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What is the gradient of ‖H(x)‖2?

1 Write G (x) = ‖H(x)‖2 = F (H(x)), where
F (x) = ‖x‖2 = x2

1 + ...+ x2
n .

2 We have that F ′(x) = (2x1, ..., 2xn), so that
F ′(H(x)) = 2H(x)T .

3 The chain rule gives that
G ′(x) = F ′(H(x))H ′(x) = 2H(x)TH ′(x).

4 The Jacobi matrix of a real function is a row vector. The
gradient is obtained by transposing this, so that
∇G (x) = 2H ′(x)TH(x).



Sketch of the proof of the non-negativity of µ in Theorem
5.3

1 Define the tangent vector space, and show that all elements d
therein satsify ∇f (x∗)Td ≥ 0.

2 Define linearized feasible directions
3 Show that the tangent vector space, and the linearized feasible

directions are the same when x∗ is regular
4 Apply Farkas lemma.



The tangent vector cone

Let C ⊆ Rn and let x ∈ C . A vector d ∈ Rn is called a tangent
(vector) to C at x if there is a sequence {xk} in C and a sequence
{αk} in R+ such that

lim
k→∞

(xk − x)/αk = d .

The set of tangent vectors at x is denoted by TC (x).

1 Let C be the set of feasible solutions (those x satisfying all the
equality and inequality constraints).

2 One shows that x∗ satisfies ∇f (x∗)Td ≥ 0 for all d ∈ TC (x∗).



Linearized feasible directions

A linearized feasible direction at x ∈ C is a vector d such that

d · ∇hi (x) = 0 (i ≤ m)
d · ∇gj(x) ≤ 0 (j ∈ A(x)).

1 We denote by LFC (x) the set of all linearized feasible
directions at x .

2 since H ′(x∗) is the matrix with rows ∇hi (x∗), the first
condition is the same as H ′(x∗)d = 0.

3 when all constraints are active the second condition is the
same as G ′(x∗)d ≤ 0.



Connection between tangent space and the feasible
directions

Let x∗ ∈ C . Then TC (x∗) ⊆ LFC (x∗). If x∗ is a regular point,
then TC (x∗) = LFC (x∗).

Putting these things together, when x∗ is regular, ∇f (x∗)Td ≥ 0
for all d ∈ LFC (x∗).



Farkas lemma
If B and C are matrices with n rows, and K is the cone defined by
K = {By + Cw , with y ≥ 0}, then exactly one of the following
two alternatives are true:

1 g ∈ K

2 There exists a d ∈ Rn so that gTd < 0, BTd ≥ 0, and
CTd = 0.

Now, do the following:

1 Set g = ∇f (x∗), B = −G ′(x∗)T , and C = −H ′(x∗)T ,
2 BTd ≥ 0, and CTd = 0 simply says that

d ∈ LFC (x∗) = TC (x∗).
3 For all d ∈ TC (x∗) we have proved that

gTd = ∇f (x∗)Td ≥ 0, so that point 2 of Farkas lemma does
not hold for g = ∇f (x∗).

4 We conclude that g = ∇f (x∗) ∈ K .



Conclusion

This means that we can find y ≥ 0 and w so that

g = ∇f (x∗) = −H ′(x∗)Tw − G ′(x∗)Ty = By + Cw .

But this states exactly what we want to prove:

1 that ∇f (x∗) + H ′(x∗)Tw + G ′(x∗)Ty = 0,
2 that w contains the Lagrange multipliers λi ,
3 that y contains the µi , and that they must be non-negative.


