
Digital sound and discrete Fourier analysis

Øyvind Ryan

Jan 25, 2017

Euclidean inner product, Definition 2.1

For complex vectors of length N the Euclidean inner product is
given by

〈x , y〉 =
N−1∑
k=0

xkyk .

The associated norm is

‖x‖ =

√√√√N−1∑
k=0

|xk |2.

Discrete Fourier analysis, Definition 2.2

In Discrete Fourier analysis, a vector x = (x0, . . . , xN−1) is
represented as a linear combination of the N vectors

φn =
1√
N

(
1, e2πin/N , e2πi2n/N , . . . , e2πikn/N , . . . , e2πin(N−1)/N

)
.

These vectors are called the normalised complex exponentials, or
the pure digital tones of order N. n is also called frequency index.
The whole collection FN = {φn}N−1

n=0 is called the N-point Fourier
basis.

the N-point Fourier basis is an orthonormal basis for RN .

Discrete Fourier Transform, Definition 2.4

We will denote the change of coordinates matrix from the standard
basis of RN to the Fourier basis FN by FN . We will also call this
the (N-point) Fourier matrix.

The matrix
√
NFN is also called the (N-point) discrete Fourier

transform, or DFT. If x is a vector in RN , then y = DFTx are
called the DFT coefficients of x . (the DFT coefficients are thus the
coordinates in FN , scaled with

√
N). DFTx is sometimes written

as x̂ .

The Fourier matrix is unitary

Theorem 2.5: The Fourier matrix FN is the unitary N × N-matrix
with entries given by

(FN)nk =
1√
N
e−2πink/N ,

for 0 ≤ n, k ≤ N − 1.

Definition 2.6: The matrix FN/
√
N is the inverse of the matrix

DFT =
√
NFN . We call this inverse matrix the inverse discrete

Fourier transform, or IDFT.

Direct implementation of the DFT in Matlab

function y = DFTImpl(x)
N = size(x, 1);
y = zeros(size(x));
for n = 1:N

D = exp(2*pi*1i*(n-1)*(0:(N-1))/N);
y(n) = dot(D, x);

end

n has been replaced by n − 1 in this code since n runs from 1 to N
(array indices must start at 1 in Matlab).

Direct implementation of the DFT in Python

def DFTImpl(x):
y = zeros_like(x).astype(complex)
N = len(x)
for n in xrange(N):

D = exp(-2*pi*n*1j*arange(float(N))/N)
y[n] = dot(D, x)

return y

Properties of the DFT, Theorem 2.7

Let x be a real vector of length N. The DFT has the following
properties:

1 (x̂)N−n = (x̂)n for 0 ≤ n ≤ N − 1.
2 If xk = xN−k for all n (so x is symmetric), then x̂ is a real

vector.
3 If xk = −xN−k for all k (so x is antisymmetric), then x̂ is a

purely imaginary vector.
4 If d is an integer and z is the vector with components

zk = xk−d (the vector x with its elements delayed by d), then
(ẑ)n = e−2πidn/N (x̂)n.

5 If d is an integer and z is the vector with components
zk = e2πidk/Nxk , then (ẑ)n = (x̂)n−d .

Relation between Fourier coefficients and DFT coefficients,
Proposition 2.9

Let N > 2M, f ∈ VM,T , and let x = {f (kT/N)}N−1
k=0 be N uniform

samples from f over [0,T]. The Fourier coefficients zn of f can be
computed from

(z0, z1, . . . , zM , 0, . . . , 0︸ ︷︷ ︸
N−(2M+1)

, z−M , z−M+1, . . . , z−1) =
1
N
DFTNx .

In particular, the total contribution in f from frequency n/T , for
0 ≤ n ≤ M, is given by yn and yN−n, where y is the DFT of x .

Proposition 2.12: Any f ∈ VM,T can be reconstructed uniquely
from a uniform set of samples {f (kT/N)}N−1

k=0 , as long as
fs > 2|ν|, where ν denotes the highest frequency in f .

Sampling theorem and the ideal interpolation formula for
periodic functions, Theorem 2.13

Let f be a periodic function with period T , and assume that f has
no frequencies higher than νHz. Then f can be reconstructed
exactly from its samples f (−MTs), . . . , f (MTs) (where Ts is the
sampling period, N = T

Ts
is the number of samples per period, and

M = 2N + 1) when the sampling rate fs =
1
Ts

is bigger than 2ν.
Moreover, the reconstruction can be performed through the formula

f (t) =
M∑

k=−M
f (kTs)

1
N

sin(π(t − kTs)/Ts)

sin(π(t − kTs)/T)
.

Sampling theorem and the ideal interpolation formula,
general version, Theorem 2.14

Assume that f has no frequencies higher than νHz. Then f can be
reconstructed exactly from its samples
. . . , f (−2Ts), f (−Ts), f (0), f (Ts), f (2Ts), . . . when the sampling
rate is bigger than 2ν. Moreover, the reconstruction can be
performed through the formula

f (t) =
∞∑

k=−∞
f (kTs)

sin(π(t − kTs)/Ts)

π(t − kTs)/Ts
.

Using the DFT to adjust frequencies in sound, Example 2.16

[x, fs] = forw_comp_rev_DFT(’L’, 13000, ’lower’, 1);
playerobj=audioplayer(x, fs);
playblocking(playerobj);

Compression by zeroing out DFT coefficients, Example 2.17

[x, fs] = forw_comp_rev_DFT(’threshold’, 20);
playerobj=audioplayer(x, fs);
playblocking(playerobj);

Compression by quantizing DFT coefficients, Example 2.18

[x, fs] = forw_comp_rev_DFT(’n’, 3);
playerobj=audioplayer(x, fs);
playblocking(playerobj);

FFT algorithm when N is even Theorem 2.15

Let y = DFTNx be the N-point DFT of x , with N an even
number, and let DN/2 be the (N/2)× (N/2)-diagonal matrix with
entries (DN/2)n,n = e−2πin/N for 0 ≤ n < N/2. Then we have that

(y0, y1, . . . , yN/2−1) = DFTN/2x (e) + DN/2DFTN/2x (o)

(yN/2, yN/2+1, . . . , yN−1) = DFTN/2x (e) − DN/2DFTN/2x (o)

where x (e), x (o) ∈ RN/2 consist of the even- and odd-indexed
entries of x , respectively, i.e.

x (e) = (x0, x2, . . . , xN−2) x (o) = (x1, x3, . . . , xN−1).

IFFT algorithm when N is even, Theorem 2.15

Let N be an even number and let x̃ = DFTNy . Then we have that

(x̃0, x̃1, . . . , x̃N/2−1) = DFTN/2y (e) + DN/2DFTN/2)y (o)

(x̃N/2, x̃N/2+1, . . . , x̃N−1) = DFTN/2y (e) − DN/2DFTN/2)y (o)

where y (e), y (o) ∈ RN/2 are the vectors

y (e) = (y0, y2, . . . , yN−2) y (o) = (y1, y3, . . . , yN−1).

Moreover, x = IDFTNy can be computed from
x = x̃/N = DFTNy/N

DFT and IDFT matrix factorizations, theorem 2.18

We have that

DFTNx =

(
I DN/2
I −DN/2

)(
DFTN/2 0

0 DFTN/2

)(
x (e)

x (o)

)
IDFTNy =

1
N

(
I DN/2
I −DN/2

)(
DFTN/2 0

0 DFTN/2

)(
y (e)

y (o)

)

Iterating the factorization 1

DFTNx =

(
I DN/2
I −DN/2

)
I DN/4 0 0
I −DN/4 0 0
0 0 I DN/4
0 0 I −DN/4

×

DFTN/4 0 0 0

0 DFTN/4 0 0
0 0 DFTN/4 0
0 0 0 DFTN/4




x (ee)

x (eo)

x (oe)

x (oo)


where the vectors x (e) and x (o) have been further split into even-
and odd-indexed entries. Clearly, if this factorization is repeated,
we obtain a factorization

Iterating the factorization 2

DFTN =

log2 N∏
k=1



I DN/2k 0 0 · · · 0 0
I −DN/2k 0 0 · · · 0 0
0 0 I DN/2k · · · 0 0
0 0 I −DN/2k · · · 0 0
...

...
...

...
... 0 0

0 0 0 0 · · · I DN/2k

0 0 0 0 · · · I −DN/2k


P.

(1)

FFT implementation

function y = FFTImpl(x, FFTKernel)
x = bitreverse(x);
y = FFTKernel(x);

function y = FFTKernelStandard(x)
N = size(x, 1);
if N == 1

y = x;
else

xe = FFTKernelStandard(x(1:(N/2)));
xo = FFTKernelStandard(x((N/2+1):N));
D = exp(-2*pi*1j*(0:(N/2-1))’/N);
xo = xo.*D;
y = [xe + xo; xe - xo];

end

y = FFTImpl(x, @FFTKernelStandard);

