Fourier series: basic concepts

Øyvind Ryan

Jan 20, 2017

The set of continuous, real functions defined on an interval $[0, T]$ is denoted $C[0, T]$.

A real function f defined on $[0, T]$ is said to be square integrable if f^{2} is Riemann-integrable, i.e., if the Riemann integral of f^{2} on
$[0, T]$ exists,

$$
\int_{0}^{T} f(t)^{2} d t<\infty
$$

The set of all square integrable functions on $[0, T]$ is denoted $L^{2}[0, T]$.

Both $L^{2}[0, T]$ and $C[0, T]$ are vector spaces. Moreover, if the two functions f and g lie in $L^{2}[0, T]$ (or in $C[0, T]$), then the product $f g$ is Riemann-integrable (or in $C[0, T]$). Moreover, both spaces are inner product spaces with inner product defined by

$$
\langle f, g\rangle=\frac{1}{T} \int_{0}^{T} f(t) g(t) d t
$$

and associated norm

$$
\|f\|=\sqrt{\frac{1}{T} \int_{0}^{T} f(t)^{2} d t}
$$

Let $V_{N, T}$ be the subspace of $C[0, T]$ spanned by the set of functions given by

$$
\begin{array}{r}
\mathcal{D}_{N, T}=\{1, \cos (2 \pi t / T), \cos (2 \pi 2 t / T), \cdots, \cos (2 \pi N t / T) \\
\\
\sin (2 \pi t / T), \sin (2 \pi 2 t / T), \cdots, \sin (2 \pi N t / T)\}
\end{array}
$$

The space $V_{N, T}$ is called the N 'th order Fourier space. The N th-order Fourier series approximation of f, denoted f_{N}, is defined as the best approximation of f from $V_{N, T}$ with respect to the inner product defined by (1.3).

Fourier coefficients, Theorem

The set $\mathcal{D}_{N, T}$ is an orthogonal basis for $V_{N, T}$. In particular, the dimension of $V_{N, T}$ is $2 N+1$, and if f is a function in $L^{2}[0, T]$, we denote by a_{0}, \ldots, a_{N} and b_{1}, \ldots, b_{N} the coordinates of f_{N} in the basis $\mathcal{D}_{N, T}$, i.e.

$$
f_{N}(t)=a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos (2 \pi n t / T)+b_{n} \sin (2 \pi n t / T)\right)
$$

The a_{0}, \ldots, a_{N} and b_{1}, \ldots, b_{N} are called the (real) Fourier coefficients of f, and they are given by

$$
\begin{aligned}
& a_{0}=\langle f, 1\rangle=\frac{1}{T} \int_{0}^{T} f(t) d t \\
& a_{n}=2\langle f, \cos (2 \pi n t / T)\rangle=\frac{2}{T} \int_{0}^{T} f(t) \cos (2 \pi n t / T) d t \quad \text { for } n \geq 1 \\
& b_{n}=2\langle f, \sin (2 \pi n t / T)\rangle=\frac{2}{T} \int_{0}^{T} f(t) \sin (2 \pi n t / T) d t \quad \text { for } n \geq 1
\end{aligned}
$$

Fourier series of the square wave

```
t = linspace(0, T, 100);
y = zeros(size(t));
for n = 1:2:19
        y = y + (4/(n*pi))*sin(2*pi*n*t/T);
    end
    plot(t,y)
```


Figure: The Fourier series $\left(f_{s}\right)_{20}$ and the values for the first 100 Fourier coefficients b_{n}.

Fourier series of the triangle wave

Figure: The Fourier series $\left(f_{t}\right)_{20}$ and the values for the first 100 Fourier coefficients a_{n}.

Observations

- With $N=1$, the Fourier series of both the square and the triangle wave are pure tones with frequency $\nu=1 / T$. Largest term.
- f_{s} is anti-symmetric about 0 , and its Fourier series was a sine series.
- f_{t} is symmetric about 0 , and its Fourier series was a cosine series.
- f_{t} is continuous, and f_{s} is not.
- The Fourier series of f_{t} converged faster than that of f_{s}.
- If f is antisymmetric about $0(f(-t)=-f(t)$ for all $t)$, then $a_{n}=0$, so the Fourier series is actually a sine-series.
- If f is symmetric about $0(f(-t)=f(t)$ for all $t)$, then $b_{n}=0$, so the Fourier series is actually a cosine-series.

Complex Fourier basis, Definition

We define the set of functions

$$
\begin{aligned}
\mathcal{F}_{N, T}= & \left\{e^{-2 \pi i N t / T}, e^{-2 \pi i(N-1) t / T}, \cdots, e^{-2 \pi i t / T}\right. \\
& \left.1, e^{2 \pi i t / T}, \cdots, e^{2 \pi i(N-1) t / T}, e^{2 \pi i N t / T}\right\}
\end{aligned}
$$

and call this the order N complex Fourier basis for $V_{N, T}$.

Complex vector spaces and inner products

For general complex functions we extend the definition of the inner product as

$$
\langle f, g\rangle=\frac{1}{T} \int_{0}^{T} f \bar{g} d t
$$

The associated norm is

$$
\begin{equation*}
\|f\|=\sqrt{\frac{1}{T} \int_{0}^{T}|f(t)|^{2} d t} \tag{1}
\end{equation*}
$$

Complex Fourier coefficients, Theorem

We denote by $y_{-N}, \ldots, y_{0}, \ldots, y_{N}$ the coordinates of f_{N} in the basis $\mathcal{F}_{N, T}$, i.e.

$$
f_{N}(t)=\sum_{n=-N}^{N} y_{n} e^{2 \pi i n t / T}
$$

The y_{n} are called the complex Fourier coefficients of f, and they are given by.

$$
y_{n}=\left\langle f, e^{2 \pi i n t / T}\right\rangle=\frac{1}{T} \int_{0}^{T} f(t) e^{-2 \pi i n t / T} d t
$$

Distribution of Fourier coefficients in Example

Figure: Plot of $\left|y_{n}\right|$ when $f(t)=e^{2 \pi i t / T_{2}}$, and $T_{2}>T$. Left: $T / T_{2}=0.5$. Right: $T / T_{2}=0.9$.
we use the notation $f \rightarrow y_{n}$ to indicate that y_{n} is the n 'th (complex) Fourier coefficient of $f(t)$. The functions $1, e^{2 \pi i n t / T}$, and $\chi_{-a, a}$ have the Fourier coefficients

$$
\begin{aligned}
1 & \rightarrow \boldsymbol{e}_{0}=(1,0,0,0 \ldots,) \\
e^{2 \pi i n t / T} & \rightarrow \boldsymbol{e}_{n}=(0,0, \ldots, 1,0,0, \ldots) \\
\chi_{-a, a} & \rightarrow \frac{\sin (2 \pi n a / T)}{\pi n} .
\end{aligned}
$$

The mapping $f \rightarrow y_{n}$ is linear: if $f \rightarrow x_{n}, g \rightarrow y_{n}$, then

$$
a f+b g \rightarrow a x_{n}+b y_{n}
$$

For all n. Moreover, if f is real and periodic with period T, the following properties hold:
(1) $y_{n}=\overline{y_{-n}}$ for all n.
(2) If $f(t)=f(-t)$ (i.e. f is symmetric), then all y_{n} are real, so that b_{n} are zero and the Fourier series is a cosine series.
(3) If $f(t)=-f(-t)$ (i.e. f is antisymmetric), then all y_{n} are purely imaginary, so that the a_{n} are zero and the Fourier series is a sine series.
(9) If $g(t)=f(t-d)$ (i.e. g is the function f delayed by d) and $f \rightarrow y_{n}$, then $g \rightarrow e^{-2 \pi i n d / T} y_{n}$.
(3) If $g(t)=e^{2 \pi i d t / T} f(t)$ with d an integer, and $f \rightarrow y_{n}$, then $g \rightarrow y_{n-d}$.
(0) Let d be a number. If $f \rightarrow y_{n}$, then $f(d+t)=f(d-t)$ for all t if and only if the argument of y_{n} is $-2 \pi n d / T$ for all n.

Convergence of Fourier series 1

Corollary $\mathbf{1 . 1 9 \text { If the complex Fourier coefficients of } f \text { are } y _ { n } \text { and } f}$ is differentiable, then the Fourier coefficients of $f^{\prime}(t)$ are $\frac{2 \pi i n}{T} y_{n}$.
Turning this around: the Fourier coefficients of $f(t)$ are $T /(2 \pi i n)$ times those of $f^{\prime}(t)$, when f is differentiable. In other words, the Fourier coefficients of a function which is many times differentiable decay to zero very fast.

Observation 1.20 The Fourier series converges quickly when the function is many times differentiable.

Convergence of Fourier series 2

Idea 1.21 Assume that f is continuous on $[0, T)$. Can we construct another periodic function which agrees with f on $[0, T]$, and which is both continuous and periodic (maybe with period different from T)?

If this is possible the Fourier series of the new function could produce better approximations for f. It turns out that the following extension strategy does the job:

Definition 1.22: Let f be a function defined on $[0, T]$. By the symmetric extension of f, denoted \breve{f}, we mean the function defined on $[0,2 T$] by

$$
\breve{f}(t)= \begin{cases}f(t), & \text { if } 0 \leq t \leq T \\ f(2 T-t), & \text { if } T<t \leq 2 T\end{cases}
$$

Convergence of Fourier series 3

The following holds:
If f is continuous on $[0, T]$, then \breve{f} is continuous on $[0,2 T]$, and $\breve{f}(0)=\breve{f}(2 T)$. If we extend \breve{f} to a periodic function on the whole real line (which we also will denote by \breve{f}), this function is continuous, agrees with f on $[0, T)$, and is a symmetric function.

Figure: Two different extensions of f to a periodic function on the whole real line. Periodic extension (left) and symmetric extension (right).

An operation on sound is called a filter if it preserves the different frequencies in the sound. In other words, s is a filter if, for any sound on the form $f=\sum_{\nu} c(\nu) e^{2 \pi i \nu t}$, the output $s(f)$ is a sound which can be written on the form

$$
s(f)=s\left(\sum_{\nu} c(\nu) e^{2 \pi i \nu t}\right)=\sum_{\nu} c(\nu) \lambda_{s}(\nu) e^{2 \pi i \nu t}
$$

$\lambda_{s}(\nu)$ is a function describing how s treats the different frequencies, and is also called the frequency response of s.

Convolution kernels (Theorem

Assume that g is a bounded Riemann-integrable function with compact support (i.e. that there exists an interval $[a, b]$ so that $g=0$ outside $[a, b])$. The operation

$$
\begin{equation*}
f(t) \rightarrow h(t)=\int_{-\infty}^{\infty} g(u) f(t-u) d u \tag{2}
\end{equation*}
$$

is a filter. Also, the frequency response of the filter is $\lambda_{s}(\nu)=\int_{\infty}^{\infty} g(s) e^{-2 \pi i \nu s} d s$. The function g is also called the kernel of s.

We define two convolution kernels, called the Fejer- and Dirichlet kernels.

$$
\begin{aligned}
& D_{N}(t)=\frac{\sin (\pi(2 N+1) t / T)}{\sin (\pi t / T)} \\
& F_{N}(t)=\frac{1}{N+1}\left(\frac{\sin (\pi(N+1) t / T)}{\sin (\pi t / T)}\right)^{2}
\end{aligned}
$$

Figure: The Fejer and Dirichlet kernels for $N=20$.

Their frequency responses are as follows

Figure: The frequency responses for the filters with Fejer and Dirichlet kernels, $N=20$.

Proof of convergence of Fourier series 3

It turns out that filtering with kernel $F_{N}(t)$ produces $f_{N}(t) \in V_{N, T}$, while filtering with kernel $D_{N}(t)$ produces $S_{N}(t)=\frac{1}{N+1} \sum_{n=0}^{N} f_{n}(t) \in V_{N, T}$. It also turns out that S_{N} has much nicer convergence to f than f_{N} does, and that this convergence is easier to prove.

Figure: $f_{N}(t)$ and $S_{N}(t)$ for $N=20$ for the square wave.

