Constrained optimization - theory

Øyvind Ryan

Apr 26, 2017
(1) Write $\boldsymbol{G}(\boldsymbol{x})=\|\boldsymbol{H}(\boldsymbol{x})\|^{2}=\boldsymbol{F}(\boldsymbol{H}(\boldsymbol{x}))$, where $\boldsymbol{F}(\boldsymbol{x})=\|\boldsymbol{x}\|^{2}=x_{1}^{2}+\ldots+x_{n}^{2}$.
(2) We have that $\boldsymbol{F}^{\prime}(\boldsymbol{x})=\left(2 x_{1}, \ldots, 2 x_{n}\right)$, so that $\boldsymbol{F}^{\prime}(\boldsymbol{H}(\boldsymbol{x}))=2 \boldsymbol{H}(\boldsymbol{x})^{T}$.
(3) The chain rule gives that

$$
\boldsymbol{G}^{\prime}(\boldsymbol{x})=\boldsymbol{F}^{\prime}(\boldsymbol{H}(\boldsymbol{x})) \boldsymbol{H}^{\prime}(\boldsymbol{x})=2 \boldsymbol{H}(\boldsymbol{x})^{T} \boldsymbol{H}^{\prime}(\boldsymbol{x}) .
$$

(9) The Jacobi matrix of a real function is a row vector. The gradient is obtained by transposing this, so that $\nabla \boldsymbol{G}(\boldsymbol{x})=2 \boldsymbol{H}^{\prime}(\boldsymbol{x})^{T} \boldsymbol{H}(\boldsymbol{x})$.
(1) Define the tangent vector space, and show that all elements \boldsymbol{d} therein satsify $\nabla f\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{d} \geq 0$.
(2) Define linearized feasible directions
(3) Show that the tangent vector space, and the linearized feasible directions are the same when \boldsymbol{x}^{*} is regular
(9) Apply Farkas lemma.

Let $C \subseteq \mathbb{R}^{n}$ and let $\boldsymbol{x} \in C$. A vector $\boldsymbol{d} \in \mathbb{R}^{n}$ is called a tangent (vector) to C at \boldsymbol{x} if there is a sequence $\left\{\boldsymbol{x}^{k}\right\}$ in C and a sequence $\left\{\alpha_{k}\right\}$ in \mathbb{R}_{+}such that

$$
\lim _{k \rightarrow \infty}\left(\boldsymbol{x}^{k}-\boldsymbol{x}\right) / \alpha_{k}=\boldsymbol{d}
$$

The set of tangent vectors at \boldsymbol{x} is denoted by $T_{C}(\boldsymbol{x})$.
(1) Let C be the set of feasible solutions (those \boldsymbol{x} satisfying all the equality and inequality constraints).
(2) One shows that \boldsymbol{x}^{*} satisfies $\nabla f\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{d} \geq 0$ for all $\boldsymbol{d} \in T_{C}\left(\boldsymbol{x}^{*}\right)$.

A linearized feasible direction at $\boldsymbol{x} \in C$ is a vector \boldsymbol{d} such that

$$
\begin{array}{ll}
\boldsymbol{d} \cdot \nabla h_{i}(\boldsymbol{x})=0 & (i \leq m) \\
\boldsymbol{d} \cdot \nabla g_{j}(\boldsymbol{x}) \leq 0 & (j \in A(\boldsymbol{x})) .
\end{array}
$$

(1) We denote by $L F_{C}(\boldsymbol{x})$ the set of all linearized feasible directions at \boldsymbol{x}.
(2) since $\boldsymbol{H}^{\prime}\left(\boldsymbol{x}^{*}\right)$ is the matrix with rows $\nabla h_{i}\left(\boldsymbol{x}^{*}\right)$, the first condition is the same as $\boldsymbol{H}^{\prime}\left(\boldsymbol{x}^{*}\right) \boldsymbol{d}=0$.
(3) when all constraints are active the second condition is the same as $\boldsymbol{G}^{\prime}\left(\boldsymbol{x}^{*}\right) \boldsymbol{d} \leq 0$.

Connection between tangent space and the feasible directions

Let $\boldsymbol{x}^{*} \in C$. Then $T_{C}\left(\boldsymbol{x}^{*}\right) \subseteq L F_{C}\left(\boldsymbol{x}^{*}\right)$. If \boldsymbol{x}^{*} is a regular point, then $T_{C}\left(\boldsymbol{x}^{*}\right)=L F_{C}\left(\boldsymbol{x}^{*}\right)$.
Putting these things together, when \boldsymbol{x}^{*} is regular, $\nabla f\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{d} \geq 0$ for all $\boldsymbol{d} \in L F_{C}\left(\boldsymbol{x}^{*}\right)$.

If B and C are matrices with n rows, and K is the cone defined by $K=\{B \boldsymbol{y}+C \boldsymbol{w}$, with $\boldsymbol{y} \geq \mathbf{0}\}$, then exactly one of the following two alternatives are true:
(1) $g \in K$
(2) There exists a $\boldsymbol{d} \in \mathbb{R}^{n}$ so that $\boldsymbol{g}^{T} \boldsymbol{d}<0, B^{T} \boldsymbol{d} \geq 0$, and $C^{T} \boldsymbol{d}=0$.

Now, do the following:
(1) Set $\boldsymbol{g}=\nabla f\left(\boldsymbol{x}^{*}\right), B=-\boldsymbol{G}^{\prime}\left(\boldsymbol{x}^{*}\right)^{T}$, and $C=-\boldsymbol{H}^{\prime}\left(\boldsymbol{x}^{*}\right)^{T}$,
(2) $B^{T} \boldsymbol{d} \geq 0$, and $C^{T} \boldsymbol{d}=0$ simply says that $\boldsymbol{d} \in L F_{C}\left(\boldsymbol{x}^{*}\right)=T_{C}\left(\boldsymbol{x}^{*}\right)$.
(3) For all $\boldsymbol{d} \in T_{C}\left(\boldsymbol{x}^{*}\right)$ we have proved that $\boldsymbol{g}^{T} \boldsymbol{d}=\nabla f\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{d} \geq 0$, so that point 2 of Farkas lemma does not hold for $\boldsymbol{g}=\nabla f\left(\boldsymbol{x}^{*}\right)$.
(c) We conclude that $\boldsymbol{g}=\nabla f\left(\boldsymbol{x}^{*}\right) \in K$.

This means that we can find $\boldsymbol{y} \geq 0$ and \boldsymbol{w} so that

$$
\boldsymbol{g}=\nabla f\left(\boldsymbol{x}^{*}\right)=-\boldsymbol{H}^{\prime}\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{w}-\boldsymbol{G}^{\prime}\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{y}=B \boldsymbol{y}+C \boldsymbol{w} .
$$

But this states exactly what we want to prove:
(1) that $\nabla f\left(\boldsymbol{x}^{*}\right)+\boldsymbol{H}^{\prime}\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{w}+\boldsymbol{G}^{\prime}\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{y}=\mathbf{0}$,
(2) that \boldsymbol{w} contains the Lagrange multipliers λ_{i},
(3) that \boldsymbol{y} contains the μ_{i}, and that they must be non-negative.

