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Tensor product of function spaces, Definition 10.1

Let U1 and U2 be vector spaces of functions, defined on the
intervals [0,M) and [0,N), respectively, and suppose that f1 ∈ U1
and f2 ∈ U2. The tensor product of f1 and f2, denoted f1 ⊗ f2, is
the function in two variables defined on [0,M)× [0,N) by

(f1 ⊗ f2)(t1, t2) = f1(t1)f2(t2).

The tensor product of the spaces U1 ⊗ U2 is the vector space
spanned by the two-variable functions {f1 ⊗ f2}f1∈U1,f2∈U2 .



Inner product

〈f , g〉 =
∫ N

0

∫ M

0
f (t1, t2)g(t1, t2)dt1dt2.

This says that

〈f1 ⊗ f2, g1 ⊗ g2〉 =
∫ N

0

∫ M

0
f1(t1)f2(t2)g1(t1)g2(t2)dt1dt2

=

∫ M

0
f1(t1)g1(t1)dt1

∫ N

0
f2(t2)g2(t2)dt2

= 〈f1, g1〉〈f2, g2〉.

This means that for tensor products, a double integral can be
computed as the product of two one-dimensional integrals.



Using tensor products for approximation
If U1 and U2 can be used to approximate functions in one variable,
then U1⊗U2 can be used to approximate functions in two variables.

Tensor products of polynomials: Let U1 = U2 be the space of all
polynomials of finite degree. We know that U1 can be used for
approximating many kinds of functions, such as continuous
functions, for example by Taylor series. The tensor product
U1 ⊗ U1 consists of all functions on the form

∑
i ,j αi ,j t

i
1t

j
2.

Tensor products of Fourier spaces: Let U1 = U2 = VN,T be the
Nth order Fourier space which is spanned by the functions

e−2πiNt/T , . . . , e−2πit/T , 1, e2πit/T , . . . , e2πiNt/T

U1 ⊗ U1 now consists of all functions on the form

N∑
k,l=−N

αk,le
2πikt1/T e2πilt2/T .



Bases for tensor products of function spaces, Theorem 10.3

If {fi}M−1
i=0 is a basis for U1 and {gj}N−1

j=0 is a basis for U2, then

{fi ⊗ gj}
(M−1,N−1)
(i ,j)=(0,0) is a basis for U1 ⊗ U2. Moreover, if the bases

for U1 and U2 are orthogonal/orthonormal, then the basis for
U1 ⊗ U2 is orthogonal/orthonormal.



Coordinate matrix

if B = {fi}M−1
i=0 and C = {gj}N−1

j=0 , we define B ⊗ C as the basis

{fi ⊗ gj}
(M−1,N−1)
(i ,j)=(0,0) for U1 ⊗ U2. We say that X is the coordinate

matrix of f if f (t1, t2) =
∑

i ,j Xi ,j(fi ⊗ gj)(t1, t2), where Xi ,j are the
elements of X .



Change of coordinates in tensor products of function spaces,
Theorem 10.5

Assume that U1 and U2 are function spaces, and that

B1, C1 are bases for U1, and that S1 is the change of
coordinates matrix from B1 to C1,
B2, C2 are bases for U2, and that S2 is the change of
coordinates matrix from B2 to C2.

Both B1 ⊗ B2 and C1 ⊗ C2 are bases for U1 ⊗ U2, and if X is the
coordinate matrix in B1 ⊗ B2, Y the coordinate matrix in C1 ⊗ C2,
then the change of coordinates from B1 ⊗ B2 to C1 ⊗ C2 can be
computed as

Y = S1X (S2)
T .



We will now specialize the spaces U1, U2 to resolution spaces Vm

and detail spaces Wm. We can in particular form the tensor
products φ0,n1 ⊗ φ0,n2 . We assume that

the first component φ0,n1 has period M (so that {φ0,n1}M−1
n1=0 is

a basis for the first component space),
the second component φ0,n2 has period N (so that {φ0,n2}N−1

n2=0
is a basis for the second component space).

V0 ⊗ V0 is the MN-dimensional space with basis
{φ0,n1 ⊗ φ0,n2}

(M−1,N−1)
(n1,n2)=(0,0), and the coordinate matrices are M ×N.

This difference in the dimension of the two components is done to
allow for images where the number of rows and columns may be
different.



Bases for tensor products

Let φ, ψ be a scaling function and a mother wavelet. Then the two
sets of tensor products given by

φm ⊗ φm = {φm,n1 ⊗ φm,n2}n1,n2

and

(φm−1,ψm−1)⊗ (φm−1,ψm−1)

= {φm−1,n1 ⊗ φm−1,n2 ,

φm−1,n1 ⊗ ψm−1,n2 ,

ψm−1,n1 ⊗ φm−1,n2 ,

ψm−1,n1 ⊗ ψm−1,n2}n1,n2

are both bases for Vm ⊗ Vm. This second basis is
orthogonal/orthonormal whenever the first basis is.



Tensor product spaces

We define the following tensor product spaces:

The space W
(0,1)
m spanned by {φm,n1 ⊗ ψm,n2}n1,n2 ,

The space W
(1,0)
m spanned by {ψm,n1 ⊗ φm,n2}n1,n2 ,

The space W
(1,1)
m spanned by {ψm,n1 ⊗ ψm,n2}n1,n2 .



The coordinate matrix of

2m−1N∑
n1,n2=0

(cm−1,n1,n2(φm−1,n1 ⊗ φm−1,n2)+

w
(0,1)
m−1,n1,n2

(φm−1,n1 ⊗ ψm−1,n2)+

w
(1,0)
m−1,n1,n2

(ψm−1,n1 ⊗ φm−1,n2)+

w
(1,1)
m−1,n1,n2

(ψm−1,n1 ⊗ ψm−1,n2))

in the basis (φm−1,ψm−1)⊗ (φm−1,ψm−1) is
cm−1,0,0 · · · w

(0,1)
m−1,0,0 · · ·

...
...

...
...

w
(1,0)
m−1,0,0 · · · w

(1,1)
m−1,0,0 · · ·

...
...

...
...

 .



The coordinate matrix is thus split into four submatrices:

The cm−1-values, i.e. the coordinates for Vm−1 ⊕ Vm−1 (the
upper left corner).

The w
(0,1)
m−1 -values, i.e. the coordinates for W (0,1)

m−1 (the upper
right corner).

The w
(1,0)
m−1 -values, i.e. the coordinates for W (1,0)

m−1 (the lower
left corner).

The w
(1,1)
m−1 -values, i.e. the coordinates for W (1,1)

m−1 (the lower
right corner).



Implementing the tensor product
Let

Am = P(φm−1,ψm−1)←φm
Bm = Pφm←(φm−1,ψm−1)

be the stages in the DWT and the IDWT, and let

X = (cm,i ,j)i ,j Y =

(
(cm−1,i ,j)i ,j (w

(0,1)
m−1,i ,j)i ,j

(w
(1,0)
m−1,i ,j)i ,j (w

(1,1)
m−1,i ,j)i ,j

)
be the coordinate matrices in φm ⊗ φm, and
(φm−1,ψm−1)⊗ (φm−1,ψm−1), respectively. Then

Y = AmXA
T
m X = BmYB

T
m

By the m-level two-dimensional DWT/IDWT (or DWT2/IDWT2)
we mean the change of coordinates where this is repeated m times
as in a DWT/IDWT.



Figure: Illustration of the different coordinates in a two level DWT2
before the first stage is performed (left), after the first stage (middle),
and after the second stage (right).



Figure: Graphical representation of neglecting the wavelet coefficients at
the first level. After applying DWT2, the wavelet coefficients are split
into four parts, as shown in the left figure. In the following figures we
have removed coefficients from W

(1,1)
1 , W (1,0)

1 , and W
(0,1)
1 , in that order.



Figure: Graphical representation of neglecting the wavelet coefficients at
the second level. After applying the second stage in DWT2, the wavelet
coefficients from the upper left corner are also split into four parts, as
shown in the left figure. In the following figures we have removed
coefficients from W

(1,1)
2 , W (1,0)

2 , and W
(0,1)
2 , in that order.



Visual interpretation of the DWT2

After the DWT2 has been applied to an image, we expect to see
the following:

In the upper left corner, slow variations in both the vertical
and horizontal directions are captured, i.e. this is a
low-resolution version of the image.
In the upper right corner, slow variations in the vertical
direction are captured, together with abrupt changes in the
horizontal direction.
In the lower left corner, slow variations in the horizontal
direction are captured, together with abrupt changes in the
vertical direction.
In the lower right corner, abrupt changes in both directions
appear are captured.



Applying the Haar wavelet to a very simple example image

Figure: The chess pattern example image after application of the DWT2.



Creating thumbnail images

We can now use the following code to store a low-resolution
approximation for m = 1 of half the size:

X = DWT2Impl(X, 1, @DWTKernelHaar);
X = X(1:(size(X,1)/2), 1:(size(X,2)/2),:);
X = mapto01(X);
X = X*255;

Here it is necessary to map the result back to [0, 255].



Figure: The corresponding thumbnail images for the Image of Lena,
obtained with m = 1, m = 2, m = 3, and m = 4.



Figure: The corresponding image resulting from a wavelet transform with
the Haar-wavelet for m = 1 and m = 2.



Detail and low-resolution approximations with the Haar
wavelet

Figure: Image of Lena, with detail at the first 1, 2, 3, and 4 levels zeroed
out, respectively.



Figure: The corresponding detail for the images in the previous foil.

The black color indicates values which are close to 0. In other
words, most of the coefficients are close to 0.



Displaying the low-resolution approximations at a given
resolution

showDWT(m, @DWTKernelHaar, @IDWTKernelHaar, 1);
showDWT(m, @DWTKernel53, @IDWTKernel53, 1);
showDWT(m, @DWTKernel97, @IDWTKernel97, 1);



The Spline 5/3 wavelet and removing bands in the detail
spaces

Figure: Image of Lena, with various bands of detail at the first level
zeroed out. From left to right, the detail at W (1,1)

1 , W (1,0)
1 , W (0,1)

1 .



Figure: Image of Lena, with various bands of detail at the second level
zeroed out. From left to right, the detail at W (1,1)

2 , W (1,0)
2 , W (0,1)

2 .



Figure: Image of Lena, with detail including level 3 and 4 zeroed out.



Figure: The corresponding detail for the image of Lena.



The CDF 9/7 wavelet

Figure: Image of Lena, with higher levels of detail neglected.



Figure: The corresponding detail for the image of Lena.



An application to the FBI standard for compression of
fingerprint images

Figure: A typical fingerprint image.



Figure: Subband structure after the different stages of the wavelet
applications in the FBI fingerprint compression scheme.



Figure: The fingerprint image after several DWT’s.



Figure: Subbands structure after all stages.



Figure: The resulting image obtained with the subband decomposition
employed by the FBI.



Figure: The low-resolution approximation and the detail obtained by the
FBI standard for compression of fingerprint images, when applied to our
sample fingerprint image.


