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Google earth type example, Figure 5.1

Figure: A view of Earth from space, together with versions of the image
where we have zoomed in.



Resolution space
Definition 5.2 (The resolution space V0): Let N be a natural
number. The resolution space V0 is defined as the space of
functions defined on the interval [0,N) that are constant on each
subinterval [n, n + 1) for n = 0, . . . , N − 1.
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Figure: A piecewise constant function.



The function φ, Lemma 5.3
Define the function φ(t) by

φ(t) =

{
1, if 0 ≤ t < 1;
0, otherwise;

and set φn(t) = φ(t − n) for any integer n. The space V0 has
dimension N, and the N functions {φn}N−1

n=0 form an orthonormal
basis for V0 with respect to the standard inner product

〈f , g〉 =
∫ N

0
f (t)g(t) dt.

In particular, any f ∈ V0 can be represented as

f (t) =
N−1∑
n=0

cnφn(t)

for suitable coefficients (cn)N−1
n=0 . The function φn is referred to as

the characteristic function of the interval [n, n + 1).



Refined resolution spaces, Definition 5.4

The space Vm for the interval [0,N) is the space of piecewise linear
functions defined on [0,N) that are constant on each subinterval
[n/2m, (n + 1)/2m) for n = 0, 1, . . . , 2mN − 1.



Basis for Vm, Lemma 5.5

Let [0,N) be a given interval with N some positive integer. Then
the dimension of Vm is 2mN. The functions

φm,n(t) = 2m/2φ(2mt − n), for n = 0, 1, . . . , 2mN − 1

form an orthonormal basis for Vm, which we will denote by φm.
Any function f ∈ Vm can thus be represented uniquely as

f (t) =
2mN−1∑
n=0

cm,nφm,n(t).



Resolution spaces and approximation, Theorem 5.6

Let f be a given function that is continuous on the interval [0,N].
Given ε > 0, there exists an integer m ≥ 0 and a function g ∈ Vm

such that ∣∣f (t)− g(t)
∣∣ ≤ ε

for all t in [0,N].



Resolution spaces and approximation, Corollary 5.7
Let f be a given continuous function on the interval [0,N]. Then

lim
m→∞

‖f − projVm
(f )‖ = 0.
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Figure: Comparison of the function defined by f (t) = t2 on [0, 1] with
the projection onto V2, V4, and V6, respectively.



Resolution spaces are nested, Lemma 5.8

The spaces V0, V1, . . . , Vm, . . . are nested, i.e.

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm · · · .



Detail spaces Definition 5.9

The orthogonal complement of Vm−1 in Vm is denoted Wm−1. All
the spaces Wk are also called detail spaces, or error spaces.



The function ψ, Definition 5.10

We define

ψ(t) =
(
φ1,0(t)− φ1,1(t)

)
/
√
2 = φ(2t)− φ(2t − 1),

and

ψm,n(t) = 2m/2ψ(2mt − n), for n = 0, 1, . . . , 2mN − 1.



Orthonormal bases, Lemma 5.11
For 0 ≤ n < N we have that

projV0(φ1,n) =

{
φ0,n/2/

√
2, if n is even;

φ0,(n−1)/2/
√
2, if n is odd.

projW0(φ1,n) =

{
ψ0,n/2/

√
2, if n is even;

−ψ0,(n−1)/2/
√
2, if n is odd.

In particular, ψ0 is an orthonormal basis for W0. More generally, if
g1 =

∑2N−1
n=0 c1,nφ1,n ∈ V1, then

projV0(g1) =
N−1∑
n=0

c0,nφ0,n, where c0,n =
c1,2n + c1,2n+1√

2

projW0(g1) =
N−1∑
n=0

w0,nψ0,n, where w0,n =
c1,2n − c1,2n+1√

2
.



Projections, Proposition 5.12

Let f (t) ∈ V1, and let fn,1 be the value f attains on [n, n + 1/2),
and fn,2 the value f attains on [n + 1/2, n + 1). Then projV0(f ) is
the function in V0 which equals (fn,1 + fn,2)/2 on the interval
[n, n + 1). Moreover, projW0(f ) is the function in W0 which is
(fn,1 − fn,2)/2 on [n, n + 1/2), and −(fn,1 − fn,2)/2 on
[n + 1/2, n + 1).



In the same way as in Lemma 5.11, it is possible to show that

projWm−1(φm,n) =

{
ψm−1,n/2/

√
2, if n is even;

−ψm−1,(n−1)/2/
√
2, if n is odd.

From this it follows as before that ψm is an orthonormal basis for
Wm. If {Bi}ni=1 are mutually independent bases, we will in the
following write (B1,B2, . . . ,Bn) for the basis where the basis
vectors from Bi are included before Bj when i < j . With this
notation, the decomposition in Equation (5.7) can be restated as
follows

Theorem 5.13 (Bases for Vm): φm and (φ0,ψ0,ψ1, · · · ,ψm−1)
are both bases for Vm.



Vanishing moment, Observation 5.14

We have that
∫ N
0 ψ(t)dt = 0.



Discrete Wavelet Transform, Definition 5.15

The DWT (Discrete Wavelet Transform) is defined as the change
of coordinates from φ1 to (φ0,ψ0). More generally, the m-level
DWT is defined as the change of coordinates from φm to
(φ0,ψ0,ψ1, · · · ,ψm−1). In an m-level DWT, the change of
coordinates from

(φm−k+1,ψm−k+1,ψm−k+2, · · · ,ψm−1)

to

(φm−k ,ψm−k ,ψm−k+1, · · · ,ψm−1)

is also called the k ’th stage. The (m-level) IDWT (Inverse Discrete
Wavelet Transform) is defined as the change of coordinates the
opposite way.



Expression for the DWT, Theorem 5.16
If gm = gm−1 + em−1 with

gm =
2mN−1∑
n=0

cm,nφm,n ∈ Vm,

gm−1 =
2m−1N−1∑

n=0

cm−1,nφm−1,n ∈ Vm−1

em−1 =
2m−1N−1∑

n=0

wm−1,nψm−1,n ∈Wm−1,

then the change of coordinates from φm to (φm−1,ψm−1) (i.e. first
stage in a DWT) is given by

(
cm−1,n
wm−1,n

)
=

(
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

)(
cm,2n
cm,2n+1

)



Expression for the IDWT

Conversely, the change of coordinates from (φm−1,ψm−1) to φm

(i.e. the last stage in an IDWT) is given by

(
cm,2n
cm,2n+1

)
=

(
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

)(
cm−1,n
wm−1,n

)



Reordering of basis

If we had defined

Cm = {φm−1,0, ψm−1,0, φm−1,1, ψm−1,1, · · · ,
φm−1,2m−1N−1, ψm−1,2m−1N−1}.

i.e. we have reordered the basis vectors in (φm−1,ψm−1) (the
subscript m is used since Cm is a basis for Vm), we have that
G = Pφm←Cm is the matrix where

(
1√
2

1√
2

1√
2
− 1√

2

)
is repeated along the main diagonal 2m−1N times. Also,
H = PCm←φm is the same matrix. Such matrices are called block
diagonal matrices. This particular block diagonal matrix is clearly
orthogonal.



DWT and IDWT kernel transformations, Definition 5.17

The matrices H = PCm←φm and G = Pφm←Cm are called the DWT
and IDWT kernel transformations. The DWT and the IDWT can
be expressed in terms of these kernel transformations by

DWT = P(φm−1,ψm−1)←CmH

IDWT = GPCm←(φm−1,ψm−1),

respectively, where

P(φm−1,ψm−1)←Cm is a permutation matrix which groups the
even elements first, then the odd elements,
PCm←(φm−1,ψm−1) is a permutation matrix which places the
first half at the even indices, the last half at the odd indices.



Illustration of the wavelet transform

φm
//

""

φm−1
//

##

φm−2
//

##

· · · // φ1
//

  

φ0

ψm−1 ψm−2 ψm−3 ψ0

Figure: Illustration of a wavelet transform.



Kernel transformation for the Haar wavelet, Matlab version

We will use a DWT kernel function which takes as input the
coordinates (cm,0, cm,1, . . .), and returns the coordinates
(cm−1,0,wm−1,0, cm−1,1,wm−1,1, . . .), i.e. computes one stage of
the DWT. This is a different order for the coordinates than that
given by the basis (φm,ψm). The reason is that it is easier with
this new order to compute the DWT in-place. We assume for
simplicity that N is even:

function x = dwt_kernel_haar(x, bd_mode)
x = x/sqrt(2);
N = size(x, 1);
for k = 1:2:(N-1)

x(k:(k+1), :) = [x(k, :) + x(k+1, :); x(k, :) - x(k+1, :)];
end



Kernel transformation for the Haar wavelet, Python version

def dwt_kernel_haar(x, bd_mode):
x /= sqrt(2)
for k in range(2,len(x) - 1,2):

a, b = x[k] + x[k+1], x[k] - x[k+1]
x[k], x[k+1] = a, b



Remarks

The code above accepts two-dimensional data. Thus, the
function may be applied simultaneously to all channels in a
sound, as the FFT.
The mysterious parameters bd_mode and dual will be
explained later in Chapter 6.
When N is even, idwt_kernel_haar can be implemented
with the exact same code.
The reason for using a general kernel function will be apparent
later, when we change to different types of wavelets.



It is not meant that you call this kernel function directly. Instead
every time you apply the DWT call the function

DWTImpl(x, m, wave_name, bd_mode, dual)

x is the input to the DWT
m is the number of levels.
wave_name is a name identifying the wavelet. A function
called find_kernel maps this name to a kernel function
(find_kernel maps haar to the kernel function
dwt_kernel_haar).



General DWT implementation, Matlab version

The kernel function is then used as input to the following function:

function x=DWTImpl_internal(x, m, dwt_kernel, bd_mode)
for res=0:(m - 1)

x(1:2^res:end, :) = dwt_kernel(x(1:2^res:end, :), bd_mode);
end
x = reorganize_coeffs_forward(x, m);

end

The kernel function is invoked one time for each resolution.
The function reorganize_coeffs_forward reorders the
coordinates (i.e. makes the coordinate change between Cm and
(φm,ψm).



General DWT implementation, Python version

def DWTImpl_internal(x, m, f, bd_mode):
for res in range(m):

f(x[0::2**res], bd_mode)
reorganize_coeffs_forward(x, m)



General IDWT implementation

IDWTImpl(x, m, wave_name, bd_mode, dual)

function x=IDWTImpl_internal(x, m, f, bd_mode)
x = reorganize_coeffs_reverse(x, m);
for res = (m - 1):(-1):0

x(1:2^res:end, :) = f(x(1:2^res:end, :), bd_mode);
end

end



Example 5.10, plotting a sound and its DWT
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Figure: The 217 first sound samples (left) and the DWT coefficients
(right) of the sound castanets.wav.



Example 5.10, plotting the error
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Figure: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) in
the sound file castanets.wav, for m = 1 and m = 2, respectively.



Example 5.11
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Figure: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) for
N = 1024 when f is a square wave, the linear function
f (t) = 1− 2|1/2− t/N|, and f (t) = 1/2+ cos(2πt/N)/2, respectively.
The detail is indicated for m = 6 and m = 8.


