
Digital images

Øyvind Ryan

Mar 9, 2017

Basic facts

Light is electromagnetic radiation with wavelengths in the range
400–700 nm (1 nm is 10−9 m): Violet has wavelength 400 nm and
red has wavelength 700 nm. White light contains roughly equal
amounts of all wave lengths.

The resolution of a medium is the number of dots per inch (dpi).
The number of dots per inch for monitors is usually in the range
70–120, while for printers it is in the range 150–4800 dpi. The
horizontal and vertical densities may be different. On a monitor the
dots are usually referred to as pixels (picture elements).

The resolution of a scanner usually varies in the range 75 dpi to
9600 dpi, and the color is represented with up to 48 bits per dot.

The number of pixels recorded by a digital camera usually varies in
the range 320× 240 to 6000× 4000 with 24 bits of color
information per pixel. The total number of pixels varies in the
range 76 800 to 24 000 000 (0.077 megapixels to 24 megapixels).

Digital image
A digital image P is a matrix of intensity values {pi ,j}M,N

i ,j=1. For
grey-level images, the value pi ,j is a single number, while for color
images each pi ,j is a vector of three or more values. If the image is
recorded in the rgb-model, each pi ,j is a vector of three values,

pi ,j = (ri ,j , gi ,j , bi ,j),

that denote the amount of red, green and blue at the point (i , j).

Figure: Our test image.

Figure: Black and white (left), and grey-level (right) versions of the
image in Figure 9.1.

In these notes the intensity values pi ,j are assumed to be real
numbers in the interval [0, 1]. For color images, each of the red,
green, and blue intensity values are assumed to be real numbers in
[0, 1].

The pixels of an image are assumed to be square with sides of
length one, with the pixel with value pi ,j centered at the point (i , j).

Reading, writing and displaying images

X = double(imread(’filename.fmt’, ’fmt’))
imshow(uint8(X))
imwrite(uint8(X), ’filename.fmt’, ’fmt’)

Use the python module images.

Normalising the intensities

The simple linear function

g(x) =
x − a

b − a
, a < b,

maps the interval [a, b] to [0, 1]. In particular g(x) = x/255 maps
[0, 255] to [0, 1]. More generally, we perform computations that
result in intensities outside the interval [0, 1]. We can then
compute the minimum and maximum intensities pmin and pmax and
map the interval [pmin, pmax] back to [0, 1].

function Z=mapto01(X)
minval = min(min(min(X)));
maxval = max(max(max(X)));
Z = (X - minval)/(maxval-minval);

end

Extracting the different colors

img = double(imread(’lena.png’));

X1 = zeros(size(img));
X1(:,:,1) = img(:,:,1);

X2 = zeros(size(img));
X2(:,:,2) = img(:,:,2);

X3=zeros(size(img));
X3(:,:,3) = img(:,:,3);

Figure: The red, green, and blue components of the color image.

Converting from color to grey-level

We replace the three color values (r , g , b) by a single value p that
represent the grey level. Several possibilities:

1. Use the largest of the three color components:

2. Use the average of the three color components.

3. Use the length of the component vector (needs to be
normalised).

X1 = max(img, [], 3);

X2 = (img(:, :, 1) + img(:, :, 2) + img(:, :, 3))/3;

X3 = sqrt(img(:,:,1).^2 + img(:,:,2).^2 + img(:,:,3).^2);
X3 = 255*mapto01(X3);

Figure: Alternative ways to convert a color image to a grey level image.
The result is mapped to (0, 1).

Computing the negative image

Replace an intensity p by its ’mirror value’ 1− p.

Figure: The negative versions of an image.

Increasing the contrast

A common problem with images is that the contrast often is not
good enough: a large proportion of the grey values are
concentrated in a rather small subinterval of [0, 1].

Solution: spread out the values by applying a function to the
intensity values. This function should have a large derivative in the
areas where the intensity values are concentrated.

The functions in the left plot are all on the form

fn(x) =
arctan

(
n(x − 1/2)

)
2 arctan(n/2)

+
1
2
.

The functions in the right plot are all on the form

gε(x) =
ln(x + ε)− ln ε
ln(1+ ε)− ln ε

,

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

n=4
n=10
n=100

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ε=0.1

ε=0.01

ε=0.001

Figure: Some functions that can be used to improve the contrast of an
image.

Figure: The middle functions have been applied to a grey-level version of
the test image.

function Z=contrastadjust(X,epsilon)
Z = X/255; % Maps the pixel values to [0,1]
Z = (log(Z+epsilon) - log(epsilon))/...

(log(1+epsilon)-log(epsilon));
Z = Z*255; % Maps the values back to [0,255]

end

Computational molecules
We say that an operation S on an image X is given by the
computational molecule

A =

...
...

...
...

...
· · · a−1,−1 a−1,0 a−1,1 · · ·
· · · a0,−1 a0,0 a0,1 · · ·
· · · a1,−1 a1,0 a1,1 · · ·
...

...
...

...
...

if we have that

(SX)i ,j =
∑
k1,k2

ak1,k2Xi−k1,j−k2 .

In the molecule, indices are allowed to be both positive and
negative, we underline the element with index (0, 0) (the center of
the molecule), and assume that ai ,j with indices falling outside
those listed in the molecule are zero (as for compact filter notation).

Filtering and computational molecules, Theorem 9.9

Let S1 and S2 be filters with compact filter notation t1 and t2,
respectively, and consider the operation S where S1 is first applied
to the columns in the image, and then S2 is applied to the rows in
the image. Then S is an operation which can be expressed in terms
of the computational molecule ai ,j = (t1)i (t2)j .

the combined filtering operation, denoted S , takes the form

S(X) = S1X (S2)
T ,

Applying S1 to the columns of X is what we call a vertical filtering
operation. Applying S2 to the rows of X is what we call a
horizontal filtering operation. The order of vertical and horizontal
filtering of an image does not matter.

Computing S(X)

Assume that the image is stored as the matrix X. In Exercise 9.13
you will implement tensor_impl which computes the
transformation S(X) = S1X (S2)

T , where X, S1, and S2 are input.

S1 = @(x) filterS(t1, x, 1);
S2 = @(x) filterS(t2, x, 1);

Y = tensor_impl(X, S1, S2)

Tensor product of vectors

If x , y are vectors of length M and N, respectively, their tensor
product x ⊗ y is defined as the M × N-matrix defined by
(x ⊗ y)i ,j = xiyj . In other words, x ⊗ y = xyT .

Observation: Let EM = {ei}M−1
i=0 EN = {ei}N−1

i=0 be the standard
bases for RM and RN . Then

EM,N = {ei ⊗ ej}
(M−1,N−1)
(i ,j)=(0,0)

is a basis for LM,N(R), the set of M × N-matrices. This basis is
often referred to as the standard basis for LM,N(R).

Tensor product of matrices, Definition 9.13

If S1 : RM → RM and S2 : RN → RN are matrices, we define the
linear mapping S1 ⊗ S2 : LM,N(R)→ LM,N(R) by linear extension
of (S1 ⊗ S2)(ei ⊗ ej) = (S1ei)⊗ (S2ej). The linear mapping
S1 ⊗ S2 is called the tensor product of the matrices S1 and S2.

Compact filter notation and computational molecules,
Theorem 9.14

If S1 : RM → RM and S2 : RN → RN are matrices of linear
transformations, then (S1 ⊗ S2)X = S1X (S2)

T for any
X ∈ LM,N(R). In particular S1 ⊗ S2 is the operation which applies
S1 to the columns of X , and S2 to the resulting rows. In other
words, if S1, S2 have compact filter notations t1 and t2,
respectively, then S1 ⊗ S2 has computational molecule t1 ⊗ t2.

Composing tensor products, Corollary 9.15

We have that (S1 ⊗ T1)(S2 ⊗ T2) = (S1S2)⊗ (T1T2).

Smoothing an image, Example 9.9

Let us consider computational molecules where both filters are
lowpass. S = 1

4{1, 2, 1} (row 2 from Pascal’s triangle) gives the
computational molecule

A =
1
16

1 2 1
2 4 2
1 2 1

 .

This means that we compute the new pixels by

p̂i ,j =
1
16
(
4pi ,j + 2(pi ,j−1 + pi−1,j + pi+1,j + pi ,j+1)

+ pi−1,j−1 + pi+1,j−1 + pi−1,j+1 + pi+1,j+1
)
.

If we instead use the filter S = 1
64{1, 6, 15, 20, 15, 6, 1} (row 6 from

Pascal’s triangle), we get the computational molecule

1
4096

1 6 15 20 15 6 1
6 36 90 120 90 36 6
15 90 225 300 225 90 15
20 120 300 400 300 120 20
15 90 225 300 225 90 15
6 36 90 120 90 36 6
1 6 15 20 15 6 1

.

Implementations

X1=CreateExcerpt();
imshow(uint8(X1))

shortmolecule = @(x) filterS([1 2 1]/4, x, 1);
X2 = tensor_impl(X1, shortmolecule, shortmolecule);
imshow(uint8(X2))

S2 = conv([1 3 3 1]/8, [1 3 3 1]/8);
longmolecule = @(x) filterS(S2, x, 1);

X3 = tensor_impl(X1, longmolecule, longmolecule);
imshow(uint8(X3))

Figure: The two right images show the effect of smoothing the left image.

Smoothing a simple image

Figure: The results of smoothing the simple image to the left with the
filter 1

4{1, 2, 1} horizontally, vertically, and both, respectively.

Partial derivative in x-direction

We use the familiar symmetric Newton quotient approximation for
the partial derivative:

∂P

∂x
(i , j) ≈

pi ,j+1 − pi ,j−1

2
,

This corresponds to applying the bass-reducing filter
S = 1

2{1, 0,−1} to all the rows (alternatively, applying the tensor
product I ⊗ S to the image).

Observation: The partial derivative ∂P/∂x of the image can be
computed with the computational molecule

1
2

0 0 0
1 0 −1
0 0 0

 .

Figure: Experimenting with the partial derivative in the x-direction. The
left image has artefacts, since the pixel values are outside the legal range.
We therefore normalize the intensities to lie in [0, 1] (middle), before we
increase the contrast (right).

Partial derivative in y -direction

Observation: The partial derivative ∂P/∂y of the image can be
computed with the computational molecule

1
2

0 1 0
0 0 0
0 −1 0

 .

The gradient
The gradient and it length are

∇P =

(
∂P

∂x
,
∂P

∂y

)

|∇P| =

√√√√(∂P
∂x

)2

+

(
∂P

∂y

)2

.

Figure: The computed gradient (left). In the middle the intensities have
been normalised to the [0, 255], and to the right the contrast has been
increased.

Figure: The first-order partial derivatives in the x- and y -direction,
respectively. In both images, the computed numbers have been
normalised and the contrast enhanced.

Second-order derivatives
We use the three point approximation to the second derivative

∂P

∂x2 (i , j) ≈ pi ,j+1 − 2pi ,j + pi ,j−1

Observation: The second order derivatives of an image P can be
computed by applying the computational molecules

∂2P

∂x2 :

0 0 0
1 −2 1
0 0 0

 ,

∂2P

∂y∂x
:

1
4

−1 0 1
0 0 0
1 0 −1

 ,

∂2P

∂y2 :

0 1 0
0 −2 0
0 1 0

 .

Figure: The second-order partial derivatives in the xx-, xy -, and
yy -directions, respectively. In all images, the computed numbers have
been normalised and the contrast enhanced.

Applying to a simple image

Figure: Different tensor products representing partial derivatives applied
to a simple chess pattern example image (upper left). The tensor
products are S ⊗ I , I ⊗ S , S ⊗ S , I ⊗ S2, and S2 ⊗ I .

Bases for tensor products, Theorem 9.16

If B1 = {vi}M−1
i=0 is a basis for RM , and B2 = {wj}N−1

j=0 is a basis

for RN , then {vi ⊗wj}
(M−1,N−1)
(i ,j)=(0,0) is a basis for LM,N(R). We

denote this basis by B1 ⊗ B2.

Coordinate matrix

Let B = {bi}M−1
i=0 , C = {cj}N−1

j=0 be bases for RM and RN , and let
A ∈ LM,N(R). By the coordinate matrix of A in B ⊗ C we mean the
M × N-matrix X (with components Xkl) such that
A =

∑
k,l Xk,l(bk ⊗ cl).

Change of coordinates in tensor products, Theorem 9.18

Assume that

B1, C1 are bases for RM , and that S1 is the change of
coordinates matrix from B1 to C1,
B2, C2 are bases for RN , and that S2 is the change of
coordinates matrix from B2 to C2.

Both B1 ⊗ B2 and C1 ⊗ C2 are bases for LM,N(R), and if X is the
coordinate matrix in B1 ⊗ B2, and Y the coordinate matrix in
C1 ⊗ C2, then the change of coordinates from B1 ⊗ B2 to C1 ⊗ C2
can be computed as

Y = S1X (S2)
T .

The change of coordinates from B1 ⊗ B2 to C1 ⊗ C2 can thus be
implemented as follows:

For every column in the coordinate matrix in B1 ⊗ B2, perform
a change of coordinates from B1 to C1.
For every row in the resulting matrix, perform a change of
coordinates from B2 to C2.

Change of coordinates with the DFT
We zero out small DFT coefficients:

X = X.*(abs(X) >= threshold);

Figure: The effect on an image when it is transformed with the DFT, and
the DFT-coefficients below a certain threshold are zeroed out. The
threshold has been increased from left to right, from 100, to 200, and
400. The percentage of pixel values that were zeroed out are 76.6, 89.3,
and 95.3, respectively.

Change of coordinates with the DCT

We zero out small DCT coefficients in the same way.

Figure: The effect on an image when it is transformed with the DCT, and
the DCT-coefficients below a certain threshold are zeroed out. The
threshold has been increased from left to right, from 30, to 50, and 100.
The percentage of pixel values that were zeroed out are 93.2, 95.8, and
97.7, respectively.

Drop splitting into blocks

Figure: The effect on an image when it is transformed with the DCT, and
the DCT-coefficients below a certain threshold are zeroed out. The
image has not been split into blocks here, and the same thresholds as
above were used. The percentage of pixel values that were zeroed out are
93.2, 96.6, and 98.8, respectively.

