Motivation for wavelets and some simple examples

Øyvind Ryan

Feb 14, 2017

Google earth type example, Figure

Figure: A view of Earth from space, together with versions of the image where we have zoomed in.

Resolution space

Definition 5.2 (The resolution space V_{0}): Let N be a natural number. The resolution space V_{0} is defined as the space of functions defined on the interval $[0, N)$ that are constant on each subinterval $[n, n+1)$ for $n=0, \ldots, N-1$.

Figure: A piecewise constant function.

Define the function $\phi(t)$ by

$$
\phi(t)= \begin{cases}1, & \text { if } 0 \leq t<1 \\ 0, & \text { otherwise }\end{cases}
$$

and set $\phi_{n}(t)=\phi(t-n)$ for any integer n. The space V_{0} has dimension N, and the N functions $\left\{\phi_{n}\right\}_{n=0}^{N-1}$ form an orthonormal basis for V_{0} with respect to the standard inner product

$$
\langle f, g\rangle=\int_{0}^{N} f(t) g(t) d t
$$

In particular, any $f \in V_{0}$ can be represented as

$$
f(t)=\sum_{n=0}^{N-1} c_{n} \phi_{n}(t)
$$

for suitable coefficients $\left(c_{n}\right)_{n=0}^{N-1}$. The function ϕ_{n} is referred to as the characteristic function of the interval $[n, n+1)$.

The space V_{m} for the interval $[0, N)$ is the space of piecewise linear functions defined on $[0, N)$ that are constant on each subinterval $\left[n / 2^{m},(n+1) / 2^{m}\right)$ for $n=0,1, \ldots, 2^{m} N-1$.

Let $[0, N)$ be a given interval with N some positive integer. Then the dimension of V_{m} is $2^{m} N$. The functions

$$
\phi_{m, n}(t)=2^{m / 2} \phi\left(2^{m} t-n\right), \quad \text { for } n=0,1, \ldots, 2^{m} N-1
$$

form an orthonormal basis for V_{m}, which we will denote by ϕ_{m}. Any function $f \in V_{m}$ can thus be represented uniquely as

$$
f(t)=\sum_{n=0}^{2^{m} N-1} c_{m, n} \phi_{m, n}(t)
$$

Let f be a given function that is continuous on the interval $[0, N]$. Given $\epsilon>0$, there exists an integer $m \geq 0$ and a function $g \in V_{m}$ such that

$$
|f(t)-g(t)| \leq \epsilon
$$

for all t in $[0, N]$.

Resolution spaces and approximation, Corollary

Let f be a given continuous function on the interval $[0, N]$. Then

$$
\lim _{m \rightarrow \infty}\left\|f-\operatorname{proj}_{V_{m}}(f)\right\|=0
$$

Resolution spaces are nested, Lemma

The spaces $V_{0}, V_{1}, \ldots, V_{m}, \ldots$ are nested, i.e.

$$
V_{0} \subset V_{1} \subset V_{2} \subset \cdots \subset V_{m} \cdots
$$

Detail spaces Definition

The orthogonal complement of V_{m-1} in V_{m} is denoted W_{m-1}. All the spaces W_{k} are also called detail spaces, or error spaces.

We define

$$
\psi(t)=\left(\phi_{1,0}(t)-\phi_{1,1}(t)\right) / \sqrt{2}=\phi(2 t)-\phi(2 t-1)
$$

and

$$
\psi_{m, n}(t)=2^{m / 2} \psi\left(2^{m} t-n\right), \quad \text { for } n=0,1, \ldots, 2^{m} N-1
$$

Orthonormal bases, Lemma

For $0 \leq n<N$ we have that

$$
\begin{aligned}
& \operatorname{proj}_{V_{0}}\left(\phi_{1, n}\right)= \begin{cases}\phi_{0, n / 2} / \sqrt{2}, & \text { if } n \text { is even; } \\
\phi_{0,(n-1) / 2} / \sqrt{2}, & \text { if } n \text { is odd. }\end{cases} \\
& \operatorname{proj}_{W_{0}}\left(\phi_{1, n}\right)= \begin{cases}\psi_{0, n / 2} / \sqrt{2}, & \text { if } n \text { is even; } \\
-\psi_{0,(n-1) / 2} / \sqrt{2}, & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

In particular, $\boldsymbol{\psi}_{0}$ is an orthonormal basis for W_{0}. More generally, if $g_{1}=\sum_{n=0}^{2 N-1} c_{1, n} \phi_{1, n} \in V_{1}$, then

$$
\begin{aligned}
& \operatorname{proj}_{v_{0}}\left(g_{1}\right)=\sum_{n=0}^{N-1} c_{0, n} \phi_{0, n}, \text { where } c_{0, n}=\frac{c_{1,2 n}+c_{1,2 n+1}}{\sqrt{2}} \\
& \operatorname{proj}_{w_{0}}\left(g_{1}\right)=\sum_{n=0}^{N-1} w_{0, n} \psi_{0, n}, \text { where } w_{0, n}=\frac{c_{1,2 n}-c_{1,2 n+1}}{\sqrt{2}} .
\end{aligned}
$$

Let $f(t) \in V_{1}$, and let $f_{n, 1}$ be the value f attains on $[n, n+1 / 2)$, and $f_{n, 2}$ the value f attains on $[n+1 / 2, n+1)$. Then $\operatorname{proj}_{v_{0}}(f)$ is the function in V_{0} which equals $\left(f_{n, 1}+f_{n, 2}\right) / 2$ on the interval $[n, n+1)$. Moreover, $\operatorname{proj}_{W_{0}}(f)$ is the function in W_{0} which is
$\left(f_{n, 1}-f_{n, 2}\right) / 2$ on $[n, n+1 / 2)$, and $-\left(f_{n, 1}-f_{n, 2}\right) / 2$ on $[n+1 / 2, n+1)$.

In the same way as in Lemma 5.11, it is possible to show that

$$
\operatorname{proj}_{W_{m-1}}\left(\phi_{m, n}\right)= \begin{cases}\psi_{m-1, n / 2} / \sqrt{2}, & \text { if } n \text { is even; } \\ -\psi_{m-1,(n-1) / 2} / \sqrt{2}, & \text { if } n \text { is odd }\end{cases}
$$

From this it follows as before that $\boldsymbol{\psi}_{m}$ is an orthonormal basis for W_{m}. If $\left\{\mathcal{B}_{i}\right\}_{i=1}^{n}$ are mutually independent bases, we will in the following write $\left(\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{n}\right)$ for the basis where the basis vectors from \mathcal{B}_{i} are included before \mathcal{B}_{j} when $i<j$. With this notation, the decomposition in Equation (5.7) can be restated as follows

Theorem 5.13 (Bases for V_{m}): ϕ_{m} and $\left(\phi_{0}, \psi_{0}, \psi_{1}, \cdots, \psi_{m-1}\right)$ are both bases for V_{m}.

Vanishing moment, Observation

We have that $\int_{0}^{N} \psi(t) d t=0$.

Discrete Wavelet Transform, Definition

The DWT (Discrete Wavelet Transform) is defined as the change of coordinates from ϕ_{1} to $\left(\phi_{0}, \psi_{0}\right)$. More generally, the m-level DWT is defined as the change of coordinates from ϕ_{m} to $\left(\phi_{0}, \psi_{0}, \psi_{1}, \cdots, \psi_{m-1}\right)$. In an m-level DWT, the change of coordinates from

$$
\left(\boldsymbol{\phi}_{m-k+1}, \boldsymbol{\psi}_{m-k+1}, \boldsymbol{\psi}_{m-k+2}, \cdots, \boldsymbol{\psi}_{m-1}\right)
$$

to

$$
\left(\phi_{m-k}, \boldsymbol{\psi}_{m-k}, \boldsymbol{\psi}_{m-k+1}, \cdots, \boldsymbol{\psi}_{m-1}\right)
$$

is also called the k 'th stage. The (m-level) IDWT (Inverse Discrete Wavelet Transform) is defined as the change of coordinates the opposite way.

Expression for the DWT, Theorem

If $g_{m}=g_{m-1}+e_{m-1}$ with

$$
\begin{gathered}
g_{m}=\sum_{n=0}^{2^{m} N-1} c_{m, n} \phi_{m, n} \in V_{m} \\
g_{m-1}=\sum_{n=0}^{2^{m-1} N-1} c_{m-1, n} \phi_{m-1, n} \in V_{m-1} \\
e_{m-1}=\sum_{n=0}^{2^{m-1} N-1} w_{m-1, n} \psi_{m-1, n} \in W_{m-1},
\end{gathered}
$$

then the change of coordinates from ϕ_{m} to $\left(\phi_{m-1}, \psi_{m-1}\right)$ (i.e. first stage in a DWT) is given by

$$
\binom{c_{m-1, n}}{w_{m-1, n}}=\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right)\binom{c_{m, 2 n}}{c_{m, 2 n+1}}
$$

Conversely, the change of coordinates from $\left(\phi_{m-1}, \psi_{m-1}\right)$ to ϕ_{m} (i.e. the last stage in an IDWT) is given by

$$
\binom{c_{m, 2 n}}{c_{m, 2 n+1}}=\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right)\binom{c_{m-1, n}}{w_{m-1, n}}
$$

If we had defined

$$
\begin{aligned}
\mathcal{C}_{m}=\{ & \phi_{m-1,0}, \psi_{m-1,0}, \phi_{m-1,1}, \psi_{m-1,1}, \cdots, \\
& \left.\phi_{m-1,2^{m-1} N-1}, \psi_{m-1,2^{m-1} N-1}\right\} .
\end{aligned}
$$

i.e. we have reordered the basis vectors in $\left(\phi_{m-1}, \boldsymbol{\psi}_{m-1}\right)$ (the subscript m is used since \mathcal{C}_{m} is a basis for V_{m}), we have that $G=P_{\phi_{m} \leftarrow \mathcal{C}_{m}}$ is the matrix where

$$
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

is repeated along the main diagonal $2^{m-1} N$ times. Also, $H=P_{\mathcal{C}_{m} \leftarrow \phi_{m}}$ is the same matrix. Such matrices are called block diagonal matrices. This particular block diagonal matrix is clearly orthogonal.

The matrices $H=P_{\mathcal{C}_{m} \leftarrow \phi_{m}}$ and $G=P_{\phi_{m} \leftarrow \mathcal{C}_{m}}$ are called the DWT and IDWT kernel transformations. The DWT and the IDWT can be expressed in terms of these kernel transformations by

$$
\begin{aligned}
\mathrm{DWT} & =P_{\left(\phi_{m-1}, \psi_{m-1}\right) \leftarrow \mathcal{C}_{m}} H \\
\mathrm{IDWT} & =G P_{\mathcal{C}_{m} \leftarrow\left(\phi_{m-1}, \psi_{m-1}\right)}
\end{aligned}
$$

respectively, where

- $P_{\left(\phi_{m-1}, \psi_{m-1}\right) \leftarrow \mathcal{C}_{m}}$ is a permutation matrix which groups the even elements first, then the odd elements,
- $P_{\mathcal{C}_{m} \leftarrow\left(\phi_{m-1}, \psi_{m-1}\right)}$ is a permutation matrix which places the first half at the even indices, the last half at the odd indices.

Illustration of the wavelet transform

Figure: Illustration of a wavelet transform.

We will use a DWT kernel function which takes as input the coordinates ($c_{m, 0}, c_{m, 1}, \ldots$), and returns the coordinates ($c_{m-1,0}, w_{m-1,0}, c_{m-1,1}, w_{m-1,1}, \ldots$), i.e. computes one stage of the DWT. This is a different order for the coordinates than that given by the basis $\left(\phi_{m}, \boldsymbol{\psi}_{m}\right)$. The reason is that it is easier with this new order to compute the DWT in-place. We assume for simplicity that N is even:

```
function \(\mathrm{x}=\) dwt_kernel_haar(x, bd_mode)
    \(\mathrm{x}=\mathrm{x} / \operatorname{sqrt}(2)\);
    \(N=\operatorname{size}(x, 1)\);
    for \(k=1: 2:(N-1)\)
        \(x(k:(k+1),:(x)=[k,:)+x(k+1,:) ; x(k,:)-x(k+1\),
    end
```

```
def dwt_kernel_haar(x, bd_mode):
    x /= sqrt(2)
    for k in range(2,len(x) - 1,2):
    a, b = x[k] + x[k+1], x[k] - x[k+1]
    x[k], x[k+1] = a, b
```

- The code above accepts two-dimensional data. Thus, the function may be applied simultaneously to all channels in a sound, as the FFT.
- The mysterious parameters bd_mode and dual will be explained later in Chapter 6.
- When N is even, idwt_kernel_haar can be implemented with the exact same code.
- The reason for using a general kernel function will be apparent later, when we change to different types of wavelets.

It is not meant that you call this kernel function directly. Instead every time you apply the DWT call the function

```
DWTImpl(x, m, wave_name, bd_mode, dual)
```

- x is the input to the DWT
- m is the number of levels.
- wave_name is a name identifying the wavelet. A function called find_kernel maps this name to a kernel function (find_kernel maps haar to the kernel function dwt_kernel_haar).

General DWT implementation, Matlab version

The kernel function is then used as input to the following function:

```
function x=DWTImpl_internal(x, m, dwt_kernel, bd_mode)
    for res=0:(m - 1)
        x(1:2^res:end, :) = dwt_kernel(x(1:2^res:end, :), bd_mo
    end
    x = reorganize_coeffs_forward(x, m);
end
```

- The kernel function is invoked one time for each resolution.
- The function reorganize_coeffs_forward reorders the coordinates (i.e. makes the coordinate change between \mathcal{C}_{m} and $\left(\phi_{m}, \boldsymbol{\psi}_{m}\right)$.

General DWT implementation, Python version

```
    def DWTImpl_internal(x, m, f, bd_mode):
    for res in range(m):
        f(x[0::2**res], bd_mode)
    reorganize_coeffs_forward(x, m)
```


General IDWT implementation

IDWTImpl(x, m, wave_name, bd_mode, dual)

```
function \(x=I D W T I m p l \_i n t e r n a l\left(x, m, f, b d \_m o d e\right)\)
    \(\mathrm{x}=\) reorganize_coeffs_reverse (x, m);
    for res \(=(m-1):(-1): 0\)
        \(x\left(1: 2^{\wedge}\right.\) res:end, \(\left.:\right)=f\left(x\left(1: 2^{\wedge} r e s: e n d,:\right)\right.\), bd_mode \() ;\)
    end
    end
```


Example 5.10, plotting a sound and its DWT

Figure: The 2^{17} first sound samples (left) and the DWT coefficients (right) of the sound castanets.wav.

Example 5.10, plotting the error

Figure: The error (i.e. the contribution from $W_{0} \oplus W_{1} \oplus \cdots \oplus W_{m-1}$) in the sound file castanets.wav, for $m=1$ and $m=2$, respectively.

Example 5.11

Figure: The error (i.e. the contribution from $W_{0} \oplus W_{1} \oplus \cdots \oplus W_{m-1}$) for $N=1024$ when f is a square wave, the linear function $f(t)=1-2|1 / 2-t / N|$, and $f(t)=1 / 2+\cos (2 \pi t / N) / 2$, respectively.

