Digital sound and discrete Fourier analysis

Øyvind Ryan

Jan 25, 2017

For complex vectors of length N the Euclidean inner product is given by

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\sum_{k=0}^{N-1} x_{k} \overline{y_{k}} .
$$

The associated norm is

$$
\|\boldsymbol{x}\|=\sqrt{\sum_{k=0}^{N-1}\left|x_{k}\right|^{2}} .
$$

In Discrete Fourier analysis, a vector $\boldsymbol{x}=\left(x_{0}, \ldots, x_{N-1}\right)$ is represented as a linear combination of the N vectors

$$
\phi_{n}=\frac{1}{\sqrt{N}}\left(1, e^{2 \pi i n / N}, e^{2 \pi i 2 n / N}, \ldots, e^{2 \pi i k n / N}, \ldots, e^{2 \pi i n(N-1) / N}\right)
$$

These vectors are called the normalised complex exponentials, or the pure digital tones of order $N . n$ is also called frequency index. The whole collection $\mathcal{F}_{N}=\left\{\phi_{n}\right\}_{n=0}^{N-1}$ is called the N-point Fourier basis.
the N-point Fourier basis is an orthonormal basis for \mathbb{R}^{N}.

Discrete Fourier Transform, Definition

We will denote the change of coordinates matrix from the standard basis of \mathbb{R}^{N} to the Fourier basis \mathcal{F}_{N} by F_{N}. We will also call this the (N-point) Fourier matrix.

The matrix $\sqrt{N} F_{N}$ is also called the (N-point) discrete Fourier transform, or DFT. If \boldsymbol{x} is a vector in R^{N}, then $\boldsymbol{y}=\mathrm{DFT} \boldsymbol{x}$ are called the DFT coefficients of \boldsymbol{x}. (the DFT coefficients are thus the coordinates in \mathcal{F}_{N}, scaled with \sqrt{N}). DFT \boldsymbol{x} is sometimes written as $\hat{\boldsymbol{x}}$.

Theorem 2.5: The Fourier matrix F_{N} is the unitary $N \times N$-matrix with entries given by

$$
\left(F_{N}\right)_{n k}=\frac{1}{\sqrt{N}} e^{-2 \pi i n k / N}
$$

for $0 \leq n, k \leq N-1$.
Definition 2.6: The matrix $\overline{F_{N}} / \sqrt{N}$ is the inverse of the matrix DFT $=\sqrt{N} F_{N}$. We call this inverse matrix the inverse discrete Fourier transform, or IDFT.

```
function y = DFTImpl(x)
    N = size(x, 1);
    y = zeros(size(x));
    for n = 1:N
        D = exp(2*pi*1i*(n-1)*(0:(N-1))/N);
        y(n) = dot(D, x);
    end
```

n has been replaced by $n-1$ in this code since n runs from 1 to N (array indices must start at 1 in Matlab).

```
def DFTImpl(x):
    y = zeros_like(x).astype(complex)
    N = len(x)
    for n in xrange(N):
        D = exp(-2*pi*n*1j*arange(float(N))/N)
        y[n] = dot(D, x)
    return y
```

Let \boldsymbol{x} be a real vector of length N. The DFT has the following properties:
(1) $(\widehat{x})_{N-n}=\overline{(\widehat{x})_{n}}$ for $0 \leq n \leq N-1$.
(2) If $x_{k}=x_{N-k}$ for all n (so \boldsymbol{x} is symmetric), then $\widehat{\boldsymbol{x}}$ is a real vector.
(3) If $x_{k}=-x_{N-k}$ for all k (so \boldsymbol{x} is antisymmetric), then $\widehat{\boldsymbol{x}}$ is a purely imaginary vector.
(9) If d is an integer and z is the vector with components $z_{k}=x_{k-d}$ (the vector \boldsymbol{x} with its elements delayed by d), then $(\widehat{\boldsymbol{z}})_{n}=e^{-2 \pi i d n / N}(\widehat{\boldsymbol{x}})_{n}$.
(3) If d is an integer and \boldsymbol{z} is the vector with components $z_{k}=e^{2 \pi i d k / N_{x_{k}}}$, then $(\widehat{\boldsymbol{z}})_{n}=(\widehat{\boldsymbol{x}})_{n-d}$.

Relation between Fourier coefficients and DFT coefficients,

Proposition 2.9

Let $N>2 M, f \in V_{M, T}$, and let $\boldsymbol{x}=\{f(k T / N)\}_{k=0}^{N-1}$ be N uniform samples from f over $[0, T]$. The Fourier coefficients z_{n} of f can be computed from

$$
(z_{0}, z_{1}, \ldots, z_{M}, \underbrace{0, \ldots, 0}_{N-(2 M+1)}, z_{-M}, z_{-M+1}, \ldots, z_{-1})=\frac{1}{N} \operatorname{DFT}_{N} x .
$$

In particular, the total contribution in f from frequency n / T, for $0 \leq n \leq M$, is given by y_{n} and y_{N-n}, where \boldsymbol{y} is the DFT of \boldsymbol{x}.

Proposition 2.12: Any $f \in V_{M, T}$ can be reconstructed uniquely from a uniform set of samples $\{f(k T / N)\}_{k=0}^{N-1}$, as long as $f_{s}>2|\nu|$, where ν denotes the highest frequency in f.

Sampling theorem and the ideal interpolation formula for periodic functions, Theorem

Let f be a periodic function with period T, and assume that f has no frequencies higher than $\nu \mathrm{Hz}$. Then f can be reconstructed exactly from its samples $f\left(-M T_{s}\right), \ldots, f\left(M T_{s}\right)$ (where T_{s} is the sampling period, $N=\frac{T}{T_{s}}$ is the number of samples per period, and $M=2 N+1$) when the sampling rate $f_{s}=\frac{1}{T_{s}}$ is bigger than 2ν. Moreover, the reconstruction can be performed through the formula

$$
f(t)=\sum_{k=-M}^{M} f\left(k T_{s}\right) \frac{1}{N} \frac{\sin \left(\pi\left(t-k T_{s}\right) / T_{s}\right)}{\sin \left(\pi\left(t-k T_{s}\right) / T\right)}
$$

Assume that f has no frequencies higher than $\nu \mathrm{Hz}$. Then f can be reconstructed exactly from its samples
$\ldots, f\left(-2 T_{s}\right), f\left(-T_{s}\right), f(0), f\left(T_{s}\right), f\left(2 T_{s}\right), \ldots$ when the sampling rate is bigger than 2ν. Moreover, the reconstruction can be performed through the formula

$$
f(t)=\sum_{k=-\infty}^{\infty} f\left(k T_{s}\right) \frac{\sin \left(\pi\left(t-k T_{s}\right) / T_{s}\right)}{\pi\left(t-k T_{s}\right) / T_{s}}
$$

Using the DFT to adjust frequencies in sound, Example

```
[x, fs] = forw_comp_rev_DFT('L', 13000, 'lower', 1);
playerobj=audioplayer(x, fs);
playblocking(playerobj);
```


Compression by zeroing out DFT coefficients, Example

```
[x, fs] = forw_comp_rev_DFT('threshold', 20);
playerobj=audioplayer(x, fs);
playblocking(playerobj);
```


Compression by quantizing DFT coefficients, Example

$$
\begin{aligned}
& {[\mathrm{x}, \mathrm{fs}]=\text { forw_comp_rev_DFT('n', 3); }} \\
& \text { playerobj=audioplayer(x, fs); } \\
& \text { playblocking(playerobj); }
\end{aligned}
$$

Let $\boldsymbol{y}=\mathrm{DFT}_{N} \boldsymbol{x}$ be the N-point DFT of \boldsymbol{x}, with N an even number, and let $D_{N / 2}$ be the $(N / 2) \times(N / 2)$-diagonal matrix with entries $\left(D_{N / 2}\right)_{n, n}=e^{-2 \pi i n / N}$ for $0 \leq n<N / 2$. Then we have that

$$
\begin{aligned}
\left(y_{0}, y_{1}, \ldots, y_{N / 2-1}\right) & =\mathrm{DFT}_{N / 2} x^{(e)}+D_{N / 2} \mathrm{DFT}_{N / 2} x^{(o)} \\
\left(y_{N / 2}, y_{N / 2+1}, \ldots, y_{N-1}\right) & =\mathrm{DFT}_{N / 2} x^{(e)}-D_{N / 2} \mathrm{DFT}_{N / 2} x^{(o)}
\end{aligned}
$$

where $\boldsymbol{x}^{(e)}, \boldsymbol{x}^{(o)} \in \mathbb{R}^{N / 2}$ consist of the even- and odd-indexed entries of \boldsymbol{x}, respectively, i.e.

$$
\boldsymbol{x}^{(e)}=\left(x_{0}, x_{2}, \ldots, x_{N-2}\right) \quad \boldsymbol{x}^{(o)}=\left(x_{1}, x_{3}, \ldots, x_{N-1}\right)
$$

Let N be an even number and let $\tilde{\boldsymbol{x}}=\overline{\mathrm{DFT}_{N}} \boldsymbol{y}$. Then we have that

$$
\begin{aligned}
& \left.\left(\tilde{x}_{N / 2}, \tilde{x}_{N / 2+1}, \ldots, \tilde{x}_{N-1}\right)=\overline{\overline{\mathrm{DFT}}_{N / 2}} \boldsymbol{y}^{(e)}-\overline{D_{N / 2} \mathrm{DFT}_{N / 2}}\right) \boldsymbol{y}^{(o)}
\end{aligned}
$$

where $\boldsymbol{y}^{(e)}, \boldsymbol{y}^{(o)} \in \mathbb{R}^{N / 2}$ are the vectors

$$
\boldsymbol{y}^{(e)}=\left(y_{0}, y_{2}, \ldots, y_{N-2}\right) \quad \boldsymbol{y}^{(o)}=\left(y_{1}, y_{3}, \ldots, y_{N-1}\right)
$$

Moreover, $\boldsymbol{x}=\mathrm{IDFT}_{N} \boldsymbol{y}$ can be computed from
$\boldsymbol{x}=\tilde{\boldsymbol{x}} / N=\overline{\mathrm{DFT}_{N}} \boldsymbol{y} / N$

We have that

$$
\begin{aligned}
\mathrm{DFT}_{N} \boldsymbol{x} & =\left(\begin{array}{ll}
I & D_{N / 2} \\
I & -D_{N / 2}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{DFT}_{N / 2} & \mathbf{0} \\
0 & \mathrm{DFT}_{N / 2}
\end{array}\right)\binom{\boldsymbol{x}^{(e)}}{\boldsymbol{x}^{(o)}} \\
\mathrm{IDFT}_{N} \boldsymbol{y} & =\frac{1}{N} \overline{\left(\begin{array}{ll}
I & D_{N / 2} \\
I & -D_{N / 2}
\end{array}\right)\left(\begin{array}{cc}
\overline{\mathrm{DFT}}_{N / 2} & \mathbf{0} \\
0 & \overline{\mathrm{DFT}}_{N / 2}
\end{array}\right)\binom{\boldsymbol{y}^{(e)}}{\boldsymbol{y}^{(o)}}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{DFT}_{N} \mathrm{X} & =\left(\begin{array}{cc}
1 & D_{N / 2} \\
1 & -D_{N / 2}
\end{array}\right)\left(\begin{array}{cccc}
1 & D_{N / 4} & 0 & 0 \\
1 & -D_{N / 4} & 0 & 0 \\
0 & 0 & l & D_{N / 4} \\
0 & 0 & 1 & -D_{N / 4}
\end{array}\right) \times \\
& \left(\begin{array}{cccc}
\mathrm{DFT}_{N / 4} & 0 & 0 & 0 \\
0 & \mathrm{DFT}_{N / 4} & 0 & 0 \\
0 & 0 & \mathrm{DFT}_{N / 4} & 0 \\
0 & 0 & 0 & \mathrm{DFT}_{N / 4}
\end{array}\right)\left(\begin{array}{l}
\boldsymbol{x}^{(e)} \\
\boldsymbol{x}^{(e)} \\
\boldsymbol{x}^{(o)} \\
\left.\boldsymbol{x}^{(o)}\right)
\end{array}\right)
\end{aligned}
$$

where the vectors $\boldsymbol{x}^{(e)}$ and $\boldsymbol{x}^{(0)}$ have been further split into evenand odd-indexed entries. Clearly, if this factorization is repeated, we obtain a factorization

Iterating the factorization 2

$$
\mathrm{DFT}_{N}=\prod_{k=1}^{\log _{2} N}\left(\begin{array}{ccccccc}
I & D_{N / 2^{k}} & \mathbf{0} & 0 & \cdots & \mathbf{0} & \mathbf{0} \tag{1}\\
I & -D_{N / 2^{k}} & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & I & D_{N / 2^{k}} & \cdots & 0 & 0 \\
0 & 0 & I & -D_{N / 2^{k}} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & I & D_{N / 2^{k}} \\
0 & 0 & 0 & 0 & \cdots & I & -D_{N / 2^{k}}
\end{array}\right) P .
$$

```
function y = FFTImpl(x, FFTKernel)
    x = bitreverse(x);
    y = FFTKernel(x);
```

```
function \(y=\) FFTKernelStandard(x)
    \(N=\operatorname{size}(x, 1) ;\)
    if \(N==1\)
    \(y=x ;\)
    else
    \(\mathrm{xe}=\) FFTKernelStandard \((\mathrm{x}(1:(\mathrm{N} / 2)))\);
    xo \(=\) FFTKernelStandard \((x((N / 2+1): N))\);
    \(\mathrm{D}=\exp (-2 * \mathrm{pi} * 1 j *(0:(\mathrm{N} / 2-1)) ' / \mathrm{N})\);
    \(\mathrm{xo}=\mathrm{xo} . * \mathrm{D}\);
    \(y=[x e+x o ; x e-x o] ;\)
    end
```

 \(\mathrm{y}=\) FFTImpl (x, @FFTKernelStandard);