
NOTES ON COMBINATORIAL

OPTIMIZATION

GEIR DAHL∗

and
CARLO MANNINO†

October 1, 2012

∗ Department of Mathematics and Department of Informatics, CMA, University of
Oslo, Norway. geird@math.uio.no
† University of Rome, La Sapienza, Department of Computer Science, Rome, Italy,
and visiting scientist at CMA. mannino@dis.uniroma1.it



1



Contents

1 Combinatorial optimization and polyhedral
combinatorics 1

1.1 Formulations and relaxations for (CO) 6
1.2 Separation oracles and the dynamic simplex method 11
1.3 A separation oracle for the forest polytope. 12
2 Integral polyhedra, TDI systems and totally unimodular

matrices 17

2.1 Integral polyhedra and TDI systems 17
2.2 Totally unimodular matrices 20
2.3 Applications: network matrices and minmax theorems 22
3 Heuristic algorithms for combinatorial optimization

problems 27

3.1 Constructive heuristics 27
3.2 Improvement heuristics 31
4 Exact methods 37

4.1 Relaxations and branch-and-bound 37
4.2 Finding additional valid inequalities 45
4.3 Lagrangian relaxation 51
4.4 The Traveling Salesman Problem 56
4.5 Exercises 69

2



3



List of Figures

1.1 The feasible points (solid circles) of Example 1.1 2
1.2 An example of Hamilton tour 3
1.3 An example of maximum weight forest 4
1.4 A formulation for the set of feasible solutions of Example 1.1 6
1.5 The natural formulation for the set of solutions of Example 1.1 7
1.6 Comparisons among different formulations of Example 1.1 10
1.7 Best against natural formulation of Example 1.1 10

3.1 The greedy solution of Example 3.2 29
3.2 A Eulerian graph and a corresponding Eulerian tour 30
3.3 Step 1 of Christofides Algorithm: build a Minimum Spanning

Tree 31
3.4 Step 2, 3 and 4 of Christofides Algorithm: the final Hamilton tour is

shown in solid lines 32
3.5 A 2-exchange move 34
3.6 Two distinct tours in the Sarvanov and Doroshko neighborhood 35
3.7 A tour and its associated matching problem 36

4.1 A (partial) enumeration tree 40
4.2 A branching tree 40
4.3 The (partial) branch-and-bound tree of Example 4.1 44
4.4 A vehicle routing for three vehicles 57
4.5 From sequencing to TSP 58
4.6 A 1-tree: the solid edges form a spanning tree F in G[V \ {1}] 60
4.7 Shrinking nodes u and v (zero-weight edges are omitted) 62
4.8 A comb 64
4.9 Shrinking edge uv (st) maps an Hamilton tour of G into a graphical

tour of G|uv (G|st), 68

i



ii



iii



Chapter 1

Combinatorial optimization and polyhedral

combinatorics

Consider the following combinatorial optimization problem (CO). We have a
class F of feasible sets each being a subset of a finite ground set E; we are
also given a weight function w : E → IR, and for F ∈ F we define its weight
w(F ) =

∑

e∈F w(e). Then the combinatorial optimization problem is: Combinatorial
Optimization
Problem

max{w(F ) : F ∈ F} (1.1)

One major goal in the area polyhedral combinatorics is to translate the (CO)
problem into an optimization problem in IRE . To this end, we represent each
F ∈ F by its incidence vector χF in IRE ; so χF

e = 1 if e ∈ F and χF
e = 0

otherwise. Let S = {χF : F ∈ F} ⊆ {0, 1}E be the set of the incidence vectors of
the sets in F . Then the following problem is equivalent to (CO):

max{wTx : x ∈ S} (1.2)

Example 1.1. Project Selection. An organization has stated that the budget for project selec-
tion problemall projects for the upcoming half-year is $600,000, which must cover all internal

and external costs associated with the projects. In addition, the amount of work
that can be accomplished by the organization’s personnel is limited to 5,000 hours
for the half-year. The project manager has picked up two possible project alter-
natives, say A1 and A2. Project A1 gives a profit of $400,000 and requires an
investment of $300,000 plus 4000 hours of personnel. Project A2 gives a profit of
$ 500,000 and requires an investment of $400,000 plus 2000 hours of personnel.
We need to find an investment which maximizes profit, satisfying the budget and
personnel constraints.

1



6

-
(0,0) 1

1

2

2

u u

u e (1,1) infeasible

Figure 1.1: The feasible points (solid circles) of Example 1.1

The example can immediately be cast into the (CO) paradigm. So, the ground
set is E = {A1, A2}, with w1 = 400000 and w2 = 500000. Since we cannot
activate both projects without violating the constraints, the family of feasible
solutions is F = {F1, F2, F3}, where F1 = {A1} corresponds to select only the
first alternative, F2 = {A2} corresponds to the second alternative, while F3 = ∅ is
the no investment alternative. The associated set of feasible 0-1 solutions is then
S = {(1, 0), (0, 1), (0, 0)}. We represent S geometrically in the plane in Figure 1.

Example 1.2. The Travelling Salesman Problem (TSP) is to find a shortest
trip (called a tour) through a given set of cities. More precisely, we are given antravelling

salesman
problem

undirected graph G = (V, E) with nonnegative weights (costs) on the edges: we,
e ∈ E. A tour is a Hamilton cycle, i.e., a cycle going through all the nodes of G
and passing through each node exactly once. The length of a tour is the sum of
the weights of its edges. The problem is to find a shortest tour.

In this example, the ground set coincides with the set E of edges of G; the feasible
solutions (sets) are the edge sets F ⊆ E corresponding to the Hamilton cycles of
G.

The general combinatorial optimization problem belongs to the class of NP -hard
problems. We cannot give here a formal definition of such a class. It is enough
to observe that for most problems in this class we do not have efficient solution
algorithms, that is, algorithms which are able to find an optimal solution within
a reasonable amount of time. More precisely, the time spent by the best known
solution algorithm can grow exponentially in |E|.

2



n1

n2 n3

n4

n5 n6

3 1

����4

����2
HHHH 1

HHHH 1

HHHH 4

2

3

����2

n1

n2 n3

n4

n5 n6

3 1

����4

����2
HHHH 1

HHHH 1

Figure 1.2: An example of Hamilton tour

The area of polyhedral combinatorics attempts to solve (1.2) (and thus (CO))
by means of linear programming. This is done by exploiting the properties of
the convex hull conv(S) of S, which is a polytope1. If we denote by ext(P ) the
set of vertices of a polyhedron P , we have S = ext(conv(S)). Consider now the
following linear programming problem:

max{wTx : x ∈ conv(S)} (1.3)

If S is empty, so it is conv(S). Otherwise conv(S) 6= ∅ and there exists an optimal
solution x∗ ∈ ext(conv(S)) = S. So, in principle (CO) can be solved by applying
the simplex method to (1.3), if we are given an external representation of conv(S)
in terms of a system of linear inequalities. Unfortunately, for the great majority
of combinatorial optimizations, such a representation is not at hand, not even
implicitly.

There exist, however, some remarkable exceptions. One such exception is the
problem of finding a maximum weight forest in a given connected, undirected maximum

weight forest
problem

graph G = (V, E) with weight function w; this example is from [18]. Recall that
a forest is an acyclic undirected graph (whereas a tree is a connected forest).
The weight of a forest is simply the sum of weights of its edges, which implies
that when looking for maximum weight forests we are not interested in including
isolated nodes2. So, it is natural to identify a forest H = (V ′, F ) of G = (V, E)
with the set F of its edges. Note also that if all weights are nonnegative the
maximum weight forest is equivalent to the spanning tree problem (show this!).

With negative weights present, an optimal solution may be a forest and not a

1. Recall that a polytope P is the convex hull of a finite set of points in IRn, and, by the
main representation theorem for polyhedra, a set is a polytope if and only if it is a bounded
polyhedron.
2. A node is isolated in a graph H if no arcs of H are incident to it.

3



n1

n2 n3

n4

n5 n6

3 1
HHHH 4

����4

-2
HHHH -1

HHHH -1

3

����-2

����2

n1

n2 n3

n4

n5 n6

3 1
HHHH 4

����4

Figure 1.3: An example of maximum weight forest

tree. Let G = (V, E) be a graph and, for each S ⊆ V , denote by E(S) the set
of edges with both ends in S. It is easy to show that G is a forest if and only if,
for each S ⊆ V , we have |E(S)| ≤ |S| − 1. This translates immediately into the
following characterization of the incidence vectors of forests:

Lemma 1.1. Let G = (V, E) be a graph. Then x ∈ {0, 1}E is the incidence vector
of (the edges of) a forest if and only if

x(E[S]) ≤ |S| − 1 for all S ⊆ V. (1.4)

Inequalities of type (1.4) are called subtour elimination constraints.

In Chapter 1 of [21] the spanning tree problem is solved in polynomial time by the
greedy algorithm. The idea is to iteratively extend a forest by adding a minimum
weight edge which does not introduce any cycles. This algorithm also solves the
maximum weight forest problem, provided that we terminate whenever the next
edge has nonpositive weight.

First we define the polytope of interest. We let the forest polytope F (G) be the
convex hull of the incidence vectors of all forests in G. Jack Edmonds showed in
[7] the following theorem which gives a complete linear description of F (G).

Theorem 1.2. F (G) ⊂ IRE is the solution set of the following linear system

(i) xe ≥ 0 for all e ∈ E;

(ii) x(E[S]) ≤ |S| − 1 for all S ⊆ V .
(1.5)

Proof. We follow the presentation of [18]. The idea of this proof, due to Ed-
monds, is to show that every vertex of the bounded polyhedron defined by (1.5)
is the incidence vector of a forest of G. This in turn is done by using the greedy
algorithm on the LP dual of the problem of maximizing cT x subject to the linear
system (1.5). Also, via complementary slackness, an optimal primal solution is
constructed.

4



Let Q denote the polytope being the solution set of (1.5), and we shall prove that
Q = F (G). Note that the integral vectors in Q are precisely the incidence vectors
of forests by Lemma 1.1. By convexity this implies that F (G) ⊆ Q.

To prove the reverse inclusion, let x̄ be a vertex of Q, i.e., this point is the unique
optimal solution an LP problem max {cT x : x ∈ Q} for suitable c ∈ IRn. The LP
dual of this problem is

min
∑

S⊆V yS(|S| − 1)
subject to
(i)

∑

S:e∈E[S] yS ≥ ce; for all e ∈ E;

(ii) yS ≥ 0 for all S ⊆ V .

(1.6)

Consider the greedy algorithm applied to the primal problem, and assume that
the edges found are F = {e1, . . . , es} in that order. Thus, in the i’th iteration the
edge ei is added and it joins two components of the current solution and forms
the new component Vi. (For instance, when i = 1 we have n components and
ei = [u, v] joins the components {u} and {v}, so V1 = {u, v}.)

The dual solution y is defined next. We let yS = 0 for all sets S not among the
sets Vi, i = 1, . . . , s. The values for the sets Vi are determined in the reverse
order as follows. Let yVr

= c(er). Consider the primal greedy solution x′ found
above. The complementary slackness condition for edge e says, as x′

er
> 0, that

∑

S:er∈E[S] yS = c(er). With our definition of yVr
this equality already holds, and

we are forced to define yS = 0 for all other sets S that contain both endnodes
of er. To define the remaining components of y, let, for each j ∈ {1, . . . , r − 1},
I(j) = {i : j + 1 ≤ i ≤ r and both end nodes of ej are in Vi} and define yVj

=
c(ej) −

∑

i∈I(j) yVi
for j = r − 1, r − 2, . . . , 1.

One can now check that y is dual feasible, x′ is primal feasible and that the com-
plementary slackness condition holds. Thus it follows from LP theory that both
these solutions are optimal in the respective problems. But x̄ was also optimal in
the primal, and due to the uniqueness, we must have x̄ = x′, which proves that
every vertex of Q is integral and we have Q = F (G) as desired.

In most cases, an external representation of conv(S) as the solution set of a system
Ax ≤ b is not available. However, we will show in the next section that it may
be very useful to have at hand some suitable relaxations of conv(S), denoted as
formulations (of S).

5



6

-
(0,0) 1

1

2

2

u u

u e

J
J

J
J

J
J

J
J

J
J

J

(((((((((

A
A

A
A

A
A

AA
�
�
�
�
�
�
��

P

.

Figure 1.4: A formulation for the set of feasible solutions of Example 1.1

1.1 Formulations and relaxations for (CO)

We start with an important definition.

Definition 1.1. Let S ⊆ {0, 1}n. A formulation for S is a polyhedron P ⊆ IRn

satisfying P ∩ {0, 1}n = S.

In other words, P is a formulation for S iff the 0-1 points of P are precisely the
points of S. A possible formulation for the set of feasible solutions of Example
1.1 is given in Figure 1.1. Clearly, one can build an infinite number of different
formulations for the same set S. Since conv(S) ∩ {0, 1}n = S, it follows that
conv(S) is one such formulation for S. A special role is played by the so called
natural formulation, which is the one directly obtained from the constraints ofnatural

formulation the original problem when this is stated as a linear pogramming problem with
integrality constraints on the variables. In particular, S is sometimes directly de-
fined as the set of binary solutions to a family of linear constraints. In other cases,
such a family of linear constraints may be derived directly from the description
of the problem, as in Example 1.1. Of course, a natural formulation may not be
available in general.

Example 1.1 (continued). Let S be the set of feasible solutions of Example 1.1,
and let x ∈ S. Since x is a binary vector, then it satisfies:

0 ≤ xi ≤ 1 i = 1, 2 (1.7)

Also, x satisfies the budget constraint:

300000x1 + 400000x2 ≤ 600000 (1.8)

6



6

-
(0,0) 1

1

2

2

u u

u e

- Working hours constraint

- Budget constraint

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

ZZ

A
A

A
A

A
A

A
A

A
A

A
A

A
AA

P

Figure 1.5: The natural formulation for the set of solutions of Example 1.1

and the working hours constraint:

5000x1 + 2000x2 ≤ 6000 (1.9)

Constraints (1.7), (1.8) and (1.9) define a natural formulation for S (see Picture
1.1).

Example 1.2 (continued). Consider again the TSP problem associated with a
graph G = (V, E). One can show that a 0-1 vector x is the incidence vector χF of
a Hamilton tour F ⊆ E iff it satisfies the following system of linear inequalities

(i) x(δ(v)) = 2 for all v ∈ V ;

(ii) x(δ(W )) ≥ 2; for all W ⊂ V , W 6= ∅, W 6= V .
(1.10)

The constraints (i) assure that every 0-1 solution x is of the form x = χF where
F ⊆ E and d(V,F )(v) = 2 for each v ∈ V ; such a set F is called a 2 − matching
(or 2-factor). Clearly, every tour is a 2-matching, so all these inequalities must
be satisfied by the incidence vectors of Hamilton tours. However, in general a 2-
matching is a union of disjoint cycles, so it may not be a tour. The 2-connectivity
inequalities (ii) eliminate such a possibility, i.e., a 2-matching that satisfies (ii) is
a tour (otherwise we could let W be the node set of one subtour, and we would
get a violated inequality). From this it is not difficult to see that the 0-1 feasible
solutions in (1.10) are precisely the incidence vectors of tours.

An equivalent set of constraints that can replace (1.10)(ii) is the set of subtour

7



elimination constraints:

x(E[S]) ≤ |S| − 1 for all S ⊆ V , S 6= ∅, S 6= V .

These constraints were introduced in the 1954 paper by Dantzig, Fulkerson and
Johnson [5]. Note that the number of 2-connectivity inequalities, or subtour elim-
ination constraints, grows exponentially as a function of the number of nodes.

Relaxations.

In what follows we will often deal with mathematical optimization problems of the
form max{f(x) : x ∈ S ⊆ IRn}, and with their optimal values. Conventionally,
we will denote such a problem by a capital roman letter between brackets, e.g.
(Q); also, we denote its value by v(Q) = max{f(x) : x ∈ S ⊆ IRn} where we
permit the values v(Q) = −∞ (when the problem is infeasible) and v(Q) = ∞
(when the problem is unbounded).

Now, suppose we want to solve the combinatorial optimization max{wT x : x ∈ S}
(where S ⊆ {0, 1}n}) denoted by (Q), and assume we have at hand a feasible
solution x̄ ∈ S to (Q). How good is x̄? In other words, how does the value wT x̄ of
x̄ compare with the optimal value v(Q) to (Q)? We will see that formulations can
provide such an answer. First we need to introduce the concept of a relaxation of
an optimization problem.

Definition 1.2. Let S ⊆ IRn and let (Q) be max{w(x) : x ∈ S}. The problem
(R) max{g(x) : x ∈ T} is a relaxation of (Q) iff T ⊇ S and g(x) ≥ w(x) for all
x ∈ S.

The following theorem is a straightforward consequence of the above definition:

Theorem 1.3. Let (Q) be a maximization problem (as above) and let (R) be a
relaxation of (Q). Then v(R) ≥ v(Q).relaxation

quality In other words, the optimal value of (R) provides an upper bound (UB) on the
optimal value of (Q). Let’s go back to our original question. In many cases, it
may be very difficult to find an optimal solution x∗ of an optimization problem
Q, whereas it can be easy to obtain a feasible solution x̄ ∈ S. This is often the
case when (Q) is a combinatorial optimization. Clearly, w(x̄) ≤ w(x∗) = v(Q),
and w(x̄) is a lower bound (LB) on the optimal value to (Q). Suppose now that
we have at hand a relaxation (R) {max g(x) : x ∈ T} of (Q) and assume that an
optimal solution y∗ to R can be computed efficiently. We have

UB = v(R) = g(y∗) ≥ w(x∗) ≥ w(x̄) = LB.

8



The optimal value of (Q) belongs to the interval between the lower and the
upper bound (we are assuming that both can be computed efficiently). Its size
UB−LB is called the gap. The smaller the gap is, the better it is. If gap = 0 then
UB = LB, which in turn implies UB = v(R) = g(y∗) = w(x∗) = w(x̄) = LB,
which proves that x̄ is an optimal solution to (Q). So, in general, we would like
the upper bound to be as small as possible; in contrast, the lower bound should
be as large as possible. In other words, we want to have at hand

• strong relaxations of (Q), providing small upper bounds on v(Q) and
• effective heuristic methods, capable to find good quality solutions to (Q),

hopefully optimal.

The rest of this chapter is devoted to the first goal, whereas heuristic methods
will be discussed in a subsequent chapter.

Now, let (Q) be max{wTx : x ∈ S} where S ⊆ {0, 1}n be a combinatorial
optimization problem, and let P ⊆ IRn be a formulation for S. By definition,
S ⊆ P . It follows from the above discussion that the following problem

(R) max{wTx : x ∈ P}

is a relaxation of (Q). Since problem (R) amounts to maximizing a linear func-
tion over a polyhedron, (R) is a linear program (LP), and we there are a number
of efficient algorithms to solve LPs. The simplex method is one of these, even
though its theoretical complexity is still unknown. This means that the simplex
method works very well in practice, but in principle there exist highly complicated
instances requiring an enormous amount of time to be solved. Interestingly, the-
oretically more efficient methods as the interior point algorithms do not perform
significantly better in practice. So, problem (R) along with the simplex method
can be used to compute upper bounds on v(Q). comparing

formulations
As already mentioned, we may have different formulations for the same set S.
How can we distinguish among them? We need some criteria to compare between
formulations and to measure their quality. So, let (Q) be max{wT x : x ∈ S ⊆
{0, 1}n} be a combinatorial optimization, and let P1 and P2 be two distinct for-
mulations for S. Since we want to use P1 and P2 to compute upper bounds on
v(Q), one candidate quality criterium is the following: P1 is better than P2 if and
only if max{wT x : x ∈ P1} ≤ max{wT x : x ∈ P2}. So, if we consider the two for-
mulations in Figure 1.1 for the problem of Example 1.1, the natural formulation
P1 has to be preferred to the other when the objective function is the original
one, to maximize 4x1 + 5x2.

However, if the objective becomes max x2, then P2 has to be preferred to P1.
So, this indicator is dependent on the objective and thus on the problem. It is

9



6

-
(0,0) 1

1

2

2

u u

u e

max x26
\

\
\

\
\

\
\

\
\

\
\

\\

max 4x1 + 5x2

���
Z

Z
Z

ZZ

A
A

A
A

A
P1

�

J
J

J
J

J
J

J
JJ

((((((((
A

A
A

AA
�
�
�
�
��

SSw
P2

Figure 1.6: Comparisons among different formulations of Example 1.1

6

-
(0,0) 1

1

2

2

u u

u e
Z

Z
Z

ZZ

A
A

A
A

A
@

@
@

@
@

@

Figure 1.7: Best against natural formulation of Example 1.1

preferable to establish a criterium which only depends on the formulations. So,
we say that P1 is better than P2 iff P1 ⊆ P2. This implies that max{wTx : x ∈
P1} ≤ max{wT x : x ∈ P2} for any w ∈ IRn and P1 will always return a bound
which is not worse than that associated with P2. Actually, from convexity we
have the following theorem:

Theorem 1.4. Let P1 and P2 be polytopes in IRn. Then P1 ⊆ P2 if and only if
max{wT x : x ∈ P1} ≤ max{wTx : x ∈ P2} for all w ∈ IRn.

Now, it is not difficult to see that conv(S) is contained in every formulation for
S, and we say that conv(S) is the best formulation for S. Indeed, we have that
conv(S) returns the best possible upper bound, since for all w ∈ IRn, we have:
max{wT x : x ∈ conv(S)} = max{wTx : x ∈ S}.

10



From the above discussion, it is desirable to have at hand an external represen-
tation of conv(S), that is a coefficient matrix A ∈ IRm×n and a vector b ∈ IRm

such that conv(S) = {x ∈ IRn : Ax ≤ b}. Such a description does exist due to
the Main Theorem of Polyhedra. Unfortunately, in many cases A and b are not
known, not even implicitly (as for example for the set of the feasible solution to
the Maximum Weight Forest Problem). In practice in most cases we can only find
a (small) subset of such a linear system Ax ≤ b, typically associated with some
special structure of the coefficients.

Example 1.3. Let S = {x ∈ {0, 1}5 : 7x1 + 6x2 + 5x3 + 3x4 + 2x5 ≤ 11}. Note
that S is the set of binary vectors satisfying a single linear constraint, also called
knapsack constraint. It can be shown that conv(S) is contained in the following
polytope:

y1 + y2 ≤ 1

y1 + y3 ≤ 1

y1 + y4 + y5 ≤ 2 (1.11)

y1 + y2 + y3 + y4 ≤ 2

y1 + y2 + y3 + y5 ≤ 2

3y1 + 2y2 + 2y3 + y4 + y5 ≤ 4

0 ≤ yi ≤ 1 (i ≤ 5)

The last inequalities are box constraints, satisfied by every 0-1 vector. The first 5
constraints are facets of conv(S) and have special structure. In particular, each
constraint corresponds to a subset C of variables whose coefficients in the knap-
sack constraint sum up to something strictly greater than 11. So, if xi = 1 for all
i ∈ C, the knapsack constraint is violated. Which implies that

∑

i∈C xi < |C|, or,
equivalently since we are interested in binary solutions,

∑

i∈C xi ≤ |C| − 1.

In some special, well-behaved cases, we have at hand an explicit description of the
convex hull of the feasible solutions. This is the case for the Maximum Weight
Forest problem, whose convex hull is given by (1.5). However, the number of
constraints (1.5.ii) is equal to the number of subsets of S which, in turn, grows
exponentially in |S|. So, if |S| = 101, we have 2100 constraints of type (1.5.ii),
and we may forget to list them all! Luckily, we can still solve the optimization
problem max{wTx : Ax ≤ b, x ∈ IRn} without generating explicitly all rows of A.

1.2 Separation oracles and the dynamic simplex method

Let (Q) be max{wTx : Ax ≤ b, x ∈ IRn}, with A ∈ IRm×n, b ∈ IRm, be a
linear programming problem. There are several interesting cases in which A and

11



b cannot be explicitly represented, typically because m is too large and such a
representation would require too much computer space and time to be obtained.
One such example is the formulation (1.5) of the Maximum Weight Forest in
a graph G. The number of constraints of type (1.5.ii) grows exponentially in
the number of nodes of G, which makes it impossible to generate all of them
even for small graphs. However, this is not necessary to solve the corresponding
optimization problem. To understand this, we need to introduce the concept of
separation oracles.

Definition 1.3. Let A ∈ IRm×n, b ∈ IRm, let P = {x ∈ IRn : Ax ≤ b} be a
polyhedron and let x̄ ∈ IRn. A separation oracle is an algorithm which either
concludes that x̄ ∈ P or, if x̄ /∈ P , returns a constraint

∑

j aijxj ≤ bi in the
description of P violated by x̄ (i.e.

∑

j aijx̄j > bi).

Example 1.3 (continued). Consider the formulation P for the set S = {x ∈
{0, 1}5 : 7x1 + 6x2 + 5x3 + 3x4 + 2x5 ≤ 11} obtained by considering the knapsack
constraint 7x1 + 6x2 + 5x3 + 3x4 + 2x5 ≤ 11 and all constraints (1.11) and let
x̄1 = 2/3, x̄2 = 2/3, x̄3 = x̄4 = x̄5 = 0. Then a separation oracle for P would
return x̄ /∈ P , along with the violated cover inequality x1 + x2 ≤ 1. Remark that
the knapsack constraint is not violated by x̄.

In the above example the oracle finds a violated constraint by inspection, as
the number of inequalities is very small and they are listed explicitly. This is in
general not the case and separation oracles can be rather complicated algorithms,
not necessarily efficient. We will describe now an efficient, LP-based algorithm to
solve the separation problem for the forest polytope.

1.3 A separation oracle for the forest polytope.

Let x̄ ∈ IRE : we need to establish whether x̄ violates one of the constraints of
(1.5) and, if so, which one. Clearly, if x̄i < 0 for some i ∈ E, then an oracle could
check it by simple inspection and return the violated constraint xi ≥ 0. So, we
can assume x̄ ≥ 0. In this case, the oracle must only check for violated subtour
elimination constraints (1.5.ii), that is it must solve the following problem:

Problem 1. Find a set S̄ ⊆ E such that x̄(E[S̄]) > |S̄| − 1 or prove that
x̄(E[S]) ≤ |S| − 1 for all S ⊆ E.

We solve the above problem by linear programming. In particular, we first build
a suitable 0-1 linear program and then show that we can drop the integrality
constraint on the variables.

12



To this end, let z ∈ {0, 1}V be the incidence vector of a set S ⊆ V . Observe that
w ∈ {0, 1}E is the incidence vector of E[S] if and only if wij = 1 precisely when
zi = 1 and zj = 1, whereas wij = 0 otherwise. This can be expressed by the
following system of linear inequalities (plus the 0-1 constraints on the variables):

we ≤ zi, we ≤ zj for e = (i, j) ∈ E

SUB(V, E) we ≥ zi + zj − 1 for e = (i, j) ∈ E (1.12)

w ∈ {0, 1}E, z ∈ {0, 1}V

Denote by SUB(V, E) the set of feasible solutions to (1.12). So (z̄, w̄) identifies a
subtour elimination constraint associated to S̄ and is violated by x̄ if and only if

- z̄ is the incidence vector of S̄
- (z̄, w̄) ∈ SUB(V, E) and
-

∑

e∈E[S̄] x̄e > |S̄| − 1.

By observing that
∑

e∈E[S̄] x̄e =
∑

e∈E x̄ew̄e and |S̄| =
∑

i∈V z̄i, the last condition
can be rewritten as follows:

∑

e∈E

x̄ew̄e >
∑

i∈V

z̄i − 1 (1.13)

We are finally able to write a separation oracle for the subtour elimination con-
straints. Define the following 0-1 linear optimization problem:

max
∑

e∈E

x̄ewe −
∑

i∈V

zi

s.t. (1.14)

(z, v) ∈ SUB(V, E)

Denote by (z∗, w∗) an optimal solution to (1.14), and let v∗ be its value. Then it
is easy to see that

• if v(z∗, w∗) > −1, the (z∗, w∗) identifies a subtour elimination constraint
violated by x̄ which is returned by the oracle.

• if v(z∗, w∗) ≤ −1 then no solutions in SUB(V, E) satisfy (1.13) and the
oracle returns no violated constraint.

13



The separation oracle just described requires the solution of the 0-1 linear pro-
gram (1.14), which in turn may be difficult. However, the next theorem states
that we can simply solve the linear relaxation of (1.14), that is, the linear pro-
gram obtained from (1.14) by replacing the binary stipulation on the variables
with the following linear (box) constraints:

0 ≤ we ≤ 1 for e ∈ E, 0 ≤ zi ≤ 1 for i ∈ V. (1.15)

The proof of this theorem can be found in [23].

Theorem 1.5. The linear relaxation of ( 1.14) always has an integer optimal
solution solving ( 1.14).

The dynamic simplex method

Separation oracles and the simplex method are the building blocks of a dynamic
simplex algorithm for the LP program (Q) defined as max{wT x : x ∈ P}, wheredynamic sim-

plex method P = {x ∈ IRn : Ax ≤ b} is a polyhedron, with A ∈ IRm×n and b ∈ IRm. In
particular the dynamic simplex method solves a sequence of LP programs (Qi)
defined as max{wTx : x ∈ P i}, for i = 1, . . . , t, with

P 1 ⊃ P 2 ⊃ · · · ⊃ P t ⊇ P.

This implies that for i = 1, . . . , t, (Qi) is a relaxation of (Qi+1), and we have
v(Qi) ≥ v(Qi+1) ≥ v(Q). For i = 1, . . . , t, we define P i = {x ∈ IRn : Dix ≤ di},
where [Di di] is a matrix obtained by considering a suitable subset of rows of
[A b]. Also, [Di+1 di+1] is obtained from [Di di] by including an additional row
from [A b]. To simplify the discussion, we suppose that P 1, . . . , P t, P are bounded,
which implies that the associated linear programs are either empty or have an
optimal solution.

The dynamic simplex method starts by selecting a suitable subset of rows [A b],
denoted by [D1 d1]. Then, at each iteration i, the linear program max{wTx : x ∈
P i} denoted by (Qi) is solved by the simplex method. If P i is empty, then P ⊆ P i

is also empty and the dynamic simplex method terminates. Otherwise, let x̄i be
an optimal solution to (Q)i.

At this stage, we invoke a separation oracle to establish whether x̄i ∈ P or not.
If x̄i ∈ P , then wT x̄i ≤ v(Q). Also, since (Qi) is a relaxation of (Q), we have
wT x̄i = v(Qi) ≥ v(Q): so, we can conclude that wT x̄i = v(Q) and x̄i is optimal
to (Q).

14



Finally, suppose x̄i /∈ P . Then the separation oracle returns a constraint of the
description of P violated by x̄i. We obtain [Di+1 di+1] by adding this new row to
[Di di] and iterate.

The idea behind the dynamic simplex method is that the algorithm terminates
long before we have added all the defining constraints of P . Next, we show an
application of the dynamic simplex method to solve the Maximum Weight Forest.
This is only to illustrate the methodology with our example, as there exists a
simpler and purely combinatorial algorithm to solve such problem.

Example 1.4. Let P be the forest polytope associated to the graph in Figure 1.

Let P 1 be obtained from P by dropping all subtour elimination constraints but
those associated with the sets of two elements.

Then Problem (Q1) is:

max 4x12 − x13 + 3x14 + 4x24 + 3x25 − x34 + x36 + 2x45 − x46 − 2x56

s.t.

0 ≤ xe ≤ 1 for all e ∈ E

The optimal solution is simply x1
12 = x1

14 = x1
24 = x1

25 = x1
36 = x1

45 = 1, and
all other variables are 0, whose value is 17. The separation oracle applied to x1

return x1 /∈ P plus the violated subtour inequality x12 +x14 +x24 ≤ 2, associated
to S = {1, 2, 4}. This is added to the linear description of P 1 to obtain P 2 and
the simplex algorithm resolves the following problem (Q2):

max 4x12 − x13 + 3x14 + 4x24 + 3x25 − x34 + x36 + 2x45 − x46 − 2x56

s.t.

x12 + x14 + x24 ≤ 2

0 ≤ xe ≤ 1 for all e ∈ E

An optimal solution to (Q2) is x2
12 = x2

24 = x2
25 = x2

36 = x2
45 = 1 and all other

variables are 0, with value 14.

The next invocation to the oracle produces the violated inequality x24 + x25 +
x45 ≤ 2, associated to S = {2, 4, 5}. We include it in P 3 and solve Q3 obtaining
x3

12 = x3
14 = x3

25 = x3
36 = x3

45 = 1, with value 13.

15



Next we add the violated inequality x12 + x14 + x24 + x25 + x45 ≤ 3, associated
to S = {1, 2, 4, 5}. We include it in P 4 and solve Q4 obtaining x4

12 = x4
14 = x4

25 =
x4

36 = 1, with value 12. We have x4 ∈ P and the algorithm terminates.

Note that it was sufficient to include only three subtour inequalities to find an
optimal solution to Q, where P contains 32 non trivial such inequalities.

16



Chapter 2

Integral polyhedra, TDI systems and totally

unimodular matrices

2.1 Integral polyhedra and TDI systems

Let P ⊆ IRn be a nonempty polyhedron. We define its integer hull PI by

PI = conv(P ∩ Zn) (2.1)

so this is the convex hull of the intersection between P and the lattice Zn of
integral points. Note that PI may be empty although P is not. If P is bounded,
it contains a finite number of integral points, and therefore PI is a polytope.
By the finite basis theorem for polytopes (see Dahl [6]) it follows that PI is a
polyhedron. The next result (see [20]), says that the same conclusion holds even
in the unbounded case, provided that P is a rational polyhedron (that is, defined
by linear inequalities with rational data).

Theorem 2.1. If P is a rational polyhedron, then PI is a polyhedron. If PI is
nonempty, char.cone(PI) = char.cone(P ).

Proof. Let P = {x ∈ IRn : Ax ≤ b}. According to the decomposition theorem for
polyhedra we have that P = Q+C where Q is a polytope and C = char.cone(P ) =
{x ∈ IRn : Ax ≤ 0}. Choose a finite set of integral generators G = {g1, . . . , gm}
for C so C = cone(G), and consider the set

M = {
m

∑

j=1

µjgj : 0 ≤ µj ≤ 1 for j = 1, . . . , m}. (2.2)

M is a polytope, it coincides with the convex hull of the vectors
∑m

j=1 µjgj where
µj ∈ {0, 1} for j = 1, . . . , m.

We shall prove that
PI = (Q + M)I + C. (2.3)

17



Let p be an integral vector in P , so p = q + c for some q ∈ Q and c ∈ C.
Then c =

∑

j≤m µjgj = c′ + c′′ where we define c′ =
∑

j≤m(µj − ⌊µj⌋)gj and
c′′ =

∑

j≤m⌊µj⌋gj ∈ C. Then c′′ is integral and c′ ∈ M (as 0 ≤ µj − ⌊µj⌋ ≤ 1).
This gives p = (q+c′)+c′′ ∈ (Q+M)I+C because q+c′ ∈ Q+M and q+c′ = p−c′′

which is integral. We have therefore shown that PI ⊆ (Q+M)I +C. Furthermore,
since Q+M ⊆ P and C = CI we obtain (Q+M)I +C ⊆ PI +CI ⊆ (P +C)I = PI .
This proves (2.3).

The proof can now be completed by applying the decomposition theorem for
polyhedra. In (2.3) Q+M is a bounded polyhedron (i.e., a polytope) and therefore
(Q + M)I is polytope. Thus, by (2.3), PI is algebraic sum of a polytope and a
convex cone which proves that it is a polyhedron. Furthermore, if PI is nonempty,
we also get char.cone(PI) = char.cone(P ) (from the uniqueness of polyhedral
decomposition).

A polyhedron is called integral if P = PI , i.e. it equals the convex hull of its inte-
gral vectors. (For convenience, we also say that the empty polyhedron is integral.)
Integral polyhedra are interesting in connection with integer linear programming.
In fact, we have in general that

max{cT x : x ∈ P, x is integral} =
max{cT x : x ∈ PI} ≤
max{cT x : x ∈ P}.

(2.4)

If P is integral the inequality in (2.4) can be replaced by equality, and the values of
the ILP and the corresponding LP coincide. In fact, among the optimal solutions
of the LP problem max {cT x : x ∈ P} there is an integral one.

Some equivalent descriptions of integral polyhedra are listed next; the proof is
left for an exercise.

Proposition 2.2. The following conditions are all equivalent whenever P ⊆ IRn

is a nonempty polyhedron.

(i) P is integral.

(ii) Each minimal face of P contains an integral vector.

(iii) max {cT x : x ∈ P} is attained for an integral vector for each c ∈ IRn for
which the maximum is finite.

Furthermore, if P is pointed (e.g., if P ⊆ IRn
+), then P is integral if and only if

each vertex is integral.

18



There are some further equivalent conditions describing the integrality of a poly-
hedron. One such interesting condition is that the optimal value is integral for
any LP over the polyhedron with integral objective function. This result leads
to the concept of total dual integrality which gives a method for proving that a
polyhedron is integral.

Proposition 2.3. Let P be a rational polyhedron in IRn. Then P is integral if
and only if max{cTx : x ∈ P} is an integer for each c ∈ Zn such that v(LP ) is
finite.

Proof. In order to simplify a bit, we only prove this result for the situation with
P pointed. Assume that P is integral, and consider max{cT x : x ∈ P} with
c ∈ Zn and assume that the optimal value is finite. Then, from Proposition 2.2
this LP has an optimal solution x∗ which is integral. But then clearly the optimal
value cT x∗ is an integer, which proves the “only if” part.

We prove the converse implication by contradiction. So assume that P is not
integral. As P is pointed, and rational, this means that there is a vertex x̄ of P
with a fractional component x̄j . (Add details .....). Therefore, there is a c̄ ∈ Zn

such that x̄ is the unique optimal solution of max {c̄T x : x ∈ P}. One can then
show that there is an ǫ > 0 such that for each c′ ∈ B(c̄, ǫ) x̄ is the unique optimal
solution of the problem max {(c′)T x : x ∈ P}. For a suitably large positive integer
s we have that d = c̄+(1/s)ej ∈ B(c̄, ǫ). Note that x̄ is the optimal solution of the
LP problem over P with objective function sd = sc̄+ej and therefore its optimal
value equals sdT x̄ = sc̄T x̄ + x̄j . But then one of the two optimal values sdT x̄
and sc̄T x̄ must be fractional (as x̄ is fractional), i.e., there is an integer objective
function such that the corresponding optimal value is fractional; a contradiction.
This completes the proof.

We call a linear system Ax ≤ b totally dual integral, or TDI for short, if for
all integral c with max{cT x : Ax ≤ b} finite, the dual LP problem min{yT b :
yTA = cT , y ≥ 0} has an integral optimal solution. Note here that this definition
concerns a given linear system and not the corresponding polyhedron P = {x ∈
IRn : Ax ≤ b}. In fact, a polyhedron may be represented by both a TDI system
and another non-TDI system. The importance of the TDI property is seen from
the next result.

Corollary 2.4. Assume that the system Ax ≤ b is TDI and that b is integral.
Then the associated polyhedron P = {x : Ax ≤ b} is integral.

Proof. By definition of TDI the dual problem (D) min{yT b : yTA = cT , y ≥ 0}
has an integer optimal solution y∗ for each c ∈ Zn with max{cT x : Ax ≤ b} finite.

19



But as b is integral we get that the optimal value v(D) = (y∗)T b is also integral for
such problems. By the LP duality theorem, this shows that max{cT x : x ∈ P}
is an integer for each c ∈ Zn such that v(LP ) is finite, and P is integral by
Proposition 2.3.

Note here that the fact that Ax ≤ b is TDI is not sufficent to guarantee that
P = {x : Ax ≤ b} is integral, because with fractional b the optimal value of the
dual problem may be fractional (although the optimal solution is integral). It can
be shown that if Ax ≤ b is a rational linear system, then there is an integer M
such that the scaled system (1/M)Ax ≤ (1/M)b is TDI. As a consequence, we
see that each rational polyhedron has a TDI representation.

An example of a TDI system is

x(δ+(U)) ≥ 1 for all U ⊂ V , r ∈ U ;
x ≥ 0

(2.5)

where r is a given node in a directed graph D = (V, E). The solution set of this
system is the dominant of the convex hull of incidence vectors of r-arborescences
in D. An r-arborescence is an arc set F such that the subgraph (V, F ) contains
a directed rt-path for each node t 6= r and where each such node t has exactly
one ingoing arc in F . We remark that these graphs are of interest in the design
of certain transportation or communication networks.

2.2 Totally unimodular matrices

In the previous section we studied the integrality of a polyhedron in connection
with TDI linear systems. The topic of the present section is to study a stronger
property, namely for the matrix A alone, which assures the integrality of the
associated polyhedron.

An m×n matrix A is called totally unimodular, TU for short, if the determinant
of each square submatrix is -1, 0 eller 1. Thus, in particular, a TU matrix has
entries being -1, 0 or 1. Such matrices arise naturally in connection with graphs,
see Section 2.3.

A relation between integrality of a polyhedron and total unimodularity is given
next.

Theorem 2.5. Let A ∈ IRm,n be a TU matrix and b ∈ IRm an integral vector.
Then the polyhedron P = {x ∈ IRn : Ax ≤ b} is integral.

20



Proof. First we recall Cramer’s rule for finding the inverse of a nonsingular
matrix C: the (j, i)’th element of C−1 is given by (−1)i+jdet(Cij)/det(C) where
Cij is obtained from C by deleting the i’th row and the j’th column. It follows
that if C is integral and det(C) is either 1 or -1, then C−1 will be integral.

Let F = {x ∈ IRn : A′x = b′} be a minimal face of P (so A′x ≤ b′ is a subsystem of
Ax ≤ b). We may assume that the m′ equations in A′x ≤ b′ (or the rows of A′) are
linearly independent (otherwise we could remove redundant constraints without
changing the solution set). Then A′ contains at least one m′ × m′ nonsingular
submatrix B so (after permutation of columns) we may write A′ =

[

B N
]

.
Therefore a vector x in F is given by xB = B−1b′, xN = 0 where xB and xN

are the subvectors corresponding to B and N , respectively. But since B is a
nonsingular submatrix of A and A is TU, it follows that B must be integral and
its determinant is 1 or -1. Then, by Cramer’s rule, B−1 is integral, and therefore
xB is integral. Thus F contains an integral vector x which proves that P is
integral.

The TU property is preserved under a number of matrix operations, for instance

• transpose;
• augmenting with the identity matrix;
• deleting a row or column which is a coordinate vector;
• multiplying a row or column by -1;
• interchanging two rows;
• duplication of rows or columns.

We leave the proof of these facts for an exercise.

An important connection between integrality for dual LP problems and total
unimodularity is discussed next.

Corollary 2.6. Let A ∈ IRm,n be a TU matrix and b ∈ IRm and c ∈ IRn two
integral vectors. Then each of the dual LP problems in the duality relation

max{cT x : Ax ≤ b} = min{yT b : yTA = cT , y ≥ 0}. (2.6)

has an integral optimal solution.

Proof. From Theorem 2.5 it follows that the primal polyhedron {x ∈ IRn : Ax ≤
b} is integral. Therefore, by Proposition 2.2, the primal LP has an integral optimal
solution. The dual LP problem may be viewed as the problem min {bT y : Dy ≤ d}

where D is given by D =





AT

−AT

−I



. and d =





c
−c
0



. Note that D is obtained

21



from A by using operations that preserve the TU property (see above), so D is
TU. Since d is integral, the dual polyhedron is integral and the dual LP has an
integral optimal solution.

Corollary 2.7. Assume that A ∈ IRm,n is a TU matrix. Let b, b′, d, d′ be integral
vectors with b ≤ b′ and d ≤ d′ where we allow components to be either −∞ or
∞. Then the polyhedron P = {x ∈ IRn : b′ ≤ Ax ≤ b, d′ ≤ x ≤ d} is integral.

Proof. We have that P = {x : Cx ≤ c} where

C =









A
−A

I
−I









, c =









b
−b′

d
−d′









.

Note that whenever a component of b, b′, d, d′ is −∞ or ∞, the corresponding
constraint is dropped. Now, C is TU as it is obtained from A by TU preserving
operations and also c is integral, so P is integral according to Theorem 2.5.

As we have seen, polyhedra defined by a TU matrix are integral. An interesting
converse result due to Hoffman and Kruskal (1956) is given next without proof.

Theorem 2.8. Suppose that A is an integral matrix. Then A is TU if and only
if the polyhedron {x : Ax ≤ b, x ≥ 0} is integral for every integral b.

In order to determine if a matrix is TU the following criterion due to Ghouila-
Houri (1962) may be useful. For a proof, see e.g. [15].

Proposition 2.9. A (0,±1)-matrix (of size m × n) A is TU if and only if for
each J ⊆ {1, . . . , n} there is a partition J1, J2 of J (where J1 or J2 may be empty)
such that

|
∑

j∈J1

aij −
∑

j∈J2

aij | ≤ 1 for i = 1, . . . , m. (2.7)

2.3 Applications: network matrices and minmax theorems

We give some basic examples of TU matrices in connection with graphs, and
derive important combinatorial minmax theorems.

Consider first an (undirected) graph G = (V, E) and let AG ∈ {0, 1}V ×E be its
node-edge incidence matrix, i.e., the column of AG corresponding to the edge
e = [u, v] has only two nonzeros, namely for the two rows corresponding to u and

22



v. Note that since AG is an incidence matrix (all elements are 0 or 1), it may be
totally unimodular. The precise answer is that it is TU exactly when the graph
contains no odd cycles.

Proposition 2.10. AG is TU if and only if G is bipartite.

Proof. Let first G be bipartite with the two color classes I1 and I2. We shall
then show that AG is TU using Ghouila-Houri’s TU characterization. Let I be
a subset of the rows of AG, and let I ′

1 = I ∩ I1 and I ′
2 = I ∩ I2. Let a be the

vector obtained by summing the rows of AG associated with I ′
1 and subtracting

the rows associated with I ′
2. The component ae of a correponding to an edge

e = [u, v] must be either 1 (if one of the endnodes is in I ′
1 and the other is not in

I ′
2), -1 (the converse situation) or 0 (if both or none of the endnodes lie in I). This

a is a vector with componenents -1,0 and 1 and therefore AG is TU according to
Proposition 2.9.

Conversely, assume that G is not bipartite. It follows that G has an odd cycle
C. Let B be the square submatrix of AG indiced by the rows and columns corre-
sponding to the nodes and edges of C, respectively. With suitable permutations
we transform this matrix into the circulant matrix C2,t where t is the length of
the cycle. (This is a 0,1-matrix where the i’th row, for i = 1, . . . , t − 1 has two
nonzeros (1’s) namely in position i and i + 1, while the two nonzeros (1’s) of row
t are in the first and last position). One can show that |det(C2,t)| = 2 and it
follows that AG is not TU.

The previous result may be combined with Corollary 2.6 to get important com-
binatorial minmax theorems. We illustrate this for problems concerning packing
and/or covering of nodes and edges of a graph. First, we give a more “symmetric”
integrality/LP theorem derived from Corollary 2.6.

Corollary 2.11. Let A ∈ IRm,n be a TU matrix and b ∈ IRm and c ∈ IRn two
integral vectors. Then each of the dual LP problems in the duality relation

max{cT x : Ax ≤ b, x ≥ 0} = min{yT b : yTA ≥ cT , y ≥ 0}. (2.8)

has an integral optimal solution provided that the optimal values are finite.

Proof. We apply Corollary 2.6 to the matrix
[

A −I
]

which is TU as A is
TU. The primal problem becomes max {cT x : Ax ≤ b, x ≥ 0} as desired. The
dual problem is

min{yT b : yT A − z = cT , y ≥ 0, z ≥ 0} =

min{yT b : yT A ≥ cT , y ≥ 0}.

23



Note here that there is an optimal integral solution (y, z) of the first problem if
and only if there is an optimal integral solution y of the second problem. The
result then follows from the duality relation.

Let G be a bipartite graph, so by the previous proposition, its incidence matrix
AG is TU. Consider the LP duality relation (2.8) with A replaced by AG and
with c = 1 and b = 1. We then obtain

max{1T x : AGx ≤ 1, x ≥ 0} = min{yT1 : yTAG ≥ 1T , y ≥ 0}. (2.9)

We know that each of these two problems has an integral optimal solution and we
interprete this combinatorially. First, we note that in the system Ax ≤ 1, x ≥ 0
we have one variable xe for each edge e ∈ E, and that x is a solution if and only
if x is nonnegative and satisfies x(δ(v)) ≤ 1 for each v ∈ V . Thus an integer
solution here must in fact be 0,1-valued, and it represents a matching in G. A
matching in a graph is an edge subset such that no node is incident to more than
one edge. Therefore, the maximization problem in (2.9) is to find a maximum
cardinality matching in the bipratite graph G. This is a classical problem which
is polynomially solvable by e.g. a combinatorial algorithm called the Hungarian
algorithm. Now, we turn to the minimization problem, and observe that there
is only one variable xv for each node v ∈ V . An integer feasible solution of this
problem assigns a nonnegative integer to each node in such way that each edge has
an endnode with a strictly positive integer. Clearly, we may restrict our attention
to such integers that are 0 or 1, and the the minimization problem becomes: find a
node cover in G of minimum cardinality. A node cover is a subset V0 of the nodes
such that each edge has at least one endnode in V0. Therefore, due to integrality,
the relation (2.9) says that the maximum cardinality of a matching in a bipartite
graph equals the minimum cardinality of a node cover. This result is known as
the König-Egervary theorem and dates to 1931.

As a second application of Corollary 2.11 we study the effect of the choice A = AT
G,

i.e., the transpose of the node-edge incidence matrix of G. Again we use c = 1
and b = 1. We shall assume that G contains no isolated node (otherwise one of
the problems studied would become infeasible). We then obtain (when we let the
role of x and y be changed)

max{1T y : AT
Gy ≤ 1, y ≥ 0} = min{xT1 : xT AT

G ≥ 1T , x ≥ 0}. (2.10)

We recall the interpretations above and see that an integral feasible y in the max-
imization problem corresponds to a node packing (also called independent set or
stable set). Thus this problem may be viewed as to find a maximum cardinality

24



node packing in G. A node packing is a subset S of the node set such that no pair
of nodes are adjacent. As remarked above in connection with the node cover prob-
lem, one may restrict the attention to 0-1 valued solutions in the minimization
problem of (2.10). The problem therefore reduces to that of finding a minimum
cardinality edge cover. An edge cover is a subset of the edge set such that each
node is incident to one of the chosen edges. The interpretation of the minmax
relation of (2.10) then becomes: the maximum cardinality of a node packing in
a bipartite graph equals the minimum cardinality of an edge cover. This result is
also due to König (1933) and is often called König’s covering theorem.

Note that all of the four combinatorial problems discussed above are polynomially
solvable in bipartite graphs. In fact, it follows from the results above that they
may be solved by a polynomial algorithm for LP which finds optimal vertex
solutions (and such algorithms do exist, e.g., based on the ellipsoid method).
There are also purely combinatorial algorithms for each of these problems that
are polynomial, see e.g. [14].

We next study problems in directed graphs. Let D = (V, E) be a directed graph
and let AD be its node-arc incidence matrix.

The basic tool is the following result.

Proposition 2.12. AD is TU for each digraph D.

Proof. We give an elegant and short proof of this fact due to Veblen and Franklin
(1921), see [20].

We prove by induction that each subdeterminant is -1, 0 or 1. Assume that this
is true for all submatrices of dimension t, and let N be a t × t submatrix of
AD. If N contains a column with all zeros, then det(N) = 0. If a column of
N contains exactly one nonzero, this number is either -1 or 1, and when we
expand the determinant for this column we get that det(N) ∈ {−1, 0, 1} by the
induction hypothesis. Finally, if each column of N contains two nonzeros, the
sum of all row vectors is the zero vector, so the row vectors ar linearly dependent
and det(N) = 0.

Using this fact combined with Corollary 2.11 we obtain that

max{cT x : ADx = 0, 0 ≤ x ≤ d, x integral} =
min{yTd : zT AD + y ≥ cT , y ≥ 0, y, z integral}.

(2.11)

We here assume that c and d are integral vectors and allow components of d to
be ∞ (in which case the corresponding dual variable is not present). An inter-
pretation may be given as follows. Recall that x ∈ IRE is called a circulation if

25



ADx = 0. Thus the primal problem is to find a nonnegative integral circulation
in D obeying arc capacities d and maximizing the “profit”

∑

e∈E cexe. In the
dual problem we may interpret z as node variables zv for v ∈ V and then the
constraints zT AD + y ≥ cT says that zu − zv + ye ≥ ce for each arc e = uv ∈ E.

Consider next the special case when the profit function is all zero except for on one
arc (t, s) where cts = 1. In addition we let dts = ∞. Then the circulation problem
coincides with the maximum st-flow problem. Thus we see (due to Corollary 2.11)
that the maximum flow problem has an integral optimal solution. Furthermore,
(y, z) is feasible in the dual problem if and only if (y, z) is integral, y nonnegative
and

zu − zv + ye ≥ 0 for all e = (u, v) 6= (t, s);
zt − zs ≥ 1 for all e 6= (t, s)ce.

(2.12)

Note that the last inequality is due to the fact that dts = ∞. Therefore zt ≥ zs+1.
Define the node set W = {v ∈ V : zv ≥ zt} and note that t ∈ W while s 6∈ W .
In addition we have for each e = (u, v) ∈ δ−(W ) that zv ≥ zt, zu ≤ zt − 1 (due
to integrality) so from feasibility we get ye ≥ zv − zu ≥ zt − zt + 1 = 1. Since y is
nonnegative we therefore obtain yTd ≥

∑

e∈δ−(W ) yede ≥
∑

e∈δ−(W ) de. This proves

that the optimal value of the dual problem is no less than the capacity d(δ−(W ))
of the cut δ−(W ). On the other hand the value of the primal problem is not larger
than d(δ−(W ). But from (2.11) the values of these two problems coincide, and it
follows that there exists an st-cut with capacity equal to the maximum flow from
s to t. Thus we have given an alternative proof of the max-flow min-cut theorem.

26



Chapter 3

Heuristic algorithms for combinatorial

optimization problems

In this chapter we describe a class of solution methods for combinatorial opti-
mization problems, i.e. problems of type:

max{w(F ) : F ∈ F} (3.1)

where F ⊆ E (ground set) and w : E → IR.

In Chapter 1 we discussed the relevance of attacking the combinatorial optimiza-
tion problem from two sides, by computing both upper and lower bounds on the
optimal value to (3.1). In this chapter we focus on methods to compute lower
bounds, so called heuristics. Heuristic methods are typically designed to find
good, but not necessarily optimal, solutions quickly. Depending on the input,
heuristics maybe classified in constructive heuristics, which generate a solution
from scratch, and improvement heuristics, which start from a given feasible so-
lution and try to improve it, typically by applying some type of local changes
which modify only parts of the original solution.

3.1 Constructive heuristics

Constructive heuristics are designed to produce an initial solutions to an opti-
mization problem. This may be difficult, depending on the problem characteris-
tics. Many problems, however, have a certain monotonicity property that helps.
We say that F is an independence system if each subset of a feasible set is also
a feasible set. For instance, the set of forests in a graph is an independence sys-
tem. We should remark that any set system (class of subsets of E) can be made
into an independence system by adding all subsets of feasible sets; this is called

27



monotonization. This transformation may, at least, be useful in the analysis of
the problem. For instance, in the Travelling Salesman Problem, we may consider
the class of edge sets being subsets of Hamilton cycles.

For an independence system the greedy algorithm may be used to construct a
feasible solution:

Greedy algorithm

Step 1. Order the elements in E in a sequence e1, . . . , em such that w(e1) ≥ . . . ≥
w(em). Set F := ∅.

Step 2. While F ∈ F add the next element in the sequence to F .

It is easy to see that Kruskal algorithm for spanning trees ([21]) is a greedy
algorithm.

This algorithm terminates with a feasible solution, and it is simply called the
greedy solution.

Example 3.1. Consider the following combinatorial optimization problem. Let
the ground set be E = {1, 2, 3, 4}, and let w(1) = 4, w(2) = 3, w(3) = 2,
w(4) = −8. Let F = {{1, 3}, {1, 3, 4}, {1, 2, 4}, {2, 3}}.

After monotonization, the extended solution set becomes F∗ = {∅, {1}, {2},
{3}, {4}, {1, 2}, {1, 3}, {1, 4}, , {2, 3}, {2, 4}, {3, 4} {1, 3, 4}, {1, 2, 4}}.

According to the weight function, the ordered set of elements is {1, 2, 3, 4}. If we
apply the greedy algorithm, then at the first iteration we have F = {1}. Next, we
have F = {1, 2}. Finally, we have F = {1, 2, 4}. No more elements can be included
in F to get a feasible solution and we are done. Remark that w(F ) = −1 and the
optimal solution is F ∗ = {1, 3}, with w(F ∗) = 6.

Example 3.2. Consider the weighted graph in Figure 3.1. Let us apply the greedy
algorithm to the TSP problem introduced in Chapter 1.

The sequence produced by the greedy algorithm will be {}, {(3, 5)}, {(3, 5), (2, 4)},
{(3, 5), (2, 4), (4, 5)}, {(3, 5), (2, 4), (4, 5), (1, 2)}, and, finally H = {(3, 5), (2, 4),
(4, 5), (1, 2), (1, 3)}.

We have w(H) = 26, which can be easily verified to be non-optimal.

So, in general the greedy algorithm does not terminate with an optimal solution.
However, it can be shown (see [21]) that the greedy solution is optimal (for every
possible weight function w) if and only if the independence system is also a so-
called matroid.

28



5

34

2

1

3

4

2
1

155

3

7 5

5

5

34

2

1

3

4

2
1

155

3

7 5

5

Figure 3.1: The greedy solution of Example 3.2

The greedy algorithm is probably the most simple and natural constructive
heuristic for combinatorial optimization problems, but there are other approaches
as well, often more effective. approximation

guarantee
We illustrate one such approach to the metric TSP problem, due to Christofides
[3]. This method has an additional, interesting feature as it belongs to the class
of heuristics with approximation guarantee. To introduce this concept, let (Q)
be a maximization problem and let v(Q) be its optimal value. Let A be an
approximation algorithm for (Q), i.e. A finds a feasible solution x to (Q), and let
w(x) denote the value of x. Then A has a α-approximation factor guarantee if
and only if αw(x) ≥ v(Q). When (Q) is a minimization problem, the condition
becomes w(x) ≤ αv(Q).

Let G = (V, E) be an undirected, complete graph and let w : E → IR be a weight
function. We also suppose that w satisfies the triangle inequality, that is for all
u, v, z ∈ V we have w(u, v) ≤ w(u, z) + w(z, v).

In order to describe Christofides approximation algorithm for TSP, we need to
introduce the definition of Eulerian tour in a (multi-graph).

Definition 3.1. Let G = (V, E) be a connected multigraph (edge repetitions are
allowed). A Eulerian tour is a tour in G passing through each edge exactly once.

One can show that a graph admits a Eulerian tour if and only if every node has
even degree1. In this case, the graph is said to be Eulerian. A Eulerian tour can
be easily constructed in a Eulerian graph.

1. Actually, this problem is considered as the mother of all network problems. It was first
stated and solved by Euler while attacking the famous Königsberg 7-Bridges Problem

29



1

2

4

5

3

1 5 4 3

2145

Figure 3.2: A Eulerian graph and a corresponding Eulerian tour

The following algorithm finds a factor 2-approx Hamilton tour H in G, i.e. if H∗

is an optimal Hamilton tour, then w(H) ≤ 2w(H∗).

Christofides Algorithm

Step 1. Find a minimum spanning tree T of G.

Step 2. Double every edge of T to obtain a Eulerian graph

Step 3. Find a Eulerian tour T on this graph

Step 4. Return the Hamilton tour that visits the vertices of G in the order of
their first appearance in T .

Theorem 3.1. Christofides algorithm is a factor 2 approximation algorithm for
the metric TSP.

Proof. Denote by H∗ an optimal Hamilton tour in G and let H̄ the tour returned
by the algorithm. First observe that

(i) w(T ) ≤ w(H∗). In fact, every Hamilton tour H contains a spanning tree: take
any edge e of H and remove it from H ; the remaining graph is a Hamilton path
(a path passing through each node exactly once) and thus it is a spanning tree.
(i) follows from the non-negativity of w(e).

At Step 2, observe that T contains each edge of T exactly twice, hence w(T ) =
2w(T ).

Now, if T does not contain repeated nodes, then T is a Hamilton tour and H̄ = T .
It follows that w(H̄) = w(T ) = 2w(T ) ≤ 2w(H∗) (the last inequality holds from

30



(i), and the theorem holds.

If T contains repeated nodes, apply the following procedure to obtain H̄

Shortcut repeated nodes:

Step 1. Identify a repeated node v in T . Let u the previous node on T and let z
be the next.

Setp 2. Replace in T the path u, (u, v), v, (v, z) with the path u, (u, z), z.

Step 3. If T does not contain repeated nodes, let H̄ = T and terminate. Otherwise
go to Step 1.

It is not difficult to see that, due to the triangle inequality, at each iteration of
the above procedure the weight of T does not increase. It follows that w(H̄) ≤
2w(T ) ≤ 2w(H∗).

An Example of application of Christofides algorithm is shown in Figure 3.3 and
Figure 3.4.

5

34

2

1

5

4

6
2

43

3

2 5

2

5

34

2

1

5

4

6
2

43

3

2 5

2

Figure 3.3: Step 1 of Christofides Algorithm: build a Minimum Spanning Tree

3.2 Improvement heuristics

An improvement heuristics finds a solution to a combinatorial optimization prob-
lem by iteratively trying to improve a given feasible solution. The most known,
and popular, of these methods is the so called Local Search. It relies on the
concept of neighborhood functions.

31



5

4

2

1

3

2

3

3

2

2

2

3

3
4

1

5

3 5

2

5

1

2

32

32

23
3

4

1

5

3 5

2

5

1

2

32

32

23
3

5
5

2

Figure 3.4: Step 2, 3 and 4 of Christofides Algorithm: the final Hamilton tour is
shown in solid lines

Definition 3.2. Let F be a class of subsets of a ground set E. A neighborhood
function is a point to set map N : F → 2E, which associates with each solution
F ∈ F a subset of solutions N(F ) ⊆ F .

The set N(F ) is called neighborhood of F (under the function N). Neighborhoodneighborhoods
functions are used in a widely exploited technique to solve combinatorial opti-
mization problems, known as Local Search. The idea is to start from an initial
solution F̄ and then search for a best solution F ′ in its neighborhood N(F̄ ). If
w(F ′) ≤ w(F̄ ), then F ′ is not improving over F̄ and we stop. Otherwise, we take
F ′ as a new starting solution and iterate.

Local Search

Step 0. Start with an initial solution F̄ .

Step 1. Let F ′ = argmax{w(F ) : F ∈ N(F̄ )}.

Step 2. If w(F ′) > w(x̄) then let F̄ := F ′ and goto Step 1. Else Stop

Note that when the local search terminates, F̄ is an optimal solution to the
restricted problem

max{w(x) : x ∈ N(x̄)} (3.2)

and we say that F̄ is a local optimal solution. Of course, local optima may be very
far from global optima. One may object that we have gone from solving a single
combinatorial optimization problem to solving a whole sequence of combinatorial

32



optimization problems, whose solution does not even ensure global optimality. Is
there any advantages in doing so? Of course, it all depends on our capacity to
efficiently solve the optimization problem (3.2), and on the quality of the final
solution. Concerning quality, this is typically measured by exploiting well estab-
lished benchmark test-beds (there are relevant issues concerning this question,
but we will not discuss them here). There are two major lines of attack to reach
efficiency. The most common one is based on the definition of suitably ”small”
neighborhoods, so that the optimal solution can be found by complete enumera-
tion: we call such approach small neighborhood search. The second approach is
somehow smarter. Indeed, there are several combinatorial optimization problems
which can be solved efficiently, even though the number of solutions is very large.
Examples are the minimum spanning tree problem, the matching problem, the
minimum path problem, etc. So, the game here is to define the neighborhood
function N in such a way that the corresponding optimization problems (3.2)
falls into this category. This is subject of the exponential neighborhood search
theory.

Small Neighborhood Search. There is a huge (and perhaps boring?) literature
on the definition of small but still effective neighborhoods for myriad versions
(of versions) of combinatorial optimization problems. However, a few of these
neighborhood definitions are quite interesting and very effective in practice, and
provide the basis for various extensions. One such example is the 2-exchange
neighborhood for the TSP introduced by Lin and Kerninghan [12]. We discuss
this neighborhood in detail hereafter. move

Typically, small neighborhoods are defined through moves. A move is an algo-
rithm, which receives a feasible solution S ∈ F to a combinatorial optimization
problem plus some additional input parameters, and returns a new solution T ob-
tained from S by applying some small change to S. Moves are normally such that
the distance d(S, T ) between S and T is small, where d(S, T ) = |S∆T |. In other
words, S and T are not too different from each other. The neighborhood of S is
then defined as the set of solutions T which may be obtained by invoking the move
on S with different additional input parameters. The neighborhood proposed by
Lin and Kerninghan for the TSP belongs to the class of distance-k-neighborhood,
which is defined for each S ∈ F as Nk(S) = {T ∈ F : d(S, T ) ≤ k}. In particular,
they implemented a distance-4-neighborhood which corresponds to applying a
particular move called 2− exchange (the derived local search algorithm is called
2 − opt). A 2-exchange move is showed in Figure 3.5. 2-exchange

heuristic
The 2-exchange move consists in selecting two non-adjacent edges from the given
Hamilton tour S and replace them with two new edges so as to obtain a distinct

33



5

34

2

1

3
2

1

15

5

5

34

2

1

21

57

4

5

34

2

1

2
1

5

Figure 3.5: A 2-exchange move

Hamilton tour T . It is easy to see that, once we have chosen the two exiting edges,
the entering pair is fixed. In the example above, if we remove edge (4, 5) and edge
(1, 3) then the entering edges are (1, 5) and (3, 4) (remark that the initial tour
is valued 26, whereas the final one is valued 18, which means that the move is
improving). The final neighborhood is obtained by choosing every possible pair
of non-adjacent edges and applying to each pair the 2-exchange move. Observe
now that any Hamiltonian tour S contains |V | edges. There are roughly O(|V |2)
ways to select a pair of non-adjacent edges, which in turn implies that |N(S)|
is also O(|V |2), for each Hamilton tour S. So, even when V is large, such a
neighborhood can be easily constructed explicitly and the optimal solution can
be found by enumeration.

Exponential Neighborhood Search. Clearly, the larger the neighborhood, the
more likely we generate good quality solutions. As an extreme case, if N(S) = F ,
then the restricted optimization problem (3.2) actually coincides with the original
problem (3.1). However, when we deal with large neighborhoods, complete enu-
meration becomes impractical and we need to resort to smarter search techniques.
More specifically, a careful definition of the neighborhood function can allow us
to resort to efficient solution algorithms, even if the number of solutions in the
neighborhood grows exponentially with the input size. We discuss an example for
the TSP introduced by Sarvanov and Doroshko [19].

Let G = (V, E) be a complete graph, with V = {1, . . . , n} and w : E → IR a
weight function. First observe that the set of Hamilton tours of G is in correspon-
dence with the set of linear orders on V . So, for example, the tour in Figure 3.1
corresponds to the order (1, 2, 4, 5, 3). Actually, distinct orders may represent the

34



same tour (e.g. (2, 4, 5, 3, 1)), but we can fix our attention to those orders having
node 1 in first position. It is easy to see that there is a one-to-one correspondence
between the Hamilton tours of the complete graph G and the linear orders of its
nodes having node 1 in first position. Positions 2, . . . , n may be occupied by any
other node. For a given Hamilton tour S represented as an order, the Sarvanov Sarvanov and

Doroshko
neighborhood

and Doroshko neighborhood N(S) consists in all those orders which can be ob-
tained from S by keeping fixed the nodes in odd position, while letting all even
nodes change their position in all possible ways.

a

b

c

d

e

f
2

1

3

4

5

6

a

d

c

f

e

b
2

1

3

4

5

6

Figure 3.6: Two distinct tours in the Sarvanov and Doroshko neighborhood

Thus, all nodes in even position may appear in a different, but still even position
in the new Hamilton tour. So, for example, if we consider the following tour on
6 nodes S1 = (a,b, c,d, e, f) (in bold nodes in even position), then its neighbor-
hood will be N(S) = {S1, S2, S3, S4, S5, S6}, where S2 = (a,b, c, f , e,d), S3 =
(a,d, c,b, e, f), S4 = (a,d, c, f , e,b), S5 = (a, f , c,b, e,d), , S6 = (a, f , c,d, e,b).
Observe that if in this example node b occupies position 6 in the final order, then
arc (e, b) and arc (b, a) will appear in the corresponding Hamilton tour, and the
contribution to the overall cost of such two arcs will be w(e, b)+w(b, a). In other
words, the cost of assigning each even node to an even position can be easily com-
puted in advance by looking at the odd nodes adjacent to such position, which
stay unchanged.

So, assume for the sake of simplicity n to be even, and let S = (v1, v2, . . . , vn) be
a given order. The cost of assigning node v2i, for i = 1, . . . , n/2 to position v2k,
for k = 1, . . . , n/2 will be cik = w(v2k−1, v2i)+w(v2i, v2k+1) (where n+1 = 1). We
have n/2 even nodes and n/2 even positions and each tour in the neighborhood
of S corresponds to a perfect matching between the set of even nodes and the set
of even positions. Hence, an optimal solution in the neighborhood of S is simply

35



a

b

c

d

e

f
2

1

3

4

5

6

2 4 6

b d f

Cb6 = w(e,b) + w(b,a) 

Figure 3.7: A tour and its associated matching problem

a perfect matching M minimizing c(M). Observe that the number of perfect
matchings if n/2!, but a minimum weight perfect matching can be found very
efficiently!

36



Chapter 4

Exact methods

In this chapter we discuss several methods for actually solving (numerically)
combinatorial optimization problems or, equivalently, 0-1 linear programs. This
is a very active research area and many interesting techniques are available. The
general combinatorial optimization problem is NP-hard, so it is quite unlikely
that one can find an efficient algorithm (polynomial running time) for this prob-
lem. However, the class of combinatorial optimization problems is very large and
contains important subclasses with specific properties that algorithms may and
should exploit. It is therefore important to have different basic algorithmic princi-
ples at hand in order to develop a suitable algorithm for a problem of interest. We
shall give a brief presentation of some main techniques that are commonly used
for solving integer linear programming and combinatorial optimization problems.

A very good reference book for various methods in integer linear programming
and combinatorial optimization is [15]. For algorithms in network flows, see [2].

4.1 Relaxations and branch-and-bound

In Chapter 1 we gave the definition of relaxation of an optimization problem (see
Definition 1.2). Recall that a relaxation of an optimization problem is in most
cases obtained by enlarging the set of feasible solutions. This is done to get an
optimization problem which is easier to solve and thereby obtain a bound on the
optimal value of interest. Such bounds were used in Chapter 1 to evaluate the
quality of some feasible solution to the problem. In this chapter we will see how
these bounds can be used to compute exact solutions, that is an optimal solution
to the combinatorial optimization problem.

Consider a combinatorial optimization problem (Q) max{w(x) : x ∈ S}, where
S ⊆ {0, 1}n is the set of feasible solutions to Q. Also, let (R) max{w(x) :

37



x ∈ T} be a relaxation of (Q) (i.e. S ⊆ T ), with the property that (R) can
be solved efficiently (to optimality) by some exact method. Since we are dealing
with combinatorial optimization problems, we may assume that both S and T are
bounded. Also, recall that, by definition, we have v(R) ≥ v(Q). Finally, let LB be
a lower bound on the optimal value v(Q) to (Q). For example, if we have at hand
a feasible solution x̄ ∈ S then we can set LB = w(x̄), or we may let LB = −∞ if
no such solution is available. Now, since we know how to do it efficiently, we solve
(R) instead of (Q). Let xR be an optimal solution to (R). Several cases can occur
and in some of these cases the solution to (R) also provides us with a solution to
(Q). In particular, this happens when

(i) (Infeasibility): (R) admits no solution, which implies that T is empty, which
in turn implies that S is empty and (Q) has no solution.

(ii) (Optimality): xR ∈ S. Then xR is an optimal solution to (Q). In fact,
xR ∈ S implies w(xR) ≤ v(Q). Since xR is optimum to (R), then w(xR) =
v(R) ≥ v(Q).

(iii) (Value dominance) v(R) = w(xR) ≤ LB. Since w(xR) ≥ w(x) for all x ∈ T ,
and S ⊆ T , this implies that the solution at hand x̄ ∈ S is already optimal
or, in any case, no solution in S can improve over the lower bound LB.

We can then state the following

Proposition 4.1. Let (Q) max{w(x) : x ∈ S} be a combinatorial optimization
problem, let LB be a lower bound on v(Q) and let (R) be a relaxation of (Q).
Suppose (R) is solved to optimality. Then the solution of (R) also provides a
solution of (Q) whenever:

(i) (Infeasibility): (R) has no solution.
(ii) (Optimality): (R) has an optimal solution xR and xR ∈ S
(iii) (Value dominance): (R) has an optimal solution and v(R) ≤ LB.

Even if we have at hand a ”good” relaxation (R) of (Q), it is often the case that
the solution of (R) does not fall into one of the conditions of Lemma 4.1. How
can we find an optimal solution to (Q) (or prove that none exists) in this case?

In order to solve difficult (combinatorial) optimization problems, relaxations are
often combined with enumerative techniques, based on the so called divide and
conquer approach.divide and

conquer
Let S(u), u ∈ V be a partition of S, so these sets are pairwise disjoint and their
union equals S. Then we have that

v(Q) = max v(Q(u))

where (Q(u)) is the restricted problem max {w(x) : x ∈ S(u)}. By solving the
restricted problems and comparing we can find an optimal solution to (Q). In

38



fact, an optimal solution to (Q) belongs to exactly one S(u), for u ∈ V . In any
case, the optimal solution x∗(u) ∈ S(u) to (Q(u)) is also feasible to (Q), since
S(u) ⊆ S. and it provides us with a lower bound w(x∗(u)) on v(Q).

Since S ⊆ {0, 1}n, a natural way of partitioning S is to fix components to either
0 or 1. For instance, we can let S0 (S1) be those vectors in S with x1 = 0 (x1 =
1). Furthermore, one can establish partitions recursively by fixing new variables
based on the previous partition. For instance, let S0,0 (S0,1) be those x ∈ S with
x1 = 0 and x2 = 0 (x1 = 0 and x2 = 1). For simplicity in the presentation we shall
assume that there is a predetermined ordering of the variables which is followed
when variables are fixed. enumeration

tree
The recursive partitioning may be organized in an enumeration tree (or branching
tree) with nodes corresponding to subsets of S and edges indicating a fixing. The
nodes are partitioned into n layers; in the k’th layer the first k variables are fixed.
Thus there are at most 2k nodes in the k’th layer correspond to all possible ways
of fixing the k first variables. For each node the subset S(v) of S consists of those
vectors in S that satisfy the variable fixing specified in that node. The restricted
optimization problem max {w(x) : x ∈ S(u)} associated with node u will be
denoted by (Q(u)). The single node vr in layer 0 is called the root node and each
of the nodes in the n’th layer are called bottom nodes. When u is a bottom node
the problem (Q(u)) is trivial as all variables are fixed. The edges go between two
consecutive layers. More precisely, a “mother node” on layer k has two adjacent
nodes (“children”) in layer k + 1 and they are obtained from the variable fixing
in the mother node by fixing xk+1 to either 0 or 1. The bottom nodes represent
a complete enumeration of all the feasible solutions in the problem (Q).

Even for moderate values of n the enumeration tree is too large for practical
purposes. The key idea is that we may only need to consider a small part of this
tree in order to solve the problem. For a nonroot node u the tree contains a unique
path p(u) between u and the root node. For each nonroot node w ∈ p(u) we say
that u is below w or that w is above u. Under certain conditions a node u may
be pruned which means that we need not solve any of the problems (Q(u′)) for pruning
nodes u′ that are below u. This happens when we know that these problems can
not improve on the current best solution. The following pruning criteria should
be clear.

Proposition 4.2. A node u in the enumeration tree may be pruned if one of the
following conditions holds.

(i) (Infeasibility.) S(u) is empty.

(ii) (Optimality.) An optimal solution of (Q(u)) is known.

(iii) (Value dominance.) v(Q(u)) ≤ v(Q).

39



x1 = 0

x2 = 0

x3 = 0

x2 = 1 x2 = 1

x1 = 1

S1

S3 S4

x2 = 0

S5x3 = 1

S2

Figure 4.1: A (partial) enumeration tree

Enumeration trees with pruning may be represented by partial binary trees,
like the one of Figure 4.1. Note that the leaves of a partial binary tree corre-
spond to the classes of a partition of S, each class being identified by the vari-
able fixing associated to the unique path from the corresponding leave to the
root. The tree in Figure 4.1 represents the partition {S1., . . . , S5}, where S1 =
{(0, 0, 0)}, S2 = {(0, 0, 1)}, S3 = {(0, 1, 0), (0, 1, 1)}, S4 = {(1, 0, 0), (1, 0, 1)},
S5 = {(1, 1, 0), (1, 1, 1)}. Solving the original problem (Q) is equivalent to solving
problems (Q1), . . . , (Q5), associated to S1, . . . , S5. Finally observe that we may
let different variables be fixed in a same layer of a partial enumeration tree. An
example is given in the Figure 4.2. These more general trees are called branching
trees.

x1 = 0

x2 = 0

x3 = 0

x2 = 1 x3 = 1

x1 = 1

x3= 0

x3 = 1

Figure 4.2: A branching tree

40



One way of deciding if node u can be pruned is therefore to solve the restricted
program (Q(u)). This is usually not desirable as (Q(u)) is a difficult (although
smaller-dimensional) combinatorial optimization problem. Instead one may solve
a relaxation of (Q(u)). This leads to the following pruning criteria. We let (R(u))
denote a relaxation of (Q(u)), and (for simplicity) assume that the objective
functions of these problems coincide. The following is a simple consequence of
Proposition 4.1:

Proposition 4.3. A node u in the enumeration tree may be pruned if one of the
following conditions holds.

(i) (Infeasibility) (R(u)) is infeasible.

(ii) (Optimality.) We have an optimal solution x̄ to (R(u)) satisfying x̄ ∈ S(u).

(iii) (Value dominance.) v(R(u)) ≤ zL where zL is the objective function for some
point in S.

We are mainly interested in the case when all the relaxations R(u) are LP relax-
ations, i.e., they are obtained by constructing some formulation P (u) for S(u) and
solving the corresponding LP max{wTx : x ∈ P (u)}. Suppose branching node u
is obtained from the mother node v by fixing the i’th component to b (where b
is either 0 or 1), i.e. S(u) = {x ∈ S(v) : xi = b}. Let P (v) be a formulation for
S(v). Then a formulation P (u) for S(u) can be immediately obtained by letting
P (u) = {x ∈ P (v) ∧ (xi = b)}, i.e. by including the constraint xi = b into the
linear description of P (v).

We finally observe that, from LP duality, the value v(R(u)) may also be found by
solving the LP dual D(u) of (u) as we have v(D(u)) = v(R(u)) (provided that at
least one of the problems is feasible). Therefore, if D(u) is unbounded, then R(u)
must be infeasible and the node u may be pruned. Secondly, if we find a feasible
solution ȳ of D(u) with (dual) objective value which is no greater than zL, then
we may prune due to value dominance (as this implies that v(D(u)) ≤ zL).

This leads to an enumerative algorithm based on linear programming. It consists
in processing nodes (solving associated optimization problems) in the enumerative
tree. We never process a node before all the nodes above that node have been
processed. In the algorithm Vn is a list of nodes that remains to be processed. The
algorithm is called branch-and-bound as we branch in the nodes and determine branch-and-

boundbounds on the optimal value in each of the nodes.

Branch-and-bound algorithm. Step 1. (Initialization) Let Vn = {vr}, zL =

−∞ and zU = ∞.

41



Step 2. (Termination.) If Vn = ∅, the current best solution x∗ is optimal; termi-
nate.

Step 3. (Node selection and processing.) Select a node u in Vn and set Vn :=
Vn \ {u}. Solve the LP relaxation (R(u)). Let z(u) and x(u) denote the optimal
value and an optimal solution to (R(u)), respectively.

Step 4. (Pruning.)

(i) If (R(u)) is infeasible, go to Step 2.

(ii) If x(u) ∈ S(u) and wTx(u) > zL, update the best solution by setting x∗ =
x(u) and zL = wTx(u) and go to Step 2.

(iii) If z(u) = wTx(u) ≤ zL, go to Step 2.

Step 5. (Branching.) Add two new nodes u0 and u1 to Vn each being a child of
node u such that S(u0) and S(u1) is a partition of S(u). Go to Step 2.

branching
variable Typically, branching is performed on a fractional variable. For instance, if the

optimal solution found in node u has two fractional variables x1, x4 one selects
one of these, say x4, and introduces the new node u0 with the additional constraint
x4 = 0 and another new node u1 with the additional constraint x4 = 1. There
are other natural ways of introducing new partitions as well, see [15].

Example 4.1. The linear relaxation associated to the natural formulation for the
Expample 1.1 is:

max 4x1 + 5x2

3x1 + 4x2 ≤ 6
5x1 + 2x2 ≤ 6 (R(u))
0 ≤ x ≤ 1

In order to solve the corresponding 0-1 linear program (with x ∈ {0, 1}2) we
apply branch-and-bound. Let us represent the initial 0-1 program by node u and
let P (u) be the associated formulation (with S(u) = P (u)∩{0, 1}2). Initially the
list of open problems only contains u, that is Vn = {u}. At Step 3 we extract
u and solve the associated relaxation (R(u)). An optimal solution to the above
LP is x1(u) = x2(u) = 0.857, and z(u) = 7.7142. Now observe that none of the
conditions of Proposition 4.2 is satisfied and u cannot be pruned. In fact, (R(u))
is feasible, z(u) < zL = −∞ and x(u) /∈ S(u) = P (u)∩{0, 1}2 (x(u) has fractional
components). Thus, we apply branching, by selecting (for instance) variable x2

and by generating two new nodes, u0 and u1, obtained from u by letting x2 = 0
and x2 = 1, respectively. So, the new list of open problems is now Vn = {u0, u1}.
We extract, for instance, u0. The linear relaxation (R(u0)) of u0 is:

42



max 4x1 + 5x2

3x1 + 4x2 ≤ 6

5x1 + 2x2 ≤ 6 (R(u0))

x2 = 0

0 ≤ x ≤ 1

The optimal solution to (R(u0)) is x1(u0) = 1, x2(u0) = 0, and its value is
z(u0) = 4. Since x(u0) ∈ S(u0) (all components are 0 or 1) and z(u0) > zL

we update the best solution x∗ = x(u0), we set zL = 4 and we prune u0. Now
Vn = {u1}: we extract u1 and solve its relaxation

max 4x1 + 5x2

3x1 + 4x2 ≤ 6

5x1 + 2x2 ≤ 6 (R(u1))

x2 = 1

0 ≤ x ≤ 1

The optimal solution to (R(u1)) is x1(u1) = 0.667, x2(u0) = 1, and its value is
z(u1) = 7.667. Since x(u1) /∈ S(u1) and z(u1) > zL we resort to branching. The
only fractional variable is x1, so we branch on x1 and generate two new nodes u10

and u11, corresponding to fixing x1 to 0 and 1, respectively. Now Vn = {u10, u11}
and we extract u10 and solve its relaxation

max 4x1 + 5x2

3x1 + 4x2 ≤ 6

5x1 + 2x2 ≤ 6 (R(u10))

x2 = 1

x1 = 0

0 ≤ x ≤ 1

The optimal solution to (R(u10)) is x1(u10) = 0, x2(u10) = 1, and its value
is z(u10) = 5. Since x(u10) ∈ S(u10) and z(u10) = 5 > 4 = zL we let the best
solution to be x∗ = x(u10), zL = 5 and we prune u10. Now we extract u11 from Vn,
(R(u11)) is infeasible, and u11 is pruned. Finally Vn is empty and the algorithm

43



x2 = 0

x1 = 1

x2 = 1

u0

x1 = 0

u10 u11

u

Figure 4.3: The (partial) branch-and-bound tree of Example 4.1

terminates. The partial branching tree associated to the above application of
branch-and-bound is shown in Figure 4.3.

Two main issues in the development of branch-and-bound algorithms are node
selection and variable selection.

Whenever we have solved the relaxation R(u), and we do not terminate, we have
to select the next node to be processed (also called the next active node). In this
node selection problem several strategies exist, some are based on a priori rules
and others are adaptive (depending on the calculations). For instance, a common
strategy is breadth-first-search plus backtracking where one always chooses the
next node as a child node and backtracks if the node is pruned. In the variable
selection problem one decides how to make the partitioning that determines the
(two or more) children problem. Empirically one knows that this choice affects
the over-all speed of the algorithm, but still it is hard to find good rules for se-
lecting “critical variables”. A useful strategy is to predetermine some ordering
of the variables based on the coupling in the constraints. For instance, the vari-
ables may fall into two classes such that fixing all the variables in the first class
makes the remaining ones integral. In such a case it makes sense to branch on
fractional variables in the first class whenever possible. Other possible techniques
are discussed in [15].

One crucial point is the strength of the LP relaxations, that is the quality of the
formulations and of the corresponding bounds. If the LP (optimal value) bounds
are too far away from the optimal value one cannot prune the enumeration tree
and the algorithm becomes slow, often too slow for all practical purposes, see

44



Exercise 4.2. So, we are interested in finding good formulations for the set S of 0-
1 solutions of our combinatorial optimization problem. Following the discussion
of Chapter 1, we would like to optimize over conv(S), but typically we need
to content ourselves with much weaker formulations, such as the natural one.
However, the initial formulation can be significantly strengthen in each node of
the branching tree. cutting planes

Suppose so we have solved the linear relaxation (R(u)) associated to the current
formulation P (u), but node u cannot be fathomed. Now, instead of proceeding
with branching we may try to strengthen the current formulation. This is done
by invoking a separation oracle which tries to find an inequality belonging to
a stronger formulation which is violated by the current solution x(u). This in-
equality is called a cutting plane, since it can be seen as a hyperplane (or cut)
separating x(u) from conv(S(u)). Typically, such a cut belongs to some prede-
fined class of inequalities and in this case, we are within the so called Template
Paradigm. But we may also look for general inequalities and we discuss an ex-
ample later in this chapter. The method which combines branch-and-bound and
cutting planes is called branch-and-cut.

4.2 Finding additional valid inequalities

We discuss some methods for finding classes of valid inequalities for a set of
integral points or simply 0-1 points. Ideally we would like to have methods for
going from a polyhedron P (the initial formulation for a set of solution S =
P ∩ {0, 1}n) to its integer hull PI (or conv(S)). We shall mention a theoretical
result which says that this is indeed possible although the construction is far from
practical. Thus we shall also discuss other general techniques that are applicable
to any integer linear programming problem. valid inequal-

ity
First we fix some terminology. Let S be some subset of IRn and let aT x ≤ α be
an inequality with a 6= 0. We say that aT x ≤ α is valid for S if S ⊆ H≤(a, α) =
{x ∈ IRn : aT x ≤ α}, i.e., each point of S satisfies the inequality in question.
We use the notation ai,. to denote the i’th row of A ∈ IRm,n viewed as a column
vector. Similarly, a.,j denoted the j’th column of A.

The Chvátal-Gomory procedure.

Let P = {x ∈ IRn : Ax ≤ b} be a given polyhedron in IRn with A, b rational. We
are interested in the problem of finding valid inequalities for the integer hull PI .
Clearly, each inequality in Ax ≤ b is valid for PI , and the purpose is to provide

45



methods for finding additional ones. The basic idea to be discussed is based on
the simple fact that if an integral number x satisfies x ≤ α, then it also satisfies
x ≤ ⌊α⌋. This strengthening of the inequality is called integer rounding.

Geometrically, as PI is spanned by the integer points in P , what we need is some
procedure for “pushing” a hyperplane defined by an inequality in the system
Ax ≤ b as far as possible towards PI . Ideally, we would like to push until we meet
a point in PI , but in higher dimensions this may not be so easily achieved. What
we can do instead is to push the hyperplane until an integer point is met (although
this point is outside P ). For instance, if x1 + 2x2 ≤ 10/3 is a valid inequality for
P , then the “rounded inequality” x1 +2x2 ≤ ⌊10/3⌋ = 3 is also valid for PI . Note
that none of the parallel hyperplanes defined by the inequalities x1 + 2x2 ≤ γ
contain integral points for 3 < γ ≤ 10/3 (prove this!). Two simple algebraic facts
are that (i) multiplying a valid inequality by a positive number gives another
(equivalent) valid inequality, and that (ii) the sum of valid inequalities is again
a valid inequality. We remark that these properties may be expressed in terms of
convexity as follows. Let P̄ be the subset of IRn+1 consisting of points (a, α) for
which aT x ≤ α is a valid inequality for P . The mentioned algebraic properties of
valid inequalities simply mean that P̄ is a convex cone in IRn+1. If we combine
the rounding idea with the cone property of the valid inequalities we get the
following procedure for finding a valid inequality. For simplicity, we assume that
P ⊆ IRn

+, i.e., that xj ≥ 0 for j ≤ n are valid inequalities for P . Multiply the
i’th inequality aT

i,.x ≤ bi by λi for each i ≤ m and sum all the inequalities. This
gives the new inequality (

∑

i≤m λia
T
i,.)x ≤

∑

i≤m λibi. If we let λ = (λ1, . . . , λm)T

this new inequality is (
∑

j≤n λT a.,j)xj ≤ λT b. This inequality is redundant (as
it is implied by Ax ≤ b), but now we may apply integer rounding. Thus we see
that

∑

j≤n⌊λ
T a.,j⌋x ≤ λT b is valid for P as we assumed that each x ∈ P satisfies

x ≥ 0. But if we insert an integral point x in P on the left-hand-side of this
inequality we get an integer (all numbers are then integers). Thus we may round
the right-hand-side down to the nearest integer and still have a valid inequality,
namely

∑

j≤n

⌊λT a.,j⌋x ≤ ⌊λT b⌋. (4.1)

The procedure leading to (4.1) is called the Chvátal-Gomory procedure and we
also call (4.1) a Chvátal-Gomory inequality.

Example 4.1 (continued). Consider the original formulation P (u) of Example 4.1.

46



max 4x1 + 5x2

3x1 + 4x2 ≤ 6

5x1 + 2x2 ≤ 6 (R(u))

−x1 ≤ 0

−x2 ≤ 0

x1 ≤ 1

x2 ≤ 1

Consider the following vector λ = (2/10, 1/10, 0, 0, 0, 0) which corresponds to
summing up the first and the second constraint multiplied by 2/10 and 1/10,
respectively. We obtain the following inequality, which is valid for the feasible
region P (u) of (R(u)):

11/10x1 + x2 ≤ 18/10

If we round down all the coefficients we obtain the following inequality, which is
valid for S(u) = P (u) ∩ {0, 1}2 but not for P (u):

x1 + x2 ≤ 1

Interestingly, the above inequality plus the box constraints of P (u) define the
convex hull of S(u).

Note that the Chvátal-Gomory procedure may be applied repeatedly and thereby
generating gradually larger classes of valid inequalities. How far may we reach by
doing this? A remarkable fact is that every valid inequality for P may be generated
in this way (possibly by increasing the right-hand-side) provided that suitably
many repetitions are taken. More specifically, for each linear system Ax ≤ b
defining the polyhedron P = {x ∈ IRn : Ax ≤ b} we can find a finite family of
linear systems A(k)x ≤ b(k) for k = 0, . . . , t such that (i) A(0) = A, b(0) = b, (ii)
each inequality in A(k)x ≤ b(k) is derived from A(k−1)x ≤ b(k−1) using the Chvátal-
Gomory procedure for k = 1, . . . , t, and (iii) PI = {x ∈ IRn : A(t)x ≤ b(t)}. For a
proof of this result, see [20] or [15].

As an example we consider the matching problem. A matching in a graph G = mathching
polytope(V, E) is a subset M of the edge set E such that d(V,M)(v) ≤ 1 for each node

v ∈ V , i.e., each node is the endnode of at most one edge in M . One can check

47



that the set of 0-1 vectors satisfying 0 ≤ x ≤ 1 and x(δ(v)) ≤ 1 for each v ∈ V
coincides with the set of incidence vectors to matchings in G. Let Ax ≤ b denote
this linear system. The polyhedron P = {x ∈ RV : Ax ≤ b is a formulation for
the set of incidence vectors of the matchings in G, and is called the fractional
matching polytope. The matching polytope is defined as the convex hull of the
incidence vectors of matchings. Let S ⊂ V consist of an odd number of nodes,
say |S| = 2k + 1. Then the inequality x(E[S]) ≤ k is clearly valid for PI as
each matching contains no more than k pairs of nodes in S. Thus, the validity
is due to a simple combinatorial argument. However, this inequality may also be
obtained using the Chvátal-Gomory procedure on the original system Ax ≤ b.
Consider the inequalities x(δ(v)) ≤ 1 for v ∈ S and the inequalities −xe ≤ 0
for e ∈ δ(S). If we multiply each of these inequalities by 1/2 and add them
together, we get the (valid) inequality x(E[S]) ≤ k+1/2. By integer rounding we
get the desired inequality x(E[S]) ≤ k which proves that this inequality may be
obtained by the Chvátal-Gomory procedure applied to the system consisting of
the degree inequalities and simple bounds. The matching polytope is completely
described by the degree inequalities, simple bounds and the odd set inequalities
x(E[S]) ≤ ⌊|S|/2⌋ for S ⊆ V and S odd. Thus, all the facet defining inequalities
for the matching polytope are obtained by adding “one round of cutting planes”
and we say that the original polyhedron P has Chvátal-Gomory-rank 1.

A feature of the Chvátal-Gomory procedure is that it may be affected by scaling
of the inequalities. For instance, if P = {x ∈ IR : x ≤ 3/2} then PI = {x ∈ IR :
x ≤ 1} and the inequality x ≤ 1 is obtained by integer rounding from x ≤ 3/2.
However, P is also the solution set of the (scaled) inequality 2x ≤ 3, and rounding
directly on this inequality does not change the inequality. From this we realize
that integer rounding should be preceded by a proper scaling of the inequality,
i.e., dividing by the greatest common divisor of all the numbers involved. For a
single inequality this produces the integer hull as the next result says.

Proposition 4.4. Let P = {x ∈ IRn :
∑n

j=1 ajxj ≤ α} where all the aj’s are
integers. Let d be the greatest common divisor of a1, . . . , an. Then PI = {x ∈ IRn :
∑n

j=1(aj/d)xj ≤ ⌊α/d⌋}.

Boolean implications.

Sometimes one can find new inequalities by detecting logical (boolean) implica-
tions of one or more constraints of the original system.knapsack

problem
The problem max {

∑n

j=1 cjxj :
∑n

j=1 ajxj ≤ b, 0 ≤ x ≤ 1} where all the data are
positive integers, is called the knapsack problem. Let P = {x ∈ IRn :

∑n

j=1 ajxj ≤
b, 0 ≤ x ≤ 1}, S = P ∩ {0, 1}n and conv(S) is the knapsack polytope. As a

48



specific example let n = 3, a1 = 3, a2 = 3, a3 = 2 and b = 7. Let C = {1, 2, 3}
and note that a(C) =

∑

j∈C aj = 8 > b. We call C a dependent set or cover. Since
a(C) > b, no feasible integral solution in P can have all variables in C equal to
1. Thus x(C) ≤ |C| − 1 is a valid inequality for PI which is often called a cover
inequality. These inequalities have proved to be very useful for solving several cover inequal-

itydifferent combinatorial optimization problems since cover inequalities may be
derived for individual constraints in the integer linear programming formulation.
We also remark that for the polyhedron P above (the linear relaxation of the
knapsack problem) all the vertices may be described in a simple way, see Problem
4.1.

Note that any linear inequality in 0-1 variables may be transformed to the situ-
ation just treated. A general linear inequality with rational data may be written
(after suitable scaling)

∑

j∈J1
ajxj +

∑

j∈J2
ajxj ≤ b with aj, j ∈ J1 positive in-

tegers and aj , j ∈ J2 negative integers (j’s with aj = 0 are not of interest for
the analysis). We make the affine transformation zj = 1 − xj for j ∈ J2, and
the transformed inequality is

∑

j∈J1
ajxj +

∑

j∈J2
(−aj)zj ≤ b−

∑

j∈J2
aj . Here all

coefficients are positive, so we may establish (e.g.) cover inequalities as above and
finally transform these back into new valid inequalities for the original problem. variable

upper bound
Another type of constraint that is often met in applications is

(i)
∑

j∈N yj ≤ nx;

(ii) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1;
(iii) x ∈ {0, 1}.

(4.2)

The logical contents of the constraints is that x = 1 whenever the sum of the
continuous variables yj, j ∈ N is positive. Alternatively, all yj, j ∈ N must be
0 whenever x = 0. This type of constraints are called variable upper bounds. variable

upper boundHowever, this means that all the inequalities yj ≤ x for j ∈ N are also valid for
the solution set of (4.2). By adding these new constraints we cut off fractional
solutions (from the continuous relaxation of (4.2)) like e.g., y1 = 1, yj = 0 for
j ∈ N \ {1}, x = 1/n since the inequality y1 ≤ x is violated. For more about
related mixed integer sets like the variable upper-bound flow models, confer [15].

Combinatorial implications.

For combinatorial polyhedra, i.e., polyhedra with vertices corresponding to some
class of combinatorial objects, one may find valid inequalities by exploiting these
combinatorial properties. The example with the matching polytope given in the
previous paragraph fits into this framework. Here we give some other examples.

49



First, we consider the set covering problem (see e.g., [4]). This problem is of
relevance to many applications. For instance, in airline crew scheduling each flightset covering

problem must be covered; in allocating student classes to rooms, each class must get a
room, or in network design a number of capacity “bottlenecks” (like cuts) must
be covered. Let I and J be the color classes of a bipartite graph G, so each edge
in the edge set E joins some node in I to some node in J . Let cj for j ∈ J be
given nonnegative weights. By a cover we understand a subset S of J such that
each node in I is adjacent to at least one node in S. (Of course, we assume that
G allows this to happen, i.e., each node in I is adjacent to some node in J).
The set covering problem is to find a cover of minimum weight, where the weight
w(S) of a cover S is defined as w(S) =

∑

j∈S wj . This problem is NP-hard. The
polyhedral approach to this problem may start by introducing the set covering
polytope PSC as the convex hull of vectors χS where S is a cover. An integer linear
programming formulation of the set covering problem is obtained by letting xj

indicate whether node j is in the cover to be determined. For i ∈ I we let Γ(i)
denote the set of nodes in J that are adjacent to i.

minimize
∑

j∈J cjxj

subject to
(i)

∑

j∈Γ(i) xj ≥ 1 for all i ∈ I;

(ii) 0 ≤ xj ≤ 1 for all j ∈ J ;
(iii) x is binary.

(4.3)

Thus the constraint (4.3)(i) assures that each node in I is covered. Let P be the so-
lution set of (4.3)(i)–(ii), so the integer hull PI of this polytope is precisely the set
covering polytope PSC. Due to the hardness of the set covering problem, it is too
ambitious to find a complete linear description of PI . However, in order to numer-
ically solve practical set covering problems one may need to find some of these in-
equalities and add them to the description of P . In other words, the LP relaxation
using P may give poor lower bounds on the true optimal value of the set covering
instance of interest. For example, consider a graph with nodes I = {i1, i2, i3} and
J = {j1, j2, j3}, and with the six edges [i1, j1], [i1, j2], [i2, j2], [i2, j3], [i3, j3], [i3, j1].
Note that each node in J covers two consecutive nodes in I. Assume that the
objective function is c = (1, 1, 1). Then an (in fact, the) optimal solution of the
LP relaxation is x̄ = (1/2, 1/2, 1/2) with objective value 3/2. The optimal value
of the integer program, and therefore the set covering problem, is 2. Thus, some
valid inequality for PSC is required to cut off this fractional vertex of P . Such an
inequality may be deduced from a simple combinatorial argument: no single node
in J can cover all the nodes in I, therefore at least two nodes in J must be chosen.
Thus the inequality x1 + x2 + x3 ≥ 2 is valid for PSC (as it holds for all vertices
and then, by convexity, for all points of PSC). Also, it is violated by x̄. If we add

50



this inequality to our current linear program and reoptimize we get an optimal
integer solution, say (1, 1, 0). The inequality we just identified actually belongs
to a large class of valid, and often non-redundant, inequalities for set covering
polytopes: the odd cover inequalities . It may seem that we only get a few in-
equalities in this way, but for a given graph G there may be many subgraphs that
are isomorphic to the one of our example, and each of these produce several valid
inequalities called lifted odd cover inequalities. The procedure involved is called
lifting and makes it possible to find facets of a higher dimensional polytope via
facets of lower dimensional ones (namely projections of the polytope of interest),
see [15].

As another example we consider the node packing problem. A node packing node packing
problem(independent set, stable set) in a graph G = (V, E) is a subset S of the nodes

such that no pair of nodes is adjacent. The node packing polytope (see [10]) is
the convex hull PNP of the incidence vectors of node packings in G. Note that
this polytope depends on G. A binary vector x ∈ IRV is the incidence vector
of a node packing iff xu + xv ≤ 1 for each [u, v] ∈ E. Thus PNP = PI where
P = {x ∈ IRV : 0 ≤ x ≤ 1, xu +xv ≤ 1 for each [u, v] ∈ E}. It can be shown that
P = PI iff the graph G is bipartite. Thus, for general graphs further inequalities
are needed to define the node packing polytope. For instance, consider a clique
which is a complete subgraph, i.e., a subset V0 of V such that [u, v] ∈ E for
all distinct u, v ∈ V0. Clearly any node packing contains at most one node in
such a clique, so the clique inequality x(V0) ≤ 1 is valid for PNP . Note that
this inequality is stronger than the inequalities xu + xv ≤ 1 for u, v ∈ V0. This
means that each of these inequalities is implied by the clique inequality and the
nonnegativity constraints. Next, consider an odd cycle C with, say, 2k +1 nodes.
Then at most every second node can lie in a node packing, so exploiting the
parity property we get the valid inequality x(C) ≤ k. A major research topic
in polyhedral combinatorics is the study of those graphs for which the clique
constraints and the nonnegativity constraints are sufficient to describe the node
packing polytope, see [15], [14]. Such graphs are called perfect graphs.

4.3 Lagrangian relaxation

In Section 4.1 we discussed relaxations of optimization problems in a general set-
ting. We here consider one specific type of relaxation that has turned out to be
of great value in finding near-optimal solutions to (several) combinatorial opti-
mization problems. The idea in Lagrangian relaxation is to exploit the underlying
structure of an optimization problem in order to produce bounds on the optimal
value.

51



Consider the 0-1 linear programming problem with feasible set S = P ∩Zn where
P = {x ∈ IRn : Ax ≤ b, 0 ≤ x ≤ 1} and A ∈ IRm,n. (The following development
also works more generally, in fact for S = P ∩ X where X is any subset of IRn).
Assume that the system Ax ≤ b is split into two subsystems A1x ≤ b1 and
A2x ≤ b2 where Ai has mi rows and m1 + m2 = m. One can think of A2x ≤ b2

as “complicating constraints” in the sense that if they were dropped an easier
problem would be obtained. Thus we have P = {x ∈ IRn : A1x ≤ b1, A2x ≤
b2, 0 ≤ x ≤ 1}. The 0-1 linear programming problem (Q) may be written as
follows.

max cT x
subject to
(i) A1x ≤ b1;
(ii) A2x ≤ b2;
(iii) 0 ≤ x ≤ 1;
(iii) x is integral.

(4.4)

The purpose of this constraint splitting is to open up for an associated and simpler
0-1 LP problem where the constraints A2x ≤ b2 have been moved to the objective
function with penalties. We consider the following problem LR(λ)

max cT x + λT (b2 − A2x)
subject to
(i) A1x ≤ b1;
(ii) 0 ≤ x ≤ 1;
(iii) x is integral.

(4.5)

where λ = (λ1, . . . , λm2) consists of nonnegative weights or “penalties”, usually
called the Lagrangian multipliers. Thus, in LR(λ) a feasible point x̄ may violate
a constraint aT

i x ≤ bi in A2x ≤ b2 but this increases the objective function by the
amount of λi(bi − aT

i x̄). On the negative side, we see that we get an “award” in
the objective by satisfying an inequality strictly. This is an unavoidable problem
when we want to maintain a linear objective function.

We call the problem LR(λ) the Lagrangian relaxation (or Lagrangian subprob-
lem) w.r.t. the constraints A2x ≤ b2. As the name indicates this Lagrangian
relaxation is really a relaxation of (4.4) for any λ ∈ IRm

+ . To see this we note that
the feasible region of the Lagrangian relaxation contains the feasible region of the
original problem. In addition, if x̄ is feasible in (4.4), then, in particular, we have
A2x̄ ≤ b2 and therefore also cT x̄ + λT (b2 −A2x̄) ≥ cT x as λ is nonnegative. Thus
we obtain an upper bound on the optimal value of interest:

v(Q) ≤ v(LR(λ)).

52



Since this holds for all λ ∈ IRn
+, the best upper bound obtained in this way is

given by solving the so-called Lagrangian dual problem (LD) (w.r.t. A2x ≤ b2)

min{v(LR(λ)) : λ ≥ 0} (4.6)

and we get the important inequalities

v(Q) ≤ v(LD) ≤ v(LR(λ)) for all λ ∈ IRn
+. (4.7)

The Lagrangian dual problem may be viewed as a nondifferentiable convex min-
imization problem as v(LR(λ)) is a piecewise linear and convex function (it is
the pointwise minimum of a finite number of affine functions). Algoritmically one
tries to solve the Lagrangian dual problem by some kind of multiplier adjustment
technique. The basic principle is to adjust the multiplier according to the current
optimal solution x. If x violates the constraint, the penalty (multiplier) is in-
creased, but if x satisfies the constraint, the penalty is decreased. Different ideas
are used for deciding how much these adjustments should be, and for this good
stategies are problem dependent. For a discussion of one such general technique,
called the subgradient method, see [15].

We consider an application which illustrates the idea of Lagrangian relaxation.

The degree-constrained spanning tree problem (DCST) is to find a minimum
weight spanning tree satisfying given degree constraints. More specifically, let w
be a nonnegative weight function defined on the edges of a graph G = (V, E) and
let bv for v ∈ V be given positive integers. We want to find a spanning tree T
satisfying the degree constraints dT (v) ≤ bv for each v ∈ V and with minimum
total weight w(T ) =

∑

e∈T we. (Of course, this problem is infeasible if the bv’s are
“too small”). This problem is known to be NP-hard, see [8]. But we know that
the spanning tree problem is tractable, i.e., polynomial, and this can be exploited
as follows. It is possible to write down a linear system A1x ≤ b1 with 0-1 solutions
that correspond to the incidence vectors of sets F ⊆ E such that (V, F ) contains
a spanning tree. Finding such a system is left as an exercise, but here we only
need to know that the system exists. Then our problem (DCST) may be written
as (4.4) with c = −w and the system A2x ≤ b2 being

x(δ(v)) ≤ bv for all v ∈ V . (4.8)

The Lagrangian relaxation w.r.t. the degree constraints (4.8) is essentially a span-
ning tree problem. The objective function to be minimized in this problem is

wTx +
∑

v∈V

λv(x(δ(v)) − bv).

53



This means that the weight of a spanning tree T becomes (use x = χT )

−
∑

v∈V

λvbv +
∑

[u,v]∈T

(wuv + λu + λv).

This objective will therefore tend to give spanning trees having low degrees. The
Lagrangian relaxation can for each λ be solved by, e.g., Kruskal’s algorithm.
Thus, combined with a suitable multiplier technique we can solve the Lagrangian
dual and obtain a lower bound on the optimal value of the DCST problem.
Also, if we are lucky and find an optimal spanning tree in the final Lagrangian
relaxation which satisfies all the degree constraints (4.8), then this solution is also
an optimal solution of (4.8). Otherwise, one usually constructs a feasible spanning
tree solution by some kind of heuristic method based on the last subproblem. This
also produces a bound on the optimality gap.

We return to the general theory of Lagrangian relaxation. Consider again the
Lagrangian relaxation w.r.t. A2x ≤ b2 given in (4.5). The objective function
cT x +λT (b2 −A2x) = (cT −λT A2)x +λT b2 is an affine function of x, i.e., a linear
function c(λ)x (with c(λ) := cT − λT A2) plus some constant. Since the constant
may be removed from the optimization, the problem (4.5) consists in maximizing
a linear function over the 0-1 vectors in the polyhedron defined by A1x ≤ b1. As
discussed in the introduction to this chapter we may convexify such a problem
and obtain an equivalent LP problem

max{c(λ)Tx : x ∈ P 1
I }

where P 1
I is the integer hull of the polyhedron P 1 = {x ∈ IRn : A1x ≤ b1, 0 ≤

x ≤ 1}. Thus the Lagrangian relaxation corresponds to “integralization” with
respect to the system A1x ≤ b1, 0 ≤ x ≤ 1 and translating the objective function
with some linear combination of the row vectors in A2. To proceed, it follows
from Motzkin’s theorem that P 1

I = conv({xk : k ∈ K}) where xk, k ∈ K is a
finite set of vectors in IRn; these are the vertices of P 1

I . Therefore we obtain

v(LD) = min{v(LR(λ)) : λ ≥ 0} =

minλ≥0[maxx∈P 1

I
(cT − λT A2)x + λT b2] =

minλ≥0[maxk∈K(cT − λT A2)xk + λT b2] =

minλ≥0[min{η : η ≥ (cT − λT A2)xk + λT b2, for all k ∈ K}] =

min{η : λ ≥ 0, η + λT (A2xk − b2) ≥ cT xk, for all k ∈ K} =

max{cT
∑

k∈K

µkxk : A2
∑

k∈K

µkxk ≤ b2
∑

k∈K

µkxk;
∑

k∈K

µk = 1; µ ≥ 0} =

max{cT x : A2x ≤ b2, x ∈ P 1
I }.

54



The second last equality was obtained using linear programming duality. Note
also the transformation used for converting the inner maximization problem into
an LP problem of minimizing an upper bound. We have therefore shown the
following result.

Theorem 4.5. The Lagrangian dual problem ( 4.6) may be viewed as the dual of
the LP problem max{cT x : A2x ≤ b2, x ∈ P 1

I }. In particular, the optimal values
of these problems coincide.

This result is the main result on Lagrangian relaxation. It says that the bound
obtained from solving the Lagrangian dual equals the one obtained by the LP
problem with feasible set based on integralization only w.r.t. the constraints that
are not relaxed. Define the three polytopes

P 1,2
I := {x ∈ IRn : 0 ≤ x ≤ 1, A1x ≤ b1, A2x ≤ b2}I ;

(P 1
I )2 := {x ∈ IRn : 0 ≤ x ≤ 1, A1x ≤ b1}I ∩ {x ∈ IRn : A2x ≤ b2};

P 1,2 := {x ∈ IRn : 0 ≤ x ≤ 1, A1x ≤ b1, A2x ≤ b2}.
(4.9)

Maximizing cT x over P 1,2
I correponds to the original integer program (more pre-

cisely, transformed into an LP); maximizing over (P 1
I )2 corresponds to solving the

Lagrangian dual and, finally, maximizing over P 1,2 is simply the LP relaxation
of the integer program (4.4). Let LP denote the last program. Since we have

P 1,2
I ⊆ (P 1

I )2 ⊆ P 1,2

we get the following ordering of the optimal values in these optimization problems

v(Q) = max{cT x : P 1,2
I } ≤

max{cT x : (P 1
I )2} = v(LD) ≤

max{cT x : P 1,2} = v(LP ).

This means that the Lagrangian bound may improve on the bound coming from
the LP relaxation. Note, however, an important consequence of Theorem 4.5
concerning the bounds.

Corollary 4.6. If the polyhedron P 1 is integral, i.e., has integral vertices, then
v(LD) = v(LP ).

Thus, if integrality may be dropped in the Lagrangian subproblems (i.e., {x ∈
IRn : A1x ≤ b1} is integral), then we will not improve compared to the bound
obtained by solving the original LP relaxation. Usually, in such cases, Lagrangian
relaxation is not used unless it is viewed as more practical than solving the LP.

55



However, if the polyhedron is not integral, then, depending on the objective
function, the value of the Lagrangian dual will improve on the LP relaxation
bound. Consequently, this should be taken into account when deciding on the
splitting on the constraints, so as to make the Lagrangian subproblems “simple,
but not too simple”.

4.4 The Traveling Salesman Problem

In order to exemplify some of the principles and methods presented above, we
discuss the Traveling Salesman Problem (TSP) in this section. Our presentation
is very brief. A more detailed presentation is given in [15] and, of course, in the
recent “TSP-book” [1].

The TSP has been studied a lot during the last 50 years by mathematicians and
computer scientists. The problem is of interest in certain real-world applications,
like vehicle routing and computer chip production, but it has also an attraction
from a theoretical point of view. One reason is that it is easy to formulate, but
difficult to solve!

The TSP problem is to find a shortest trip through a given set of cities. More pre-
cisely, we have given an undirected graph G = (V, E) with nonnegative weights
(costs) on the edges: ce, e ∈ E. A tour is a Hamilton cycle, i.e., a cycle going
through all the nodes of G and passing through each node exactly once. The
length of a tour is the sum of the weights of its edges. The problem is to find
a shortest tour. The TSP is NP-hard, and even deciding if a graph contains a
Hamilton tour is NP-complete. Even worse, the problem is also hard to approx-
imate as it is NP-hard to solve the TSP with any given performance guarantee.
That is, for any given positive number r it is “hard” to find a tour of length at
most (1 + r) times the optimal length. However, some special cases of the TSP
are polynomially solvable, see [13]. Many heuristics have been developed for the
TSP. Some of them have been discussed in Chapter 3.

Applications. There is a large number of different applications of the TSP to
real-life problems. Some of them arise quite naturally, others are maybe a bit more
surprising. We give a short list of such applications, far from being exhaustive.
Most of the examples are taken from [1].

• Vehicle routing. This is probably the most immediate application. Sev-
eral organizations, such as schools, municipalities, large companies, etc,
need to manage fleets of vehicles delivering and picking up passengers or

56



goods in the local area. Examples are managing school-buses, postal ser-
vices, garbage collection, etc. In this type of problems several vehicles must
be assigned a number of locations to reach, starting from a common depot
and finally returning to the depot. One must actually solve a number of
TSP problems, one for each available vehicle, typically after a partitioning
phase in which subset of locations are assigned to a same vehicle.

Figure 4.4: A vehicle routing for three vehicles

• Genome Sequencing. Very briefly, the problem consists in finding a suit-
able sequencing of DNA segments (markers) which can be reliably detected
in laboratory. Once the set M of such segments has been identified (often
by different laboratories), they have to be combined to form a single se-
quence. A suitable distance function d must be defined, where d(m1, m2) is
a measure of the probability that m1 and m2 are far from each other in the
sequencing. We want to find a most likely sequencing, so that the sum of the
distances of neighboring segments is as small as possible. To this end, we de-
fine an undirected complete graph G(M, E), with costs cm1,m2

= d(m1, m2)
for m1, m2 ∈ M , m1 6= m2. The original problem can be then formulated
as the problem of finding a Hamilton path, that is a path going through
every node exactly once. In turn, this problem can be reduced to a classical
TSP problem on a new graph G′, obtained from G introducing an addi-
tional node s and edges from s to all other nodes in M with zero cost. It is
easy to see that a minimum cost Hamiltonian tour in G′ corresponds to a
minimum cost Hamilton path in G (obtained by simply dropping node s),
see Figure 4.5.

• Chip design and testing. Printed circuit boards have a large number of holes
for mounting chips or connecting layers. Such holes are made by drilling

57



4

23

1

5

1

2
4

2

2

4

23

1

5

1

2
4

2

2

4

23

1

5

1

2
4

2

2

s

Figure 4.5: From sequencing to TSP

machines. The target here is to minimize the distance run by the drilling
machine. This problem is reduced to a TSP problem by associating a node
with every hole and by associating with every edge (u, v) a cost equal to
the distance between hole u and hole v on the chip. A second important
application is in cutting connections between logic gates on (customized)
chips. This is done by a laser, which draws a Hamilton path through the
gates. Minimizing the overall (Manhattan) distance run by the laser is a
crucial issue for reducing production costs and times. Another important
issue in chip manufacturing is testing. To do this, a number of scan points
are established on the chip. Scan points must then be connected by a scan
chain to allow test data to be loaded into the scan points through some
input end. Clearly, the problem of finding the correct sequencing of scan
points is again a TSP problem.

• Various applications. Several other applications concern aiming telescopes
and x-rays, data mining, machine scheduling, picking items in warehouses,
cutting problems in glass industry, printing circuit boards, etc.

A formulation for the TSP.

Let G(V, E) be a graph, with a cost ce ∈ IR+ associated to every e ∈ E. In
Chapter 1 we have shown that x ∈ {0, 1}E is the incidence vector of a Hamilton
cycle in G if and only if it satisfies

(i) x(δ(v)) = 2 for all v ∈ V ;
(ii) x(δ(W )) ≥ 2; for all W ⊂ V , W 6= ∅, W 6= V ;
(iii) 0 ≤ x ≤ 1;

(4.10)

58



The constraints (i), and (iii) ensure that a solution x ∈ {0, 1}E is of the form
x = χF where F ⊆ E and d(V,F )(v) = 2 for each v ∈ V ; such a set F is called a
2−matching (or 2-factor), since each node has degree 2 in the subgraph induced 2-matching
in G by F . Clearly, every tour is a 2-matching, so all these inequalities are valid.
However, in general a 2-matching is a union of disjoint cycles, so it may not be
a tour. The 2-connectivity inequalities (ii) eliminate such a possibility, i.e., a 2-
matching that satisfies (ii) is a tour (otherwise we could let W be the node set of
one subtour, and we would get a violated inequality). From this it is not difficult
to see that the feasible 0-1 solutions in (4.10) are precisely the incidence vectors
of tours, see Problem 4.3.

An equivalent set of constraints that can replace (4.10)(ii) is the set of subtour
elimination constraints : subtour

elimination
constraint

x(E[S]) ≤ |S| − 1 for all S ⊆ V , S 6= ∅, S 6= V . (4.11)

These constraints were introduced in the 1954 paper by Dantzig, Fulkerson and
Johnson [5]. Note that the number of 2-connectivity inequalities, or subtour elim-
ination constraints, grows exponentially as a function of the number of nodes.

From the above discussion, it follows that the following model is a valid 0-1 linear
program of the TSP:

min
∑

e∈E cexe

subject to
(i) x(δ(v)) = 2 for all v ∈ V ;
(ii) x(δ(W )) ≥ 2; for all W ⊂ V , W 6= ∅, W 6= V ;
(iii) 0 ≤ x ≤ 1;
(iv) x is binary.

(4.12)

Relaxations.

A standard relaxation of (4.12) is obtained by removing the binary stipulation
(iv) on the x variables. This approach and the resulting branch-and-cut will be
discussed more in detail in the following sections. Here we want to mention an
alternative relaxation, which is obtained by removing the 2-connectivity con-
straints (4.12)(ii) (but leaving the binary stipulation). This relaxation can be
readily transformed into a matching problem in a bipartite graph (the assign-
ment problem) and therefore solved efficiently. This relaxation may be combined
with a suitable branch-and-bound scheme with partitioning that assures the 2-
connectivity. This approach is called the assignment problem/branch-and-bound
algorithm.

59



Consider the graph G and choose a node, say node 1. A 1-tree in G is a set1-tree
F ∪ {e, f} where (V \ {1}, F ) is a spanning tree and e and f are two edges
incident to node 1.

5

34

2

1

5

34

2

1

Figure 4.6: A 1-tree: the solid edges form a spanning tree F in G[V \ {1}]

Observe that each Hamilton tour is a 1-tree, but the converse inclusion is false.
The important property of 1-trees is that they are connected, and that the fol-
lowing characterization of tours is valid: F is a tour if and only if it is both a
2-matching and a 1-tree. Now, the incidence vectors of 1-trees are the feasible
solutions of the following set of constraints:

(i) x(δ(v)) = 2 for v = 1;
(ii) x(E[W ]) ≤ |W | − 1 for all W ⊂ V \ {1}, |W | ≥ 3;
(iii) x(E) = |V |;
(iv) 0 ≤ x ≤ 1;
(v) x is integral.

(4.13)

If we here add the degree constraints x(δ(v)) = 2 for v ∈ V \ {1}, we get the (in-
cidence vectors of) tours as solutions. Instead of doing this, we relax these degree
constraints using Lagrangian relaxation. We introduce Lagrangian multipliers λv

(that are unrestricted in sign, as we have equalities) where λ1 = 0 and get the
following Lagrangian relaxation:

2
∑

v∈V

λv + min{
∑

uv∈E

(cuv − λu − λv)xuv : x is the incidence vector of a 1-tree}.

Let v1T (λ) be the optimal value of this problem. The Lagrangian dual is then (LD)
max {v1T (λ) : λ ∈ IRV , λ1 = 0} with optimal value v(LD). Based on Corollary 4.6

60



it can be shown that zLD equals the value of the linear programming relaxation
of (4.12). To solve the Lagrangian subproblems one needs to find a minimum
weight 1-tree. This is done by solving a minimum spanning tree problem in the
subgraph G \ {1} and then one finds the shortest pair of edges incident to node
1. The updating of the multipliers to solve the Lagrangian dual is done so that
λv is increased if the degree of node v is 1 in the 1-tree, and decrease λv is the
degree is larger than 2.

A branch-and-cut approach to solve the TSP.

As discussed in the previous section, the branch-and-cut approach consists in
a branch-and-bound combined with cutting planes. There are several technical
issues related to the implementation of a branch-and-cut for a particular problem.
The main one is probably the possibility to export the valid inequalities found
in a certain node of the branching tree towards other open nodes of the tree.
We will not discuss this issue here, whereas we focus on separation aspects. In
particular, we will describe classes of valid inequalities that are used by effective
codes like the one available at [22], and in some cases we devise the corresponding
separation oracles.

It is convenient to assume that G is the complete graph. This is a common
technical assumption (often used in polyhedral combinatorics) which simplifies
polyhedral arguments. Then the dimension of PTSP is m − n where n = |V | and
m = |E| = n(n − 1)/2. (This is not trivial to show, but the easy thing is that
dim(PTSP ) ≤ m−n since the n degree inequalities are linearly independent.) We
also assume that n ≥ 4 (otherwise PTSP is either empty or consists of one point
only.)

Separating 2-connectivity inequalities.

The 2-connectivity constraints (4.12.(ii) ) or their equivalent subtour elimination
constraints (4.11) define facets for PTSP whenever the node set W satisfies 2 ≤
|W | ≤ ⌊n/2⌋, see e.g., [15]. Observe that the formulation contains an exponential
number (in |V |) of such inequalities, so, for V sufficiently large, they cannot be
represented explicitly. Thus, the dynamic simplex method must be invoked in
order to solve program (4.12). Luckily, the separation of violated 2-connectivity
inequalities can be performed very effectively. We describe here a separation oracle
developed by Padberg and Rinaldi, see e.g., [1]. Given a point x∗ we want to
determine if there exists a proper subset of vertices S such that x∗(δ(S)) < 2.
This is an instance of the Global Minimum Cut Problem: given edge weights w, global min-

imum cut
problem

find a proper, non-empty subset S ⊂ V such that w(δ(S)) is minimized. In order

61



to find 2-connectivity inequalities violated by x∗, we let we = x∗
e for all e ∈ E

and find a global minimum cut S∗. If w(δ(S∗)) < 2, the 2-connectivity inequality
associated to S∗ is violated by x∗. If w(δ(S∗)) ≥ 2, no 2-connectivity inequality
is violated by x∗ (show it).

It is immediate to realize that, given an algorithm to solve the minimum st-cut
problem, a global minimum cut S∗ can be easily found by the following simple
algorithm:

Global Minimum Weight Cut Algorithm

Step 1. For each pair s, t ∈ V , with s 6= t, compute the minimum st-cut.

Step 2. A global minimum cut S∗ is the minimum st-cut of minimum weight

Since the number of node pairs is O(|V |2), the complexity of the above, apparently
harmless procedure is O(|V 2| · K), where K is the complexity of the best min
st-cut solution algorithm. This can be too much in practice, even for moderate
large instances. However, a simple observation can reduce the complexity by a
factor |V |. To this end, we need first to introduce the notion of node shrinking in
a graph G(V, E), with edge weights w. Let u, v ∈ V , u 6= v. The shrinking of u, vshrinking
in a complete graph G with weight w is a new complete graph G′(V ′, E ′) = G|uv
on V ′ = V \ {u, v} ∪ {z}, with weight w′ = w|uv obtained from G by replacing
u and v with a single node z, and by letting w′

e = we for all e ∈ E ∩ E ′, and
w′

zr = wur +wvr for all r ∈ V \{u, v}. An example of shrinking is shown in Figure
4.7.

z

u v

s

t

vu

s

t

G
G|uv

G|stz

Figure 4.7: Shrinking nodes u and v (zero-weight edges are omitted)

We can easily extend the shrinking operation to set of nodes S, by simply per-

62



forming a sequence of standard shrinkings. Then the resulting graph, denoted by
G|S, have a single vertex z instead of S and the new weights w|S are defined as
the following mapping φ(w, S):

(w|S)uv = wuv for all u, v ∈ V \ S

(w|S)zr = w(S, {r}) for all r ∈ V \ S
(4.14)

where, for any w ∈ IRE , and sets S, T ⊂ V , S ∩ T = ∅, we let w(S, T ) =
∑

u∈S,v∈T wuv.

Let’s go back to our original task of computing a global minimum weight cut
S∗ in G. Consider any pair s, t ∈ V , with s 6= t. Then, either s ∈ S∗, t /∈ S∗,
that is S∗ is an st-cut, or both s and t are in S∗ (the case with S∗ and V \ S∗

interchanged is equivalent and need not to be considered). Now, if s, t ∈ S∗, then
it is easy to see that S ′ = S∗ \ {u, v} ∪ {z} is a global minimum weight cut in
G|uv (where z is the node replacing u and v). This observation is the basis of the
following algorithm to compute (the weight of) a global minimum weight cut.

Global Minimum Weight Cut Algorithm

Step 1. Let Ḡ(V̄ , Ē) = G(V, E), w̄ = w. Let UB = +∞.

Step 2. If |V̄ | ≤ 1, STOP.

Step 3. Select a pair s, t ∈ V̄ . Find a minimum st-cut S̄ in Ḡ, with weights w̄. If
w̄(S̄) < UB, set UB = w̄(S̄).

Step 4. Set Ḡ = Ḡ|st, w̄ = w|st. Go to Step 2.

At termination, UB is the weight of a global minimum weight cut. Since at each
iteration the number of nodes of the current graph decreases by one unit, the
number of calls to a min st-cut solution algorithm at Step 3 is equal to |V | − 1.
Actually the above algorithm only finds the weight of a minimum cut, but it is
trivial to modify it in order to store the nodes of a minimum cut as well (by
suitably handling the new nodes appearing in the shrinkings).

Safe shrinking. Shrinking is a powerful tool to effectively separating violated safe shrinking
2-connectivity constraints. To clarify this concept, let G′(V ′, E ′) = G|uv and let
x̄ ∈ IRE . Define x̄′ = x̄|uv. Suppose now that x̄ violates a subtour elimination
constraint associated to graph G. Then we may wonder if x̄′ also violates a subtour
elimination constraint associated to graph G′ (in this case the shrinking is said to
be safe). Unfortunately, this is not always the case. However, we can give sufficient

63



conditions for this to happen, like the simple following one due to Padberg and
Rinaldi (see, e.g. [1]).

Proposition 4.7. If x̄uv = 1 and there exists a vertex t such that x̄({t}, {u, v}) =
1, then it is safe to shrink {u, v}.

The above rule and many others can be applied to search for safe shrinkings
in G, and shrink the corresponding edges. Also, this technique can be applied
recursively to the new graphs, until no safe shrinks can be done. Most often, the
final graph is considerably smaller then the original one and the minimum weight
cut computations can be performed more efficiently. Finally observe that at each
iteration of the global minimum weight cut algorithm we deal with a new graph
(a shrinking), and safe shrinks may re-appear.

Template valid inequalities: combs.

If n is either 4 or 5, the Traveling Salesman Polytope is completely described
by the trivial bounds, degree constraints and subtour elimination constraints.
For larger number of nodes, other facets come into play. One such large class of
inequalities is described in what follows.

H

T1 T2 T3

Figure 4.8: A comb

A comb in G is a class of sets H , Ti for i ≤ k all being subsets of the node set Vcomb inequal-
ity and satisfying

• H ∩ Ti is nonempty for i = 1, . . . , k;
• Ti \ H is nonempty for i = 1, . . . , k;
• the sets Ti for i ≤ k are pairwise disjoint;
• k ≥ 3 is an odd number.

64



The set H is called the handle of the comb, and the Ti’s are the teeth. Associated
with each comb is a valid inequality for PTSP which may be derived using the
Chvátal-Gomory procedure as follows. Consider the valid inequalities

(i) x(δ(v)) = 2 for all v ∈ H;
(ii) x(E[Ti]) ≤ |Ti| − 1 for i = 1, . . . , k;
(iii) x(E[Ti \ H ]) ≤ |Ti \ H| − 1 for i = 1, . . . , k;
(iv) x(E[Ti ∩ H ]) ≤ |Ti ∩ H| − 1 for i = 1, . . . , k;
(iv) −xe ≤ 0 for e ∈ δ(H) \ ∪iE[Ti].

(4.15)

If we add all these inequalities and divide the result by 2, we get the inequality

x(E[H ]) +

k
∑

i=1

x(E[Ti]) ≤ |H| +
k

∑

i=1

(|Ti| − 1) − k/2.

Now, due to integrality since k is odd, we may round the right-hand-side down
and still have a valid inequality for PTSP . This gives the comb inequality comb inequal-

ity

x(E[H ]) +
k

∑

i=1

x(E[Ti]) ≤ |H| +
k

∑

i=1

(|Ti| − 1) − (k + 1)/2. (4.16)

These inequalities were introduced by Grötschel and Padberg (1979) as a gen-
eralization of the simple comb inequalities found by Chvátal; simple combs are
combs where each H ∩ Ti consists of one node. It was shown by Edmonds and
Johnson that the solution set of (i) the simple bound inequalities (0 ≤ x ≤ 1),
(ii) the degree constraints and (iii) the comb inequalities for which each tooth has
cardinality two is precisely the convex hull of the incidence vectors of 2-matchings
in G. This 2-matching polytope is actually an interesting relaxation of PTSP .

The comb inequalities may be generalized into the so-called clique-tree inequali-
ties where more handles are allowed and these are organized in a tree-like fashion,
see [11]. Furthermore, the clique inequalities is a subset of the bipartition inequal-
ities; other inequalities are called star inequalities, binested inequalities and so
on. In fact, a lot of work has been done on understanding the facial structure of
Traveling Salesman Polytopes and a main goal is to get a unifying understanding
of the structure, not just many strange classes of inequalities.

At present no polynomial separation algorithm is known for the comb or clique
inequalities. However, for a fixed number of teeth, a polynomial algorithm was
found recently. There is also a polynomial algorithm for a special subclass of the
comb inequalities where |H ∩ Ti| = 1 and |Ti \ H| = 1 for each i (assuming that
the point to be separated satisfies 0 ≤ x ≤ 1 and all the degree constraints). This

65



algorithm solves the so-called minimum odd cut-set problem based on minimum
cut calculations. See [16] for a description of this algorithm.

In practice, one uses different heuristics for solving the separation problems ap-
proximately (except possibly for the subtour inequalities). This means that one
is not guaranteed to find violated inequalities, but those found are of course vio-
lated. This is done because it may be difficult to find exact separation algorithms,
or they are complicated to implement, or, finally, they may be too slow.

Note that although the number of facets for TSP polytopes is enourmous, we
only need a suitable set of m linearly independent valid inequalities to prove
the optimality of a certain tour (vertex of PTSP ). For instance, in 120 city TSP
problem originating from cities in Germany was solved to optimality by a cutting
plane algorithm where 13 LP were solved and the final LP contained 36 subtour
and 60 comb inequalities, see [9]. The current “world record” was a TSP problem
with more than 100 000 nodes solved to optimality using a very sophisticated
cutting plane algorithm (running i parallel on about 50 computers).

General Cuts.

In this final section we describe a technique to identify general violated inequali-
ties, that is inequalities not belonging to a specific class (such as subtour elimina-
tion constraints, comb inequalities, etc.). We here give a simplified version of the
presentation given in [1]. Let T denote the set of incidence vectors of the Hamil-
ton tours of G(V, E) and let x̄ ∈ IRE. We want to solve the membership problem
for (x̄, conv(T )), that is we want to answer the question whether x̄ ∈ conv(T )
or return an inequality violated by x̄ but valid for conv(T ). Let A be the matrix
whose columns are the elements of T . Then x̄ ∈ conv(T ) if and only if it is a
convex combination of points in T , or equivalently if the following linear system
has a solution:

Aλ = x̄
eT λ = 1
λ ∈ IRT

+

where e is a vector of all ones of suitable dimension.

If x̄ /∈ conv(T ) then the above system has no solution. From Farkas lemma this
happens if and only if the following system has a solution

66



AT a − eb ≤ 0
aT x̄ − b > 0
a ∈ IRE, b ∈ IR

(4.17)

Observe that the solutions to the above system are in one-to-one correspondence
with the inequalities aT x ≤ b which are valid for conv(T ) and are violated by x̄.

In a branch-and-cut algorithm, where x̄ is the optimal solution to the current
relaxation, we are interested in finding inequalities which are mostly violated by
x̄, in the hope of a large improvement of the corresponding bound. To this end,
we are interested in the solution to the following linear system:

max aT x̄ − b

AT a − eb ≤ 0
∑

e∈E ae = 1

a ∈ IRE, b ∈ IR

(4.18)

Let (ã, b̃) be an optimal solution to (4.18). If ãT x̄− b̃ > 0, then the valid inequality
ãT x ≤ b̃ is violated by x̄, and is actually a most violated (by x̄) valid inequality.
Inequality

∑

e∈E ae = 1 is included to normalize a. In fact, if (ã, b̃) is a solution

to (4.17), then (kã, kb̃) is also a solution to (4.17), for any k > 0. The problem
(4.18) has an exponential number of rows. We apply the dynamic simplex method
to solve it. To this purpose, we start with an initial small set of rows AT

Q of AT

corresponding to a restricted set of incidence vectors Q ⊆ T of Hamilton tours
and solve the associated restricted problem. Let (ā, b̄) be the optimal solution.
We want to constraint of (4.18) (associated to a row of AT ) which is violated by
(ā, b̄), or prove that none exists. This is equivalent to solving the following TSP:

max{āT y : y ∈ T } (4.19)

Denoting by y∗ the optimal solution to the above problem, if āT y∗ > b̄, then
we add y∗ to Q and proceed to solve once again the restricted Problem (4.18).
Otherwise we are done and āT x ≤ b̄ is a valid inequality for conv(T ).

Remark that all above arguments can be applied to T being a set of feasible
solutions to any combinatorial optimizationproblem.

Even if in principle this technique may be used to generate any valid inequality
for conv(T ), and solve in this way the TSP, it is apparent that we cannot apply

67



it directly to G. Indeed, Problem (4.19) is already as difficult as the original
TSP! However, this methodology is widely used (also in different contexts) for
generating local cuts.

Let us briefly discuss how it is applied to the solution of the TSP, in particular in
[1]. The idea is to map the original set V into some smaller set V̄ , for example by
shrinking. This mapping induces a linear mapping φ(x) : E(V ) → E(V̄ ), namely
(4.14). One can show that, if x is the incidence vector of a Hamilton tour in G,
then x̄ = φ(x) is an integer vector representing a graphical Hamilton tour, thatgraphical

Hamilton
tour

is a tour which passes through every node a strictly positive and even number of
times (the same edge can appear several times).

z

u v

s

t

vu

s

t

G

G|uv

G|stz

Figure 4.9: Shrinking edge uv (st) maps an Hamilton tour of G into a graphical
tour of G|uv (G|st),

In Figure 4.9, shrinking edge uv maps the original Hamilton tour into the graphi-
cal tour of G|uv, while shrinking edge st produces the graphical tour of G|st. Let
us denote by T̄ the set of integer vectors representing graphical Hamilton tours of
the complete graph Ḡ(V̄ , Ē) on V̄ . Consider now a point x∗ ∈ IRE and its map-
ping φ(x∗) ∈ RĒ. If V̄ is reasonably small, we can generate a general cut which
is valid for conv(T̄ ) and violated by φ(x∗). Then this cut can be ”lifted” into
the original space to produce a valid inequality violated by x∗. There are several,
complicated issues which have to be addressed in this process. First, we need to
ensure that, if x∗ /∈ conv(T ), then φ(x∗) /∈ conv(T̄ ) (that is, the shrinking is safe
for the general cut). Second, we need a way to lift up the violated inequality into
the original space. Third, we would like such inequalities to be facet defining for
conv(T ). For a detailed discussion of all these issues, see [1].

68



4.5 Exercises

Exercise 4.1. Consider the knapsack problem max {
∑n

j=1 cjxj :
∑n

j=1 ajxj ≤
b, 0 ≤ x ≤ 1} where all the data are positive integers. Define the knapsack
relaxation polyope by P = {x ∈ IRn :

∑n

j=1 ajxj ≤ b, 0 ≤ x ≤ 1}. Assume
that the variables have been ordered such that c1/a1 ≥ c2/a2 ≥ . . . ≥ cn/an.
Try to guess an optimal solution and prove the optimality by considering the dual
problem. Use this result to characterize all the vertices of P . What about the cover
inequalities in relation to these vertices?

Exercise 4.2. Consider the branch-and-bound algorithm. Consider a node u in
the enumeration tree with v(R(u)) > v(Q) where Q is the integer program and
R(u) is the LP relaxation in node u. Can we prune node u?

Exercise 4.3. Prove, in detail, that ( 4.12) is a valid integer linear programming
formulation of the TSP problem. Then do the same for the model obtained by
replacing the cut inequalities by the subtour inequalities.

Exercise 4.4. Try to figure out what the odd cover inequalities might be based
on the example given for the set covering problem.

Exercise 4.5. Consider the degree-constrained spanning tree problem. Find a
valid integer linear programming formulation of this problem.

Exercise 4.6. Consider the following problem. We shall decide location of sevice
centers among a finite set of possible locations I. There is given a (finite) set
J of customers, and each shall be connected to exactly one service centre. The
cost of building a service centre at location i ∈ I is ci and the cost of connecting
customer j to centre location i is di,j. The simple plant location problem is to
decide in which locations service centres should be built and the connection of
customers to centres so as to minimiize the total cost (design + connection cost).
Model this problem as an integer linear programming problem. Figure out some
data for a small example and solve the LP relaxation as well as the ILP on a
computer using an optimization package (e.g., CPLEX).

Exercise 4.7. Consider again the simple plant location problem from the previous
problem. Suggest a Lagrangian relaxation algorithm for this problem. Discuss its
properties (e.g., integrality).

Exercise 4.8. Develop some simple heuristics for the simple plant location prob-
lem.

69



Bibliography

[1] D. Applegate, R.E. Bixby, V. Chvátal and W. Cook. The Travelling Sales-
man Problem. Pricenton University Press, 2006.

[2] R. K. Ahuja, T. L. Magnanti and J. B. Orlin. Network flows: theory, algo-
rithms, and applications. Prentice-Hall, New Jersey, 1993.

[3] N. Christofides, Worst-case anlysis of a new heuristic for the travelling sales-
man problem, Report 388, Graduate School of Industrial Administration,
Carnagie Mellon University, Pittsburgh, 1976.

[4] G. Cornuejols and A. Sassano. On the 0, 1 facets of the set covering polytope.
Mathematical Programming, 43:45–55, 1989.b

[5] G.B. Dantzig and D.R. Fulkerson and S.M. Johnson, Solution of a large-scale
traveling-salesman problem, Operations Research, 7:58–66, 1954.

[6] G. Dahl, An introduction to convexity, Lecture Notes, University of Oslo,
2009.

[7] J. Edmonds, Matroids and the greedy algorithm, Mathematical Program-
ming, 1:127-136, 1971

[8] M.R. Garey and D.S. Johnson. Computers and intractability. A guide to the
theory of NP- completeness. W.H. Freeman and company, 1979.

[9] M. Grötschel. On the symmetric traveling salesman problem: solution of a
120-city problem. Mathematical Programming Study, 21:61–77, 1980.

[10] M. Grrötsché, L. Lovász and A. Schrijver. Geometric algorithms and com-
binatorial optimization. Springer, 1988.

[11] M. Grötschel and W.R. Pulleyblank. Clique tree inequalities and the sym-
metric travelling salesman problem. Mathematics of Operations Research,
11:537–569, 1986.

[12] S. Lin, B. Kernighan, An effective heuristic algorithm for the traveling sales-
man problem, Operations Research 21:498–516, 1973

[13] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, editors.
The Traveling Salesman Problem. Wiley, 1985.

[14] L. Lovász, M.D. Plummer. Matching Theory. North-Holland, 1986.

[15] G.L. Nemhauser, L.A. Wolsey. Integer and Combinatorial Optimization.
John Wiley, & Sons, 1988.

70



[16] M.W. Padberg and M. Grötschel. Polyhedral computations. In E.L. Lawler,
J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, editors, The traveling
salesman problem, chapter 9, pages 307–360. Wiley, 1985

[17] M. Padberg and G. Rinaldi. A branch and cut algorithm for the resolution
of large-scale symmetric traveling salesman problems. SIAM Review, 33:60–
100, 1991.

[18] W.R. Pulleyblank, Polyhedral combinatorics, In Nemhauser et al., editor,
Optimization, volume 1 of Handbooks in Operations Research and Manage-
ment Science, chapter 5, pages 371–446, North-Holland 1989.

[19] V.I. Sarvanov, N.N. Doroshko, Approximate solution of the traveling sales-
man problem by a local algorithm with scanning neighborhoods of factorial
cardinality in cubic time, Software: Algorithms and Programs, Vol. 31, Math-
ematics Institute of the Belorussia Academy of Science, Minsk, 1981, 11–13
(in Russian).

[20] A. Schrijver. Theory of linear and integer programming. Wiley, Chichester,
1986.

[21] Alexandre Schrijver, A course in combinatorial optimization, Lecture Notes,
CWI Amsterdam, 2009.

[22] The Travelling Salesman Problem Page, http://www.tsp.gatech.edu//
[23] Laurence Wolsey, Integer Programming, Wiley, 1998.

71



Index

1-tree, 60
2-connectivity inequality, 7
2-exchange, 33
2-matching, 7, 59
2-matching polytope, 65

arborescence, 20

branch-and-bound, 41
branch-and-bound algorithm, 41
branching variable, 42

Christofides, 29
Chvátal-Gomory procedure, 45
clique inequality, 51
comb, 64

inequality, 65
convex hull, 3
cover, 49
cover inequality, 49
cut, 45
cutting planes, 45

divide and conquer, 38
Doroshko, 35
dynamic simplex method, 14

edge cover, 25
edge shrinking, 62
enumeration tree, 39
Eulerian tour, 29
exponential neighborhood search, 34

forest polytope, 4
separation oracle, 12

fractional matching polytope, 48

gap, 9
general cut, 66
global minimum cut problem, 61
graphical Hamilton tour, 68
greedy algorithm, 28

Hamilton cycle, 2
heuristic

approximation guarantee, 29
heuristics

improvement, 31
heursitcs

constructive, 27

independence system, 27
integer hull, 17
integer rounding, 46
integral polyhedron, 18

König’s covering theorem, 25
König-Egervary theorem, 24
Kerninghan, 33
knapsack polytope, 48
knapsack problem, 48
Kruskal, 28

Lagrangian dual, 53
Lagrangian relaxation, 52
Lin, 33
local search, 31
lower bound, 8

matching, 24, 47
matching polytope, 48
matroid, 28

72



maximum weight forest, 3
monotonization, 28
move, 33

natural formulation, 6
neighborhood, 32
node cover, 24
node packing

polytope, 51
node packing problem, 51
nodepacking, 24

odd cover inequalities, 51

polyhedral combinatorics, 3
Project Selection, 1
pruning, 39

relaxation, 8, 38

Sarvanov, 35
set covering

polytope, 50
problem, 50

shrinking, 62
safe, 63

small neighborhood search, 33
subtour elimination constraint, 4, 59

totally dual integral, 19
totally unimodular, 20
tour, 2, 56
Traveling Salesman Problem, 56
TSP, 2, 56

metric, 29

upper bound, 8

valid inequality, 45
variable upper bound, 49

73


