Digital sound and discrete Fourier analysis

@yvind Ryan

Jan 25, 2017

Euclidean inner product, Definition

For complex vectors of length N the Euclidean inner product is
given by

N—1
(x,y) = Xk Yk-
k=0
The associated norm is
N—1
x| = [xK|2

Discrete Fourier analysis, Definition

In Discrete Fourier analysis, a vector x = (xg,...,xy_1) is
represented as a linear combination of the N vectors

1

by = (17 2min/N_g2mi2n/N - 2mikn/N eZmn(Nfl)/N) .
VN

These vectors are called the normalised complex exponentials, or

the pure digital tones of order N. n is also called frequency index.

The whole collection Fy = {¢,, ,’Y;01 is called the N-point Fourier

basis.

the N-point Fourier basis is an orthonormal basis for RV.

Discrete Fourier Transform, Definition

We will denote the change of coordinates matrix from the standard
basis of RN to the Fourier basis Fy by Fy. We will also call this
the (N-point) Fourier matrix.

The matrix /NFy is also called the (N-point) discrete Fourier
transform, or DFT. If x is a vector in RN, then y = DFTx are
called the DFT coefficients of x. (the DFT coefficients are thus the
coordinates in Fpy, scaled with v/N). DFTx is sometimes written
as X.

The Fourier matrix is unitary

Theorem 2.5: The Fourier matrix Fy is the unitary N x N-matrix
with entries given by

1 .
(FN)nk —_ 76—27rmk/N

VN ’
for0<n k<N-1.
Definition 2.6: The matrix Fy/v/N is the inverse of the matrix

DFT = vV NFp. We call this inverse matrix the inverse discrete
Fourier transform, or IDFT.

Direct implementation of the DFT in Matlab

function y = DFTImpl(x)
N = size(x, 1);
y = zeros(size(x));
for n = 1:N
D = exp(2*pi*1li*(n-1)*(0:(N-1))/N);
y(n) = dot(D, x);
end

n has been replaced by n — 1 in this code since n runs from 1 to N
(array indices must start at 1 in Matlab).

Direct implementation of the DFT in Python

def DFTImpl(x):
y = zeros_like(x) .astype(complex)
N = len(x)
for n in xrange(N):
D = exp(-2*pi*n*1j*arange(float(N))/N)
y[n] = dot(D, x)
return y

Properties of the DFT, Theorem

Let x be a real vector of length N. The DFT has the following
properties:

Q (X)y_,=(x),for0<n<N-1.

@ If xx = xy_k for all n (so x is symmetric), then X is a real
vector.

© If xx, = —xny_ for all k (so x is antisymmetric), then X is a
purely imaginary vector.

@ If d is an integer and z is the vector with components
zx = xk—q (the vector x with its elements delayed by d), then
(2), = 2N (%),

© If d is an integer and z is the vector with components

— 2midk/N 3 (%

Zx Xk, then (Z), = (X),_4-

Relation between Fourier coefficients and DFT coefficients,

Proposition

Let N >2M, f € Vi 1, and let x = {f(kT/N)};"_)' be N uniform
samples from f over [0, T]. The Fourier coefficients z, of f can be
computed from

1
(20,21, s ZM, 0, .. .,0 sy Z-MyZ—M+15--- ,271) = fDFTNX.
N—— N
N—(2M+1)

In particular, the total contribution in f from frequency n/ T, for
0 < n<M,is given by y, and yn_,, where y is the DFT of x.

Proposition 2.12: Any f € V) 1 can be reconstructed uniquely

from a uniform set of samples {f(kT/N) 2’;01, as long as

fs > 2|v|, where v denotes the highest frequency in f.

Sampling theorem and the ideal interpolation formula for

periodic functions, Theorem

Let f be a periodic function with period T, and assume that f has
no frequencies higher than vHz. Then f can be reconstructed
exactly from its samples f(—MTs), ..., f(MT;) (where Ts is the
sampling period, N = % is the number of samples per period, and
M = 2N + 1) when the sampling rate f; = % is bigger than 2v.
Moreover, the reconstruction can be performed through the formula

M 1sin(r(t — kT:)/Ts)
0= T e k) T)

k=—M

Sampling theorem and the ideal interpolation formula,

general version, Theorem

Assume that 7 has no frequencies higher than vHz. Then f can be
reconstructed exactly from its samples

oo F(=2Ts), f(—Ts), £(0), f(Ts), f(2Ts), ... when the sampling
rate is bigger than 2v. Moreover, the reconstruction can be
performed through the formula

ft)= > f(kTs)Singt(t_k’}sT)s/)/TsTS)

k=—o00

Using the DFT to adjust frequencies in sound, Example

[x, fs] = forw_comp_rev_DFT(’L’, 13000, ’lower’, 1);
playerobj=audioplayer(x, fs);
playblocking(playerobj) ;

Compression by zeroing out DFT coefficients, Example

[x, fs] = forw_comp_rev_DFT(’threshold’, 20);
playerobj=audioplayer(x, fs);
playblocking(playerobj) ;

Compression by quantizing DFT coefficients, Example

[x, fs] = forw_comp_rev_DFT(’n’, 3);
playerobj=audioplayer(x, fs);
playblocking(playerobj) ;

FFT algorithm when N is even Theorem

Let y = DFT yx be the N-point DFT of x, with N an even
number, and let Dy, be the (N/2) x (N/2)-diagonal matrix with
entries (Dy/2)nn = e2min/N for 0 < n < N/2. Then we have that

(Y0, 1. - - - ¥ny2—-1) = DFTpy/ox{®) + Dy ;,DF Ty /px(%)
(YN/2s YNj2415 - - s YN—1) = DF Ty /ox(®) — Dpy nDF Ty ox(©)

where x(¢), x(©) ¢ RN/2 consist of the even- and odd-indexed
entries of x, respectively, i.e.

x9 = (0,3, om-2) X = (o).

IFFT algorithm when N is even, Theorem

Let N be an even number and let X = DFTy. Then we have that

(%0, %1, ... &ny2—1) = DFT p/oy(®) + Dy nDF Ty 1)y

(2, %N /2415 - - - » &n—1) = DF T oy ®) — Dy nDF Ty 1)y

where y(©) y(©) € RN/2 are the vectors

y(e) = (Yo, Y2, -5 ¥YN-2) y(o) = (1,53, yn-1)-

Moreover, x = IDFT yy can be computed from
x=X/N=DFTyy/N

DFT and IDFT matrix factorizations, theorem

We have that

(! Dnja\ (DFTp 0 x(©
DFTN"_(/ —DN/2>< 0 DFTw/2/) \x(©)

_1(1 Dyp\ (DFTp) 0 y(e)
IDFTNy_N</ _DN/2>< 0 DFTy/2) \y(@

lterating the factorization 1

| Dyg O O
(1 Dpp I —Dynis O 0
DFT"”“(/ —D,\,/2> 0 0 | Dyu |~
0 0 | —Dypy

DFTns O 0 0 x(ee)

0 DFT /4 0 0 x(e0)

0 0 DFT /4 0 x(0e)

0 0 0 DFTn/a/) \x(o°)

where the vectors x(¢) and x(°) have been further split into even-

and odd-indexed entries. Clearly, if this factorization is repeated,
we obtain a factorization

lterating the factorization 2

I Dyjx 0 0 0 0
I —Dpjpx O 0 0 0
log, N | O 0 I Dy 0 0
DFTy = H 0 0 I —Dpjox 0 0 =3
k=1 : : 0 0
0 0 0 0 I Dpyox
0 0 0 0 /

—DN/2k

FFT implementation

function y = FFTImpl(x, FFTKernel)
x = bitreverse(x);
y = FFTKernel(x);

function y = FFTKernelStandard(x)

N = size(x, 1);

if No==1
y = x5

else
xe = FFTKernelStandard(x(1:(N/2)));
xo = FFTKernelStandard(x((N/2+1):N));
D = exp(-2*pi*1j*(0:(N/2-1))’/N);
X0 = X0.%D;
y = [xe + x0; xe - x0];

end

y = FFTImpl(x, O@FFTKernelStandard);

