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Digital filters

What we will define as digital filters is exemplified by the following
procedure:

zn =
1
4
(xn−1 + 2xn + xn+1), for n = 0, 1, . . . , N − 1.



Matrices of filters

Assume that the input vector is periodic with period N, so that
xn+N = xn. It is straightforward to show that the output vector z is
also periodic with period N.

The filter is also clearly a linear transformation and may therefore
be represented by an N × N matrix S that maps the vector
x = (x0, x1, . . . , xN−1) to the vector z = (z0, z1, . . . , zN−1), i.e., we
have z = Sx .

The elements of S can be found by row as

S =
1
4



2 1 0 0 · · · 0 0 0 1
1 2 1 0 · · · 0 0 0 0
0 1 2 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1 2 1
1 0 0 0 · · · 0 0 1 2


.



Circulant Toeplitz matrices

The matrix we just stated is called a circulant Toeplitz matrix. The
general definition is as follows and may seem complicated, but is in
fact quite straightforward:

Definition 3.1 An N × N-matrix S is called a Toeplitz matrix if its
elements are constant along each diagonal. More formally,
Sk,l = Sk+s,l+s for all nonnegative integers k , l , and s such that
both k + s and l + s lie in the interval [0,N − 1]. A Toeplitz matrix
is said to be circulant if in addition

S(k+s) mod N,(l+s) mod N = Sk,l

for all integers k , l in the interval [0,N − 1], and all s (Here mod
denotes the remainder modulo N).



More general expression for a filter

zn =
∑
k

tkxn−k .

x denotes the input vector.
z the output vector.
tk denotes the filter coefficients.



Filter in Matlab

Assume that t0, t1, ..., tkmax are the only non-zero filter
coefficients.

z = zeros(1, N);
for n = kmax:(N-1)

for k = 0:kmax
z(n + 1) = z(n + 1) + t(k + 1)*x(n - k + 1);

end
end



Filter in Python

z = zeros_like(x)
for n in range(kmax,N):

for k in range(kmax + 1):
z[n] += t[k]*x[n - k]



Filters as matrices, Proposition 3.2

Any operation defined by Equation (3.3) is a linear transformation
which transforms a vector of period N to another of period N. It
may therefore be represented by an N × N matrix S that maps the
vector x = (x0, x1, . . . , xN−1) to the vector z = (z0, z1, . . . , zN−1),
i.e., we have z = Sx . Moreover, the matrix S is a circulant
Toeplitz matrix, and the first column s of this matrix is given by

sk =

{
tk , if 0 ≤ k < N/2;
tk−N if N/2 ≤ k ≤ N − 1.

In other words, the first column of S can be obtained by placing
the coefficients in (3.3) with positive indices at the beginning of s,
and the coefficients with negative indices at the end of s.



Compact notation for filters, Definition 3.3

Let kmin, kmax be the smallest and biggest index of a filter
coefficient in Equation (3.3) so that tk 6= 0 (if no such values exist,
let kmin = kmax = 0), i.e.

zn =
kmax∑

k=kmin

tkxn−k .

We will use the following compact notation for S :

S = {tkmin
, . . . , t−1, t0, t1, . . . , tkmax}.

In other words, the entry with index 0 has been underlined, and
only the nonzero tk ’s are listed. kmax and kmin are also called the
start and end indices of S . By the length of S , denoted l(S), we
mean the number kmax − kmin.



Convolution of vectors, Definition 3.4

By the convolution of two vectors t ∈ RM and x ∈ RN we mean
the vector t ∗ x ∈ RM+N−1 defined by

(t ∗ x)n =
∑
k

tkxn−k ,

where we only sum over k so that 0 ≤ k < M, 0 ≤ n − k < N.



Using convolution to compute filters Proposition 3.5

Assume that S is a filter on the form

S = {t−L, . . . , t0, . . . , tL}.

If x ∈ RN , then Sx can be computed as follows:

Form the vector
x̃ = (xN−L, · · · , xN−1, x0, · · · , xN−1, x0, · · · , xL−1) ∈ RN+2L.
Use the conv function to compute z̃ = t ∗ x̃ ∈ RM+N+2L−1.
We have that Sx = (z̃2L, . . . , z̃M+N−2).



Convolution and polynomials Proposition 3.6

Assume that p(x) = aNx
N + aN−1xN−1 + . . . , a1x + a0 and

q(x) = bMxM + bM−1xM−1 + . . . , b1x + b0 are polynomials of
degree N and M respectively. Then the coefficients of the
polynomial pq can be obtained by computing conv(a,b).



Digital filters and vector frequency response, Definition 3.7

A linear transformation S : RN 7→ RN is a said to be a digital filter,
or simply a filter, if, for any integer n in the range 0 ≤ n ≤ N − 1
there exists a value λS,n so that

S (φn) = λS ,nφn,

i.e., the N Fourier vectors are the eigenvectors of S . The vector of
(eigen)values λS = (λS ,n)

N−1
n=0 is often referred to as the (vector)

frequency response of S .



The product of two filters is a filter, Corollary 3.8

The product of two digital filters is again a digital filter. Moreover,
all digital filters commute, i.e. if S1 and S2 are digital filters,
S1S2 = S2S1.



Time-invariance, Definition 3.9

Assume that S is a linear transformation from RN to RN . Let x be
input to S , and y = Sx the corresponding output. Let also z , w
be delays of x , y with d elements (i.e. zn = xn−d , wn = yn−d). S
is said to be time-invariant if, for any d and x , Sz = w (i.e. S
sends the delayed input vector to the delayed output vector).



Characterizations of digital filters, Theorem 3.10

The following are equivalent characterizations of a digital filter:

S = (FN)
HDFN for a diagonal matrix D, i.e. the Fourier basis

is a basis of eigenvectors for S .
S is a circulant Toeplitz matrix.
S is linear and time-invariant.



Connection between frequency response and the matrix,
Theorem 3.11

Any digital filter is uniquely characterized by the values in the first
column of its matrix. Moreover, if s is the first column in S , the
frequency response of S is given by

λS = DFTNs.

Conversely, if we know the frequency response λS , the first column
s of S is given by

s = IDFTNλS .



Connection between vector- and continuous frequency
response, Theorem 3.14

The function λS(ω) defined on [0, 2π) by

λS(ω) =
∑
k

tke
−ikω,

where tk are the filter coefficients of S , satisfies

λS ,n = λS(2πn/N) for n = 0, 1, . . . , N − 1

for any N. In other words, regardless of N, the vector frequency
response lies on the curve λS .



Higher and lower frequencies

Observation 3.15 (Plotting the frequency response): When
plotting the frequency response on [0, 2π), angular frequencies near
0 and 2π correspond to low frequencies, angular frequencies near π
correspond to high frequencies

Observation 3.16 (higher and lower frequencies): When
plotting the frequency response on [−π, π), angular frequencies
near 0 correspond to low frequencies, angular frequencies near ±π
correspond to high frequencies.



Properties of the frequency response, Theorem 3.18

We have that

The continuous frequency response satisfies λS(−ω) = λS(ω).
If S is a digital filter, ST is also a digital filter. Moreover, if
the frequency response of S is λS(ω), then the frequency
response of ST is λS(ω).
If S is symmetric, λS is real. Also, if S is antisymmetric (the
element on the opposite side of the diagonal is the same, but
with opposite sign), λS is purely imaginary.
A digital filter S is an invertible if and only if λS,n 6= 0 for all n.
In that case S−1 is also a digital filter, and λS−1,n = 1/λS,n.
If S1 and S2 are digital filters, then S1S2 also is a digital filter,
and λS1S2(ω) = λS1(ω)λS2(ω).



Lowpass and highpass filters, definition 3.21

A filter S is called

a lowpass filter if λS(ω) is large when ω is close to 0, and
λS(ω) ≈ 0 when ω is close to π (i.e. S keeps low frequencies
and annhilates high frequencies),
a highpass filter if λS(ω) is large when ω is close to π, and
λS(ω) ≈ 0 when ω is close to 0 (i.e. S keeps high frequencies
and annhilates low frequencies),
a bandpass filter if λS(ω) is large within some interval
[a, b] ⊂ [0, 2π], and λS(ω) ≈ 0 outside this interval.



Passing between lowpass- and highpass filters

Observation 3.22: Assume that S2 is obtained by adding an
alternating sign to the filter coefficicents of S1. If S1 is a lowpass
filter, then S2 is a highpass filter. If S1 is a highpass filter, then S2
is a lowpass filter.



Adding echo to sound 1

[N,nchannels] = size(x);
z = zeros(N,nchannels);
z(1:d,:) = x(1:d,:);
z((d+1):N,:) = x((d+1):N,:)+c*x(1:(N-d),:);



Adding echo to sound 2
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Figure: The frequency response of a filter which adds an echo with
damping factor c = 0.1 and delay d = 10.



Moving average filters
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Figure: The frequency response of moving average filters with L = 1,
L = 5, and L = 20.



Dropping filter coefficients in ideal lowpass filters
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Figure: The frequency response which results by including the first 1/32,
the first 1/16, the first 1/4, and and all of the filter coefficients in the
ideal lowpass filter.



Filters and the MP3 standard
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Figure: Frequency responses of some filters used in the MP3 standard.
The prototype filter is shown left. The other frequency responses at right
are simply shifted copies of this.



Reducing treble and bass

Reducing the treble: Let x be the samples of a digital sound, and
let S be a filter with coefficients taken from row k of Pascals
triangle. Then Sx has reduced treble when compared to x .

Pascals triangle and reducing the bass: Let x be the samples of
a digital sound, and let S be a filter with filter coefficients taken
from row k of Pascal’s triangle, and add an alternating sign to the
filter coefficients. Then Sx has reduced bass when compared to x .



Reducing the treble by picking filter coefficients from
Pascals triangle
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Figure: The frequency response of filters corresponding to iterating the
moving average filter {1/2, 1/2} k = 5 and k = 30 times (i.e. using row
k in Pascal’s triangle).


