant . . . . . . . . . . . . . . . . . . . . . 69
Exercise 2.22: Extra results for the FFT when N = N1N2 . . . . . . . . . 79
Exercise 2.23: Extend implementation . . . . . . . . . . . . . . . . . . . . 79
Exercise 2.24: Compare execution time . . . . . . . . . . . . . . . . . . . 80
Exercise 2.25: Combine two FFT’s . . . . . . . . . . . . . . . . . . . . . . 80
Exercise 2.26: FFT operation count . . . . . . . . . . . . . . . . . . . . . 80
Exercise 2.27: Adapting the FFT algorithm to real data . . . . . . . . . . 81
Exercise 2.28: Non-recursive FFT algorithm . . . . . . . . . . . . . . . . . 81
Exercise 2.29: The Split-radix FFT algorithm . . . . . . . . . . . . . . . . 82
Exercise 2.30: Bit-reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



Chapter 1

Sound and Fourier series

A major part of the information we receive and perceive every day is in the
form of audio. Most sounds are transferred directly from the source to our ears,
like when we have a face to face conversation with someone or listen to the
sounds in a forest or a street. However, a considerable part of the sounds are
generated by loudspeakers in various kinds of audio machines like cell phones,
digital audio players, home cinemas, radios, television sets and so on. The sounds
produced by these machines are either generated from information stored inside,
or electromagnetic waves are picked up by an antenna, processed, and then
converted to sound.

What we perceive as sound corresponds to the physical phenomenon of slight
variations in air pressure near our ears. Air pressure is measured by the SI-unit
Pa (Pascal) which is equivalent to N/m2 (force / area). In other words, 1 Pa
corresponds to the force exerted on an area of 1 m2 by the air column above this
area. Larger variations mean louder sounds, while faster variations correspond
to sounds with a higher pitch.

Observation 1.1. Continuous Sound.
A sound can be represented as a function, corresponding to air pressure

measured over time. When a function represents a sound, it is often referred to
as a continuous sound.

Continuous sounds are defined for all time instances. On computers and
various kinds of media players, however, the sound is digital, i.e. it is represented
by a large number of function values, stored in a suitable number format. Such
digital sound is easier to manipulate and process on a computer.

Observation 1.2. Digital sound.
A digital sound is a sequence x = {xi}N−1

i=0 that corresponds to measurements
of a continuous sound f , recorded at a fixed rate of fs (the sampling frequency
or sample rate) measurements per second, i.e.,

xk = f(k/fs), for k = 0, 1, . . . , N.

1
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Note that the indexing convention for digital sound is not standard in
mathematics, where vector indices start at 1. The components in digital sound
are often referred to as samples, the time between successive samples is called
the sampling period, denoted Ts. and measuring the sound is also referred to as
sampling the sound.

The quality of digital sound is often measured by the bit rate (number of
bits per second), i.e. the product of the sampling rate and the number of bits
(binary digits) used to store each sample. Both the sample rate and the number
format influence the quality of the resulting sound. These are encapsulated in
digital sound formats. A couple of them are described below.

Telephony. For telephony it is common to sample the sound 8000 times per
second and represent each sample value as a 13-bit integer. These integers are
then converted to a kind of 8-bit floating-point format with a 4-bit significand.
Telephony therefore generates a bit rate of 64 000 bits per second, i.e. 64 kb/s.

The CD-format. In the classical CD-format the audio signal is sampled 44
100 times per second and the samples stored as 16-bit integers. The value 44
100 for the sampling rate is not coincidental, and we will return to this shortly.
16-bit integers work well for music with a reasonably uniform dynamic range, but
is problematic when the range varies. Suppose for example that a piece of music
has a very loud passage. In this passage the samples will typically make use of
almost the full range of integer values, from −215 − 1 to 215. When the music
enters a more quiet passage the sample values will necessarily become much
smaller and perhaps only vary in the range −1000 to 1000, say. Since 210 = 1024
this means that in the quiet passage the music would only be represented with
10-bit samples. This problem can be avoided by using a floating-point format
instead, but very few audio formats appear to do this.

The bit rate for CD-quality stereo sound is 44100× 2× 16 bits/s = 1411.2
kb/s. This quality measure is particularly popular for lossy audio formats where
the uncompressed audio usually is the same (CD-quality). However, it should
be remembered that even two audio files in the same file format and with the
same bit rate may be of very different quality because the encoding programs
may be of different quality.

Below we will read files in the wav-format. This format was developed by
Microsoft and IBM, and is one of the most common file formats for CD-quality
audio. It uses a 32-bit integer to specify the file size at the beginning of the file,
which means that a WAV-file cannot be larger than 4 GB.

Newer formats. Newer formats with higher quality are available. Music is
distributed in various formats on DVDs (DVD-video, DVD-audio, Super Audio
CD) with sampling rates up to 192 000 and up to 24 bits per sample. These
formats also support surround sound (up to seven channels in contrast to the
two stereo channels on a CD). In the following we will assume all sound to be
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digital. Later we will return to how we reconstruct audible sound from digital
sound.

In the following we will briefly discuss the basic properties of sound: loudness
(the size of the variations), and frequency (the number of variations per second).
We will then address to what extent sounds can be decomposed as a sum of
different frequencies, and look at important operations on sound, called filters,
which preserve frequencies. We will also see how we can experiment with digital
sound.

The functionality for accessing sound in this chapter is collected in a module
called sound.

1.1 Sound and digital sound: Loudness and fre-
quency

An example of a simple sound is shown in the left plot in Figure 1.1 where the
oscillations in air pressure are plotted against time. The initial air pressure
has the value 101 325 Pa, which is the normal air pressure at sea level. Then
the pressure varies more and more until it oscillates regularly between 101 323
Pa and 101 327 Pa. In the area where the air pressure is constant, no sound
will be heard, but as the variations increase in size, the sound becomes louder
and louder until about time t = 0.03 where the size of the oscillations becomes
constant.

0.00 0.01 0.02 0.03 0.04
0

1

2

3

4

5

6 +1.01322e5

0.000 0.002 0.004 0.006 0.008 0.010

1.0

0.5

0.0

0.5

1.0

Figure 1.1: An audio signal shown in terms of air pressure (left), and in terms
of the difference from the ambient air pressure (right).

When discussing sound, one is usually only interested in the variations in
air pressure, so the ambient air pressure (101 325 Pa) is subtracted from the
measurement. Everyday sounds typically correspond to variations in air pressure
of about 0.00002–2 Pa (0.00002 Pa corresponds to a just audible sound), while a
jet engine may cause variations as large as 200 Pa. Short exposure to variations
of about 20 Pa may in fact lead to hearing damage. The volcanic eruption at
Krakatoa, Indonesia, in 1883, produced a sound wave with variations as large as
almost 100 000 Pa, and the explosion could be heard 5000 km away.
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The right plot in Figure 1.1 shows another sound which displays a slow, cos-
like, variation in air pressure, with some smaller and faster variations imposed on
this. This combination of several kinds of systematic oscillations in air pressure
is typical for general sounds. The size of the oscillations is directly related to the
loudness of the sound. The range of the oscillations is so big that it is common
to measure the loudness of a sound on a logarithmic scale:

Fact 1.3. Sound pressure and decibels.
It is common to relate a given sound pressure to the smallest sound pressure

that can be perceived, as a level on a decibel scale,

Lp = 10 log10

(
p2

p2
ref

)
= 20 log10

(
p

pref

)
.

Here p is the measured sound pressure while pref is the sound pressure of a just
perceivable sound, usually considered to be 0.00002 Pa.

The square of the sound pressure appears in the definition of Lp since this
represents the power of the sound which is relevant for what we perceive as
loudness.
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Figure 1.2: Variations in air pressure during parts of a song. The first 0.5
seconds, the first 0.02 seconds, and the first 0.002 seconds.

The sounds in Figure 1.1 are synthetic in that they were constructed from
mathematical formulas. The sounds in Figure 1.2 on the other hand show the
variation in air pressure for a song, where there is no mathematical formula
involved. In the first half second there are so many oscillations that it is
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impossible to see the details, but if we zoom in on the first 0.002 seconds we
can see that there is a continuous function behind all the ink. In reality the
air pressure varies more than this, even over this short time period, but the
measuring equipment may not be able to pick up those variations, and it is also
doubtful whether we would be able to perceive such rapid variations.

1.1.1 The frequency of a sound
The other important characteristic in sound is frequency, i.e. the speed of the
variations. To make this concept more precise, let us start with a couple of
definitions.

Definition 1.4. Periodic functions.
A real function f is said to be periodic with period T if

f(t+ T ) = f(t)

for all real numbers t.

Note that all the values of a periodic function f with period T are known if
f(t) is known for all t in the interval [0, T ). The following will be our prototype
for periodic functions:

Observation 1.5. Frequency.
If ν is an integer, the function f(t) = sin(2πνt) is periodic with period

T = 1/ν. When t varies in the interval [0, 1], this function covers a total of
ν periods. This is expressed by saying that f has frequency ν. Frequency is
measured in Hz (Hertz) which is the same as s−1 (the time t is measured in
seconds). The function sin(2πνt) is also called a pure tone.

Clearly sin(2πνt) and cos(2πνt) have the same frequency, and they are simply
shifted versions of oneanother (since cos(2πνt) = sin(2πνt+ π/2)) Both, as well
as linear combinations of them, are called pure tones with frequency ν. Due to
this, the complex functions e±2πiνt = cos(2πνt)± i cos(2πνt) will also be called
pure tones. They will also turn out to be useful in the following.

If we are to perceive variations in air pressure as sound, they must fall within
a certain range. It turns out that, for a human with good hearing to perceive a
sound, the number of variations per second must be in the range 20–20 000.

There is a simple way to change the period of a periodic function, namely by
multiplying the argument by a constant. Figure 1.3 illustrates this. The function
in the upper left is the plain sin t which covers one period when t varies in the
interval [0, 2π]. By multiplying the argument by 2π, the period is squeezed into
the interval [0, 1] so the function sin(2πt) has frequency ν = 1. Then, by also
multiplying the argument by 2, we push two whole periods into the interval [0, 1],
so the function sin(2π2t) has frequency ν = 2. In the lower right the argument
has been multiplied by 5 — hence the frequency is 5 and there are five whole
periods in the interval [0, 1].
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Figure 1.3: Versions of sin with different frequencies.

1.1.2 Working with digital sound on a computer
Before we can do anything at all with digital sound, we need to know how we
can read and write such data from and to files, and also how to play the data on
the computer. These commands are as follows.

x, fs = audioread(filename)
play(x, fs)
audiowrite(filename, x, fs)

These functions can be found in the module sound. Note that the method play
does not block - if we play several sounds in succession they will be played
simultaneously. To avoid this, we can block the program ourselves using the
raw_input function, in order to wait for input from the terminal.

play basically sends the array of sound samples x and sample rate fs to the
sound card, which uses some method for reconstructing the sound to an analog
sound signal. This analog signal is then sent to the loudspeakers and we hear
the sound.

The sound samples can have different data types. We will always assume that
they are of type double. The computer requires that they have values between
−1 and 1 (0 corresponding to no variation in air pressure from ambience, and
−1 and 1 the largest variations in air pressure). If they are not the behaviour
when the sound is played is undefined.

You can also create the vector x you play on your own, without reading it
from file. Below we do this for pure tones.
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Example 1.1: Listen to different channels
Our audio sample file actually has two sound channels. In such cases x is actually
a matrix with two columns, and each column represents a sound channel. To
listen to each channel we can run the following code.

play(x[:, 0], fs)

play(x[:, 1], fs)

You may not hear a difference between the two channels. There may still be
differences, however, they may only be notable when the channels are sent to
different loudspeakers.

We will later apply different operations to sound. It is possible to apply these
operations to the sound channels simultaneously, and we will mostly do this.
Sounds we generate on our own, such as pure tones, will mostly be generated in
one channel.

Example 1.2: Playing the sound backwards
At times a popular game has been to play music backwards to try and find secret
messages. In the old days of analog music on vinyl this was not so easy, but
with digital sound it is quite simple; we just need to reverse the samples. To do
this we just loop through the array and put the last samples first.

Let x = (xi)N−1
i=0 be the samples of a digital sound. Then the samples

y = (yi)N−1
i=0 of the reverse sound are given by

yi = xN−i−1, for i = 0, 1, . . . N − 1.
When we reverse the sound samples, we have to reverse the elements in both
sound channels. For our audio sample file this can be performed as follows.

x, fs = audioread(’sounds/castanets.wav’)
N = shape(x)[0]
z = x[(N-1)::(-1), :]
play(z, fs)

Performing this on our sample file you generate a sound which sounds like this.

Example 1.3: Playing pure tones.
To create the samples of a pure tone we can write

t = linspace(0, antsec, fs*antsec)
x = sin(2*pi*f*t)

Here f is the frequency, antsec the length in seconds, and fs the sampling rate.
A pure tone with frequency 440 Hz sounds like this, and a pure tone with

frequency 1500 Hz sounds like this.

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsreverse.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/puretone440.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/puretone1500.wav
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Example 1.4: The square wave
There are many other ways in which a function can oscillate regularly. The
square wave is one such, but we will see later that it can not be written as a
simple, trigonometric function. Given a period T we define the square wave to
be 1 on the first half of each period, and −1 on the second half:

fs(t) =
{

1, if 0 ≤ t < T/2;
−1, if T/2 ≤ t < T .

(1.1)

In the left part of Figure 1.4 we have plotted the square wave with the same
period we used for the pure tone.
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1.0

0.000 0.002 0.004 0.006 0.008 0.010
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0.5

0.0

0.5

1.0

Figure 1.4: The first five periods of the square wave and the triangle wave.

Let us listen also listen to the square wave. We can first create the samples
for one period.

antsec = 3
samplesperperiod = fs/f # The number of samples for one period
oneperiod = hstack([ones((samplesperperiod/2),dtype=float), \

-ones((samplesperperiod/2),dtype=float)])

Then we repeat one period to obtain a sound with the desired length, and play
it as follows.

x = tile(oneperiod, antsec*f)
play(x, fs)

You can listen to this square wave here. We hear a sound which seems to have
the same "base frequency" as sin(2π440t), but the square wave is less pleasant to
listen to: There seems to be some "sharp corners" in the sound, translating into
a rather shrieking, piercing sound. We will later explain this by the fact that
the square wave can be viewed as a sum of many frequencies, and that many
frequencies pollute the sound so that it is not pleasant to listen to.

http://folk.uio.no/oyvindry/matinf2360/sounds/square440.wav
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Example 1.5: The triangle wave
Given a period T we define the triangle wave to increase linearly from −1 to 1
on the first half of each period, and decrease linearly from 1 to −1 on the second
half of each period. This means that we can define it as the function

ft(t) =
{

4t/T − 1, if 0 ≤ t < T/2;
3− 4t/T, if T/2 ≤ t < T .

(1.2)

In the right part of Figure 1.4 we have plotted the square wave with the same
period we used for the pure tone. In Exercise 1.11 you will be asked to reproduce
this plot, as well as construct and play the corresponding sound, which also
can be found here. Again you will note that the triangle wave has the same
"base frequency" as sin(2π440t), and is less pleasant to listen to than this pure
tone. However, one can argue that it is somewhat more pleasant to listen to
than a square wave. This will also be explained in terms of pollution with other
frequencies later.

In the next sections we will address why many sounds may be approximated
well by adding many pure sounds together. In particular, this will apply for the
square wave and the triangle wave above, and we wil also have something to say
about why they sound so different.

Exercise 1.6: The Krakatoa explosion
Compute the loudness of the Krakatoa explosion on the decibel scale, assuming
that the variation in air pressure peaked at 100 000 Pa.

Exercise 1.7: Sum of two pure tones
Consider a sum of two pure tones, f(t) = A1 sin(2πν1t) + A2 sin(2πν2t). For
which values of A1, A2, ν1, ν2 is f periodic? What is the period of f when it is
periodic?

Exercise 1.8: Sum of two pure tones
Find two constant a and b so that the function f(t) = a sin(2π440t)+b sin(2π4400t)
resembles the right plot of Figure 1.1 as closely as possible. Generate the samples
of this sound, and listen to it.

Exercise 1.9: Playing with different sample rates
If we provide another samples rate fs to the play functions, the sound card will
assume a different time distance between neighboring samples. Play and listen
to the audio sample file again, but with three different sample rates: 2*fs, fs,
and fs/2, where fs is the sample rate returned by audioread.

http://folk.uio.no/oyvindry/matinf2360/sounds/triangle440.wav
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Exercise 1.10: Play sound with added noise
To remove noise from recorded sound can be very challenging, but adding noise
is simple. There are many kinds of noise, but one kind is easily obtained by
adding random numbers to the samples of a sound. For this we can use the
function random.random as follows.

z = x + c*(2*random.random(shape(x))-1)

This adds noise to all channels. The function for returning random numbers
returns numbers between 0 and 1, and above we have adjusted these so that
they are between −1 and 1 instead, as for other sound which can be played by
the computer. c is a constant (usually smaller than 1) that dampens the noise.

Write code which adds noise to the audio sample file, and listen to the result
for damping constants c=0.4 and c=0.1. Remember to scale the sound values
after you have added noise, since they may be outside [−1, 1] then.

Exercise 1.11: Playing the triangle wave
Repeat what you did in Example 1.4, but now for the triangle wave of Example 1.5.
Start by generating the samples for one period of the triangle wave, then plot
five periods, before you generate the sound over a period of three seconds, and
play it. Verify that you generate the same sound as in Example 1.5.

1.2 Fourier series: Basic concepts
We will now discuss the idea of decomposing a sound into a linear combination
of pure sounds. A coefficient in such a decomposition then gives the content
at a given frequency. Such a decomposition will pave the way for constructing
useful operations on sound, such as amplifying or annihilating certain frequencies:
Certain frequencies may not be important for our perception of the sound, so
that annihilating or rounding these may not affect how we perceive them. For
simplicity we will first restrict to functions which are periodic with period T , so
that they are uniquely defined by their values on on [0, T ]. Our analysis can be
carried out for square-integrable functions:

Definition 1.6. Continuous and square-integrable functions.
The set of continuous, real functions defined on an interval [0, T ] is denoted

C[0, T ].
A real function f defined on [0, T ] is said to be square integrable if f2 is

Riemann-integrable, i.e., if the Riemann integral of f2 on [0, T ] exists,∫ T

0
f(t)2 dt <∞.

The set of all square integrable functions on [0, T ] is denoted L2[0, T ].
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The sets of continuous and square-integrable functions can be equipped with
an inner-product, a generalization of the so-called dot-product for vectors.

Theorem 1.7. Inner product spaces.
Both L2[0, T ] and C[0, T ] are vector spaces. Moreover, if the two functions f

and g lie in L2[0, T ] (or in C[0, T ]), then the product fg is Riemann-integrable
(or in C[0, T ]). Moreover, both spaces are inner product spaces 1 with inner
product 2 defined by

〈f, g〉 = 1
T

∫ T

0
f(t)g(t) dt, (1.3)

and associated norm

‖f‖ =

√
1
T

∫ T

0
f(t)2dt. (1.4)

Proof. Since

|f + g|2 ≤ (2 max(|f |, |g|)2 ≤ 4(|f |2 + |g|2).

f+g is square integrable whenever f and g are. It follows that L2[0, T ] is a vector
space. The properties of an inner product space follow directly from the properties
of Riemann-integrable functions. Also, since |fg| ≤ |f |2 + |g|2, it follows that
〈f, g〉 <∞ whenever f and g are square integrable. It follows immediately that
fg is Riemann-integrable whenever f and g are square integrable.

The mysterious factor 1/T is included so that the constant function f(t) = 1
has norm 1, i.e., its role is as a normalizing factor.

Definition 1.6 and Theorem 1.7 states how general we will allow our sounds
to be. Theorem 1.7 also explains how we may determine approximations: Recall
from linear algebra that the projection of a function f onto a subspace W with
respect to an inner product 〈·, ·〉 is the function g ∈W which minimizes ‖f − g‖,
also called the error in the approximation 3. This projection is therefore also
called a best approximation of f from W and is characterized by the fact that
the function f − g, also called the error function, should be orthogonal to the
subspace W , i.e.

〈f − g, h〉 = 0, for all h ∈W .

More precisely, if φ = {φi}mi=1 is an orthogonal basis for W , then the best
approximation g is given by

g =
m∑
i=1

〈f, φi〉
〈φi, φi〉

φi. (1.5)

1See Section 6.1 in [5] for a review of inner products and orthogonality.
2See Section 6.7 in [5] for a review of function spaces as inner product spaces.
3See Section 6.3 in [5] for a review of projections and least squares approximations.
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The error ‖f − g‖ is often referred to as the least square error.
What we would like is a sequence of spaces

V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · ·

of increasing dimensions so that our sounds can be approximated arbitrarily well
by choosing n large enough. We will use pure tones as bases for these spaces:

Definition 1.8. Fourier series.
Let VN,T be the subspace of C[0, T ] spanned by the set of functions given by

DN,T = {1, cos(2πt/T ), cos(2π2t/T ), · · · , cos(2πNt/T ),
sin(2πt/T ), sin(2π2t/T ), · · · , sin(2πNt/T )}. (1.6)

The space VN,T is called the N ’th order Fourier space. The Nth-order Fourier
series approximation of f , denoted fN , is defined as the best approximation of f
from VN,T with respect to the inner product defined by (1.3).

We see that pure tones at frequencies 1/T , 2/T ,..., N/T are a basis for VN,T .
A best approximation at these frequencies, as described above will be called a
Fourier series. They are similar to Taylor series, where instead polynomials are
used in the approximation, but we will see that there is a major difference in
how the two approximations are computed. The theory of approximation of
functions with Fourier series is referred to as Fourier analysis, and is a central
tool in practical fields like image- and signal processing, but is also an important
field of research within pure mathematics. The approximation fN ∈ VN,T can
serve as a compressed version of f if many of the coefficients can be set to 0
without the error becoming too big.

Note that all the functions in the set DN,T are periodic with period T , but
most have an even shorter period (cos(2πnt/T ) also has period T/n). In general,
the term fundamental frequency is used to denote the lowest frequency of a given
periodic function.

The next theorem explains that the DN,T actually forms a basis for the
Fourier spaces, and also how to obtain the coefficients in this basis.

Theorem 1.9. Fourier coefficients.
The set DN,T is an orthogonal basis for VN,T . In particular, the dimension

of VN,T is 2N + 1, and if f is a function in L2[0, T ], we denote by a0, . . . , aN
and b1, . . . , bN the coordinates of fN in the basis DN,T , i.e.

fN (t) = a0 +
N∑
n=1

(an cos(2πnt/T ) + bn sin(2πnt/T )) . (1.7)

The a0, . . . , aN and b1, . . . , bN are called the (real) Fourier coefficients of f , and
they are given by
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a0 = 〈f, 1〉 = 1
T

∫ T

0
f(t) dt, (1.8)

an = 2
〈
f, cos(2πnt/T )

〉
= 2
T

∫ T

0
f(t) cos(2πnt/T ) dt for n ≥ 1, (1.9)

bn = 2〈f, sin(2πnt/T )〉 = 2
T

∫ T

0
f(t) sin(2πnt/T ) dt for n ≥ 1. (1.10)

Proof. Assume first that m 6= n. We compute the inner product

〈cos(2πmt/T ), cos(2πnt/T )〉

= 1
T

∫ T

0
cos(2πmt/T ) cos(2πnt/T )dt

= 1
2T

∫ T

0
(cos(2πmt/T + 2πnt/T ) + cos(2πmt/T − 2πnt/T ))

= 1
2T

[
T

2π(m+ n) sin(2π(m+ n)t/T ) + T

2π(m− n) sin(2π(m− n)t/T )
]T

0

= 0.

Here we have added the two identities cos(x±y) = cosx cos y∓sin x sin y together
to obtain an expression for cos(2πmt/T ) cos(2πnt/T )dt in terms of cos(2πmt/T+
2πnt/T ) and cos(2πmt/T − 2πnt/T ). By testing all other combinations of sin
and cos also, we obtain the orthogonality of all functions in DN,T . We also
obtain that

〈cos(2πmt/T ), cos(2πmt/T )〉 = 1
2

〈sin(2πmt/T ), sin(2πmt/T )〉 = 1
2

〈1, 1〉 = 1,

From the orthogonal decomposition theorem (1.5) it follows from this that
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fN (t) = 〈f, 1〉
〈1, 1〉1 +

N∑
n=1

〈f, cos(2πnt/T )〉
〈cos(2πnt/T ), cos(2πnt/T )〉 cos(2πnt/T )

+
N∑
n=1

〈f, sin(2πnt/T )〉
〈sin(2πnt/T ), sin(2πnt/T )〉 sin(2πnt/T )

=
1
T

∫ T
0 f(t)dt

1 +
N∑
n=1

1
T

∫ T
0 f(t) cos(2πnt/T )dt

1
2

cos(2πnt/T )

+
N∑
n=1

1
T

∫ T
0 f(t) sin(2πnt/T )dt

1
2

sin(2πnt/T )

= 1
T

∫ T

0
f(t)dt+

N∑
n=1

(
2
T

∫ T

0
f(t) cos(2πnt/T )dt

)
cos(2πnt/T )

+
N∑
n=1

(
2
T

∫ T

0
f(t) sin(2πnt/T )dt

)
sin(2πnt/T ).

Equations (1.8)-(1.10) now follow by comparison with Equation (1.7).

From the orthogonality and the inner products of the Fourier basis functions
it immediately follows that

‖fN‖2 = a2
0 + 1

2

N∑
n=1

(a2
n + b2

n)

Since f is a function in time, and the an, bn represent contributions from different
frequencies, the Fourier series can be thought of as a change of coordinates,
from what often is called the time domain, to the frequency domain (or Fourier
domain). We will call the basis DN,T the N ’th order Fourier basis for VN,T . We
note that DN,T is not an orthonormal basis; it is only orthogonal.

In the signal processing literature, Equation (1.7) is known as the synthesis
equation, since the original function f is synthesized as a sum of the basis
functions. Equations (1.8)-(1.10) are also called analysis equations.

An illustration of convergence of Fourier series is shown in Figure 1.5 where
the cubic polynomial f(x) = − 1

3x
3 + 1

2x
2 − 3

16x+ 1 is approximated by a 9’th
order Fourier series. The trigonometric approximation is periodic with period 1
so the approximation becomes poor at the ends of the interval since the cubic
polynomial is not periodic. The approximation is plotted on a larger interval in
the right plot in Figure 1.5, where its periodicity is clearly visible.

Let us compute the Fourier series of some interesting functions.

Example 1.12: Fourier coefficients of the square wave
Let us compute the Fourier coefficients of the square wave, as defined by Equation
(1.1) in Example 1.4. If we first use Equation (1.8) we obtain
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Figure 1.5: The cubic polynomial f(x) = − 1
3x

3 + 1
2x

2 − 3
16x+ 1 on the interval

[0, 1], together with its Fourier series approximation from V9,1. The function and
its Fourier series is shown left. The Fourier series on a larger interval is shown
right.

a0 = 1
T

∫ T

0
fs(t)dt = 1

T

∫ T/2

0
dt− 1

T

∫ T

T/2
dt = 0.

Using Equation (1.9) we get

an = 2
T

∫ T

0
fs(t) cos(2πnt/T )dt

= 2
T

∫ T/2

0
cos(2πnt/T )dt− 2

T

∫ T

T/2
cos(2πnt/T )dt

= 2
T

[
T

2πn sin(2πnt/T )
]T/2

0
− 2
T

[
T

2πn sin(2πnt/T )
]T
T/2

= 2
T

T

2πn ((sin(nπ)− sin 0)− (sin(2nπ)− sin(nπ)) = 0.

Finally, using Equation (1.10) we obtain
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bn = 2
T

∫ T

0
fs(t) sin(2πnt/T )dt

= 2
T

∫ T/2

0
sin(2πnt/T )dt− 2

T

∫ T

T/2
sin(2πnt/T )dt

= 2
T

[
− T

2πn cos(2πnt/T )
]T/2

0
+ 2
T

[
T

2πn cos(2πnt/T )
]T
T/2

= 2
T

T

2πn ((− cos(nπ) + cos 0) + (cos(2nπ)− cos(nπ)))

= 2(1− cos(nπ)
nπ

=
{

0, if n is even;
4/(nπ), if n is odd.

In other words, only the bn-coefficients with n odd in the Fourier series are
nonzero. This means that the Fourier series of the square wave is

4
π

sin(2πt/T )+ 4
3π sin(2π3t/T )+ 4

5π sin(2π5t/T )+ 4
7π sin(2π7t/T )+· · · . (1.11)

With N = 20, there are 10 trigonometric terms in this sum. The corresponding
Fourier series can be plotted over one period with the following code.

N = 20
T = 1/440.
t = linspace(0, T, 100)
x = zeros(len(t))
for k in range(1, N + 1, 2):

x += (4/(k*pi))*sin(2*pi*k*t/T)
plt.figure()
plt.plot(t, x, ’k-’)

The left plot in Figure 1.6 shows the resulting plot. In the right plot the values of
the first 100 Fourier coefficients bn are shown, to see that they actually converge
to zero. This is clearly necessary in order for the Fourier series to converge.

Even though f oscillates regularly between −1 and 1 with period T , the
discontinuities mean that it is far from the simple sin(2πt/T ) which corresponds
to a pure tone of frequency 1/T . Clearly b1 sin(2πt/T ) is the dominant term in
the Fourier series. This is not surprising since the square wave has the same
period as this term, but the additional terms in the Fourier series pollute the
pure sound. As we include more and more of these, we gradually approach the
square wave.

There is a connection between how fast the Fourier coefficients go to zero, and
how we perceive the sound. A pure sine sound has only one nonzero coefficient,
while the square wave Fourier coefficients decrease as 1/n, making the sound
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Figure 1.6: The Fourier series of the square wave with N = 20, and the values
for the first 100 Fourier coefficients bn.

less pleasant. This explains what we heard when we listened to the sound in
Example 1.4. Also, it explains why we heard the same pitch as the pure tone,
since the first frequency in the Fourier series has the same frequency as the pure
tone we listened to, and since this had the highest value.

Let us listen to the Fourier series approximations of the square wave. For
N = 1 it sounds like this. This sounds exactly like the pure sound with frequency
440Hz, as noted above. For N = 5 the it sounds like this, and for N = 9 like
this. The latter sounds are more like the square wave itself. As we increase N
we can hear how the introduction of more frequencies gradually pollutes the
sound more.

Example 1.13: Fourier coefficients of the triangle wave
Let us also compute the Fourier coefficients of the triangle wave, as defined by
Equation (1.2) in Example 1.5. We now have

a0 = 1
T

∫ T/2

0

4
T

(
t− T

4

)
dt+ 1

T

∫ T

T/2

4
T

(
3T
4 − t

)
dt.

Instead of computing this directly, it is quicker to see geometrically that the
graph of ft has as much area above as below the x-axis, so that this integral
must be zero. Similarly, since ft is symmetric about the midpoint T/2, and
sin(2πnt/T ) is antisymmetric about T/2, we have that ft(t) sin(2πnt/T ) also is
antisymmetric about T/2, so that∫ T/2

0
ft(t) sin(2πnt/T )dt = −

∫ T

T/2
ft(t) sin(2πnt/T )dt.

This means that, for n ≥ 1,

bn = 2
T

∫ T/2

0
ft(t) sin(2πnt/T )dt+ 2

T

∫ T

T/2
ft(t) sin(2πnt/T )dt = 0.

http://folk.uio.no/oyvindry/matinf2360/sounds/square440s1.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/square440s5.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/square440s9.wav
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For the final coefficients, since both f and cos(2πnt/T ) are symmetric about
T/2, we get for n ≥ 1,

an = 2
T

∫ T/2

0
ft(t) cos(2πnt/T )dt+ 2

T

∫ T

T/2
ft(t) cos(2πnt/T )dt

= 4
T

∫ T/2

0
ft(t) cos(2πnt/T )dt = 4

T

∫ T/2

0

4
T

(
t− T

4

)
cos(2πnt/T )dt

= 16
T 2

∫ T/2

0
t cos(2πnt/T )dt− 4

T

∫ T/2

0
cos(2πnt/T )dt

= 4
n2π2 (cos(nπ)− 1)

=
{

0, if n is even;
−8/(n2π2), if n is odd.

where we have dropped the final tedious calculations (use integration by parts).
From this it is clear that the Fourier series of the triangle wave is

− 8
π2 cos(2πt/T )− 8

32π2 cos(2π3t/T )− 8
52π2 cos(2π5t/T )− 8

72π2 cos(2π7t/T )+· · · .
(1.12)

In Figure 1.7 we have repeated the plots used for the square wave, for the triangle
wave. The figure indicates that the Fourier series coefficients decay faster.
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Figure 1.7: The Fourier series of the triangle wave with N = 20, and the values
for the first 100 Fourier coefficients an.

Let us also listen to different Fourier series approximations of the triangle
wave. For N = 1 it sounds like this. Again, this sounds exactly like the pure
sound with frequency 440Hz. For N = 5 the Fourier series approximation sounds
like this, and for N = 9 it sounds like this. Again the latter sounds are more like
the triangle wave itself, and as we increase N we can hear that more frequencies
pollutes the sound. However, since the triangle wave Fourier coefficients decrease
as 1/n2 rather than 1/n, the sound is somewhat less unpleasant. The faster
convergence can also be heard.

http://folk.uio.no/oyvindry/matinf2360/sounds/triangle440s1.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/triangle440s5.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/triangle440s9.wav
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Example 1.14: Fourier coefficients of a simple function
There is an important lesson to be learned from the previous examples: Even if
the signal is nice and periodic, it may not have a nice representation in terms
of trigonometric functions. Thus, trigonometric functions may not be the best
bases to use for expressing other functions. Unfortunately, many more such cases
can be found, as we will now explain. Let us consider a periodic function which
is 1 on [0, T0], but 0 is on [T0, T ]. This is a signal with short duration when T0
is small compared to T . We compute that y0 = T0/T , and

an = 2
T

∫ T0

0
cos(2πnt/T )dt = 1

πn
[sin(2πnt/T )]T0

0 = sin(2πnT0/T )
πn

for n ≥ 1. Similar computations hold for bn. We see that |an| is of the order
1/(πn), and that infinitely many n contribute, This function may be thought
of as a simple building block, corresponding to a small time segment. However,
we see that it is not a simple building block in terms of trigonometric functions.
This time segment building block may be useful for restricting a function to
smaller time segments, and later on we will see that it still can be useful.

1.2.1 Fourier series for symmetric and antisymmetric func-
tions

In Example 1.12 we saw that the Fourier coefficients bn vanished, resulting in a
sine-series for the Fourier series of the square wave. Similarly, in Example 1.13
we saw that an vanished, resulting in a cosine-series for the triangle wave. This
is not a coincident, and is captured by the following result.

Theorem 1.10. Symmetry and antisymmetry.
If f is antisymmetric about 0 (that is, if f(−t) = −f(t) for all t), then an = 0,

so the Fourier series is actually a sine-series. If f is symmetric about 0 (which
means that f(−t) = f(t) for all t), then bn = 0, so the Fourier series is actually
a cosine-series.

The point is that the square wave is antisymmetric about 0, and the triangle
wave is symmetric about 0.

Proof. Note first that we can write

an = 2
T

∫ T/2

−T/2
f(t) cos(2πnt/T )dt bn = 2

T

∫ T/2

−T/2
f(t) sin(2πnt/T )dt,

i.e. we can change the integration bounds from [0, T ] to [−T/2, T/2]. This
follows from the fact that all f(t), cos(2πnt/T ) and sin(2πnt/T ) are periodic
with period T .

Suppose first that f is symmetric. We obtain
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bn = 2
T

∫ T/2

−T/2
f(t) sin(2πnt/T )dt

= 2
T

∫ 0

−T/2
f(t) sin(2πnt/T )dt+ 2

T

∫ T/2

0
f(t) sin(2πnt/T )dt

= 2
T

∫ 0

−T/2
f(t) sin(2πnt/T )dt− 2

T

∫ −T/2

0
f(−t) sin(−2πnt/T )dt

= 2
T

∫ 0

−T/2
f(t) sin(2πnt/T )dt− 2

T

∫ 0

−T/2
f(t) sin(2πnt/T )dt = 0.

where we have made the substitution u = −t, and used that sin is antisymmetric.
The case when f is antisymmetric can be proved in the same way, and is left as
an exercise.

Exercise 1.15: Shifting the Fourier basis vectors
Show that sin(2πnt/T + a) ∈ VN,T when |n| ≤ N , regardless of the value of a.

Exercise 1.16: Playing the Fourier series of the triangle
wave
a) Plot the Fourier series of the triangle wave.

b) Write code so that you can listen to the Fourier series of the triangle wave.
How high must you choose N for the Fourier series to be indistuingishable from
the square/triangle waves themselves?

Exercise 1.17: Riemann-integrable functions which are not
square-integrable
Find a function f which is Riemann-integrable on [0, T ], and so that

∫ T
0 f(t)2dt

is infinite.

Exercise 1.18: When are Fourier spaces included in each
other?
Given the two Fourier spaces VN1,T1 , VN2,T2 . Find necessary and sufficient
conditions in order for VN1,T1 ⊂ VN2,T2 .

Exercise 1.19: antisymmetric functions are sine-series
Prove the second part of Theorem 1.10, i.e. show that if f is antisymmetric about
0 (i.e. f(−t) = −f(t) for all t), then an = 0, i.e. the Fourier series is actually a
sine-series.
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Exercise 1.20: More connections between symmetric-/antisymmetric
functions and sine-/cosine series
Show that

a) Any cosine series a0 +
∑N
n=1 an cos(2πnt/T ) is a symmetric function.

b) Any sine series
∑N
n=1 bn sin(2πnt/T ) is an antisymmetric function.

c) Any periodic function can be written as a sum of a symmetric - and an
antisymmetric function by writing f(t) = f(t)+f(−t)

2 + f(t)−f(−t)
2 .

d) If fN (t) = a0 +
∑N
n=1(an cos(2πnt/T ) + bn sin(2πnt/T )), then

fN (t) + fN (−t)
2 = a0 +

N∑
n=1

an cos(2πnt/T )

fN (t)− fN (−t)
2 =

N∑
n=1

bn sin(2πnt/T ).

Exercise 1.21: Fourier series for low-degree polynomials
Find the Fourier series coefficients of the periodic functions with period T defined
by being f(t) = t, f(t) = t2, and f(t) = t3, on [0, T ].

Exercise 1.22: Fourier series for polynomials
Write down difference equations for finding the Fourier coefficients of f(t) = tk+1

from those of f(t) = tk, and write a program which uses this recursion. Use the
program to verify what you computed in Exercise 1.21.

Exercise 1.23: Fourier series of a given polynomial
Use the previous exercise to find the Fourier series for f(x) = − 1

3x
3+ 1

2x
2− 3

16x+1
on the interval [0, 1]. Plot the 9th order Fourier series for this function. You
should obtain the plots from Figure 1.5.

1.3 Complex Fourier series
In Section 1.2 we saw how a function can be expanded in a series of sines and
cosines. These functions are related to the complex exponential function via
Eulers formula

eix = cosx+ i sin x

where i is the imaginary unit with the property that i2 = −1. Because the
algebraic properties of the exponential function are much simpler than those
of cos and sin, it is often an advantage to work with complex numbers, even
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though the given setting is real numbers. This is definitely the case in Fourier
analysis. More precisely, we will make the substitutions

cos(2πnt/T ) = 1
2

(
e2πint/T + e−2πint/T

)
(1.13)

sin(2πnt/T ) = 1
2i

(
e2πint/T − e−2πint/T

)
(1.14)

in Definition 1.8. From these identities it is clear that the set of complex
exponential functions e2πint/T also is a basis of periodic functions (with the same
period) for VN,T . We may therefore reformulate Definition 1.8 as follows:

Definition 1.11. Complex Fourier basis.
We define the set of functions

FN,T = {e−2πiNt/T , e−2πi(N−1)t/T , · · · , e−2πit/T , (1.15)
1, e2πit/T , · · · , e2πi(N−1)t/T , e2πiNt/T }, (1.16)

and call this the order N complex Fourier basis for VN,T .

The function e2πint/T is also called a pure tone with frequency n/T , just
as sines and cosines are. We would like to show that these functions also are
orthogonal. To show this, we need to say more on the inner product we have
defined by Equation (1.3). A weakness with this definition is that we have
assumed real functions f and g, so that this can not be used for the complex
exponential functions e2πint/T . For general complex functions we will extend
the definition of the inner product as follows:

〈f, g〉 = 1
T

∫ T

0
fḡ dt. (1.17)

The associated norm now becomes

‖f‖ =

√
1
T

∫ T

0
|f(t)|2dt. (1.18)

The motivation behind Equation (1.17), where we have conjugated the second
function, lies in the definition of an inner product for vector spaces over complex
numbers. From before we are used to vector spaces over real numbers, but vector
spaces over complex numbers are defined through the same set of axioms as
for real vector spaces, only replacing real numbers with complex numbers. For
complex vector spaces, the axioms defining an inner product are the same as for
real vector spaces, except for that the axiom

〈f, g〉 = 〈g, f〉 (1.19)

is replaced with the axiom
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〈f, g〉 = 〈g, f〉, (1.20)

i.e. a conjugation occurs when we switch the order of the functions. This new
axiom can be used to prove the property 〈f, cg〉 = c̄〈f, g〉, which is a somewhat
different property from what we know for real inner product spaces. This follows
by writing

〈f, cg〉 = 〈cg, f〉 = c〈g, f〉 = c̄〈g, f〉 = c̄〈f, g〉.

Clearly the inner product given by (1.17) satisfies Axiom (1.20). With this
definition it is quite easy to see that the functions e2πint/T are orthonormal.
Using the orthogonal decomposition theorem we can therefore write

fN (t) =
N∑

n=−N

〈f, e2πint/T 〉
〈e2πint/T , e2πint/T 〉

e2πint/T =
N∑

n=−N
〈f, e2πint/T 〉e2πint/T

=
N∑

n=−N

(
1
T

∫ T

0
f(t)e−2πint/T dt

)
e2πint/T .

We summarize this in the following theorem, which is a version of Theorem 1.9
which uses the complex Fourier basis:

Theorem 1.12. Complex Fourier coefficients.
We denote by y−N , . . . , y0, . . . , yN the coordinates of fN in the basis FN,T ,

i.e.

fN (t) =
N∑

n=−N
yne

2πint/T . (1.21)

The yn are called the complex Fourier coefficients of f , and they are given by.

yn = 〈f, e2πint/T 〉 = 1
T

∫ T

0
f(t)e−2πint/T dt. (1.22)

From the orthonormality it immediately follows that

‖fN‖2 =
N∑

n=−N
|yn|2

This result holds for any expansion in an orthonormal basis, and in this general
form the result is called Parseval’s theorem. Let us consider some examples
where we compute complex Fourier series.
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Example 1.24: Complex Fourier coefficients of a simple
function
Let us consider the pure sound f(t) = e2πit/T2 with period T2, but let us consider
it only on the interval [0, T ] instead, where T < T2. Note that this f is not
periodic, since we only consider the part [0, T ] of the period [0, T2]. The Fourier
coefficients are

yn = 1
T

∫ T

0
e2πit/T2e−2πint/T dt = 1

2πiT (1/T2 − n/T )

[
e2πit(1/T2−n/T )

]T
0

= 1
2πi(T/T2 − n)

(
e2πiT/T2 − 1

)
.

Here it is only the term 1/(T/T2−n) which depends on n, so that yn can only be
large when n is close T/T2. In Figure 1.8 we have plotted |yn| for two different
combinations of T, T2.
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Figure 1.8: Plot of |yn| when f(t) = e2πit/T2 , and T2 > T . Left: T/T2 = 0.5.
Right: T/T2 = 0.9.

In both examples it is seen that many Fourier coefficients contribute, but
this is more visible when T/T2 = 0.5. When T/T2 = 0.9, most contribution is
seen to be in the y1-coefficient. This sounds reasonable, since f then is closest
to the pure tone f(t) = e2πit/T of frequency 1/T (which in turn has y1 = 1 and
all other yn = 0).

Apart from computing complex Fourier series, there is an important lesson to
be learned from this example: In order for a periodic function to be approximated
by other periodic functions, their period must somehow match.

Example 1.25: Complex Fourier coefficients of composite
function
What often is the case is that a sound changes in content over time. Assume
that it is equal to a pure tone of frequency n1/T on [0, T/2), and equal to a pure
tone of frequency n2/T on [T/2, T ), i.e.
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f(t) =
{
e2πin1t/T on [0, T2]
e2πin2t/T on[T2, T )

.

When n 6= n1, n2 we have that

yn = 1
T

(∫ T/2

0
e2πin1t/T e−2πint/T dt+

∫ T

T/2
e2πin2t/T e−2πint/T dt

)

= 1
T

([
T

2πi(n1 − n)e
2πi(n1−n)t/T

]T/2

0
+
[

T

2πi(n2 − n)e
2πi(n2−n)t/T

]T
T/2

)

= eπi(n1−n) − 1
2πi(n1 − n) + 1− eπi(n2−n)

2πi(n2 − n) .

Let us restrict to the case when n1 and n2 are both even. We see that

yn =


1
2 + 1

πi(n2−n1) n = n1, n2

0 n even , n 6= n1, n2
n1−n2

πi(n1−n)(n2−n) n odd
Here we have computed the cases n = n1 and n = n2 as above. In Figure 1.9 we
have plotted |yn| for two different combinations of n1, n2.
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Figure 1.9: Plot of |yn| when we have two different pure tones at the different
parts of a period. Left: n1 = 10, n2 = 12. Right: n1 = 2, n2 = 20.

We see that, when n1, n2 are close, the Fourier coefficients are close to those
of a pure tone with n ≈ n1, n2, but that also other frequencies contribute. When
n1, n2 are further apart, we see that the Fourier coefficients are like the sum of
the two base frequencies, but that other frequencies contribute also here.

There is an important lesson to be learned from this as well: We should
be aware of changes in a sound over time, and it may not be smart to use
a frequency representation over a large interval when we know that there are
simpler frequency representations on the smaller intervals. The following example
shows that, in some cases it is not necessary to compute the Fourier integrals at
all, in order to compute the Fourier series.



CHAPTER 1. SOUND AND FOURIER SERIES 26

Example 1.26: Complex Fourier coefficients of f(t) = cos3(2πt/T )
Let us compute the complex Fourier series of the function f(t) = cos3(2πt/T ),
where T is the period of f . We can write

cos3(2πt/T ) =
(

1
2(e2πit/T + e−2πit/T )

)3

= 1
8(e2πi3t/T + 3e2πit/T + 3e−2πit/T + e−2πi3t/T )

= 1
8e

2πi3t/T + 3
8e

2πit/T + 3
8e
−2πit/T + 1

8e
−2πi3t/T .

From this we see that the complex Fourier series is given by y1 = y−1 = 3
8 , and

that y3 = y−3 = 1
8 . In other words, it was not necessary to compute the Fourier

integrals in this case, and we see that the function lies in V3,T , i.e. there are
finitely many terms in the Fourier series. In general, if the function is some
trigonometric function, we can often use trigonometric identities to find an
expression for the Fourier series.

If we reorder the real and complex Fourier bases so that the two functions
{cos(2πnt/T ), sin(2πnt/T )} and {e2πint/T , e−2πint/T } have the same index in
the bases, equations (1.13)-(1.14) give us that the change of coordinates matrix
4 from DN,T to FN,T , denoted PFN,T←DN,T

, is represented by repeating the
matrix

1
2

(
1 1/i
1 −1/i

)
along the diagonal (with an additional 1 for the constant function 1). In other
words, since an, bn are coefficients relative to the real basis and yn, y−n the
corresponding coefficients relative to the complex basis, we have for n > 0,(

yn
y−n

)
= 1

2

(
1 1/i
1 −1/i

)(
an
bn

)
.

This can be summarized by the following theorem:

Theorem 1.13. Change of coefficients between real and complex Fourier bases.
The complex Fourier coefficients yn and the real Fourier coefficients an, bn of

a function f are related by

y0 = a0,

yn = 1
2(an − ibn),

y−n = 1
2(an + ibn),

for n = 1, . . . , N .
4See Section 4.7 in [5], to review the mathematics behind change of coordinates.
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Combining with Theorem 1.10, Theorem ?? can help us state properties of
complex Fourier coefficients for symmetric- and antisymmetric functions. We
look into this in Exercise 1.34.

Due to the somewhat nicer formulas for the complex Fourier coefficients when
compared to the real Fourier coefficients, we will write most Fourier series in
complex form in the following.

Exercise 1.27: Orthonormality of Complex Fourier basis
Show that the complex functions e2πint/T are orthonormal.

Exercise 1.28: Complex Fourier series of f(t) = sin2(2πt/T )
Compute the complex Fourier series of the function f(t) = sin2(2πt/T ).

Exercise 1.29: Complex Fourier series of polynomials
Repeat Exercise 1.21, computing the complex Fourier series instead of the real
Fourier series.

Exercise 1.30: Complex Fourier series and Pascals triangle
In this exercise we will find a connection with certain Fourier series and the rows
in Pascal’s triangle.

a) Show that both cosn(t) and sinn(t) are in VN,2π for 1 ≤ n ≤ N .

b) Write down the N ’th order complex Fourier series for f1(t) = cos t, f2(t) =
cos2 t, og f3(t) = cos3 t.

c) In b) you should be able to see a connection between the Fourier coefficients
and the three first rows in Pascal’s triangle. Formulate and prove a general
relationship between row n in Pascal’s triangle and the Fourier coefficients of
fn(t) = cosn t.

Exercise 1.31: Complex Fourier coefficients of the square
wave
Compute the complex Fourier coefficients of the square wave using Equation
(1.22), i.e. repeat the calculations from Example 1.12 for the complex case. Use
Theorem ?? in the compendium to verify your result.

Exercise 1.32: Complex Fourier coefficients of the triangle
wave
Repeat Exercise 1.31 for the triangle wave.
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Exercise 1.33: Complex Fourier coefficients of low-degree
polynomials
Use Equation (1.22) to compute the complex Fourier coefficients of the periodic
functions with period T defined by, respectively, f(t) = t, f(t) = t2, and f(t) = t3,
on [0, T ]. Use Theorem ?? in the compendium to verify your calculations from
Exercise 1.21.

Exercise 1.34: Complex Fourier coefficients for symmetric
and antisymmetric functions
In this exercise we will prove a version of Theorem 1.10 for complex Fourier
coefficients.

a) If f is symmetric about 0, show that yn is real, and that y−n = yn.

b) If f is antisymmetric about 0, show that the yn are purely imaginary, y0 = 0,
and that y−n = −yn.

c) Show that
∑N
n=−N yne

2πint/T is symmetric when y−n = yn for all n, and
rewrite it as a cosine-series.

d) Show that
∑N
n=−N yne

2πint/T is antisymmetric when y0 = 0 and y−n = −yn
for all n, and rewrite it as a sine-series.

1.4 Some properties of Fourier series
We continue by establishing some important properties of Fourier series, in
particular the Fourier coefficients for some important functions. In these lists,
we will use the notation f → yn to indicate that yn is the n’th (complex) Fourier
coefficient of f(t).

Theorem 1.14. Fourier series pairs.
The functions 1, e2πint/T , and χ−a,a have the Fourier coefficients

1→ e0 = (1, 0, 0, 0 . . . , )
e2πint/T → en = (0, 0, . . . , 1, 0, 0, . . .)

χ−a,a →
sin(2πna/T )

πn
.

The 1 in en is at position n and the function χ−a,a is the characteristic function
of the interval [−a, a], defined by

χ−a,a(t) =
{

1, if t ∈ [−a, a];
0, otherwise.
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The first two pairs are easily verified, so the proofs are omitted. The case for
χ−a,a is very similar to the square wave, but easier to prove, and therefore also
omitted.

Theorem 1.15. Fourier series properties.
The mapping f → yn is linear: if f → xn, g → yn, then

af + bg → axn + byn

For all n. Moreover, if f is real and periodic with period T , the following
properties hold:

1. yn = y−n for all n.

2. If f(t) = f(−t) (i.e. f is symmetric), then all yn are real, so that bn are
zero and the Fourier series is a cosine series.

3. If f(t) = −f(−t) (i.e. f is antisymmetric), then all yn are purely imaginary,
so that the an are zero and the Fourier series is a sine series.

4. If g(t) = f(t− d) (i.e. g is the function f delayed by d) and f → yn, then
g → e−2πind/T yn.

5. If g(t) = e2πidt/T f(t) with d an integer, and f → yn, then g → yn−d.

6. Let d be a number. If f → yn, then f(d+ t) = f(d− t) for all t if and only
if the argument of yn is −2πnd/T for all n.

Proof. The proof of linearity is left to the reader. Property 1 follows immediately
by writing

yn = 1
T

∫ T

0
f(t)e−2πint/T dt = 1

T

∫ T

0
f(t)e2πint/T dt

= 1
T

∫ T

0
f(t)e−2πi(−n)t/T dt = y−n.

Also, if g(t) = f(−t), we have that

1
T

∫ T

0
g(t)e−2πint/T dt = 1

T

∫ T

0
f(−t)e−2πint/T dt = − 1

T

∫ −T
0

f(t)e2πint/T dt

= 1
T

∫ T

0
f(t)e2πint/T dt = yn.

The first part of property 2 follows from this. The second part follows directly
by noting that
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yne
2πint/T + y−ne

−2πint/T = yn(e2πint/T + e−2πint/T ) = 2yn cos(2πnt/T ),

or by invoking Theorem 1.10. Property 3 is proved in a similar way. To prove
property 4, we observe that the Fourier coefficients of g(t) = f(t− d) are

1
T

∫ T

0
g(t)e−2πint/T dt = 1

T

∫ T

0
f(t− d)e−2πint/T dt

= 1
T

∫ T

0
f(t)e−2πin(t+d)/T dt

= e−2πind/T 1
T

∫ T

0
f(t)e−2πint/T dt = e−2πind/T yn.

For property 5 we observe that the Fourier coefficients of g(t) = e2πidt/T f(t) are

1
T

∫ T

0
g(t)e−2πint/T dt = 1

T

∫ T

0
e2πidt/T f(t)e−2πint/T dt

= 1
T

∫ T

0
f(t)e−2πi(n−d)t/T dt = yn−d.

If f(d+ t) = f(d− t) for all t, we define the function g(t) = f(t+ d) which is
symmetric about 0, so that it has real Fourier coefficients. But then the Fourier
coefficients of f(t) = g(t− d) are e−2πind/T times the (real) Fourier coefficients
of g by property 4. It follows that yn, the Fourier coefficients of f , has argument
−2πnd/T . The proof in the other direction follows by noting that any function
where the Fourier coefficients are real must be symmetric about 0, once the
Fourier series is known to converge. This proves property 6.

Let us analyze these properties, to see that they match the notion we already
have for frequencies and sound. We will say that two sounds “essentially are
the same” if the absolute values of each Fourier coefficient are equal. Note that
this does not mean that the sounds sound the same, it merely says that the
contributions at different frequencies are comparable.

The first property says that the positive and negative frequencies in a (real)
sound essentially are the same. The second says that, when we play a sound
backwards, the frequency content is essentially the same. This is certainly the
case for all pure sounds. The third property says that, if we delay a sound, the
frequency content also is essentially the same. This also matches our intuition
on sound, since we think of the frequency representation as something which
is time-independent. The fourth property says that, if we multiply a sound
with a pure tone, the frequency representation is shifted (delayed), according
to the value of the frequency. This is something we see in early models for the
transmission of audio, where an audio signal is transmitted after having been
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multiplied with what is called a ‘carrier wave‘. You can think of the carrier signal
as a pure tone. The result is a signal where the frequencies have been shifted
with the frequency of the carrier wave. The point of shifting the frequency of
the transmitted signal is to make it use a frequency range in which one knows
that other signals do not interfere. The last property looks a bit mysterious. We
will not have use for this property before the next chapter.

From Theorem 1.15 we also see that there exist several cases of duality
between a function and its Fourier series:

• Delaying a function corresponds to multiplying the Fourier coefficients
with a complex exponential. Vice versa, multiplying a function with a
complex exponential corresponds to delaying the Fourier coefficients.

• Symmetry/antisymmetry for a function corresponds to the Fourier coef-
ficients being real/purely imaginary. Vice versa, a function which is real
has Fourier coefficients which are conjugate symmetric.

Actually, one can show that these dualities are even stronger if we had considered
Fourier series of complex functions instead of real functions. We will not go into
this.

1.4.1 Rate of convergence for Fourier series
We have earlier mentioned criteria which guarantee that the Fourier series
converges. Another important topic is the rate of convergence, given that it
actually converges. If the series converges quickly, we may only need a few terms
in the Fourier series to obtain a reasonable approximation. We have already seen
examples which illustrate different convergence rates: The square wave seemed
to have very slow convergence rate near the discontinuities, while the triangle
wave did not seem to have the same problem.

Before discussing results concerning convergence rates we consider a simple
lemma which will turn out to be useful.

Lemma 1.16. The order of computing Fourier series and differentiation does
not matter.

Assume that f is differentiable. Then (fN )′(t) = (f ′)N (t). In other words,
the derivative of the Fourier series equals the Fourier series of the derivative.

Proof. We first compute

〈f, e2πint/T 〉 = 1
T

∫ T

0
f(t)e−2πint/T dt

= 1
T

([
− T

2πinf(t)e−2πint/T
]T

0
+ T

2πin

∫ T

0
f ′(t)e−2πint/T dt

)

= T

2πin
1
T

∫ T

0
f ′(t)e−2πint/T dt = T

2πin 〈f
′, e2πint/T 〉.
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where we used integration by parts, and that − T
2πinf(t)e−2πint/T are periodic

with period T . It follows that 〈f, e2πint/T 〉 = T
2πin 〈f

′, e2πint/T 〉. From this we
get that

(fN )′(t) =
(

N∑
n=−N

〈f, e2πint/T 〉e2πint/T

)′
= 2πin

T

N∑
n=−N

〈f, e2πint/T 〉e2πint/T

=
N∑

n=−N
〈f ′, e2πint/T 〉e2πint/T = (f ′)N (t).

where we substituted the connection between the inner products we just found.

1.4.2 Differentiating Fourier series
The connection between the Fourier series of the function and its derivative
can be used to simplify the computation of Fourier series for new functions.
Let us see how we can use this to compute the Fourier series of the triangle
wave, which was quite a tedious job in Example 1.13. However, the relationship
f ′t(t) = 4

T fs(t) is straightforward to see from the plots of the square wave fs and
the triangle wave ft. From this relationship and from Equation (1.11) for the
Fourier series of the square wave it follows that

((ft)′)N (t) = 4
T

(
4
π

sin(2πt/T ) + 4
3π sin(2π3t/T ) + 4

5π sin(2π5t/T ) + · · ·
)
.

If we integrate this we obtain

(ft)N (t) = − 8
π2

(
cos(2πt/T ) + 1

32 cos(2π3t/T ) + 1
52 cos(2π5t/T ) + · · ·

)
+ C.

What remains is to find the integration constant C. This is simplest found if
we set t = T/4, since then all cosine terms are 0. Clearly then C = 0, and we
arrive at the same expression as in Equation (1.12) for the Fourier series of the
triangle wave. This approach clearly had less computations involved. There
is a minor point here which we have not addressed: the triangle wave is not
differentiable at two points, as required by Lemma 1.16. It is, however, not too
difficult to see that this result still holds in cases where we have a finite number
of nondifferentiable points only.

We get the following corollary to Lemma 1.16:

Corollary 1.17. Connection between the Fourier coefficients of f(t) and f ′(t).
If the complex Fourier coefficients of f are yn and f is differentiable, then

the Fourier coefficients of f ′(t) are 2πin
T yn.
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If we turn this around, we note that the Fourier coefficients of f(t) are
T/(2πin) times those of f ′(t). If f is s times differentiable, we can repeat this
argument to show that the Fourier coefficients of f(t) are

(
T/(2πin)

)s times
those of f (s)(t). In other words, the Fourier coefficients of a function which is
many times differentiable decay to zero very fast.

Observation 1.18. Convergence speed of differentiable functions.
The Fourier series converges quickly when the function is many times differ-

entiable.

An illustration is found in examples 1.12 and 1.13, where we saw that the
Fourier series coefficients for the triangle wave converged more quickly to zero
than those of the square wave. This is explained by the fact that the square
wave is discontinuous, while the triangle wave is continuous with a discontinuous
first derivative. Also, the functions considered in examples 1.24 and 1.25 are not
continuous, which partially explain why we there saw contributions from many
frequencies.

The requirement of continuity in order to obtain quickly converging Fourier
series may seem like a small problem. However, often the function is not defined
on the whole real line: it is often only defined on the interval [0, T ). If we
extend this to a periodic function on the whole real line, by repeating one
period as shown in the left plot in Figure 1.10, there is no reason why the
new function should be continuous at the boundaries 0, T, 2T etc., even though
the function we started with may be continuous on [0, T ). This would require
that f(0) = limt→T f(t). If this does not hold, the function may not be well
approximated with trigonometric functions, due to a slowly convergence Fourier
series.
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Figure 1.10: Two different extensions of f to a periodic function on the whole
real line. Periodic extension (left) and symmetric extension (right).

We can therefore ask ourselves the following question:

Idea 1.19. Continuous Extension.
Assume that f is continuous on [0, T ). Can we construct another periodic

function which agrees with f on [0, T ], and which is both continuous and periodic
(maybe with period different from T )?
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If this is possible the Fourier series of the new function could produce better
approximations for f . It turns out that the following extension strategy does
the job:

Definition 1.20. Symmetric extension of a function.
Let f be a function defined on [0, T ]. By the symmetric extension of f ,

denoted f̆ , we mean the function defined on [0, 2T ] by

f̆(t) =
{
f(t), if 0 ≤ t ≤ T ;
f(2T − t), if T < t ≤ 2T .

Clearly the following holds:

Theorem 1.21. Continuous Extension.
If f is continuous on [0, T ], then f̆ is continuous on [0, 2T ], and f̆(0) = f̆(2T ).

If we extend f̆ to a periodic function on the whole real line (which we also
will denote by f̆), this function is continuous, agrees with f on [0, T ), and is a
symmetric function.

This also means that the Fourier series of f̆ is a cosine series, so that it is
determined by the cosine-coefficients an. The symmetric extension of f is shown
in the right plot in Figure 1.10. f̆ is symmetric since, for 0 ≤ t ≤ T ,

f̆(−t) = f̆(2T − t) = f(2T − (2T − t)) = f(t) = f̆(t).

In summary, we now have two possibilities for approximating a function f defined
only on [0, T ), where the latter addresses a shortcoming of the first:

• By the Fourier series of f

• By the Fourier series of f̆ restricted to [0, T ) (which actually is a cosine-
series)

Example 1.35: Periodic extension
Let f be the function with period T defined by f(t) = 2t/T − 1 for 0 ≤ t < T .
In each period the function increases linearly from −1 to 1. Because f is
discontinuous at the boundaries, we would expect the Fourier series to converge
slowly. The Fourier series is a sine-series since f is antisymmetric, and we can
compute bn as

bn = 2
T

∫ T

0

2
T

(
t− T

2

)
sin(2πnt/T )dt = 4

T 2

∫ T

0

(
t− T

2

)
sin(2πnt/T )dt

= 4
T 2

∫ T

0
t sin(2πnt/T )dt− 2

T

∫ T

0
sin(2πnt/T )dt = − 2

πn
,
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so that

fN (t) = −
N∑
n=1

2
nπ

sin(2πnt/T ),

which indeed converges slowly to 0. Let us now instead consider the symmetric
extension of f . Clearly this is the triangle wave with period 2T , and the Fourier
series of this was

(f̆)N (t) = −
∑

n≤N , n odd

8
n2π2 cos(2πnt/(2T )).

The second series clearly converges faster than the first, since its Fourier coef-
ficients are an = −8/(n2π2) (with n odd), while the Fourier coefficients in the
first series are bn = −2/(nπ).

If we use T = 1/440, the symmetric extension has period 1/220, which gives
a triangle wave where the first term in the Fourier series has frequency 220Hz.
Listening to this we should hear something resembling a 220Hz pure tone, since
the first term in the Fourier series is the most dominating in the triangle wave.
Listening to the periodic extension we should hear a different sound. The first
term in the Fourier series has frequency 440Hz, but this drounds a bit in the
contribution of the other terms in the Fourier series, due to the slow convergence
of the Fourier series, just as for the square wave.

Let us plot the Fourier series with N = 7 terms for f . These are shown in
Figure 1.11.
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Figure 1.11: The Fourier series with N = 7 terms of the periodic (left) and
symmetric (right) extensions of the function in Example 1.35.

It is clear from the plot that the Fourier series for f itself is not a very good
approximation, while we cannot differentiate between the Fourier series and the
function itself for the symmetric extension.

Exercise 1.36: Fourier series of a delayed square wave
Define the function f with period T on [−T/2, T/2) by
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f(t) =
{

1, if −T/4 ≤ t < T/4;
−1, if T/4 ≤ |t| < T/2.

f is just the square wave, delayed with d = −T/4. Compute the Fourier
coefficients of f directly, and use Property 4 in Theorem 1.15 to verify your
result.

Exercise 1.37: Find function from its Fourier series
Find a function f which has the complex Fourier series∑

n odd

4
π(n+ 4)e

2πint/T .

Hint. Attempt to use one of the properties in Theorem 1.15 on the Fourier
series of the square wave.

Exercise 1.38: Relation between complex Fourier coeffi-
cients of f and cosine-coefficients of f̆
Show that the complex Fourier coefficients yn of f , and the cosine-coefficients
an of f̆ are related by a2n = yn + y−n. This result is not enough to obtain the
entire Fourier series of f̆ , but at least it gives us half of it.

1.5 Operations on sound: filters
It is easy to see how we can use Fourier coefficients to analyse or improve sound:
Noise in a sound often corresponds to the presence of some high frequencies with
large coefficients, and by removing these, we remove the noise. For example, we
could set all the coefficients except the first one to zero. This would change, as
we have seen, the unpleasant square wave to the pure tone sin(2π440t). Doing
so is an example of an important operation on sound called a filter :

Definition 1.22. Analog filters.
An operation on sound is called a filter if it preserves the different frequencies

in the sound. In other words, s is a filter if, for any sound on the form f =∑
ν c(ν)e2πiνt, the output s(f) is a sound which can be written on the form

s(f) = s

(∑
ν

c(ν)e2πiνt

)
=
∑
ν

c(ν)λs(ν)e2πiνt.

λs(ν) is a function describing how s treats the different frequencies, and is also
called the frequency response of s.
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By definition any pure tone is an eigenvector of s, with the frequency response
providing the eigenvalue. The notion of a filter makes sense for both periodic
and non-periodic input functions. The problem is, however, that a function may
be an infinite sum of frequencies, for which a sum on the form

∑
ν c(ν)e2πiνt

may not converge.
This general definition of filters may not be useful in practice, bit if we

restrict to Fourier spaces, however, we restrict ourselves to finite sums. We then
clearly have that s(f) ∈ VN,T whenever f ∈ VN,T , so that the computation can
be performed in finite dimensions. Let us now see how we can construct useful
such filters.

Theorem 1.23. Convolution kernels.
Assume that g is a bounded Riemann-integrable function with compact

support (i.e. that there exists an interval [a, b] so that g = 0 outside [a, b]). The
operation

f(t)→ h(t) =
∫ ∞
−∞

g(u)f(t− u)du. (1.23)

is a filter. Also, the frequency response of the filter is λs(ν) =
∫∞
∞ g(s)e−2πiνsds.

The function g is also called the kernel of s.

Note that the requirement that g is bounded with compact support is just
made for convenience, to ensure that the integral exists. Many weaker conditions
can be put on g to ensure that the integral exists. In case of compact support
there exist constants a and b so that the filter takes the form f(t) → h(t) =∫ b
a
g(s)f(t− s)ds.

Proof. We compute

s(e2πiνt) =
∫ ∞
−∞

g(s)e2πiν(t−s)ds =
∫ ∞
−∞

g(s)e−2πiνsdse2πiνt = λs(f)e2πiνt,

which shows that s is a filter with the stated frequency response.

The function g is arbitrary, so that this strategy leads to a wide class of
analog filters. We may ask the question of whether the general analog filter
always has this form. We will not go further into this, although one can find
partially affirmative answers to this question.

Exercise 1.39: Filters preserve sine- and cosine-series
An analog filter where λs(ν) = λs(−ν) is also called a symmetric filter.

a) Prove that, if the input to a symmetric filter is a Fourier series which is a
cosine series/sine-series, then the output also is a cosine/sine series.
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b) Show that s(f) =
∫ a
−a g(s)f(t − s)ds is a symmetric filter whenever g is

symmetric around 0 and supported on [−a, a].
We saw that the symmetric extension of a function took the form of a cosine-

series, and that this converged faster to the symmetric extension than the Fourier
series did to the function. If a filter preserves cosine-series it will also preserve
symmetric extensions, and therefore also map fast-converging Fourier series to
fast-converging Fourier series.

1.6 Convergence of Fourier series*
A major topic in harmonic analysis is finding conditions on f which secure
convergence of its Fourier series. This turns out to be very difficult in general,
and depends highly on the mode of convergence. We will cover some important
result on this here in this section, which is a bit more technical than the remainder
of the book. We will consider both

• pointwise convergence, i.e. that fN (t)→ f(t), and

• convergence in ‖ · ‖, i.e. that ‖fN − f‖ → 0.

The latter unfortunately does not imply the first, which is harder to prove.
Although a general theorem about the pointwise convergence of the Fourier
series for square-integrable functions exists, this result is way too hard to prove
here. Instead we will restrict ourselves to the following class of functions, for
which it is possible to state a proof for both modes of convergence. This class
also contains most functions we encounter in the book, such as the square wave
and the triangle wave:

Definition 1.24. Piecewise continuous functions.
A T -periodic function is said to be piecewise continuous if there exists a finite

set of points

0 ≤ a0 < a1 < · · · an−1 < an < T

so that

1. f is continuous on each interval between adjacent such points,

2. the one-sided limits f(a+
i ) := limt→a+

i
f(t) and f(a−i ) := limt→a−

i
f(t)

exist, and

3. f(ai) = f(a+
i

)+f(a−
i

)
2 (i.e. the value at a "jump" is the average of the

one-sided limits).

For piecewise continuous functions, convergence in ‖ · ‖ for the Fourier series
will follow from the following theorem.
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Theorem 1.25. Approximating piecewise continuous functions.
Let f be piecewise continuous. We can find a sequence SN ∈ VN,T , N ≥ 1 so

that SN (t)→ f(t) for all t. Also, SN → f uniformly as N →∞ on any interval
[a, b] where f is continuous.

The functions gN are found in a constructive way in the proof of this theorem,
but note that these are not the same as the Fourier series fN ! Therefore, the
theorem says nothing about the convergence of the Fourier series itself.

Proof. In the proof we will use the concept of a summability kernel, which is a
sequence of functions kN defined on [0, T ] so that

• 1
T

∫ T
0 kN (t)dt = 1,

• there exists a constant C so that 1
T

∫ T
0 |kN (t)|dt ≤ C for all N ,

• For all 0 < δ < T/2, limn→∞
1
T

∫ T−δ
δ

|kN (t)|dt = 0.

Note that if kN is a trigonometric polynomial, then 1
T

∫ T
0 kN (τ)f(t− τ)dτ is a

trigonometric polynomial of the same degree (Make the substitution u = t− τ
to verify this). In Exercise 1.42 you are aided through the construction of one
important such summability kernel, denoted FN and called the Fejer kernel.
The Fejer kernel has the following additional properties·

• FN is a trigonometric polynomial of degree N ,

• 0 ≤ FN (t) ≤ T 2

4(N+1)t2 .

We now set SN (t) = 1
T

∫ T
0 FN (u)f(t − u)du. Through the change of variables

t = −u it easily follows that SN (t) = 1
T

∫ T
0 FN (u)f(t + u)du as well. We can

thus write

SN (t) = 1
2T

∫ T

0
(f(t+ u) + f(t− u))FN (u)du.

Since also f(t) = 1
T

∫ T
0 f(t)FN (u)du, it follows that

SN (t)− f(t) = 1
2T

∫ T

0
(f(t+ u) + f(t− u)− 2f(t))FN (u)du. (1.24)

We have written SN (t)− f(t) on this form since now the integrand is continuous
at u = 0 as a function of u: This is obvious if f is continuous at t. If on the other
hand t is one of the discontinuities, we have that f(t+ u) + f(t− u)→ 2f(t) as
u→ 0. Given ε > 0, we can therefore find a δ > 0 so that

|f(t+ u) + f(t− u)− 2f(t)| < ε
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whenever |u| < δ. Now, split the integral (1.24) in three:
∫ T

0 =
∫ −δ
−T/2 +

∫ δ
−δ +

∫ T/2
δ

.
For the second of these we have

1
2T

∫ δ

−δ
|(f(t+ u) + f(t− u)− 2f(t))FN (u)|du

≤ 1
2T

∫ δ

−δ
εFn(u)du ≤ 1

2T

∫ T/2

−T/2
εFn(u)du = ε

2 .

For the third of these we have

1
2T

∫ T/2

δ

|(f(t+ u) + f(t− u)− 2f(t))FN (u)|du

≤ 1
2T

∫ T/2

δ

4‖f‖∞
T 2

4(N + 1)u2 du ≤
‖f‖∞T 2

4(N + 1)δ2 ,

where ‖f‖∞ = maxx∈[0,T ] |f(x)|. A similar calculation can be done for the first
integral. Clearly then we can choose N so big that the sum of the first and third
integrals are less than ε/2, and we then get that |SN (t)− f(t)| < ε. This shows
that SN (t) → f(t) as N → ∞ for any t. For the final statement, if [a, b] is an
interval where f is continuous, choose the δ above so small that [a− δ, b+ δ] still
contains no discontinuities. Since continuous functions are uniformly continuous
on compact intervals, it is not too hard to see that the convergence of f to SN
on [a, b] is uniform. This completes the proof.

Since SN (t) = 1
T

∫ T
0 f(t−u)FN (u)du ∈ VN,T , and fN is a best approximation

from VN,T , we have that ‖fN −f‖ ≤ ‖SN −f‖. If f is continuous, the result says
that ‖f − SN‖∞ → 0, which implies that ‖f − SN‖ → 0, so that ‖f − fN‖ → 0.
Therefore, for f continuous, both ‖f − Sn‖∞ → 0 and ‖f − fN‖ → 0 hold, so
that we have established both modes of convergence. If f has a discontinuity, it is
obvious that ‖f−SN‖∞ → 0 can not hold, since SN is continuous. ‖f−fN‖ → 0
holds, however, even with discontinuities. The reason is that any function with
only a finite number of discontinuities can be approximated arbitrarily well with
continuous functions w.r.t. ‖ · ‖. The proof of this is left as an exercise.

Both the square wave and the triangle are piecewise continuous (at least if
we redefined the value of the square wave at the discontinuity). Therefore both
their Fourier series converge to f in ‖ · ‖. Since the triangle wave is continuous,
SN also converges uniformly to ft.

The result above states that SN converges pointwise to f - it does not say
that fN converges pointwise to f . This suggests that SN may be better suited
to approximate f . In Figure 1.12 we have plotted SN (t) and fN (t) for the
square wave. Clearly the approximations are very different. The pointwise
convergence of fN (t) is more difficult to analyze, so we will make some additional
assumptions.
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Figure 1.12: fN (t) and SN (t) for N = 20.

Theorem 1.26. Pointwise convergence of Fourier series.
Assume that f is piecewise continuous and that the one-sided limits

D+f(t) = lim
h→0+

f(t+ h)− f(t+)
h

D−f(t) = lim
h→0−

f(t+ h)− f(t−)
h

exist. Then limN→∞ fN (t) = f(t).

Proof. In Exercise 1.41 we construct another kernel DN (t), called the Dirichlet
kernel. This satisfies only two of the properties of a summability kernel, but this
will turn out to be enough for our purposes due to the additional assumption on
the one-sided limits for the derivative. A formula similar to (1.24) can be easily
proved using the same substitution v = −u:

fN (t)− f(t) = 1
2T

∫ T

0
(f(t+ u) + f(t− u)− 2f(t))DN (u)du. (1.25)

Substituting the expression for the Dirichlet kernel obtained in exercise 1.42, the
integrand can be written as

f(t+ u)− f(t+) + f(t− u)− f(t−))DN (u)

=
(
f(t+ u)− f(t+)

sin(πu/T ) + f(t− u)− f(t−)
sin(πu/T )

)
sin(π(2N + 1)u/T )

= h(u) sin(π(2N + 1)u/T ).

We have that

f(t+ u)− f(t+)
sin(πu/T ) = f(t+ u)− f(t+)

πu/T

πu/T

sin(πu/T )

→

{
T
πD+f(t) when u→ 0+,
T
πD−f(t) when u→ 0−,

,
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and similarly for f(t−u)−f(t−)
sin(πu/T ) . It follows that the function h defined above is a

piecewise continuous function in u. The proof will be done if we can show that∫ T
0 h(u) sin(π(2N + 1)u/T )dt → 0 as N → ∞ for any piecewise continuous h.
Since

sin(π(2N + 1)u/T ) = sin(2πNu/T ) cos(πu/T ) + cos(2πNu/T ) sin(πu/T ),

and since h(u) cos(πu/T ) and h(u) sin(πu/T ) also are piecewise continuous, it is
enough to show that

∫
h(u) sin(2πNu/T )du→ 0 and

∫
h(u) cos(2πNu/T )du→

0. These are simply the order N Fourier coefficients of h. Let us as usual denote
these by an and bn, and prove that they go to zero. Since hN (u) is the projection
of h onto VN,T we have that

‖h‖2 = ‖h− hN‖2 + ‖hN‖2 ≥ ‖hN‖2 = a2
0 + 1

2

N∑
n=1

(a2
n + b2

n),

where we used that the Fourier basis is orthogonal. Since the sums of the a2
i

and b2
i have an upper bound it follows that an → 0 and bn → 0 as N →∞, and

the proof is done.

The requirement on the one-sided limits of the derivative above can be can be
replaced by less strict conditions. This gives rise to what is known as Dini’s test.
One can also replace with the less strict requirement that f has a finite number
of local minima and maxima. This is refered to as Dirichlets theorem, after
Dirichlet who proved it in 1829. There also exist much more general conditions
that secure pointwise convergence of the Fourier series. The most general results
require deep mathematical theory to prove.

Both the square wave and the triangle wave have one-sided limits for the
derivative. Therefore both their Fourier series converge to f pointwise.

1.6.1 Interpretation in terms of filters
It is instructive to interpret Theorem 1.25 and 1.26 in terms of filters. There
are filters at play here, and their kernels are the Fejer kernel and the Dirichlet
kernel. The kernels are shown in Figure 1.13

For the Fejer kernel, we saw that SN (t) = 1
T

∫ T
0 FN (u)f(t − u)du. So, if

sN is the filter with kernel FN , then SN = sN (f). It is shown in exercise 1.42
that SN (t) = 1

N+1
∑N
n=0 fn(t), also called the Cesaro mean of the Fourier series.

Since the N ’th order Fourier series of e2πint/T is 0 if |n| > |N |, and e2πint/T

if not, it follows that sN (e2πint/T ) =
(

1− |n|
N+1

)
e2πint/T . In other words, the

frequency response for filtering with the Fejer kernel FN is given by the mapping
n/T →

(
1− |n|

N+1

)
. On [−N/T,N/T ], this first increases linearly to 1, then

decreases linearly back to 0. Outside [−N/T,N/T ] we get zero.
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Figure 1.13: The Fejer and Dirichlet kernels for N = 20.

For the Dirichlet kernel we saw that fN (t) = 1
T

∫ T
0 DN (u)f(t− u)du. From

this it follows in the same way that the frequency response corresponding to
filtering with the Dirichlet kernel is given by the mapping n/T → 1, i.e. it is one
on [−N/T,N/T ] and 0 elsewhere.

Figure 1.14: The frequency responses for the filters with Fejer and Dirichlet
kernels, N = 20.

The two frequency responses are shown in Figure 1.14. Both filters above are
what is called lowpass filters: They annihilate high frequencies. More precisely,
if ν > |N/T |, then the frequency response of ν is zero. The lowest frequency
ν = 0 is treated in the same way by the two filters, but the higher frequencies are
differed: The Dirichlet kernel keeps them, while the Fejer kernel attenuates them,
i.e. does not include all the frequency content at the higher frequencies. That
filtering with the Fejer kernel gave something (SN (t)) with better convergence
properties can be interpreted as follows: We should be careful when we include
the contribution from the higher frequencies, as this may affect the convergence.



CHAPTER 1. SOUND AND FOURIER SERIES 44

Exercise 1.40: Approximation in norm with continuous
functions
Show that if f is a function with only a finite number of discontinuities, there
exists a continuous function g so that ‖f − g‖ < ε.

Exercise 1.41: The Dirichlet kernel
The Dirichlet kernel is defined as

DN (t) =
N∑

n=−N
e2πint/T = 1 + 2

N∑
n=1

cos(2πnt/T ).

DN is clearly trigonometric, and of degree N .

a) Show that DN (t) = sin(π(2N+1)t/T )
sin(πt/T ) .

b) Show that fN (t) = 1
T

∫ T
0 f(t− u)DN (u)du. Proving that limN→∞ fN (t) =

f(t) is thus equivalent to limN→∞
1
T

∫ T
0 f(t− u)DN (u)du = f(t).

c) Prove that DN (t) satisfies only two of the properties of a summability kernel.

d) Write a function which takes N and T as arguments, and plots DN (t) over
[−T/2, T/2].

Exercise 1.42: The Fejer summability kernel
The Fejer kernel is defined as

FN (t) =
N∑

n=−N

(
1− |n|

N + 1

)
e2πint/N .

FN is clearly trigonometric, and of degree N .

a) Show that FN (t) = 1
N+1

(
sin(π(N+1)t/T )

sin(πt/T )

)2
, and conclude from this that

0 ≤ FN (t) ≤ T 2

4(N+1)t2 .

Hint. Use that 2
π |u| ≤ | sin u| when u ∈ [−π/2, π/2].

b) Show that FN (t) satisfies the three properties of a summability kernel.

c) Show that 1
T

∫ T
0 f(t− u)FN (u)du = 1

N+1
∑N
n=0 fn.

Hint. Show that FN (t) = 1
N+1

∑N
n=0 Dn(t), and use Exercis 1.41 b).

d) Write a function which takes N and T as arguments, and plots FN (t) over
[−T/2, T/2].
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1.7 The MP3 standard
Digital audio first became commonly available when the CD was introduced in
the early 1980s. As the storage capacity and processing speeds of computers
increased, it became possible to transfer audio files to computers and both play
and manipulate the data, in ways such as in the previous section. However,
audio was represented by a large amount of data and an obvious challenge was
how to reduce the storage requirements. Lossless coding techniques like Huffman
and Lempel-Ziv coding were known and with these kinds of techniques the file
size could be reduced to about half of that required by the CD format. However,
by allowing the data to be altered a little bit it turned out that it was possible
to reduce the file size down to about ten percent of the CD format, without
much loss in quality. The MP3 audio format takes advantage of this.

MP3, or more precisely MPEG-1 Audio Layer 3, is part of an audio-visual
standard called MPEG. MPEG has evolved over the years, from MPEG-1 to
MPEG-2, and then to MPEG-4. The data on a DVD disc can be stored with
either MPEG-1 or MPEG-2, while the data on a bluray-disc can be stored
with either MPEG-2 or MPEG-4. MP3 was developed by Philips, CCETT
(Centre commun d’etudes de television et telecommunications), IRT (Institut fur
Rundfunktechnik) and Fraunhofer Society, and became an international standard
in 1991. Virtually all audio software and music players support this format.
MP3 is just a sound format. It leaves a substantial amount of freedom in the
encoder, so that different encoders can exploit properties of sound in various
ways, in order to alter the sound in removing inaudible components therein.
As a consequence there are many different MP3 encoders available, of varying
quality. In particular, an encoder which works well for higher bit rates (high
quality sound) may not work so well for lower bit rates.

With MP3, the sound is split into frequency bands, each band corresponding
to a particular frequency range. In the simplest model, 32 frequency bands are
used. A frequency analysis of the sound, based on what is called a psycho-acoustic
model, is the basis for further transformation of these bands. The psycho-acoustic
model computes the significance of each band for the human perception of the
sound. When we hear a sound, there is a mechanical stimulation of the ear
drum, and the amount of stimulus is directly related to the size of the sample
values of the digital sound. The movement of the ear drum is then converted to
electric impulses that travel to the brain where they are perceived as sound. The
perception process uses a transformation of the sound so that a steady oscillation
in air pressure is perceived as a sound with a fixed frequency. In this process
certain kinds of perturbations of the sound are hardly noticed by the brain, and
this is exploited in lossy audio compression.

More precisely, when the psycho-acoustic model is applied to the frequency
content resulting from our frequency analysis, scale factors andmasking thresholds
are assigned for each band. The computed masking thresholds have to do with a
phenomenon called masking. A simple example of this is that a loud sound will
make a simultaneous low sound inaudible. For compression this means that if
certain frequencies of a signal are very prominent, most of the other frequencies



CHAPTER 1. SOUND AND FOURIER SERIES 46

can be removed, even when they are quite large. If the sounds are below the
masking threshold, it is simply omitted by the encoder, since the model says
that the sound should be inaudible.

Masking effects are just one example of what is called psycho-acoustic effects,
and all such effects can be taken into account in a psycho-acoustic model. Another
obvious such effect regards computing the scale factors: the human auditory
system can only perceive frequencies in the range 20 Hz - 20 000 Hz. An obvious
way to do compression is therefore to remove frequencies outside this range,
although there are indications that these frequencies may influence the listening
experience inaudibly. The computed scaling factors tell the encoder about the
precision to be used for each frequency band: If the model decides that one band
is very important for our perception of the sound, it assigns a big scale factor to
it, so that more effort is put into encoding it by the encoder (i.e. it uses more
bits to encode this band).

Using appropriate scale factors and masking thresholds provide compression,
since bits used to encode the sound are spent on parts important for our percep-
tion. Developing a useful psycho-acoustic model requires detailed knowledge of
human perception of sound. Different MP3 encoders use different such models,
so they may produce very different results, worse or better.

The information remaining after frequency analysis and using a psycho-
acoustic model is coded efficiently with (a variant of) Huffman coding. MP3
supports bit rates from 32 to 320 kb/s and the sampling rates 32, 44.1, and 48
kHz. The format also supports variable bit rates (the bit rate varies in different
parts of the file). An MP3 encoder also stores metadata about the sound, such
as the title of the audio piece, album and artist name and other relevant data.

MP3 too has evolved in the same way as MPEG, from MP1 to MP2, and to
MP3, each one more sophisticated than the other, providing better compression.
MP3 is not the latest development of audio coding in the MPEG family: AAC
(Advanced Audio Coding) is presented as the successor of MP3 by its principal
developer, Fraunhofer Society, and can achieve better quality than MP3 at the
same bit rate, particularly for bit rates below 192 kb/s. AAC became well
known in April 2003 when Apple introduced this format (at 128 kb/s) as the
standard format for their iTunes Music Store and iPod music players. AAC is
also supported by many other music players, including the most popular mobile
phones.

The technologies behind AAC and MP3 are very similar. AAC supports
more sample rates (from 8 kHz to 96 kHz) and up to 48 channels. AAC uses the
same transformation as MP3, but AAC processes 1 024 samples at a time. AAC
also uses much more sophisticated processing of frequencies above 16 kHz and
has a number of other enhancements over MP3. AAC, as MP3, uses Huffman
coding for efficient coding of the transformed values. Tests seem quite conclusive
that AAC is better than MP3 for low bit rates (typically below 192 kb/s), but
for higher rates it is not so easy to differentiate between the two formats. As
for MP3 (and the other formats mentioned here), the quality of an AAC file
depends crucially on the quality of the encoding program.
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There are a number of variants of AAC, in particular AAC Low Delay
(AAC-LD). This format was designed for use in two-way communication over a
network,

for example the internet. For this kind of application, the encoding (and
decoding) must be fast to avoid delays (a delay of at most 20 ms can be tolerated).

1.8 Summary
We defined digital sound, and demonstrated how we could perform simple
operations on digital sound such as adding noise, playing at different rates e.t.c..
Digital sound could be obtained by sampling continuous sounds.

We discussed the basic question of what is sound is, and concluded that
sound could be modeled as a sum of frequency components. If the function
was periodic we could define its Fourier series, which can be thought of as an
approximation scheme for periodic functions using finite-dimensional spaces of
trigonometric functions. We established the basic properties of Fourier series,
and some duality relationships between the function and its Fourier series. We
have also computed the Fourier series of the square wave and the triangle wave,
and we saw that we could speed up the convergence of the Fourier series by
instead considering the symmetric extension of the function.

We also discussed the MP3 standard for compression of sound, and its
relation to a psychoacoustic model which describes how the human auditory
system perceives sound. There exist a wide variety of documents on this standard.
In [6], an overview is given, which, although written in a signal processing friendly
language and representing most relevant theory such as for the psychoacoustic
model, does not dig into all the details.

we also defined analog filters, which were operations which operate on con-
tinuous sound, without any assumption on periodicity. In signal processing
literature one defines the Continuous-time Fourier transform, or CTFT. We will
not use this concept in this book. We have instead disguised this concept as the
frequency response of an analog filter. To be more precise: in the literature, the
CTFT of g is nothing but the frequency response of an analog filter with g as
convolution kernel.

What you should have learned in this chapter.

• Computer operations for reading, writing, and listening to sound.

• Construct sounds such as pure tones and the square wave, from mathe-
matical formulas.

• The inner product which we use for function spaces.

• Definition of the Fourier spaces, and the orthogonality of the Fourier basis.

• Fourier series approximations as best approximations.
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• Formulas for the Fourier coefficients.

• Using the computer to plot Fourier series, and comparing a sound with its
Fourier series.

• For symmetric/antisymmetric functions, Fourier series are actually co-
sine/sine series.

• The complex Fourier basis and its orthonormality.

• Simple Fourier series pairs.

• Certain properties of Fourier series, for instance how delay of a function or
multiplication with a complex exponential affect the Fourier coefficients.

• The convergence rate of a Fourier series depends on the regularity of the
function. How this motivates the symmetric extension of a function.



Chapter 2

Digital sound and Discrete
Fourier analysis

In Chapter 1 we saw how a periodic function can be decomposed into a lin-
ear combination of sines and cosines, or equivalently, a linear combination of
complex exponential functions. This kind of decomposition is, however, not
very convenient from a computational point of view. The coefficients are given
by integrals that in most cases cannot be evaluated exactly, so some kind of
numerical integration technique needs to be applied. In this chapter we will
decompose vectors in terms of linear combinations of complex exponentials. As
before it turns out that this is simplest when we assume that the values in
the vector repeat periodically. Then a vector of finite dimension can be used
to represent all sound values, and a transformation to the frequency domain,
where operations which change the sound can easily be made, simply amounts
to multiplying the vector by a matrix. This transformation is called the Discrete
Fourier transform, and we will see how we can implement this efficiently. It
turns out that these algorithms can also be used for computing approximations
to the Fourier series, and for sampling a sound in order to create a vector of
sound data.

2.1 Discrete Fourier analysis and the discrete
Fourier transform

In this section we will parallel the developments we did for Fourier series,
assuming instead that vectors (rather than functions) are involved. As with
Fourier series we will assume that the vector is periodic. This means that we
can represent it with the values from only the first period. In the following we
will only work with these values, but we will remind ourselves from time to time
that the values actually come from a periodic vector. As for functions, we will
call denote the periodic vector as the periodic extension of the finite vector. To

49
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illustrate this, we have in Figure 2.1 shown a vector x and its periodic extension
x.

0 10 20 30 40
0.0

0.5

1.0

1.5

2.0
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0.0

0.5

1.0

1.5

2.0

Figure 2.1: A vector and its periodic extension.

At the outset our vectors will have real components, but since we use complex
exponentials we must be able to work with complex vectors also. We therefore
first need to define the standard inner product and norm for complex vectors.

Definition 2.1. Euclidean inner product.
For complex vectors of length N the Euclidean inner product is given by

〈x,y〉 =
N−1∑
k=0

xkyk. (2.1)

The associated norm is

‖x‖ =

√√√√N−1∑
k=0
|xk|2. (2.2)

In the previous chapter we saw that, using a Fourier series, a function with
period T could be approximated by linear combinations of the functions (the
pure tones) {e2πint/T }Nn=0. This can be generalized to vectors (digital sounds),
but then the pure tones must of course also be vectors.

Definition 2.2. Discrete Fourier analysis.
In Discrete Fourier analysis, a vector x = (x0, . . . , xN−1) is represented as a

linear combination of the N vectors

φn = 1√
N

(
1, e2πin/N , e2πi2n/N , . . . , e2πikn/N , . . . , e2πin(N−1)/N

)
.

These vectors are called the normalised complex exponentials, or the pure
digital tones of order N . n is also called frequency index. The whole collection
FN = {φn}N−1

n=0 is called the N -point Fourier basis.

Note that pure digital tones can be considered as samples of a pure tone,
taken uniformly over one period: If f(t) = e2πint/T /

√
N is the pure tone with
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frequency n/T , then f(kT/N) = e2πin(kT/N)/T /
√
N = e2πink/N/

√
N = φn.

When mapping a pure tone to a digital pure tone, the index n corresponds to
frequency ν = n/T , and N the number of samples takes over one period. Since
Tfs = N , where fs is the sampling frequency, we have the following connection
between frequency and frequency index:

ν = nfs
N

and n = νN

fs
(2.3)

The following lemma shows that the vectors in the Fourier basis are orthonor-
mal, so they do indeed form a basis.

Lemma 2.3. Complex exponentials are an orthonormal basis.
The normalized complex exponentials {φn}N−1

n=0 of order N form an orthonor-
mal basis in RN .

Proof. Let n1 and n2 be two distinct integers in the range [0, N − 1]. The inner
product of φn1 and φn2 is then given by

〈φn1 ,φn2〉 = 1
N
〈e2πin1k/N , e2πin2k/N 〉

= 1
N

N−1∑
k=0

e2πin1k/Ne−2πin2k/N

= 1
N

N−1∑
k=0

e2πi(n1−n2)k/N

= 1
N

1− e2πi(n1−n2)

1− e2πi(n1−n2)/N

= 0.

In particular, this orthogonality means that the the complex exponentials form
a basis. Clearly also 〈φn,φn〉 = 1, so that the N -point Fourier basis is in fact
an orthonormal basis.

Note that the normalizing factor 1√
N

was not present for pure tones in the
previous chapter. Also, the normalizing factor 1

T from the last chapter is not part
of the definition of the inner product in this chapter. These are small differences
which have to do with slightly different notation for functions and vectors, and
which will not cause confusion in what follows.

The focus in Discrete Fourier analysis is to change coordinates from the
standard basis to the Fourier basis, performing some operations on this “Fourier
representation”, and then change coordinates back to the standard basis. Such
operations are of crucial importance, and in this section we study some of their
basic properties. We start with the following definition.
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Definition 2.4. Discrete Fourier Transform.
We will denote the change of coordinates matrix from the standard basis of

RN to the Fourier basis FN by FN . We will also call this the (N -point) Fourier
matrix.

The matrix
√
NFN is also called the (N -point) discrete Fourier transform,

or DFT. If x is a vector in RN , then y = DFTx are called the DFT coefficients
of x. (the DFT coefficients are thus the coordinates in FN , scaled with

√
N).

DFTx is sometimes written as x̂.

Note that we define the Fourier matrix and the DFT as two different matrices,
the one being a scaled version of the other. The reason for this is that there are
different traditions in different fields. In pure mathematics, the Fourier matrix
is mostly used since it is, as we wil see, a unitary matrix. In signal processing,
the scaled version provided by the DFT is mostly used. We will normally write
x for the given vector in RN , and y for its DFT. In applied fields, the Fourier
basis vectors are also called synthesis vectors, since they can be used used to
“synthesize” the vector x, with weights provided by the coordinates in the Fourier
basis. To be more precise, we have that the change of coordinates performed by
the Fourier matrix can be written as

x = y0φ0 + y1φ1 + · · ·+ yN−1φN−1 =
(
φ0 φ1 · · · φN−1

)
y = F−1

N y, (2.4)

where we have used the inverse of the defining relation y = FNx, and that the
φn are the columns in F−1

N (this follows from the fact that F−1
N is the change of

coordinates matrix from the Fourier basis to the standard basis, and the Fourier
basis vectors are clearly the columns in this matrix). Equation (2.4) is also called
the synthesis equation.

Example 2.1: DFT of a cosine
Let x be the vector of length N defined by xk = cos(2π5k/N), and y the vector
of length N defined by yk = sin(2π7k/N). Let us see how we can compute
FN (2x+ 3y). By the definition of the Fourier matrix as a change of coordinates,
FN (φn) = en. We therefore get

FN (2x+ 3y) = FN (2 cos(2π5 · /N) + 3 sin(2π7 · /N))

= FN (21
2(e2πi5·/N + e−2πi5·/N ) + 3 1

2i (e
2πi7·/N − e−2πi7·/N ))

= FN (
√
Nφ5 +

√
NφN−5 −

3i
2
√
N(φ7 − φN−7))

=
√
N(FN (φ5) + FN (φN−5)− 3i

2 FNφ7 + 3i
2 FNφN−7)

=
√
Ne5 +

√
NeN−5 −

3i
2
√
Ne7 + 3i

2
√
NeN−7.
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Let us find an expression for the matrix FN . From Lemma 2.3 we know that
the columns of F−1

N are orthonormal. If the matrix was real, it would have been
called orthogonal, and the inverse matrix could have been obtained by transposing.
F−1
N is complex, however, and it is easy to see that the conjugation present in

the definition of the inner product (2.1), implies that the inverse of FN can be
obtained if we also conjugate, in addition to transpose, i.e. (FN )−1 = (FN )T .
We call (A)T the conjugate transpose of A, and denote this by AH . We thus
have that (FN )−1 = (FN )H . Matrices which satisfy A = AH are called unitary.
For complex matrices, this is the parallel to orthogonal matrices.

Theorem 2.5. Fourier matrix is unitary.
The Fourier matrix FN is the unitary N ×N -matrix with entries given by

(FN )nk = 1√
N
e−2πink/N ,

for 0 ≤ n, k ≤ N − 1.

Since the Fourier matrix is easily inverted, the DFT is also easily inverted.
Note that, since (FN )T = FN , we have that (FN )−1 = FN . Let us make the
following definition.

Definition 2.6. IDFT.
The matrix FN/

√
N is the inverse of the matrix DFT =

√
NFN . We call

this inverse matrix the inverse discrete Fourier transform, or IDFT.

We can thus also view the IDFT as a change of coordinates (this time from
the Fourier basis to the standard basis), with a scaling of the coordinates by
1/
√
N at the end. The IDFT is often called the reverse DFT. Similarly, the

DFT is often called the forward DFT.
That y = DFTx and x = IDFTy can also be expressed in component form

as

yn =
N−1∑
k=0

xke
−2πink/N xk = 1

N

N−1∑
n=0

yne
2πink/N (2.5)

In applied fields such as signal processing, it is more common to state the DFT
and IDFT in these component forms, rather than in the matrix forms y = DFTy
and x = IDFTy.

Let us now see how these formulas work out in practice by considering some
examples.

Example 2.2: DFT on a square wave
Let us attempt to apply the DFT to a signal x which is 1 on indices close to 0,
and 0 elsewhere. Assume that

x−L = . . . = x−1 = x0 = x1 = . . . = xL = 1,
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while all other values are 0. This is similar to a square wave, with some
modifications: First of all we assume symmetry around 0, while the square wave
of Example 1.4 assumes antisymmetry around 0. Secondly the values of the
square wave are now 0 and 1, contrary to −1 and 1 before. Finally, we have a
different proportion of where the two values are assumed. Nevertheless, we will
also refer to the current digital sound as a square wave.

Since indices with the DFT are between 0 an N−1, and since x is assumed to
have period N , the indices [−L,L] where our signal is 1 translates to the indices
[0, L] and [N − L,N − 1] (i.e., it is 1 on the first and last parts of the vector).
Elsewhere our signal is zero. Since

∑N−1
k=N−L e

−2πink/N =
∑−1
k=−L e

−2πink/N

(since e−2πink/N is periodic with period N), the DFT of x is

yn =
L∑
k=0

e−2πink/N +
N−1∑

k=N−L
e−2πink/N =

L∑
k=0

e−2πink/N +
−1∑

k=−L
e−2πink/N

=
L∑

k=−L
e−2πink/N = e2πinL/N 1− e−2πin(2L+1)/N

1− e−2πin/N

= e2πinL/Ne−πin(2L+1)/Neπin/N
eπin(2L+1)/N − e−πin(2L+1)/N

eπin/N − e−πin/N

= sin(πn(2L+ 1)/N)
sin(πn/N) .

This computation does in fact also give us the IDFT of the same vector, since
the IDFT just requires a change of sign in all the exponents, in addition to the
1/N normalizing factor. From this example we see that, in order to represent
x in terms of frequency components, all components are actually needed. The
situation would have been easier if only a few frequencies were needed.

Example 2.3: Computing the DFT by hand
In most cases it is difficult to compute a DFT by hand, due to the entries
e−2πink/N in the matrices, which typically can not be represented exactly. The
DFT is therefore usually calculated on a computer only. However, in the case
N = 4 the calculations are quite simple. In this case the Fourier matrix takes
the form

DFT4 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 .

We now can compute the DFT of a vector like (1, 2, 3, 4)T simply as
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DFT4


1
2
3
4

 =


1 + 2 + 3 + 4

1− 2i− 3 + 4i
1− 2 + 3− 4

1 + 2i− 3− 4i

 =


10

−2 + 2i
−2

−2− 2i

 .

In general, computing the DFT implies using floating point multiplication. For
N = 4, however, we see that there is no need for floating point multiplication at
all, since DFT4 has unit entries which are either real or purely imaginary.

Example 2.4: Direct implementation of the DFT
The DFT can be implemented very simply and directly by the code

def DFTImpl(x):
y = zeros_like(x).astype(complex)
N = len(x)
for n in xrange(N):

D = exp(-2*pi*n*1j*arange(float(N))/N)
y[n] = dot(D, x)

return y

In Exercise 2.13 we will extend this to a general implementation we will use
later. Note that we do not allocate the entire matrix FN in this code, as this
quickly leads to out of memory situations, even for N of moderate size. Instead
we construct one row of FN at a time, and use use this to compute one entry
in the output. The method dot can be used here, since each entry in matrix
multiplication can be viewed as an inner product. It is likely that the dot
function is more efficient than using a for-loop, since Python may have an
optimized way for computing this. Note that dot in Python does not conjugate
any of the components, contrary to what we do in our definition of a complex
inner product. This can be rewritten to a direct implementation of the IDFT
also. We will look at this in the exercises, where we also make the method more
general, so that the DFT can be applied to a series of vectors at a time (it can
then be applied to all the channels in a sound in one call). Multiplying a full
N ×N matrix by a vector requires roughly N2 arithmetic operations. The DFT
algorithm above will therefore take a long time when N becomes moderately
large. It turns out that a much more efficient algorithm exists for computing the
DFT, which we will study at the end of this chapter. Python also has a built-in
implementation of the DFT which uses such an efficient algorithm.

The DFT has properties which are very similar to those of Fourier series, as
they were listed in Theorem 1.15. The following theorem sums this up:

Theorem 2.7. Properties of the DFT.
Let x be a real vector of length N . The DFT has the following properties:

1. (x̂)N−n = (x̂)n for 0 ≤ n ≤ N − 1.

2. If xk = xN−k for all n (so x is symmetric), then x̂ is a real vector.
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3. If xk = −xN−k for all k (so x is antisymmetric), then x̂ is a purely
imaginary vector.

4. If d is an integer and z is the vector with components zk = xk−d (the
vector x with its elements delayed by d), then (ẑ)n = e−2πidn/N (x̂)n.

5. If d is an integer and z is the vector with components zk = e2πidk/Nxk,
then (ẑ)n = (x̂)n−d.

Proof. The methods used in the proof are very similar to those used in the proof
of Theorem 1.15. From the definition of the DFT we have

(x̂)N−n =
N−1∑
k=0

e−2πik(N−n)/Nxk =
N−1∑
k=0

e2πikn/Nxk =
N−1∑
k=0

e−2πikn/Nxk = (x̂)n

which proves property 1.
To prove property 2, we write

(ẑ)n =
N−1∑
k=0

zke
−2πikn/N =

N−1∑
k=0

xN−ke
−2πikn/N =

N∑
u=1

xue
−2πi(N−u)n/N

=
N−1∑
u=0

xue
2πiun/N =

N−1∑
u=0

xue−2πiun/N = (x̂)n.

If x is symmetric it follows that z = x, so that (x̂)n = (x̂)n. Therefore x must
be real. The case of antisymmetry in property 3 follows similarly.

To prove property 4 we observe that

(ẑ)n =
N−1∑
k=0

xk−de
−2πikn/N =

N−1∑
k=0

xke
−2πi(k+d)n/N

= e−2πidn/N
N−1∑
k=0

xke
−2πikn/N = e−2πidn/N (x̂)n .

For the proof of property 5 we note that the DFT of z is

(ẑ)n =
N−1∑
k=0

e2πidk/Nxne
−2πikn/N =

N−1∑
k=0

xne
−2πi(n−d)k/N = (x̂)n−d .

This completes the proof.

These properties have similar interpretations as the ones listed in Theo-
rem 1.15 for Fourier series. Property 1 says that we need to store only about one
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half of the DFT coefficients, since the remaining coefficients can be obtained by
conjugation. In particular, when N is even, we only need to store y0, y1, . . . , yN/2.
This also means that, if we plot the (absolute value) of the DFT of a real vector,
we will see a symmetry around the index n = N/2. The theorem generalizes the
properties from Theorem 1.15, except for the last property where the signal had
a point of symmetry. We will delay the generalization of this property to later.

Example 2.5: Computing the DFT when multiplying with
a complex exponential
To see how we can use the fourth property of Theorem ??, consider a vector
x = (x0, x1, x2, x3, x4, x5, x6, x7) with length N = 8, and assume that x is
so that F8(x) = (1, 2, 3, 4, 5, 6, 7, 8). Consider the vector z with components
zk = e2πi2k/8xk. Let us compute F8(z). Since multiplication of x with e2πikd/N

delays the output y = FN (x) with d elements, setting d = 2, the F8(z) can be
obtained by delaying F8(x) by two elements, so that F8(z) = (7, 8, 1, 2, 3, 4, 5, 6).
It is straightforward to compute this directly also:

(FNz)n =
N−1∑
k=0

zke
−2πikn/N =

N−1∑
k=0

e2πi2k/Nxke
−2πikn/N

=
N−1∑
k=0

xke
−2πik(n−2)/N = (FN (x))n−2.

Exercise 2.6: Computing the DFT by hand
Compute F4x when x = (2, 3, 4, 5).

Exercise 2.7: Exact form of low-order DFT matrix
As in Example 2.3, state the exact cartesian form of the Fourier matrix for the
cases N = 6, N = 8, and N = 12.

Exercise 2.8: DFT of a delayed vector
We have a real vector x with length N , and define the vector z by delaying
all elements in x with 5 cyclically, i.e. z5 = x0, z6 = x1,. . . ,zN−1 = xN−6,
and z0 = xN−5,. . . ,z4 = xN−1. For a given n, if |(FNx)n| = 2, what is then
|(FNz)n|? Justify the answer.

Exercise 2.9: Using symmetry property
Given a real vector x of length 8 where (F8(x))2 = 2− i, what is (F8(x))6?
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Exercise 2.10: DFT of cos2(2πk/N)
Let x be the vector of length N where xk = cos2(2πk/N). What is then FNx?

Exercise 2.11: DFT of ckx

Let x be the vector with entries xk = ck. Show that the DFT of x is given by
the vector with components

yn = 1− cN

1− ce−2πin/N

for n = 0, . . . , N − 1.

Exercise 2.12: Rewrite a complex DFT as real DFT’s
If x is complex, Write the DFT in terms of the DFT on real sequences.

Hint. Split into real and imaginary parts, and use linearity of the DFT.

Exercise 2.13: DFT implementation
Extend the code for the function DFTImpl in Example 2.4 so that

• The function also takes a second parameter called forward. If this is true
the DFT is applied. If it is false, the IDFT is applied. If this parameter is
not present, then the forward transform should be assumed.

• If the input x is two-dimensional (i.e. a matrix), the DFT/IDFT should be
applied to each column of x. This ensures that, in the case of sound, the
FFT is applied to each channel in the sound when the enrire sound is used
as input, as we are used to when applying different operations to sound.

Also, write documentation for the code.

Exercise 2.14: Symmetry
Assume that N is even.

a) Show that, if xk+N/2 = xk for all 0 ≤ k < N/2, then yn = 0 when n is odd.

b) Show that, if xk+N/2 = −xk for all 0 ≤ k < N/2, then yn = 0 when n is
even.

c) Show also the converse statements in a) and b).

d) Also show the following:

• xn = 0 for all odd n if and only if yk+N/2 = yk for all 0 ≤ k < N/2.

• xn = 0 for all even n if and only if yk+N/2 = −yk for all 0 ≤ k < N/2.
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Exercise 2.15: DFT on complex and real data
Let x1,x2 be real vectors, and set x = x1 + ix2. Use Theorem ?? in the
compendium to show that

(FN (x1))k = 1
2

(
(FN (x))k + (FN (x))N−k

)
(FN (x2))k = 1

2i

(
(FN (x))k − (FN (x))N−k

)
This shows that we can compute two DFT’s on real data from one DFT on
complex data, and 2N extra additions.

2.2 Connection between the DFT and Fourier
series. Sampling and the sampling theorem

So far we have focused on the DFT as a tool to rewrite a vector in terms of the
Fourier basis vectors. In practice, the given vector x will often be sampled from
some real data given by a function f(t). We may then compare the frequency
content of x and f , and ask how they are related: What is the relationship
between the Fourier coefficients of f and the DFT-coefficients of x?

In order to study this, assume for simplicity that f ∈ VM,T for some M . This
means that f equals its Fourier approximation fM ,

f(t) = fM (t) =
M∑

n=−M
zne

2πint/T , where zn = 1
T

∫ T

0
f(t)e−2πint/T dt. (2.6)

We here have changed our notation for the Fourier coefficients from yn to zn, in
order not to confuse them with the DFT coefficients. We recall that in order to
represent the frequency n/T fully, we need the corresponding exponentials with
both positive and negative arguments, i.e., both e2πint/T and e−2πint/T .

Fact 2.8. frequency vs. Fourier coefficients.
Suppose f is given by its Fourier series (2.6). Then the total frequency

content for the frequency n/T is given by the two coefficients zn and z−n.

We have the following connection between the Fourier coefficients of f and
the DFT of the samples of f .

Proposition 2.9. Relation between Fourier coefficients and DFT coefficients.
Let N > 2M , f ∈ VM,T , and let x = {f(kT/N)}N−1

k=0 be N uniform samples
from f over [0, T ]. The Fourier coefficients zn of f can be computed from

(z0, z1, . . . , zM , 0, . . . , 0︸ ︷︷ ︸
N−(2M+1)

, z−M , z−M+1, . . . , z−1) = 1
N

DFTNx. (2.7)
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In particular, the total contribution in f from frequency n/T , for 0 ≤ n ≤M , is
given by yn and yN−n, where y is the DFT of x.

Proof. Let x and y be as defined, so that

xk = 1
N

N−1∑
n=0

yne
2πink/N . (2.8)

Inserting the sample points t = kT/N into the Fourier series, we must have that

xk = f(kT/N) =
M∑

n=−M
zne

2πink/N =
−1∑

n=−M
zne

2πink/N +
M∑
n=0

zne
2πink/N

=
N−1∑

n=N−M
zn−Ne

2πi(n−N)k/N +
M∑
n=0

zne
2πink/N

=
M∑
n=0

zne
2πink/N +

N−1∑
n=N−M

zn−Ne
2πink/N .

This states that x = N IDFTN (z0, z1, . . . , zM , 0, . . . , 0︸ ︷︷ ︸
N−(2M+1)

, z−M , z−M+1, . . . , z−1).

Equation (2.7) follows by applying the DFT to both sides. We also see that
zn = yn/N and z−n = y2M+1−n/N = yN−n/N , when y is the DFT of x. It now
also follows immediately that the frequency content in f for the frequency n/T
is given by yn and yN−n. This completes the proof.

In Proposition 2.9 we take N samples over [0, T ], i.e. we sample at rate
fs = N/T samples per second. When |n| ≤ M , a pure sound with frequency
ν = n/T is then seen to correspond to the DFT indices n and N − n. Since
T = N/fs, ν = n/T can also be written as ν = nfs/N . Moreover, the highest
frequencies in Proposition 2.9 are those close to ν = M/T , which correspond to
DFT indices close to N −M and M , which are the nonzero frequencies closest
to N/2. DFT index N/2 corresponds to the frequency N/(2T ) = fs/2, which
corresponds to the highest frequency we can reconstruct from samples for any
M . Similarly, the lowest frequencies are those close to ν = 0, which correspond
to DFT indices close to 0 and N . Let us summarize this as follows.

Observation 2.10. Connection between DFT index and frequency.
Assume that x are N samples of a sound taken at sampling rate fs samples

per second, and let y be the DFT of x. Then the DFT indices n and N − n
give the frequency contribution at frequency ν = nfs/N . Moreover, the low
frequencies in x correspond to the yn with n near 0 and N , while the high
frequencies in x correspond to the yn with n near N/2.

The theorem says that any f ∈ VM,T can be reconstructed from its samples
(since we can write down its Fourier series), as long as N > 2M . That f ∈ VM,T
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Figure 2.2: An example on how the samples are picked from an underlying
continuous time function (left), and the samples on their own (right).

is important. From Figure 2.2 it is clear that information is lost in the right plot
when we discard everything but the sample values from the left plot.

Here the function is f(t) = sin(2π8t) ∈ V8,1, so that we need to choose N
so that N > 2M = 16 samples. Here N = 23 samples were taken, so that
reconstruction from the samples is possible. That the condition N < 2M is also
necessary can easily be observed in Figure 2.3.
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Figure 2.3: Sampling sin(2πt) with two points (left), and sampling sin(2π4t)
with eight points (right).

Right we have plotted sin(2π4t) ∈ V4,1, with N = 8 sample points taken
uniformly from [0, 1]. Here M = 4, so that we require 2M + 1 = 9 sample points,
according to Proposition 2.9. Clearly there is an infinite number of possible
functions in VM,T passing through the sample points (which are all zero): Any
f(t) = c sin(2π4t) will do. Left we consider one period of sin(2πt). Since this is
in VM,T = V1,1, reconstruction should be possible if we have N ≥ 2M + 1 = 3
samples. Four sample points, as seen left, is thus be enough to secure reconstruct.

The special case N = 2M + 1 is interesting. No zeros are then inserted in
the vector in Equation (2.7). Since the DFT is one-to-one, this means that there
is a one-to-one correspondence between sample values and functions in VM,T

(i.e. Fourier series), i.e. we can always find a unique interpolant in VM,T from
N = 2M + 1 samples. In Exercise 2.21 you will asked to write code where you
start with a given function f , Take N = 2M+1 samples, and plot the interpolant
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from VM,T against f . Increasing M should give an interpolant which is a better
approximation to f , and if f itself resides in some VM,T for some M , we should
obtain equality when we choose M big enough. We have in elementary calculus
courses seen how to determine a polynomial of degree N − 1 that interpolates a
set of N data points, and such polynomials are called interpolating polynomials.
In mathematics many other classes than polynomials exist which are also useful
for interpolation, and the Fourier basis is just one example.

Besides reconstructing a function from its samples, Proposition 2.9 also
enables us to approximate functions in a simple way. To elaborate on this, recall
that the Fourier series approximation fM is a best approximation to f from
VM,T . We usually can’t compute fM exactly, however, since this requires us to
compute the Fourier integrals. We could instead form the samples x of f , and
apply Proposition 2.9. If M is high, fM is a good approximation to f , so that
the samples of fM are a good approximation to x. By continuity of the DFT, it
follows that y = DFTNx is a good approximation to the DFT of the samples of
fM , so that

f̃(t) =
N−1∑
n=0

yne
2πint/T (2.9)

is a good approximation to fM , and therefore also to f . We have illustrated this
in Figure 2.4.

f //

��

f̃

x
DFTN // y

OO

Figure 2.4: How we can interpolate f from VM,T with help of the DFT. The
left vertical arrow represents sampling. The right vertical arrow represents
interpolation, i.e. computing Equation (2.9).

The new function f̃ has the same values as f in the sample points. This is
usually not the case for fM , so that f̃ and fM are different approximations to f .
Let us summarize as follows.

Idea 2.11. f̃ as approximation to f .
The function f̃ resulting from sampling, taking the DFT, and interpolation, as

shown in Figure 2.4, also gives an approximation to f . f̃ is a worse approximation
in the mean square sense (since fM is the best such), but it is much more useful
since it avoids evaluation of the Fourier integrals, depends only on the samples,
and is easily computed.

The condition N > 2M in Proposition 2.9 can also be written as N/T >
2M/T . The left side is now the sampling rate fs, while the right side is the
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double of the highest frequency in f . The result can therefore also be restated
as follows

Proposition 2.12. Reconstruction from samples.
Any f ∈ VM,T can be reconstructed uniquely from a uniform set of samples

{f(kT/N)}N−1
k=0 , as long as fs > 2|ν|, where ν denotes the highest frequency in

f .

We also refer to fs = 2|ν| as the critical sampling rate, since it is the
minimum sampling rate we need in order to reconstruct f from its samples. If
fs is substantially larger than 2|ν| we say that f is oversampled, since we have
takes more samples than we really need. Similarly we say that f is undersampled
if fs is smaller than 2|ν|, since we have not taken enough samples in order to
reconstruct f . Clearly Proposition 2.9 gives one formula for the reconstruction.
In the literature another formula can be found, which we now will deduce. This
alternative version of Theorem 2.9 is also called the sampling theorem. We start
by substituting N = T/Ts (i.e. T = NTs, with Ts being the sampling period) in
the Fourier series for f :

f(kTs) =
M∑

n=−M
zne

2πink/N −M ≤ k ≤M.

Equation (2.7) said that the Fourier coefficients could be found from the samples
from

(z0, z1, . . . , zM , 0, . . . , 0︸ ︷︷ ︸
N−(2M+1)

, z−M , z−M+1, . . . , z−1) = 1
N

DFTNx.

By delaying the n index with −M , this can also be written as

zn = 1
N

N−1∑
k=0

f(kTs)e−2πink/N = 1
N

M∑
k=−M

f(kTs)e−2πink/N , −M ≤ n ≤M.

Inserting this in the reconstruction formula we get
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f(t) = 1
N

M∑
n=−M

M∑
k=−M

f(kTs)e−2πink/Ne2πint/T

=
M∑

k=−M

1
N

(
M∑

n=−M
f(kTs)e2πin(t/T−k/N)

)

=
M∑

k=−M

1
N
e−2πiM(t/T−k/N) 1− e2πi(2M+1)(t/T−k/N)

1− e2πi(t/T−k/N) f(kTs)

=
M∑

k=−M

1
N

sin(π(t− kTs)/Ts)
sin(π(t− kTs)/T ) f(kTs)

Let us summarize our findings as follows:

Theorem 2.13. Sampling theorem and the ideal interpolation formula for peri-
odic functions.

Let f be a periodic function with period T , and assume that f has no
frequencies higher than νHz. Then f can be reconstructed exactly from its
samples f(−MTs), . . . , f(MTs) (where Ts is the sampling period, N = T

Ts
is the

number of samples per period, andM = 2N+1) when the sampling rate fs = 1
Ts

is bigger than 2ν. Moreover, the reconstruction can be performed through the
formula

f(t) =
M∑

k=−M
f(kTs)

1
N

sin(π(t− kTs)/Ts)
sin(π(t− kTs)/T ) . (2.10)

Formula (2.10) is also called the ideal interpolation formula for periodic
functions. Such formulas, where one reconstructs a function based on a weighted
sum of the sample values, are more generally called interpolation formulas. The
function 1

N
sin(π(t−kTs)/Ts)
sin(π(t−kTs)/T ) is also called an interpolation kernel. Note that f

itself may not be equal to a finite Fourier series, and reconstruction is in general
not possible then. The ideal interpolation formula can in such cases still be used,
but the result we obtain may be different from f(t).

In fact, the following more general result holds, which we will not prove. The
result is also valid for functions which are not periodic, and is frequently stated
in the literature:

Theorem 2.14. Sampling theorem and the ideal interpolation formula, general
version..

Assume that f has no frequencies higher than νHz. Then f can be recon-
structed exactly from its samples . . . , f(−2Ts), f(−Ts), f(0), f(Ts), f(2Ts), . . .
when the sampling rate is bigger than 2ν. Moreover, the reconstruction can be
performed through the formula
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f(t) =
∞∑

k=−∞
f(kTs)

sin(π(t− kTs)/Ts)
π(t− kTs)/Ts

. (2.11)

When f is periodic, it is possible to deduce this partly from the interpolation
formula for periodic functions. An ingredient in this is that x ≈ sin x for small
x, so that there certainly is a connection between the terms in the two sums.
When f is not periodic we require more tools from Fourier analysis, however.

The DFT coefficients represent the contribution in a sound at given fre-
quencies. Due to this the DFT is extremely useful for performing operations
on sound, and also for compression. For instance we can listen to either the
lower or higher frequencies after performing a simple adjustment of the DFT
coefficients. Observation 2.10 says that the 2L+ 1 lowest frequencies correspond
to the DFT-indices [0, L] ∪ [N − L,N − 1], while the 2L+ 1 highest frequencies
correspond to DFT-indices [N/2−L,N/2 +L] (assuming that N is even). If we
perform a DFT, eliminate these low or high frequencies, and perform an inverse
DFT, we recover the sound signal where these frequencies have been eliminated.
The function forw_comp_rev_DFT() in the module forw_comp_rev can perform
these tasks for our audio sample file, as well as some other useful tasks that can
be useful for compression. This function accepts named parameters L and lower,
where the lowest frequencies are kept if lower==1, and the highest frequencies
are kept if lower==0.

Example 2.16: Using the DFT to adjust frequencies in
sound
Let us test the function forw_comp_rev_DFT to listen to the lower frequencies in
the audio sample file. For L = 13000, the result sounds like this. For L = 5000,
the result sounds like this. With L = 13000 you can hear the disturbance in the
sound, but we have not lost that much even if about 90% of the DFT coefficients
are dropped. The quality is much poorer when L = 5000 (here we keep less
than 5% of the DFT coefficients). However we can still recognize the song, and
this suggests that most of the frequency information is contained in the lower
frequencies.

Let us then listen to higher frequencies instead. For L = 140000, the result
sounds like this. For L = 100000 the result sounds like this. Both sounds are
quite unrecognizable.

We find that we need very high values of L to hear anything, suggesting
again that most information is contained in the lowest frequencies.

Note that there may be a problem in the previous example: when we restrict
to the values in a given block, we actually look at a different signal. The new
signal repeats the values in the block in periods, while the old signal consists of
one much bigger block. What are the differences in the frequency representations
of the two signals?

Assume that the entire sound has length M . The frequency representation
of this is computed as an M -point DFT (the signal is actually repeated with

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetslowerfreq7.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetslowerfreq3.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetshigherfreq7.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetshigherfreq3.wav
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period M), and we write the sound samples as a sum of frequencies: xk =
1
M

∑M−1
n=0 yne

2πikn/M . Let us consider the effect of restricting to a block for each
of the contributing pure tones e2πikn0/M , 0 ≤ n0 ≤ M − 1. When we restrict
this to a block of size N , we get the signal

{
e2πikn0/M

}N−1
k=0 . Depending on n0,

this may not be a Fourier basis vector! Its N -point DFT gives us its frequency
representation, and the absolute value of this is

|yn| =

∣∣∣∣∣
N−1∑
k=0

e2πikn0/Me−2πikn/N

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
k=0

e2πik(n0/M−n/N)

∣∣∣∣∣
=
∣∣∣∣1− e2πiN(n0/M−n/N)

1− e2πi(n0/M−n/N)

∣∣∣∣ =
∣∣∣∣ sin(πN(n0/M − n/N))

sin(π(n0/M − n/N))

∣∣∣∣ . (2.12)

If n0 = kM/N , this gives yk = N , and yn = 0 when n 6= k. Thus, splitting
the signal into blocks gives another pure tone when n0 is a multiplum of M/N .
When n0 is different from this the situation is different. Let us set M = 1000,
n0 = 1, and experiment with different values of N . Figure 2.5 shows the yn
values for different values of N . We see that the frequency representation is now
very different, and that many frequencies contribute.
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Figure 2.5: The frequency representation obtained when restricting to a block
of size N of the signal, for N = 64 (left), and N = 256 (right)

The explanation is that the pure tone is not a pure tone when N = 64 and
N = 256, since at this scale such frequencies are too high to be represented
exactly. The closest pure tone in frequency is n = 0, and we see that this
has the biggest contribution, but other frequencies also contribute. The other
frequencies contribute much more when N = 256, as can be seen from the peak
in the closest frequency n = 0. In conclusion, when we split into blocks, the
frequency representation may change in an undesirable way. This is a common
problem in signal processing theory, that one in practice needs to restrict to
smaller segments of samples, but that this restriction may have undesired effects.

Another problem when we restrict to a shorter periodic signal is that we
may obtain discontinuities at the boundaries between the new periods, even if
there were no discontinuities in the original signal. And, as we know from the
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square wave, discontinuities introduce undesired frequencies. We have already
mentioned that symmetric extensions may be used to remedy this.

The MP3 standard also applies a DFT to the sound data. In its simplest form
it applies a 512 point DFT. There are some differences to how this is done when
compared to Example 2.16, however. In our example we split the sound into
disjoint blocks, and applied a DFT to each of them. The MP3 standard actually
splits the sound into blocks which overlap, as this creates a more continuous
frequency representation. Another difference is that the MP3 standard applies a
window to the sound samples, and the effect of this is that the new signal has a
frequency representation which is closer to the original one, when compared to
the signal obtained by using the block values unchanged as above. We will go
into details on this in the next chapter.

Example 2.17: Compression by zeroing out small DFT co-
efficients
We can achieve compression of a sound by setting small DFT coefficients which
to zero. The idea is that frequencies with small values at the corresponding
frequency indices contribute little to our perception of the sound, so that they
can be discarded. As a result we obtain a sound with less frequency components,
which is thus more suitable for compression. To test this in practice, we first
need to set a threshold, which decides which frequencies to keep. This can then
be sent to the function forw_comp_rev_DFT by means of the named parameter
threshold. The function will now also write to the display the percentage of the
DFT coefficients which were zeroed out. If you run this function with threshold
equal to 20, the result sounds like this, and the function says that about 68%
of the DFT coefficients were set to zero. You can clearly hear the disturbance
in the sound, but we have not lost that much. If we instead try threshold
equal to 70, the result will sound like this, and the function says that about
94% of the DFT coefficients were set to zero. The quality is much poorer now,
even if we still can recognize the song. This suggests that most of the frequency
information is contained in frequencies with the highest values.

In Figure 2.6 we have illustrated this principle for compression for 512 sound
samples from a song. The samples of the sound and (the absolute value of) its
DFT are shown at the top. At the bottom all values of the DFT with absolute
value smaller than 0.02 are set to zero (52) values then remain), and the sound
is reconstructed with the IDFT, and then shown in. The start and end signals
look similar, even though the last signal can be represented with less than 10 %
of the values from the first.

Note that using a neglection threshold in this way is too simple in practice:
The neglection threshold in general should depend on the frequency, since the
human auditory system is more sensitive to certain frequencies.

http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsthreshold002.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castanetsthreshold01.wav
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Figure 2.6: Experimenting with the DFT on a small part of a song.

Example 2.18: Compression by quantizing DFT coefficients
The previous example is a rather simple procedure to obtain compression. The
disadvantage is that it only affects frequencies with low contribution. A more
neutral way to obtain compression is to let each DFT index occupy a certain
number of bits. This is also called quantization, and provides us with compression
if the number of bits is less than what actually is used to represent the sound.
This is closer to what modern audio standards do. forw_comp_rev_DFT accepts
a name parameter n. The effect of this is that a DFT coefficient with bit
representation

...d2d1d0.d−1d−2d−3...

is truncated so that the bits dn−1, dn−2, dn−2 are discarded. In other words,
high values of n mean more rounding. If you run forw_comp_rev_DFT with n
equal to 3, the result sounds like this, with n = 5 the result sounds like this, and
with n = 7 the result sounds like this. You can hear that the sound degrades
further when n is increased.

In practice this quantization procedure is also too simple, since the human
auditory system is more sensitive to certain frequency information, and should
thus allocate a higher number of bits for such frequencies. Modern audio
standards take this into account, but we will not go into details on this.

http://folk.uio.no/oyvindry/matinf2360/sounds/castantesquantizedn3.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castantesquantizedn5.wav
http://folk.uio.no/oyvindry/matinf2360/sounds/castantesquantizedn7.wav
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Exercise 2.19: Comment code
Explain what the code below does, line by line:

x = x[0:2**17]
y = fft.fft(x, axis=0)
y[(2**17/4):(3*2**17/4)] = 0
newx = abs(fft.ifft(y))
newx /= abs(newx).max()
play(newx, fs)

Comment in particular why we adjust the sound samples by dividing with the
maximum value of the sound samples. What changes in the sound do you expect
to hear?

Exercise 2.20: Which frequency is changed?
In the code from the previous exercise it turns out that fs = 44100Hz, and that
the number of sound samples is N = 292570. Which frequencies in the sound
file will be changed on the line where we zero out some of the DFT coefficients?

Exercise 2.21: Implement interpolant
Implement code where you do the following:

• at the top you define the function f(x) = cos6(x), and M = 3,

• compute the unique interpolant from VM,T (i.e. by taking N = 2M + 1
samples over one period), as guaranteed by Proposition 2.9,

• plot the interpolant against f over one period.

Finally run the code also for M = 4, M = 5, and M = 6. Explain why the plots
coincide for M = 6, but not for M < 6. Does increasing M above M = 6 have
any effect on the plots?

2.3 The Fast Fourier Transform (FFT)
The main application of the DFT is as a tool to compute frequency information
in large datasets. Since this is so useful in many areas, it is of vital importance
that the DFT can be computed with efficient algorithms. The straightforward
implementation of the DFT with matrix multiplication we looked at is not
efficient for large data sets. However, it turns out that the DFT matrix may be
factored in a way that leads to much more efficient algorithms, and this is the
topic of the present section. We will discuss the most widely used implementation
of the DFT, usually referred to as the Fast Fourier Transform (FFT). The FFT
has been stated as one of the ten most important inventions of the 20’th century,
and its invention made the DFT computationally feasible in many fields. The
FFT is for instance used much in real time processing, such as processing and
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compression of sound, images, and video. The MP3 standard uses the FFT
to find frequency components in sound, and matches this information with a
psychoachoustic model, in order to find the best way to compress the data.

FFT-based functionality is collected in a module called fft.
Let us start with the most basic FFT algorithm, which applies for a general

complex input vector x, with length N being an even number.

Theorem 2.15. FFT algorithm when N is even.
Let y = DFTNx be the N -point DFT of x, with N an even number, and let

DN/2 be the (N/2)× (N/2)-diagonal matrix with entries (DN/2)n,n = e−2πin/N

for 0 ≤ n < N/2. Then we have that

(y0, y1, . . . , yN/2−1) = DFTN/2x
(e) +DN/2DFTN/2x

(o) (2.13)
(yN/2, yN/2+1, . . . , yN−1) = DFTN/2x

(e) −DN/2DFTN/2x
(o) (2.14)

where x(e),x(o) ∈ RN/2 consist of the even- and odd-indexed entries of x,
respectively, i.e.

x(e) = (x0, x2, . . . , xN−2) x(o) = (x1, x3, . . . , xN−1).

Put differently, the formulas (2.13)-(2.14) reduce the computation of an
N -point DFT to two N/2-point DFT’s. It turns out that this is the basic fact
which speeds up computations considerably. It is important to note that we first
should compute that the same term DN/2DFTN/2x

(o) appears in both formulas
above. It is thus important that this is computed only once, and then inserted
in both equations. Let us first check that these formulas are correct.

Proof. Suppose first that 0 ≤ n ≤ N/2− 1. We start by splitting the sum in the
expression for the DFT into even and odd indices,

yn =
N−1∑
k=0

xke
−2πink/N =

N/2−1∑
k=0

x2ke
−2πin2k/N +

N/2−1∑
k=0

x2k+1e
−2πin(2k+1)/N

=
N/2−1∑
k=0

x2ke
−2πink/(N/2) + e−2πin/N

N/2−1∑
k=0

x2k+1e
−2πink/(N/2)

=
(
DFTN/2x

(e)
)
n

+ e−2πin/N
(
DFTN/2x

(o)
)
n
,

where we have substituted x(e) and x(o) as in the text of the theorem, and
recognized the N/2-point DFT in two places. Assembling this for 0 ≤ n <
N/2 we obtain Equation (2.13). For the second half of the DFT coefficients,
i.e. {yN/2+n}0≤n≤N/2−1, we similarly have



CHAPTER 2. DIGITAL SOUND AND DISCRETE FOURIER ANALYSIS71

yN/2+n =
N−1∑
k=0

xke
−2πi(N/2+n)k/N =

N−1∑
k=0

xke
−πike−2πink/N

=
N/2−1∑
k=0

x2ke
−2πin2k/N −

N/2−1∑
k=0

x2k+1e
−2πin(2k+1)/N

=
N/2−1∑
k=0

x2ke
−2πink/(N/2) − e−2πin/N

N/2−1∑
k=0

x2k+1e
−2πink/(N/2)

=
(
DFTN/2x

(e)
)
n
− e−2πin/N

(
DFTN/2x

(o)
)
n
.

Equation (2.14) now follows similarly.

Note that an algorithm for the IDFT can be deduced in exactly the same
way. All we need to change is the sign in the exponents of the Fourier matrix. In
addition we need to divide by 1/N at the end. If we do this we get the following
result, which we call the IFFT algorithm. Recall that we use the notation A for
the matrix where all the elements of A have been conjugated.
Theorem 2.16. IFFT algorithm when N is even.

Let N be an even number and let x̃ = DFTNy. Then we have that

(x̃0, x̃1, . . . , x̃N/2−1) = DFTN/2y
(e) +DN/2DFTN/2)y(o) (2.15)

(x̃N/2, x̃N/2+1, . . . , x̃N−1) = DFTN/2y
(e) −DN/2DFTN/2)y(o) (2.16)

where y(e),y(o) ∈ RN/2 are the vectors

y(e) = (y0, y2, . . . , yN−2) y(o) = (y1, y3, . . . , yN−1).

Moreover, x = IDFTNy can be computed from x = x̃/N = DFTNy/N
It turns out that these theorems can be interpreted as matrix factorizations.

For this we need to define the concept of a block matrix.
Definition 2.17. Block matrix.

Let m0, . . . , mr−1 and n0, . . . , ns−1 be integers, and let A(i,j) be an mi×nj-
matrix for i = 0, . . . , r − 1 and j = 0, . . . , s− 1. The notation

A =


A(0,0) A(0,1) · · · A(0,s−1)

A(1,0) A(1,1) · · · A(1,s−1)

...
...

. . .
...

A(r−1,0) A(r−1,1) · · · A(r−1,s−1)


denotes the (m0 +m1 + . . .+mr−1)× (n0 + n1 + . . .+ ns−1)-matrix where the
matrix entries occur as in the A(i,j) matrices, in the way they are ordered. When
A is written in this way it is referred to as a block matrix.
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Clearly, using equations (2.13)-(2.14), the DFT matrix can be factorized
using block matrix notation as

(y0, y1, . . . , yN/2−1) =
(
DFTN/2 DN/2DFTN/2

)(x(e)

x(o)

)
(yN/2, yN/2+1, . . . , yN−1) =

(
DFTN/2 −DN/2DFTN/2

)(x(e)

x(o)

)
.

Combining these, noting that

(
DFTN/2 DN/2DFTN/2
DFTN/2 −DN/2DFTN/2

)
=
(
I DN/2
I −DN/2

)(
DFTN/2 0

0 DFTN/2

)
,

we obtain the following factorisations:

Theorem 2.18. DFT and IDFT matrix factorizations.
We have that

DFTNx =
(
I DN/2
I −DN/2

)(
DFTN/2 0

0 DFTN/2

)(
x(e)

x(o)

)
IDFTNy = 1

N

(
I DN/2
I −DN/2

)(
DFTN/2 0

0 DFTN/2

)(
y(e)

y(o)

)
(2.17)

We will shortly see why these factorizations reduce the number of arithmetic
operations we need to do, but first let us consider how to implement them. First
of all, note that we can apply the FFT factorizations again to FN/2 to obtain

DFTNx =
(
I DN/2
I −DN/2

)
I DN/4 0 0
I −DN/4 0 0
0 0 I DN/4
0 0 I −DN/4

×

DFTN/4 0 0 0

0 DFTN/4 0 0
0 0 DFTN/4 0
0 0 0 DFTN/4



x(ee)

x(eo)

x(oe)

x(oo)


where the vectors x(e) and x(o) have been further split into even- and odd-indexed
entries. Clearly, if this factorization is repeated, we obtain a factorization
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DFTN =
log2 N∏
k=1



I DN/2k 0 0 · · · 0 0
I −DN/2k 0 0 · · · 0 0
0 0 I DN/2k · · · 0 0
0 0 I −DN/2k · · · 0 0
...

...
...

...
... 0 0

0 0 0 0 · · · I DN/2k

0 0 0 0 · · · I −DN/2k


P. (2.18)

The factorization has been repated until we have a final diagonal matrix with
DFT1 on the diagonal, but clearly DFT1 = 1, so we do not need any DFT-
matrices in the final factor. Note that all matrices in this factorization are
sparse. A factorization into a product of sparse matrices is the key to many
efficient algorithms in linear algebra, such as the computation of eigenvalues and
eigenvectors. When we later compute the number of arithmetic operations in
this factorization, we will see that this is the case also here.

In Equation (2.18), P is a permutation matrix which secures that the even-
indexed entries come first. Since the even-indexed entries have 0 as the last
bit, this is the same as letting the last bit become the first bit. Since we here
recursively place even-indexed entries first, it is not too difficult to see that P
permutes the elements of x by performing a bit-reversal of the indices, i.e.

P (ei) = ej i = d1d2 . . . dn j = dndn−1 . . . d1,

where we have used the bit representations of i and j. Since P 2 = I, a bit-reversal
can be computed very efficiently, and performed in-place, i.e. so that the result
ends up in same vector x, so that we do not need to allocate any memory in
this operation. We will use an existing function called bitreverse to perfom
in-place bit-reversal. In Exercise 2.30 we will go through this implementation.

Matrix multiplication is usually not done in-place, i.e. when we compute
y = Ax, different memory is allocated for x and y. For certain simple matrices,
however, matrix multiplication can also be done in-place, so that the output can
be written into the same memory (x) used by the input. It turns out that the
matrices in factorization (2.18) are of this kind, so that the entire FFT can be
computed in-place. We will have more to say on this in the exercises.

In a practical algorithm, it is smart to perform the bit-reversal first, since
the matrices in the factorization (2.18) are block diagonal, so that the different
blocks in each matrix can be applied in parallel to Px (the bit-reversed version
of x). We can thus exploit the parallel processing capabilities of the computer.
It turns out that this bit-reversal is useful for other similar factorizations of the
DFT as well. We will also look at other such factorizations, and we will therefore
split the computation of the DFT as follows: First a general function is applied,
which is responsible for the bit-reversal of the input vector x. Then the matrices
in the factorization (2.18) is applied in a “kernel FFT function” (and we will
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have many such kernels), which assumes that the input has been bit-reversed. A
simple implementation of the general function can be as follows.

def FFTImpl(x, FFTKernel):
bitreverse(x)
FFTKernel(x)

A simple implementation of the kernel FFT function, based on the first FFT
algorithm we stated, can be as follows.

def FFTKernelStandard(x):
N = len(x)
if N > 1:

xe, xo = x[0:(N/2)], x[(N/2):]
FFTKernelStandard(xe)
FFTKernelStandard(xo)
D = exp(-2*pi*1j*arange(float(N/2))/N)
xo *= D
x[:] = concatenate([xe + xo, xe - xo])

In Exercise 2.23 we will extend these to the general implementations we will
use later. We can now run the FFT by combining the general function and the
kernel as follows:

FFTImpl(x, FFTKernelStandard)

Note that FFTKernelStandard is recursive; it calls itself. If this is your first
encounter with a recursive program, it is worth running through the code
manually for a given value of N , such as N = 4.

Immediately we see from factorization (2.18) two possible implementations
for a kernel. First, as we did, we can apply the FFT recursively. A second way
is to, instead of using recursive function calls, use a for-loop where we at each
stage in the loop compute the product with one matrix in factorization (2.18),
from right to left. Inside this loop there must be another for-loop, where the
different blocks in this matrix are applied. We will establish this non-recursive
implementation in Exercise 2.28, and see that this leads to a more efficient
algorithm.

Python has built-in functions for computing the DFT and the IDFT using
the FFT algorithm. These reside in the module numpy. The functions are called
fft and ifft. These functions make no assumption about the length of the
vector, i.e. it may not be of even length. The implementation may however check
if the length of the vector is 2r, and in those cases variants of the algorithm
discussed here can be used. In general, fast algorithms exist when the vector
length N can be factored as a product of small integers.

2.3.1 Reduction in the number of arithmetic operations
Now we will explain why the FFT and IFFT factorizations reduce the number of
arithmetic operations when compared to direct DFT and IDFT implementations.
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We will assume that x ∈ RN with N a power of 2, so that the FFT algorithm
can be used recursively, all the way down to vectors of length 1. In many settings
this power of 2 assumption can be done. As an example, in compression of
sound, one restricts processing to a certain block of the sound data, since the
entire sound is too big to be processed in one piece. One then has a freedom to
how big these blocks are made, and for optimal speed one often uses blocks of
length 2r with r some integer in the range 5–10. At the end of this section we
will explain how the more general FFT can be computed when N is not a power
of 2.

We first need some terminology for how we count the number of operations
of a given type in an algorithm. In particular we are interested in the limiting
behaviour when N becomes large, which is the motivation for the following
definition.

Definition 2.19. Order of an algorithm.
Let RN be the number of operations of a given type (such as multiplication

or addition) in an algorithm, where N describes the dimension of the data (such
as the size of the matrix or length of the vector), and let f be a positive function.
The algorithm is said to be of order f(N), also written O(f(N)), if the number
of operations grows as f(N) for large N , or more precisely, if

lim
N→∞

RN
f(N) = 1.

In some situations we may count the number of operations exactly, but we
will also see that it may be easier to obtain the order of the algorithm, since the
number of operations may have a simpler expression in the limit. Let us see how
we can use this terminology to describe the complexity of the FFT algorithm.
Let MN and AN denote the number of real multiplications and real additions,
respectively, required by the FFT algorithm. Once the FFT’s of order N/2 have
been computed (MN/2 real multiplications and AN/2 real additions are needed
for each), it is clear from equations (2.13)-(2.14) that an additional N complex
additions, and an additional N/2 complex multiplications, are required. Since
one complex multiplication requires 4 real multiplications and 2 real additions,
and one complex addition requires two real additions, we see that we require
an additional 2N real multiplications, and 2N +N = 3N real additions. This
means that we have the difference equations

MN = 2MN/2 + 2N AN = 2AN/2 + 3N. (2.19)

Note that e−2πi/N may be computed once and for all and outside the algorithm,
and this is the reason why we have not counted these operations.

The following example shows how the difference equations (2.19) can be solved.
It is not too difficult to argue that MN = O(2N log2 N) and AN = O(3N log2),
by noting that there are log2 N levels in the FFT, with 2N real multiplications
and real 3N additions at each level. But for N = 2 and N = 4 we may actually
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avoid some multiplications, so we should solve these equations by stating initial
conditions carefully, in order to obtain exact operation counts. In practice, and
as we will see later, one often has more involved equations than (2.19), for which
the solution can not be seen directly, so that one needs to apply systematic
mathematical methods instead. Below is shown an example of this.

Solving for the number of operations. To use standard solution methods
for difference equations to equations (2.19), we first need to write them in a
standard form. Assuming that AN and MN are powers of 2, we set N = 2r
and xr = M2r , or xr = A2r . The difference equations can then be rewritten as
xr = 2xr−1 + 2 · 2r for multiplications, and xr = 2xr−1 + 3 · 2r for additions, and
again be rewritten in the standard forms

xr+1 − 2xr = 4 · 2r xr+1 − 2xr = 6 · 2r.

The homogeneous equation xr+1 − 2xr = 0 has the general solution xhr = C2r.
Since the base in the power on the right hand side equals the root in the
homogeneous equation, we should in each case guess for a particular solution on
the form (xp)r = Ar2r. If we do this we find that the first equation has particular
solution (xp)r = 2r2r, while the second has particular solution (xp)r = 3r2r.
The general solutions are thus on the form xr = 2r2r + C2r, for multiplications,
and xr = 3r2r + C2r for additions.

Now let us state initial conditions for the number of additions and multipli-
cations. Example 2.3 showed that floating point multiplication can be avoided
completely for N = 4. We can therefore use M4 = x2 = 0 as an initial value.
This gives, xr = 2r2r − 4 · 2r, so that MN = 2N log2 N − 4N .

For additions we can use A2 = x1 = 4 as initial value (since DFT2(x1, x2) =
(x1 + x2, x1 − x2)), which gives xr = 3r2r, so that AN = 3N log2 N −N . Our
FFT algorithm thus requires slightly more additions than multiplications. FFT
algorithms are often characterized by their operation count, i.e. the total number
of real additions and real multiplications, i.e. RN = MN + AN . We see that
RN = 5N log2 N − 5N . The order of the operation count of our algorithm can
thus be written as O(5N log2 N), since limN→∞

5N log2 N−4N
5N log2 N

= 1.
In practice one can reduce the number of multiplications further, since

e−2πin/N take the simple values 1,−1,−i, i for some n. One can also use that
e−2πin/N can take the simple values ±1/

√
2±1/

√
2i = 1/

√
2(±1± i), which also

saves some floating point multiplication, due to that we can factor out 1/
√

2.
These observations do not give big reductions in the arithmetic complexity,
however, and one can show that the operation count is still O(5N log2 N) after
using these observations.

It is straightforward to show that the IFFT implementation requires the
same operation count as the FFT algorithm.

In contrast, the direct implementation of the DFT requires N2 complex
multiplications and N(N − 1) complex additions. This results in 4N2 real
multiplications and 2N2 + 2N(N − 1) = 4N2 − 2N real additions. The total
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operation count is thus 8N2 − 2N . In other words, the FFT and IFFT signifi-
cantly reduce the number of arithmetic operations. In Exercise 2.29 we present
another algorithm, called the Split-radix algorithm, which reduces the number of
operations even further. We will see, however, the reduction obtained with the
split-radix algorithm is about 20%. Let us summarize our findings as follows.

Theorem 2.20. Number of operations in the FFT and IFFT algorithms.
The N -point FFT and IFFT algorithms we have gone through both require

O(2N log2 N) real multiplications and O(3N log2 N) real additions. In compar-
ison, the number of real multiplications and real additions required by direct
implementations of the N -point DFT and IDFT are O(8N2).

Often we apply the DFT for real data, so we would like to have FFT-
algorithms tailored to this, with reduced complexity (since real data has half
the dimension of general complex data). By some it has been argued that one
can find improved FFT algorithms when one assumes that the data is real. In
Exercise 2.27 we address this issue, and conclude that there is little to gain from
assuming real input: The general algorithm for complex input can be tailored
for real input so that it uses half the number of operations, which harmonizes
with the fact that real data has half the dimension of complex data.

Another reason why the FFT is efficient is that, since the FFT splits the
calculation of the DFT into computing two DFT’s of half the size, the FFT
is well suited for parallel computing: the two smaller FFT’s can be performed
independently of one another, for instance in two different computing cores
on the same computer. Besides reducing the number of arithmetic operations,
FFT implementation can also apply several programming tricks to speed up
computation, see for instance http://cnx.org/content/m12021/latest/ for an
overview.

2.3.2 The FFT when N is not a power of 2
Applying an FFT to a vector of length 2n is by far the most common thing to
do. It turns out, however, that the idea behind the algorithm easily carries over
to the case when N is any composite number, i.e. when N = N1N2. This make
the FFT useful also in settings where we have a dictated number of elements in
x, which is not an even number. The approach we will present in this section
will help us as long as N is not a prime number. The case when N is a prime
number needs other techniques.

So, assume that N = N1N2. Any time-index k can be written uniquely on
the form N1k+p, with 0 ≤ k < N2, and 0 ≤ p < N1. We will make the following
definition.

Definition 2.21. Polyphase components of a vector.
Let x ∈ RN1N2 . We denote by x(p) the vector in RN2 with entries (x(p))k =

xN1k+p. x(p) is also called the p’th polyphase component of x.

http://cnx.org/content/m12021/latest/
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The previous vectors x(e) and x(o) can be seen as special cases of polyphase
components. Polyphase components will also be useful later. Using the polyphase
notation, we can write

DFTNx =
N−1∑
k=0

xke
−2πink/N =

N1−1∑
p=0

N2−1∑
k=0

(x(p))ke−2πin(N1k+p)/N

=
N1−1∑
p=0

e−2πinp/N
N2−1∑
k=0

(x(p))ke−2πink/N2

Similarly, any frequency index n can be written uniquely on the form N2q + n,
with 0 ≤ q < N1, and 0 ≤ n < N2, so that the DFT can also be written as

N1−1∑
p=0

e−2πi(N2q+n)p/N
N2−1∑
k=0

(x(p))ke−2πi(N2q+n)k/N2

=
N1−1∑
p=0

e−2πiqp/N1e−2πinp/N
N2−1∑
k=0

(x(p))ke−2πink/N2 .

Now, ifX is the N2×N1-matrixX where the p’th column is x(p), we recognize
the inner sum

∑N2−1
k=0 (x(p))ke−2πink/N2 as matrix multiplication with DFTN2

and X, so that this can be written as (DFTN2X)n,p. The entire sum can thus
be written as

N1−1∑
p=0

e−2πiqp/N1e−2πinp/N (DFTN2X)n,p.

Now, define Y as the matrix where X is multiplied component-wise with the
matrix with (n, p)-component e−2πinp/N . The entire sum can then be written as

N1−1∑
p=0

e−2πiqp/N1Yn,p = (Y FN1)n,q

This means that the sum can be written as component (n, q) in the matrix
Y FN1 . Clearly Y FN1 is the matrix where the DFT is applied to all rows of Y .
We have thus shown that component N2q + n of FNx equals (Y FN1)n,q. This
means that FNx can be obtained by stacking the columns of Y FN1 on top of
one-another. We can thus summarize our procedure as follows, which gives a
recipe for splitting an FFT into smaller FFT’s when N is not a prime number.

Theorem 2.22. FFT algorithm when N is composite.
When N = N1N2, the FFT of a vector x can be computed as follows

• Form the N2 ×N1-matrix X, where the p’th column is x(p).
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• Perform the DFT on all the columns in X, i.e. compute FN2X.

• Multiply element (n, p) in the resulting matrix with e−2πinp/N (these are
called twiddle factors), to obtain matrix Y .

• Perform the DFT on all the rows in the resulting matrix, i.e. compute
Y FN1 .

• Form the vector where the columns of the resulting matrix are stacked on
top of one-another.

From the algorithm one easily deduces how the IDFT can be computed also:
All steps are invertible, and can be performed by IFFT or multiplication. We
thus only need to perform the inverse steps in reverse order.

Exercise 2.22: Extra results for the FFT when N = N1N2

When N is composite, there are a couple of results we can state regarding
polyphase components.

a) Assume that N = N1N2, and that x ∈ RN satisfies xk+rN1 = xk for all k, r,
i.e. x has period N1. Show that yn = 0 for all n which are not a multiplum of
N2.

b) Assume that N = N1N2, and that x(p) = 0 for p 6= 0. Show that the
polyphase components y(p) of y = DFTNx are constant vectors for all p.

But what about the case when N is a prime number? Rader’s algorithm
[8] handles this case by expressing a DFT with N a prime number in terms of
DFT’s of length N −1 (which is not a prime number). Our previous scenario can
then be followed, but stops quickly again if N −1 has prime factors of high order.
Since there are some computational penalties in applying Rader’s algorithm, it
may be inefficient some cases. Winograd’s FFT algorithm [10] extends Rader’s
algorithm to work for the case when N = pr. This algorithm tends to reduce
the number of multiplications, at the price of an increased number of additions.
It is difficult to program, and is rarely used in practice.

Exercise 2.23: Extend implementation
Recall that, in Exercise 2.13, we extended the direct DFT implementation so
that it accepted a second parameter telling us if the forward or reverse transform
should be applied. Extend the general function and the standard kernel in the
same way. Again, the forward transform should be used if the forward parameter
is not present. Assume also that the kernel accepts only one-dimensional data,
and that the general function applies the kernel to each column in the input if
the input is two-dimensional (so that the FFT can be applied to all channels
in a sound with only one call). The signatures for our methods should thus be
changed as follows:
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def FFTImpl(x, FFTKernel, forward = True):
def FFTKernelStandard(x, forward):

It should be straightforward to make the modifications for the reverse transform
by consulting the second part of Theorem 2.18. For simplicity, let FFTImpl take
care of the additional division with N we need to do in case of the IDFT. In the
following we will assume these signatures for the FFT implementation and the
corresponding kernels.

Exercise 2.24: Compare execution time
In this exercise we will compare execution times for the different methods for
computing the DFT.

a) Write code which compares the execution times for an N -point DFT for the
following three cases: Direct implementation of the DFT (as in Example 2.4),
the FFT implementation used in this chapter, and the built-in fft-function.
Your code should use the sample audio file castanets.wav, apply the different
DFT implementations to the first N = 2r samples of the file for r = 3 to r = 15,
store the execution times in a vector, and plot these. You can use the function
time() in the time module to measure the execution time.

b) A problem for large N is that there is such a big difference in the execution
times between the two implementations. We can address this by using a loglog-
plot instead. Plot N against execution times using the function loglog. How
should the fact that the number of arithmetic operations are 8N2 and 5N log2 N
be reflected in the plot?

c) It seems that the built-in FFT is much faster than our own FFT implemen-
tation, even though they may use similar algorithms. Try to explain what can
be the cause of this.

Exercise 2.25: Combine two FFT’s
Let x1 = (1, 3, 5, 7) and x2 = (2, 4, 6, 8). Compute DFT4x1 and DFT4x2. Ex-
plain how you can compute DFT8(1, 2, 3, 4, 5, 6, 7, 8) based on these computations
(you don’t need to perform the actual computation). What are the benefits of
this approach?

Exercise 2.26: FFT operation count
When we wrote down the difference equation for the number of multiplications in
the FFT algorithm, you could argue that some multiplications were not counted.
Which multiplications in the FFT algorithm were not counted when writing down
this difference equation? Do you have a suggestion to why these multiplications
were not counted?
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Exercise 2.27: Adapting the FFT algorithm to real data
In this exercise we will look at an approach to how we can adapt an FFT
algorithm to real input x. We will now instead rewrite Equation (2.13) for
indices n and N/2− n as

yn = (DFTN/2x
(e))n + e−2πin/N (DFTN/2x

(o))n
yN/2−n = (DFTN/2x

(e))N/2−n + e−2πi(N/2−n)/N (DFTN/2x
(o))N/2−n

= (DFTN/2x
(e))N/2−n − e2πin/N (DFTN/2x(o))n

= (DFTN/2x(e))n − e−2πin/N (DFTN/2x(o))n.

We see here that, if we have computed the terms in yn (which needs an additional 4
real multiplications, since e−2πin/N and (DFTN/2x

(o))n are complex), no further
multiplications are needed in order to compute yN/2−n, since its compression
simply conjugates these terms before adding them. Again yN/2 must be handled
explicitly with this approach. For this we can use the formula

yN/2 = (DFTN/2x
(e))0 − (DN/2DFTN/2x

(o))0

instead.

a) Conclude from this that an FFT algorithm adapted to real data at each
step requires N/4 complex additions and N/2 additions. Conclude from this
as before that an algorithm based on real data requires MN = O(N log2 N)
multiplications and AN = O

( 3
2N log2 N

)
additions (i.e. again we obtain half

the operation count of complex input).

b) Find an IFFT algorithm adapted to vectors y which have conjugate symmetry,
which has the same operation count we found above.

Hint. Consider the vectors yn + yN/2−n and e2πin/N (yn − yN/2−n). From the
equations above, how can these be used in an IFFT?

Exercise 2.28: Non-recursive FFT algorithm
Use the factorization in (2.18) to write a kernel function FFTKernelNonrec
for a non-recursive FFT implementation. In your code, perform the matrix
multiplications in Equation (2.18) from right to left in an (outer) for-loop. For
each matrix loop through the different blocks on the diagonal in an (inner)
for-loop. Make sure you have the right number of blocks on the diagonal, each
block being on the form (

I DN/2k

I −DN/2k

)
.

It may be a good idea to start by implementing multiplication with such a simple
matrix first as these are the building blocks in the algorithm (also attempt to do
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this so that everything is computed in-place). Also compare the execution times
with our original FFT algorithm, as we did in Exercise 2.24, and try to explain
what you see in this comparison.

Exercise 2.29: The Split-radix FFT algorithm
In this exercise we will develop a variant of the FFT algorithm called the split-
radix FFT algorithm, which until recently held the record for the lowest operation
count for any FFT algorithm.

We start by splitting the rightmost DFTN/2 in Equation (2.17) by using this
equation again, to obtain

DFTNx =

DFTN/2 DN/2

(
DFTN/4 DN/4DFTN/4
DFTN/4 −DN/4DFTN/4

)
DFTN/2 −DN/2

(
DFTN/4 DN/4DFTN/4
DFTN/4 −DN/4DFTN/4

)

 x(e)

x(oe)

x(oo)

 .

(2.20)
The term radix describes how an FFT is split into FFT’s of smaller sizes, i.e. how
the sum in an FFT is split into smaller sums. The FFT algorithm we started
this section with is called a radix 2 algorithm, since it splits an FFT of length
N into FFT’s of length N/2. If an algorithm instead splits into FFT’s of length
N/4, it is called a radix 4 FFT algorithm. The algorithm we go through here is
called the split radix algorithm, since it uses FFT’s of both length N/2 and N/4.

a) Let GN/4 be the (N/4)×(N/4) diagonal matrix with e−2πin/N on the diagonal.

Show that DN/2 =
(
GN/4 0
0 −iGN/4

)
.

b) Let HN/4 be the (N/4) × (N/4) diagonal matrix GD/4DN/4. Verify the
following rewriting of Equation (2.20):
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DFTNx =

DFTN/2

(
GN/4DFTN/4 HN/4DFTN/4
−iGN/4DFTN/4 iHN/4DFTN/4

)
DFTN/2

(
−GN/4DFTN/4 −HN/4DFTN/4
iGN/4DFTN/4 −iHN/4DFTN/4

)

 x(e)

x(oe)

x(oo)



=


I 0 GN/4 HN/4
0 I −iGN/4 iHN/4
I 0 −GN/4 −HN/4
0 I iGN/4 −iHN/4


DFTN/2 0 0

0 DFTN/4 0
0 0 DFTN/4

 x(e)

x(oe)

x(oo)



=

I
(
GN/4 HN/4
−iGN/4 iHN/4

)
I −

(
GN/4 HN/4
−iGN/4 iHN/4

)

DFTN/2x

(e)

DFTN/4x
(oe)

DFTN/4x
(oo)



=

DFTN/2x
(e) +

(
GN/4DFTN/4x

(oe) +HN/4DFTN/4x
(oo)

−i
(
GN/4DFTN/4x

(oe) −HN/4DFTN/4x
(oo)))

DFTN/2x
(e) −

(
GN/4DFTN/4x

(oe) +HN/4DFTN/4x
(oo)

−i
(
GN/4DFTN/4x

(oe) −HN/4DFTN/4x
(oo)))


c) Explain from the above expression why, once the three FFT’s above have
been computed, the rest can be computed with N/2 complex multiplications,
and 2 × N/4 + N = 3N/2 complex additions. This is equivalent to 2N real
multiplications and N + 3N = 4N real additions.

Hint. It is important that GN/4DFTN/4x
(oe) and HN/4DFTN/4x

(oo) are com-
puted first, and the sum and difference of these two afterwards.

d) Due to what we just showed, our new algorithm leads to real multiplication
and addition counts which satisfy

MN = MN/2 + 2MN/4 + 2N AN = AN/2 + 2AN/4 + 4N

Find the general solutions to these difference equations and conclude from these
that MN = O

( 4
3N log2 N

)
, and AN = O

( 8
3N log2 N

)
. The operation count is

thus O (4N log2 N), which is a reduction of N log2 N from the FFT algorithm.

e) Write an FFT kernel function FFTKernelSplitradix for the split-radix
algorithm (again this should handle both the forward and reverse transforms).
Are there more or less recursive function calls in this function than in the
original FFT algorithm? Also compare the execution times with our original
FFT algorithm, as we did in Exercise 2.24. Try to explain what you see in this
comparison.

By carefully examining the algorithm we have developed, one can reduce
the operation count to 4N log2 N − 6N + 8. This does not reduce the order of
the algorithm, but for small N (which often is the case in applications) this
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reduces the number of operations considerably, since 6N is large compared to
4N log2 N for small N . In addition to having a lower number of operations
than the FFT algorithm of Theorem 2.15, a bigger percentage of the operations
are additions for our new algorithm: there are now twice as many additions
than multiplications. Since multiplications may be more time-consuming than
additions (depending on how the CPU computes floating-point arithmetic), this
can be a big advantage.

Exercise 2.30: Bit-reversal
In this exercise we will make some considerations which will help us explain the
code for bit-reversal. This is perhaps not a mathematically challenging exercise,
but nevertheless a good exercise in how to think when developing an efficient
algorithm. We will use the notation i for an index, and j for its bit-reverse. If
we bit-reverse k bits, we will write N = 2k for the number of possible indices.

a) Consider the following code

j = 0
for i in range(N-1):

print j
m = N/2
while (m >= 1 and j >= m):

j -= m
m /= 2

j += m

Explain that the code prints all numbers in [0, N−1] in bit-reversed order (i.e. j).
Verify this by running the program, and writing down the bits for all numbers
for, say N = 16. In particular explain the decrements and increments made to
the variable j. The code above thus produces pairs of numbers (i, j), where j is
the bit-reverse of i. As can be seen, bitreverse applies similar code, and then
swaps the values xi and xj in x, as it should.

Since bit-reverse is its own inverse (i.e. P 2 = I), it can be performed by
swapping elements i and j. One way to secure that bit-reverse is done only once,
is to perform it only when j > i. You see that bitreverse includes this check.

b) Explain that N − j − 1 is the bit-reverse of N − i − 1. Due to this, when
i, j < N/2, we have that N − i− 1, N − j − l ≥ N/2, and that bitreversal can
swap them. Moreover, all swaps where i, j ≥ N/2 can be performed immediately
when pairs where i, j < N/2 are encountered. Explain also that j < N/2
if and only if i is even. In the code you can see that the swaps (i, j) and
(N − i− 1, N − j − 1) are performed together when i is even, due to this.

c) Assume that i < N/2 is odd. Explain that j ≥ N/2, so that j > i. This says
that when i < N/2 is odd, we can always swap i and j (this is the last swap
performed in the code). All swaps where 0 ≤ j < N/2 and N/2 ≤ j < N can be
performed in this way.
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In bitreversal, you can see that the bit-reversal of 2r and 2r+1 are handled
together (i.e. i is increased with 2 in the for-loop). The effect of this is that the
number of if-tests can be reduced, due to the observations from b) and c).

2.4 Summary
We considered the analog of Fourier series for digital sound, which is called
the Discrete Fourier Transform, and looked at its properties and its relation to
Fourier series. We also saw that the sampling theorem guaranteed that there is
no loss in considering the samples of a function, as long as the sampling rate is
high enough compared to the highest frequency in the sound.

We obtained an implementation of the DFT, called the FFT, which is
more efficient in terms of the number of arithmetic operations than a direct
implementation of the DFT. The FFT has been cited as one of the ten most
important algorithms of the 20’th century [1]. The original paper [2] by Cooley
and Tukey dates back to 1965, and handles the case when N is composite. In
the literature, one has been interested in the FFT algorithms where the number
of (real) additions and multiplications (combined) is as low as possible. This
number is also called the flop count. The presentation in this book thus differs
from the literature in that we mostly count only the number of multiplications.
The split-radix algorithm [11, 3], which we reviewed in Exercise 2.3. 2.29, held
the record for the lowest flop count until quite recently. In [4], Frigo and Johnson
showed that the operation count can be reduced to O(34N log2(N)/9), which
clearly is less than the O(4N log2 N) we obatined for the split-radix algorithm.
It may seem strange that the total number of additions and multiplications
are considered: Aren’t multiplications more time-consuming than additions?
When you consider how this is done mechanically, this is certainly the case:
In fact, floating point multiplication can be considered as a combination of
many floating point additions. Due to this, one can find many places in the
literature where expressions are rewritten so that the multiplication count is
reduced, at the cost of a higher addition count. Winograd’s algorithm [10] is
an example of this, where the number of additions is much higher than the
number of multiplications. However, most modern CPU’s have more complex
hardware dedicated to computing multiplications, which can result in that one
floating point multiplication can be performed in one cycle, just as one addition
can. Another thing is that modern CPU’s typically can perform many additions
and multiplications in parallel, and the higher complexity in the multiplication
hardware may result in that the CPU can run less multiplications in parallel,
compared to additions. In other words, if we run test program on a computer, it
may be difficult to detect any differences in performance between addition and
multiplication, even though complex big-scale computing should in theory show
some differences. There are also other important aspects of the FFT, besides
the flop count. Another is memory use. It is possible to implement the FFT so
that the output is computed into the same memory as the input, so that the
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FFT algorithm does not require extra memory besides the input buffer. Clearly,
one should bit-reverse the input buffer in order to achieve this.

We have now defined two types of transforms to the frequency domain: Fourier
series for continuous, periodic functions, and the DFT, for periodic vectors. In
the literature there are two other transforms also: The Continuous time Fourier
transform (CTFT) we have already mentioned at the end of Chapter 1. We also
have the Discrete time Fourier transform (DTFT)) for vectors which are not
periodic [7]. In this book we will deliberately avoid the DTFT as well, since it
assumes that the signal to transform is of infinite duration, while we in practice
analyze signals with a limited time scope.

The sampling theorem is also one of the most important results of the last
century. It was discovered by Harry Nyquist and Claude Shannon [9], but also
by others independently. One can show that the sampling theorem holds also
for functions which are not periodic, as long as we have the same bound on the
highest frequency. This is more common in the literature. In fact, the proof seen
here where we restrict to periodic functions is not common. The advantage of
the proof seen here is that we remain in a finite dimensional setting, and that
we only need the DFT. More generally, proofs of the sampling theorem in the
literature use the DTFT and the CTFT.

What you should have learned in this chapter.

• The definition of the Fourier basis and its orthonormality.

• The definition of the Discrete Fourier Transfrom as a change of coordinates
to the Fourier basis, its inverse, and its unitarity.

• How to apply the DFT to a sum of sinusoids.

• Properties of the DFT, such as conjugate symmetry when the vector is
real, how it treats delayed vectors, or vectors multiplied with a complex
exponential.

• Translation between DFT index and frequency. In particular DFT indices
for high and low frequencies.

• How one can use the DFT to adjust frequencies in sound.

• How the FFT algorithm works by splitting into two FFT’s of half the
length.

• Simple FFT implementation.

• Reduction in the number of operations with the FFT.



Nomenclature

symbol definition
fs Sampling frequency
Ts Sampling period
T Period of a function
ν Frequency
fN Nth order Fourier series of f
VN,T Nth order Fourier space
DN,T Order N real Fourier basis for VN,T
FN,T Order N complex Fourier basis for VN,T
f̆ Symmetric extension of the function f
λs(ν) Frequency response of a filter
N Number of points in a DFT/DCT
FN = {φ0,φ1, · · · ,φN−1} Fourier basis for RN
FN NimesN -Fourier matrix
x̂ DFT of the vector x
A Conjugate of a matrix
AH Conjugate transpose of a matrix
x(e) Vector of even samples
x(o) Vector of odd samples
O(N) Order of an algorithm
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Non-recursive, 81
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Fourier analysis, 21
Fourier coefficients, 12
Fourier domain, 14
Fourier matrix, 51
Fourier series, 12

square wave, 14
triangle wave, 17

Fourier space, 12
Frequency domain, 14
Frequency response

filter, 36

IDFT, 53
IDFT matrix factorization, 72
ifft, 74
Implementation

DFT, 55
FFT

Nonrecursive, 81
Split-radix, 82

listening to high-frequency part in
sound, 65

listening to low-frequency part in
sound, 65

In-place
bit-reversal implementation, 73
FFT implementation, 73
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Inner product
of functions in a Fourier setting,

11
of vectors, 50

interpolating polynomial, 62
interpolation formula, 64

ideal
periodic functions, 64

least square error, 12
loglog, 80

MP3
FFT, 67
standard, 45

OrderN complex Fourier basis for VN,T ,
22

Order of an algorithm, 75

Parallel computing
with the FFT, 77

Periodic function, 5
play, 6
Polyphase

component of a vector, 77
psycho-acoustic model, 45
pure digital tone, 50
pure tone, 5

samples, 1
sampling, 1

frequency, 1
period, 1
rate, 1

sound channel, 7
square wave, 7
Standard

MP3, 47
Support, 37
Symmetric extension

of function, 34
synthesis, 14

equation, 14
vectors, 52

time domain, 14

toc, 80
triangle wave, 8

Unitary matrix, 52
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