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Square-integrable functions, Definition 1.6

The set of continuous, real functions defined on an interval [0,T ] is
denoted C [0,T ].

A real function f defined on [0,T ] is said to be square integrable if
f 2 is Riemann-integrable, i.e., if the Riemann integral of f 2 on
[0,T ] exists, ∫ T

0
f (t)2 dt <∞.

The set of all square integrable functions on [0,T ] is denoted
L2[0,T ].



Inner product spaces, Theorem 1.7

Both L2[0,T ] and C [0,T ] are vector spaces. Moreover, if the two
functions f and g lie in L2[0,T ] (or in C [0,T ]), then the product
fg is Riemann-integrable (or in C [0,T ]). Moreover, both spaces are
inner product spaces with inner product defined by

〈f , g〉 =
1
T

∫ T

0
f (t)g(t) dt,

and associated norm

‖f ‖ =

√
1
T

∫ T

0
f (t)2dt.



Fourier series, Definition 1.8

Let VN,T be the subspace of C [0,T ] spanned by the set of
functions given by

DN,T = {1, cos(2πt/T ), cos(2π2t/T ), · · · , cos(2πNt/T ),

sin(2πt/T ), sin(2π2t/T ), · · · , sin(2πNt/T )}.

The space VN,T is called the N’th order Fourier space. The
Nth-order Fourier series approximation of f , denoted fN , is defined
as the best approximation of f from VN,T with respect to the inner
product defined by (1.3).



Fourier coefficients, Theorem 1.9
The set DN,T is an orthogonal basis for VN,T . In particular, the
dimension of VN,T is 2N + 1, and if f is a function in L2[0,T ], we
denote by a0, . . . , aN and b1, . . . , bN the coordinates of fN in the
basis DN,T , i.e.

fN(t) = a0 +
N∑

n=1

(an cos(2πnt/T ) + bn sin(2πnt/T )) .

The a0, . . . , aN and b1, . . . , bN are called the (real) Fourier
coefficients of f , and they are given by

a0 = 〈f , 1〉 =
1
T

∫ T

0
f (t) dt,

an = 2
〈
f , cos(2πnt/T )

〉
=

2
T

∫ T

0
f (t) cos(2πnt/T ) dt for n ≥ 1,

bn = 2〈f , sin(2πnt/T )〉 =
2
T

∫ T

0
f (t) sin(2πnt/T ) dt for n ≥ 1.



Fourier series of the square wave
t = linspace(0, T, 100);
y = zeros(size(t));
for n = 1:2:19

y = y + (4/(n*pi))*sin(2*pi*n*t/T);
end
plot(t,y)
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Figure: The Fourier series (fs)20 and the values for the first 100 Fourier
coefficients bn.



Fourier series of the triangle wave
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Figure: The Fourier series (ft)20 and the values for the first 100 Fourier
coefficients an.



Observations

With N = 1, the Fourier series of both the square and the
triangle wave are pure tones with frequency ν = 1/T . Largest
term.
fs is anti-symmetric about 0, and its Fourier series was a sine
series.
ft is symmetric about 0, and its Fourier series was a cosine
series.
ft is continuous, and fs is not.
The Fourier series of ft converged faster than that of fs .



Symmetry and antisymmetry, Theorem 1.10

If f is antisymmetric about 0 (f (−t) = −f (t) for all t), then
an = 0, so the Fourier series is actually a sine-series.
If f is symmetric about 0 (f (−t) = f (t) for all t), then
bn = 0, so the Fourier series is actually a cosine-series.



Complex Fourier basis, Definition 1.11

We define the set of functions

FN,T = {e−2πiNt/T , e−2πi(N−1)t/T , · · · , e−2πit/T ,

1, e2πit/T , · · · , e2πi(N−1)t/T , e2πiNt/T},

and call this the order N complex Fourier basis for VN,T .



Complex vector spaces and inner products

For general complex functions we extend the definition of the inner
product as

〈f , g〉 =
1
T

∫ T

0
f ḡ dt.

The associated norm is

‖f ‖ =

√
1
T

∫ T

0
|f (t)|2dt. (1)



Complex Fourier coefficients, Theorem 1.12

We denote by y−N , . . . , y0, . . . , yN the coordinates of fN in the
basis FN,T , i.e.

fN(t) =
N∑

n=−N
yne

2πint/T .

The yn are called the complex Fourier coefficients of f , and they
are given by.

yn = 〈f , e2πint/T 〉 =
1
T

∫ T

0
f (t)e−2πint/Tdt.



Distribution of Fourier coefficients in Example 1.24
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Figure: Plot of |yn| when f (t) = e2πit/T2 , and T2 > T . Left:
T/T2 = 0.5. Right: T/T2 = 0.9.



Fourier series pairs, Theorem 1.16

we use the notation f → yn to indicate that yn is the n’th
(complex) Fourier coefficient of f (t). The functions 1, e2πint/T ,
and χ−a,a have the Fourier coefficients

1→ e0 = (1, 0, 0, 0 . . . , )

e2πint/T → en = (0, 0, . . . , 1, 0, 0, . . .)

χ−a,a →
sin(2πna/T )

πn
.



Fourier series properties, Theorem 1.17
The mapping f → yn is linear: if f → xn, g → yn, then

af + bg → axn + byn

For all n. Moreover, if f is real and periodic with period T , the
following properties hold:

1 yn = y−n for all n.
2 If f (t) = f (−t) (i.e. f is symmetric), then all yn are real, so

that bn are zero and the Fourier series is a cosine series.
3 If f (t) = −f (−t) (i.e. f is antisymmetric), then all yn are

purely imaginary, so that the an are zero and the Fourier series
is a sine series.

4 If g(t) = f (t − d) (i.e. g is the function f delayed by d) and
f → yn, then g → e−2πind/T yn.

5 If g(t) = e2πidt/T f (t) with d an integer, and f → yn, then
g → yn−d .

6 Let d be a number. If f → yn, then f (d + t) = f (d − t) for
all t if and only if the argument of yn is −2πnd/T for all n.



Convergence of Fourier series 1

Corollary 1.19 If the complex Fourier coefficients of f are yn and f
is differentiable, then the Fourier coefficients of f ′(t) are 2πin

T yn.

Turning this around: the Fourier coefficients of f (t) are T/(2πin)
times those of f ′(t), when f is differentiable. In other words, the
Fourier coefficients of a function which is many times differentiable
decay to zero very fast.

Observation 1.20 The Fourier series converges quickly when the
function is many times differentiable.



Convergence of Fourier series 2

Idea 1.21 Assume that f is continuous on [0,T ). Can we
construct another periodic function which agrees with f on [0,T ],
and which is both continuous and periodic (maybe with period
different from T )?

If this is possible the Fourier series of the new function could
produce better approximations for f . It turns out that the following
extension strategy does the job:

Definition 1.22: Let f be a function defined on [0,T ]. By the
symmetric extension of f , denoted f̆ , we mean the function defined
on [0, 2T ] by

f̆ (t) =

{
f (t), if 0 ≤ t ≤ T ;

f (2T − t), if T < t ≤ 2T .



Convergence of Fourier series 3
The following holds:

If f is continuous on [0,T ], then f̆ is continuous on [0, 2T ], and
f̆ (0) = f̆ (2T ). If we extend f̆ to a periodic function on the whole
real line (which we also will denote by f̆ ), this function is
continuous, agrees with f on [0,T ), and is a symmetric function.
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Figure: Two different extensions of f to a periodic function on the whole
real line. Periodic extension (left) and symmetric extension (right).



Filters

An operation on sound is called a filter if it preserves the different
frequencies in the sound. In other words, s is a filter if, for any
sound on the form f =

∑
ν c(ν)e2πiνt , the output s(f ) is a sound

which can be written on the form

s(f ) = s

(∑
ν

c(ν)e2πiνt

)
=
∑
ν

c(ν)λs(ν)e2πiνt .

λs(ν) is a function describing how s treats the different frequencies,
and is also called the frequency response of s.



Convolution kernels (Theorem 1.25)

Assume that g is a bounded Riemann-integrable function with
compact support (i.e. that there exists an interval [a, b] so that
g = 0 outside [a, b]). The operation

f (t)→ h(t) =

∫ ∞
−∞

g(u)f (t − u)du. (2)

is a filter. Also, the frequency response of the filter is
λs(ν) =

∫∞
∞ g(s)e−2πiνsds. The function g is also called the kernel

of s.



Proof of convergence of Fourier series 1
We define two convolution kernels, called the Fejer- and Dirichlet
kernels.

DN(t) =
sin(π(2N + 1)t/T )

sin(πt/T )

FN(t) =
1

N + 1

(
sin(π(N + 1)t/T )

sin(πt/T )

)2
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Figure: The Fejer and Dirichlet kernels for N = 20.



Proof of convergence of Fourier series 2

Their frequency responses are as follows

Figure: The frequency responses for the filters with Fejer and Dirichlet
kernels, N = 20.



Proof of convergence of Fourier series 3
It turns out that filtering with kernel FN(t) produces fN(t) ∈ VN,T ,
while filtering with kernel DN(t) produces
SN(t) = 1

N+1
∑N

n=0 fn(t) ∈ VN,T . It also turns out that SN has
much nicer convergence to f than fN does, and that this
convergence is easier to prove.
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Figure: fN(t) and SN(t) for N = 20 for the square wave.


