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Abstract

This note gives a very brief introduction to the theory of network
flows and some related topics in combinatorial matrix theory.

1 Network flow theory
Network flow theory is a mathematical treatment of flows in networks. Actu-
ally, the classical and basic treatment of this area is the pioneering monograph
by L.R. Ford and D.R. Fulkerson called Flows in networks [9]. A more re-
cent, and highly recommended, book is [1] which treats both theoretical and
computational aspects of this area. It also presents a lot of interesting appli-
cations. A comprehensive text in this area and combinatorial optimization
more generally, covering basically all theoretical and algorithmic aspects, is
the book (three volumes) by Lex Schrijver [18]. Some other interesting books
on network flows and optimization are [3] and [16].

1.1 Flows and circulations

Let D = (V,E) be a (directed) graph with vertex set V and edge set E.
This means that V is a finite set and E is a (finite) set of ordered pairs of
distinct elements from V . Each element v ∈ V is called a vertex, and each
element e = (u, v) ∈ E is called an edge (or directed edge). Graphs arise in
many applications. For instance, they are used to represent transportation
or communication networks. Each graph may be represented by a drawing
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in the plane where vertices and edges correspond to points and lines (curves)
between points (using an arrow to indicate the direction: the edge e = (u, v)
goes from u to v). Let n = |V | and m = |E| be the number of vertices and
edges, respectively.

Certain edge sets are of special interest. For each vertex v define

• δ+(v) = {e ∈ E : e = (v, w) for some vertex w ∈ V }: the set of edges
leaving v

• δ−(v) = {e ∈ E : e = (u, v) for some vertex u ∈ V }: the set of edges
entering v

We are interested in functions whose domain are V or E. By enumerating
the elements in V and E these functions may be identified with vectors (in
IRn or IRm) containing the functions values. A flow is (simply) a function
x : E → IR, i.e., x ∈ IRE (in general, IRS denotes the vector space of all
real-valued functions with domain is a set S). So x assigns a value x(e) to
each edge e; it is called the flow in that edge. Usually we require this flow
to be nonnegative, so x : E → IR+. A flow x gives rise to another function
whose domain is V . Let the function divx : V → IR be given by

divx(v) =
∑

e∈δ+(v)

x(e)−
∑

e∈δ−(v)

x(e).

This linear function – which clearly depends on x – is called the divergence
of x. It gives the difference between total outflow and total inflow in every
vertex v. In general ∑

v∈V

divx(v) = 0

which we leave as a small exercise to prove.
We are mainly interested in flows with a given divergence. Let b : V → IR

be a given function satisfying
∑

v∈V b(v) = 0. A flow x with divx = b therefore
satisfies ∑

e∈δ+(v)

x(e)−
∑

e∈δ−(v)

x(e) = b(v) (v ∈ V ). (1)

In network optimization such flows with given divergence are the central
objects. The linear equations (1) are called flow balance equations. The set
of flows with a given divergence b is therefore a polyhedron1. We shall say
more about the structure of this polyhedron later, for instance it is possible
to describe all its vertices.

1Recall that a polyhedron is the solution set of a system of (finitely many) linear in-
equalities in p variables.
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Let O denote the the zero function; the constant function with function
value 0 (defined on a suitable set). We may also use O to denote the zero
vector. A circulation in D is a flow x with divx = O. Thus, in a circulation,
the total inflow equals the total outflow in every vertex. This property is
usually called flow conservation, and it is basic in many applications. For
instance, flow conservation holds in junctions in traffic networks or oil pipeline
networks. The role of b (in a flow with divergence b) is to specify possible
supply or demand in the vertices.

Often we have additional constraints on the flows. The most basic such
constraint is to have lower and upper bounds on the flow in each edge. In
order to represent these bounds, consider a nonnegative function c : E → IR+,
called the capacity function. The constraint on the flow is then

O ≤ x ≤ c

which means that
0 ≤ x(e) ≤ c(e) (e ∈ E)

Sometimes we are interested in a lower bound which is nonzero, positive or
negative, but often in applications the lower bound is zero as above.

A (directed) path in a graph D is an alternating sequence of distinct
vertices and edges

P : v0, e1, v1, e2, . . . , et, vt

where ei = (vi−1, vi) (1 ≤ i ≤ t). Note that we require the vertices (and
edges) to be distinct; if repetition of these are allowed we obtain a walk.
Sometimes a path is just viewed as a vertex sequence or an edge sequence.
We also call P a v0vt-path, and say that P is a path from v0 to vt.

Finally, a word on our notation: for any edge function h : E → IR, we
may write h(u, v) instead of h(e) when e = (u, v).

1.2 Existence of circulations and flows

A given graph may, or may not, have a flow with specified divergence and,
possibly, satisfying capacity constraints. It is therefore natural to look for
characterizations of the existence of such flows. One might say that such
existence theorems represent the mathematical core of network flow theory.
From a more applied point of view these results are closely related to efficient
algorithms for finding feasible flows or even finding optimal flows (in network
optimization).

We introduce a notion which corresponds to the “boundary” of a vertex
subset. Let S ⊆ V and define

3



• δ+(S) = {e ∈ E : e = (v, w), v ∈ S,w 6∈ S}: the set of edges leaving S

• δ−(S) = {e ∈ E : e = (v, w), v 6∈ S,w ∈ S}: the set of edges entering S

This notation is consistent with our previous notation, e.g., δ+({v}) =
δ+(v).

The next theorem is due to Alan Hoffman (1960) [11] and it characterizes
when a graph has a circulation satisfying lower and upper bounds on the flow
in each edge. We give a proof following the recommended lecture notes [17]
by Lex Schrijver, see also [18]. For a pair e = (u, v) define the “inverse edge”
e−1 = (v, u). Consider a graph D and functions l, x and u from E into IR
such that l ≤ x ≤ u. Next, define

Ex = {e ∈ E : x(e) < u(e)} ∪ {e−1 : e ∈ E, l(e) < x(e)}

and the graph Dx = (V,Ex). So, for instance, if l(e) < x(e) < u(e), the
auxiliary graph contains both e and e−1. We call Dx the auxiliary graph
associated with the flow x. This notion is useful in the next proof, and it is
also very useful for algorithms in network flows.

Theorem 1.1 (Hoffman’s circulation theorem) Let l, u : E → IR be
edge functions satisfying l ≤ u. Then there exists a circulation x in D such
that

l ≤ x ≤ u

if and only if ∑
e∈δ−(S)

l(e) ≤
∑

e∈δ+(S)

u(e) (S ⊆ V ). (2)

Moreover, if l and u are integral (the function values are integral), then x
can be taken to be integral.

Proof. Assume that x is a circulation with l ≤ x ≤ u. Then∑
e∈δ−(S)

l(e) ≤
∑

e∈δ−(S)

x(e) =
∑

e∈δ+(S)

x(e) ≤
∑

e∈δ+(S)

u(e)

where the equality follows from the fact that x is a circulation (see Exercises).
To prove sufficiency, assume that (2) holds. Let x : E → IR be a function

satisfying l ≤ x ≤ u such that ‖divx‖1 is minimized (such an x exists by the
Extreme value theorem in analysis). Define

V − = {v ∈ V : divx(v) < 0}, V + = {v ∈ V : divx(v) > 0}.
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If V − = ∅, then (V + = ∅ and) x is a circulation as desired. So assume that
V − is nonempty; we shall deduce a contradiction from this. If the auxiliary
graph Dx = (V,Ex) contains a path from (a vertex in) V − to (a vertex in)
V +, then we can modify x along P (by adding some small ε on each edge)
and get another flow z with l ≤ z ≤ u and ‖divz‖1 < ‖divx‖1. Therefore, we
may assume that no such path exists. Let S be the set of vertices reachable
in Dx from a vertex in V −. Then for each e ∈ δ+(S) (these edges are in D),
we have e 6∈ Dx, and therefore x(e) = u(e). Similarly, for each e ∈ δ−(S), we
have e−1 6∈ Dx, so x(e) = l(e). This gives∑

e∈δ+(S) u(e)−
∑

e∈δ−(S) l(e) =
∑

e∈δ+(S) x(e)−
∑

e∈δ−(S) x(e)

=
∑

v∈S divx(v)

=
∑

v∈V − divx(v)

< 0.

But this contradicts (2), so x is a desired circulation. The integrality result
may be shown by starting with the zero circulation and keep minimizing the
norm of the divergence by modifying the flow along a path as descibed above.
This procedure maintains integrality when l and u are integral, and the final
circulation has the desired properties.

Theorem 1.1 may be used to derive other existence results for flows. The
technique here is to modify the graph suitably, apply the known result and
interpret the result back in the original problem. This is done in the proof of
the following basic existence theorem for network flows. The characterization
is in terms of an inequality for each vertex subset S of V .

Theorem 1.2 (Existence of flows) In a directed graph D = (V,E) let
b : V → IR be a supply function and c : E → IR+ an edge capacity function.
Then there is a flow x with divergence b and satisfying O ≤ x ≤ c if and only
if ∑

v∈V b(v) = 0, and∑
v∈S b(v) ≤

∑
e∈δ+(S) c(e) (S ⊆ V ).

(3)

Proof. Note first that
∑

v b(v) = 0 is a necessary condition for a flow to
exist; just sum all the flow balance equations (1). Define V − = {v ∈ V :
b(v) < 0} and V + = {v ∈ V : b(v) > 0}. Construct a graph D′ = (V ′, E ′)
with vertex set V ′ = V ∪ {s}, so we add a new vertex s. Let the edge set
consist of (i) each edge e ∈ E, (ii) an edge (s, v) for each v ∈ V +, and (iii) an
edge (v, s) for each v ∈ V −. Define l, u : E ′ → IR by l(s, v) = u(s, v) = b(v)
for each v ∈ V +, l(v, s) = u(v, s) = −b(v) for each v ∈ V −, while l(e) = 0 and
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u(e) = c(e) for each e ∈ E. Consider a circulation x ∈ IRE′ in D′ satisfying
l ≤ x ≤ u. Then x(s, v) = b(v) for each v ∈ V +, and x(v, s) = −b(v) for each
v ∈ V −. Then the restriction of x to E satisfies the flow balance constraints
(1), and 0 ≤ x(e) ≤ c(e) for all e ∈ E. This defines a bijection between
circulations in D′ and flows in D, satisfying the respective bounds on the
variables. (Note that flow balance of the circulation in vertex s corresponds
to

∑
v b(v) = 0.) We now apply Theorem 1.1 to D′ and the functions l, u.

Let S ⊆ V ′. Then (2) gives∑
v∈S∩V +

b(v) ≤
∑

v∈S∩V −
(−b(v)) +

∑
e∈δ+(S)

c(e)

which is equivalent to (3), and the theorem follows.
We remark that the construction (of the new graph D′) used in the pre-

vious proof is also useful computationally for deciding if there is a flow sat-
isfying given divergence and capacity constraints. Actually, if it exists one
also wants to find such a flow. This task may be done (essentially in D′) by
solving a maximum flow problem. And the maximum flow problem is the
topic of the next section!

1.3 Maximum flow and minimum cut

We now consider two important optimization problems in digraphs: the max-
imum flow problem and the minimum cut problem. There are strong con-
nections between these two problems, so it is natural to discuss them in
parallel.

Let D = (V,E) be a directed graph with nonnegative edge capacity func-
tion c : E → IR+. Let s and t be two distinct vertices, called the source and
the sink, respectively. An st-flow is a function x : E → IR (a flow) satisfying∑

e∈δ+(v) x(e) =
∑

e∈δ−(v) x(e) (v ∈ V \ {s, t})
O ≤ x ≤ c.

(4)

(A more accurate notion would be “an st-flow under c”, but we simply use
the term st-flow.) So flow conservation holds in all vertices except s and t.
The value of an st-flow x is defined as

val(x) =
∑

e∈δ+(s)

x(e)

which is the total outflow from the source. This defines a linear function
val : IRE → IR. Actually, if D contains no edge entering s (as we may
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assume without loss of generality in this context) then val(x) = divx(s). The
maximum flow problem is to find an st-flow x which maximizes val(x); such
a flow is called a maximum flow. This is a linear programming2 problem,
which implies that a maximum flow really exists. This existence also follows
from the Extreme value theorem: we maximize a continuous function over
a compact set. But the maximum flow problem may also be treated – and
solved – by combinatorial methods as we shall see below.

We now present the second optimization problem. An st-cut K is an edge
subset of the form K = δ+(S) for a vertex set S ⊆ V with s ∈ S and t 6∈ S.
Let, as above, c : E → IR+ be an edge capacity function. The capacity of an
st-cut K is

capc(K) =
∑
e∈K

c(e).

The minimum st-cut problem is to find an st-cut K with minimum capacity
capc(K); such K is called a minimum cut. This is a combinatorial optimiza-
tion problem: there is a finite number of st-cuts, although this number grows
exponentially in the number of vertices of the graph.

Each st-cut gives an upper bound on the maximum flow value, as the
following lemma says.

Lemma 1.3 The following inequality holds

max{val(x) : x is st-flow} ≤ min{capc(K) : K is st-cut}.

Proof. Let x be an st-flow and let K = δ+(S) be an st-cut. From flow
conservation in vertices in S \ {s} we get

val(x) =
∑

v∈S(
∑

e∈δ+(v) x(e)−
∑

e∈δ−(v) x(e))

=
∑

e∈δ+(S) x(e)−
∑

e∈δ−(S) x(e)

≤
∑

e∈δ+(S) c(e)

= capc(K)

where the inequality follows from the capacity constraints. By taking the
maximum over all st-flows and then taking the minimum over all cuts, the
desired inequality is obtained.

The inequality in Lemma 1.3 can be strengthened: it is actually an equal-
ity! This is the classical max-flow min-cut theorem, proved by Ford and
Fulkerson (1954) (for undirected graphs) and by Dantzig and Fulkerson (for

2Linear programming (LP) is to maximize or minimize a linear function subject to
linear constraints (linear inequalities and linear equations).
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directed graphs, as we consider here). It is considered as one of the most im-
portant results in combinatorics and combinatorial optimization. We shall
give a short proof of the theorem by using Hoffman’s circulation theorem
(Theorem 1.1).

Theorem 1.4 (Max-flow min-cut theorem) For any directed graph D,
edge capacity function c, and distinct vertices s, t, the value of a maximum
st-flow equals the minimum st-cut capacity, i.e.,

max{val(x) : x is st-flow} = min{capc(K) : K is st-cut}.

Proof. Due to Lemma 1.3 we only need to show that there exists an st-flow
with value equal to the minimum cut capacity M . We may assume that D
does not contain the edge (t, s) (as a maximum flow exists with zero flow in
that edge). Let D′ be obtained from D by adding the edge (t, s) (so here the
edge is again!). Define l(t, s) = u(t, s) = M , and l(e) = 0, u(e) = c(e) for each
e ∈ E. We shall apply Hoffman’s circulation theorem to D′, l, u, so consider
condition (2). The only interesting case is when s ∈ S, t 6∈ S (the other
case gives a redundant inequality). Then

∑
e∈δ−(S) l(e) = M + 0 = M while∑

e∈δ+(S) u(e) =
∑

e∈δ+(S) c(e) = capc(δ+(S)). Thus condition (2) becomes

capc(δ
+(S)) ≥M (S ⊆ V, s ∈ S, t 6∈ S).

But this condition is satisfied since M is the minimum cut capacity. Thus,
by Theorem 1.1 there is a circulation x in D′ with l ≤ x ≤ u. So x(t, s) =
l(t, s) = u(t, s) = M , and therefore the restriction of x to E is an st-flow
with value equal to M , and the proof is complete.

This theorem is an example of a minmax theorem: the maximum value of
some function taken over some set equals the minimum value of some other
function over some set. Another such important minmax theorem is the
linear programming duality theorem. Actually, there is a close connection
between these two results: one may derive the max-flow min-cut theorem
from the duality theorem using the theory of totally unimodular matrices3

1.4 Finding a maximum flow and a minimum cut

There are several algorithms for finding a maximum s-flow. Most of them also
find a minimum st-cut! We present the classical Ford-Fulkerson algorithm
(see [9]). It is typically fast, although not theoretically efficient. Today faster

3A matrix is called totally unimodular (TU) if the determinant of each square submatrix
(i.e., a minor) equals −1, 0 or 1.
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algorithms exist, even in theory and practice. But the Ford-Fulkerson algo-
rithm is very elegant and easy to explain. Moreover it uses a very important
idea, the notion of an augmenting path.

Consider the same setting as in the previos subsection: digraph D, ver-
tices s and t, and a nonnegative capacity function c. We assume that D
contains an st-path; otherwise the maximum flow value is zero.

Let x be an st-flow. As in connection with Hoffman’s circulation problem
we construct an auxiliary graph Dx = (V,Ex) where

Ex = {e ∈ E : x(e) < c(e)} ∪ {e−1 : e ∈ E, x(e) > 0}.

(Recall that e−1 = (v, u) when e = (u, v).) An st-path P in Dx is called an
x-augmenting path. Such a path corresponds to a path in the original graph
D: the P -edges that also lie in E are called forward edges while the other
edges in P correspond to backward edges in D. Let P+ and P− denote the
set of forward and backward edges in D that correspond to P .

The following result is a basic property since it characterizes – construc-
tively – when x is a maximum flow.

Theorem 1.5 Let x be an st-flow. Then x is a maximum flow if and only
if Dx contains no x-augmenting path.

Proof. Assume first that there is an augmenting path P in Dx. Let ε be
the minimum of all the following numbers: (i) c(e) − x(e) for each e ∈ P+,
and (ii) x(e) for each e ∈ P−. So ε > 0, by construction of the graph Dx.
Then we update the st-flow by adding ε to the flow in each edge e ∈ P+ and
subtracting ε for each edge in P−. Let x′ be the resulting new flow; this is an
st-flow due to the fact the difference between total outflow and total inflow
in every vertex v 6= s, t is zero. But val(x′) = val(x) + ε, so we have found an
st-flow with larger value. This proves the first part of the theorem.

Next, assume that Dx does not contain an x-augmenting path. Let S(x)
denote the set of vertices to which we can find an augmenting sv-path in
Dx, and define the cut K = δ+(S(x)). Then x(u, v) = c(u, v) for each edge
e = (u, v) ∈ K (so u ∈ S(x), v 6∈ S(x)) ; otherwise we would have v ∈ S(x).
Furthermore, x(u, v) = 0 for each edge e = (u, v) with u 6∈ S(x), v ∈ S(x)
(otherwise u ∈ S(x)). Thus the flow in each edge in the cut K is at its
upper capacity while the flow in each edge in the reverse cut δ−(S(x)) is
zero. From this (and flow conservation) it follows that val(x) = capc(K)
(confer the calculations in the proof of Lemma 1.3). So, due to Lemma 1.3,
x is a maximum st-flow and K = δ+(S(x)) is a minimum st-cut.

From Theorem 1.5 one obtains another proof of the max-flow min-cut
theorem, see the Exercises. (This is perhaps the most common proof of this
result in the literature.)
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The ideas in the proof lead to the following algorithm for finding a max-
imum flow and a minimum cut.

Ford-Fulkerson max-flow algorithm:

1. Start with the zero flow x = O.

2. Look for an x-augmenting path P in Dx.

a) If such P exists, then find the maximum possible increase ε of flow
in D along the path corresponding to P (as explained in the proof of
Theorem 1.5). Augment (increase) the flow x accordingly.

b) If no such P exists, then the present x is a maximum flow. Moreover,
a minimum st-cut is δ+(S(x)) where S(x) denote the set of vertices to
which we can find an augmenting sv-path in Dx.

One may use a simple procedure (breadth-first search) for finding an x-
augmenting path, i.e., an st-path in Dx:

• let V0 = {s}, and, iteratively, let Vi+1 be the vertices in V \(V0∪· · ·∪Vi)
that can be reached by an edge from a vertex in Vi.

Thus, at termination, Vi is the set of vertices with distance i from the
source s. This search algorithm requires O(m) steps, where m = |E|.

For integral capacities the Ford-Fulkerson algorithm requires at most M
iterations, where M is the maximum flow value. This is so because the flow
value is increased by at least one in each flow augmentation. It is also easy
to see that each flow obtained in the intermediate iterations, in the case of c
integral, will have integral edge flows only. This gives the following important
integrality theorem.

Theorem 1.6 If the capacity function c is integral (meaning each c(e) is
integral), then there is a maximum flow which is integral.

This theorem has several applications in combinatorics, as we shall see
later.

2 Combinatorial matrix theory
Combinatorial matrix theory is an area in matrix theory where one studies
combinatorial properties of matrices. A main topic is the study of (0, 1)-
matrices, i.e., matrices with entries consisting of zeros and ones, under dif-
ferent additional constraints on these matrices. Such matrices arise in con-
nection with graphs and, more generally, families of subsets of a finite set,
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as one often considers in combinatorics. (0, 1)-matrices also arise from real
matrices by replacing its nonzeros by ones. This is done to investigate the
role of the pattern of nonzeros in different situations.

The main journals for research in combinatorial matrix theory are Linear
Algebra and Its Applications and Electronic journal of Linear Algebra, and
some highly recommended monographs on the subject are the book Combi-
natorial Matrix Theory by Richard A. Brualdi and Herbert Ryser [6] and the
recent book Combinatorial Matrix Classes by Brualdi [4].

We will just present a few ideas and results in this area. First, we intro-
duce the notion of majorization, which is useful in many contexts.

We call a matrix T nonnegative if all its entries are nonnegative, and
write this as T ≥ O where O denotes the all zeros matrix (of suitable size).
More generally, A ≤ B denotes componentwise ordering (aij ≤ bij for all i, j)
where A and B are matrices of the same size.

2.1 Majorization

The notion of majorization is central in matrix theory and its applications.
It is a partial order of n-vectors, and we give a brief introduction to the
concept.

For x ∈ IRn we let x[j] denote the jth largest number among the compo-
nents of a vector x. If x, y ∈ IRn we say that x is majorized by y, denoted by
x � y, provided that∑k

j=1 x[j] ≤
∑k

j=1 y[j] (k = 1, 2, . . . , n− 1),∑n
j=1 xj =

∑n
j=1 yj.

We refer to Marshall and Olkin’s book [15] for a comprehensive study of
majorization and its role in many branches of mathematics and applications.
Another useful reference here on this is [2]. As an example we have

(
1

n
,

1

n
, . . . ,

1

n
) � (

1

2
,
1

2
, 0, . . . , 0) � (1, 0, . . . , 0).

Majorization turns out to be an underlying structure for several classes of
inequalities. One such simple example is the arithmetic-geometric mean in-
equality

(a1a2 · · · an)1/n ≤ (1/n)(a1 + a2 + · · ·+ an)

which holds for positive numbers a1, a2, . . . , an. It may be derived, for in-
stance, from the majorization ( 1

n
, 1
n
, . . . , 1

n
) � (1, 0, . . . , 0) or more directly

from the convexity of the logarithm function. See the excellent book [19]
for more about this inequality and its generalizations, majorization and the
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Cauchy-Schwarz inequality! Another nice illustration of the role of majoriza-
tion – due to I. Schur – is a majorization order between the diagonal entries
a11, a22, . . . , ann and the eigenvalues λ1, λ2, . . . , λn of a real symmetric (or
Hermitian) matrix A = [aij]:

(a11, a22, . . . , ann) � (λ1, λ2, . . . , λn).

The corresponding inequalities give, in a certain sense, the best inequalities
relating the diagonal entries and the eigenvalues.

Moreover, several interesting inequalities (in geometry, combinaotrics,
matrix theory) arise by applying some order-preserving function to a suitable
majorization ordering.

The following theorem contains some important classical results concern-
ing majorization, due to Hardy, Littlewood, Polya (1929) and Schur (1923).
Recall that a (square) matrix is doubly stochastic if it is nonnegative and all
row and column sums are equal to one.

Theorem 2.1 Let x, y ∈ IRn. Then the following statements are equivalent.

(i) x � y.
(ii) There is a doubly stochastic matrix A such that x = Ay.
(iii) The inequality

∑n
i=1 g(xi) ≤

∑n
i=1 g(yi) holds for all convex

functions g : IR→ IR.

In particular, this shows that there is a close connection between ma-
jorization and doubly stochastic matrices. And this matrix class is closely
tied to matching theory; each doubly stochastic matrix corresponds to a
fractional perfect matching in a bipartite graph.

For integral vectors majorization has a nice characterization in terms of
so-called transfers. Let y = (y1, y2, . . . , yn) and assume that yi > yj for some
pair i, j. Define y′ = (y′1, y

′
2, . . . , y

′
n) by y′i = yi − 1, y′j = yj + 1 and y′k = yk

for k 6= i, j. We say that y′ is obtained from y by a transfer from i to j.

Theorem 2.2 Let x and y be integral vectors of length n. Then x � y if
and only if x can be obtained from y by a finite sequence of transfers.

Majorization plays a rolw in several areas in combinatorics. The Gale-
Ryser theorem characterizes the existence of a (0, 1)-matrix with given row
and column sum vectors using majorization; we discuss this below; see also
R.A. Brualdi’s recent book [4].
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2.2 Some existence theorems for combinatorial matrices

In this section we discuss a result concerning integral matrices satisfying
constraints on line sums (row and column sums) as well as bounds on each
entry. The first result is very general and we show how it may be derived
from network flow theory.

Theorem 2.3 Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be nonnega-
tive integral vectors with

∑
i ri =

∑
j sj, and let C = [cij] be a nonnegative

integral matrix. Then there exists an m × n (nonnegative) integral matrix
A = [aij] satisfying

0 ≤ aij ≤ cij (i ≤ m, j ≤ n)∑n
j=1 aij = ri (i ≤ m)∑n
i=1 aij = sj (j ≤ n)

if and only if for all I ⊆ {1, 2, . . . ,m} and J ⊆ {1, 2, . . . , n},∑
i∈I, j∈J

cij ≥
∑
j∈J

sj −
∑
i 6∈I

ri. (5)

Proof. This follows from Theorem 1.2 by considering the (bipartite) graph
D with vertices u1, u2, . . . , um associated with rows in the matrix C and
vertices v1, v2, . . . , vn associated with the columns. The edges are (ui, vj) for
i ≤ m, j ≤ n. Let b(ui) = ri (i ≤ m) and b(vj) = −sj (j ≤ n). Then an
integral flow x in D with divx = b and O ≤ x ≤ c corresponds to a matrix C
with the desired properties. Moreover, condition (3) translates into (5).

To proceed we need the notion of a conjugate vector. Consider a non-
negative, nonincreasing integral vector R = (r1, r2, . . . , rm), and assume that
ri ≤ n for each i ≤ m. Define

r∗k = |{i : ri ≥ k}| (k ≤ n)

and let R∗ = (r∗1, r
∗
1, . . . , r

∗
n). The vector R∗ is called the conjugate vector of

R. (Sometimes one augments this vector by some final zeros.) Let A(R, n)
denote the (0, 1)-matrix of size m×n with ri leading ones followed by n− ri
zeros. It is called the maximal matrix w.r.t. R. Then the row sum vector of
A(R, n) is R and the column sum vector is R∗. Note that R (and R∗) are
(integer) partitions of the integer τ =

∑
i ri. Assume that R is nonincreasing,

r1 ≥ r2 ≥ · · · ≥ rm. A diagram with dots, or squares, corresponding to the
ones in A(R, n) is called a Ferrer’s diagram or a Young diagram and it is
used to study integer partitions.
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The following theorem is called the Gale-Ryser theorem. It was proved
independent of Gale and Ryser. The theorem gives a nice characterization, in
terms of majorization, of the existence of a (0, 1)-matrix with given line sums.
The proof we give is due to [12], see also [13], and it relies on majorization
theory.

Theorem 2.4 (Gale-Ryser theorem) Let R = (r1, r2, . . . , rm) and S =
(s1, s2, . . . , sn) be nonnegative, nonincreasing integral vectors with

∑
i ri =∑

j sj. Then there exists a m× n (0, 1)-matrix A with∑n
j=1 aij = ri (i ≤ m)∑n
i=1 aij = sj (j ≤ n)

if and only if
S � R∗.

Proof. The necessity of the condition follows by looking at the maximal
matrix A(R, n). Assume A(R, S) is nonempty. Since the ones in A(R, n) are
left-justified it is clear that any matrix A = [aij] ∈ A(R, S) has at most as
many ones in the first k columns as A(R, n) has (k ≤ n), i.e.

k∑
j=1

sj =
k∑
j=1

m∑
i=1

aij ≤
k∑
j=1

m∑
i=1

A(R, n)ij =
k∑
j=1

r∗j .

So, S � R∗.
To prove the converse, assume that S � R∗. By Theorem 2.2 S can be

obtained from R∗ by a finite sequence of transfers, say

S = S(t) � S(t−1) � · · · � S(0) = R∗

where S(i) is obtained from S(i−1) by a transfer (1 ≤ i ≤ t). Since A(R,R∗)
is nonempty (it contains the maximal matrix A(R, n)), we only need to prove
the following claim; for then the desired conclusion holds by induction.

Claim: If A(R, y) is nonempty, and y′ is obtained from y by a transfer
from i to j, then also A(R, y′) is nonempty.

Proof of Claim: Let y and y′ be as in the claim, and assume A = [aij] ∈
A(R, y). Then yi > yj, and therefore there is a row k in A where aki = 1
and akj = 0 (as yi and yj are column sums in A). Let A′ = [a′pq] be obtained
from A by letting a′ki = 0 and a′kj = 1 while A′ agrees with A in all other
positions. Then A′ ∈ A(R, y′).

This proves the claim, and therefore the theorem.
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There are other proofs of this theorem, and the original proofs by Gale
and Ryser (independently) were constructive. In particular, Ryser’s algo-
rithm for constructing a matrix in A(R, S) when S � R∗ is interesting. The
algorithm is simple and it produces a “canonical matrix” in A(R, S) with
specific properties (see [4]).

2.3 The matrix class A(R, S)

Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be given nonnegative integral
vectors with

∑
i ri =

∑
j sj. Define A(R, S) to be the class (set) of (0, 1)-

matrices with row sum vector R and column sum vector S. The row sum
vector of A is the vector whose i’th component is the sum of the entries
in the ith row in A; the column sum vector is defined similarly. A vector
z = (z1, z2, . . . , zp) is called nonincreasing if z1 ≥ z2 ≥ · · · ≥ zp. We shall
assume that both R and S are nonincreasing. This can be done since there
is an obvious bijection between a class A(R, S) and another class A(R′, S ′)
where R′ is a permutation of R and S ′ is a permutation of S: simply permute
rows and columns similarly. By the Gale-Ryser theorem the class A(R, S) is
nonempty if and only if S � R∗.

Assume now that R and S are nonincreasing. Define an (m+ 1)× (n+ 1)
matrix T = [tkl] whose entries are tkl (0 ≤ k ≤ m, 0 ≤ l ≤ n) given by

tkl = kl +
m∑

i=k+1

ri −
l∑

j=1

sj. (6)

The matrix T is called the structure matrix associated with the class A(R, S).
As the name indicates this matrix reveals strutural properties of matrices in
A(R, S). The structure matrix was introduced by Ford and Fulkerson who
proved the following result.

Theorem 2.5 A(R, S) is nonempty if and only if T is nonnegative.

Proof. Consider the special case of Theorem 2.3 where cij = 1 for all i, j,
so we consider (0, 1)-matrices with row sum vector R and column sum vector
S. By the theorem such a matrix exists if and only if (5) holds. Our goal is
to show that this condition is equivalent to T ≥ O. Clearly, (5) is equivalent
to

(∗1)
∑

i∈I,j∈J cij ≥
∑

j∈J sj −
∑

i 6∈I ri (|I| = k, |J | = l)

for all 0 ≤ k ≤ m, 0 ≤ l ≤ n. In (∗1)
∑

i∈I,j∈J cij = kl. Moreover, the
maximum value of the right-hand side in (∗1), when |I| = k, |J | = l, is
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obtained for J = {1, 2, . . . , l} and I = {1, 2, . . . , k} sinceR and S are assumed
nonincreasing. It follows that (5) is equivalent to

kl ≥
l∑

j=1

sj −
m∑

i=k+1

ri (0 ≤ k ≤ m, 0 ≤ l ≤ n)

which means that the structure matrix T is nonnegative (see (6), and we are
done.

There is an important aspect of different characterizations of the nonemp-
tyness of the class A(R, S). The direct application of Theorem 2.3 gives
a condition with many inequalities, one for each I ⊆ {1, 2, . . . ,m} and
J ⊆ {1, 2, . . . , n}. There are 2m+n such inequalities, so the number grows
exponentially fast. Theorem 2.5 improves on this and contains (m+1)(n+1)
inequalities, one for each entry in the structure matrix. This reduction, as
we saw in the proof, was done by eliminating redundant inequalities using
the fact that R and S were nonincreasing. Finally, the winner in this contest
is the Gale-Ryser theorem which gives a characterization in terms of only
n− 1 inequalities!

The structure matrix may be given a combinatorial interpretation as we
discuss next. The number of zeros resp. ones of a (0, 1)-matrix C is denoted
by N0(C) resp. N1(C). Now, consider a (0, 1)-matrix A of size m × n and
partitioned as follows

A =

[
A11 A12

A21 A22

]
where A11 is of size k × l. Assume that A ∈ A(R, S). Then

tkl = kl +
∑m

i=k+1 ri −
∑l

j=1 sj

= (N0(A11) +N1(A11)) + (N1(A21) +N1(A22))− (N1(A11) +N1(A21))

= N0(A11) +N1(A22).

Thus, tkl counts something: it is the number of zeros in A11 (which has size
k×l) plus the number of ones in A22. This shows (some of) the combinatorial
meaning of the structure matrix T . Note that, from this interpretation, it
is clear that if A(R, S) is nonempty, then T is nonnegative. The converse
implication, however, is much more difficult to prove.

The matrix T has a number of interesting properties. We mention some of
these. The entries of T are all determined by the entries in the first (actually,
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zero’th) row and column as we have

t00 = τ =
∑

i ri =
∑

j sj

t0l =
∑n

j=l+1 sj (l = 0, 1, . . . , n)

tk0 =
∑m

j=k+1 ri (k = 0, 1, . . . ,m)

tk+1,l+1 = tk+1,l + tk,l+1 − tkl (k = 0, 1, . . . ,m− 1, l = 0, 1, . . . , n− 1).

The structure matrix T does indeed reveal a lot about the structure of
matrices in A(R, S). For instance, assume that tkl = 0 some k, l with k, l ≥ 1.
By the combinatorial interpretation tkl = N0(A11)+N1(A22) this means that
every matrix in A ∈ A(R, S) satisfies

aij = 1 (i ≤ k, j ≤ l)

aij = 0 (i ≥ k + 1, j ≥ l + 1).

The structure matrix plays a significant role in deeper investigations of
the class A(R, S), see [4], [5].

2.4 Doubly stochastic matrices

A (real) n×n matrix A is called doubly stochastic if it is nonnegative and all
its row and column sums are one. These matrices arise in connection with
stochastic processes, optimization (the assignment problem), majorization,
combinatorics etc. An example is

A =

 0.4 0.2 0.4
0.6 0.3 0.1
0 0.5 0.5


Let Ωn be the set of all n × n doubly stochastic matrices. This set,

or matrix class, has been studied a lot in matrix theory. In 1929 Hardy,
Littlewood and Pólya proved that majorization is closely related to doubly
stochastic matrices: y � x if and only if there is a doubly stochastic matrix
A such that y = Ax, see Theorem 2.1. Thus, y � x if and only if y is the
image of x under a certain linear transformation, a doubly stochastic map.

There is also a close connection between Ωn and certain combinatorial
objects. Permutations are important in many areas (group theory, com-
binatorics, applications in sequencing etc.). A permutation σ is simply a
reordering of the integers 1, 2, . . . , n, and we write this as a vector σ =
(σ1, σ2, . . . , σn). Let Sn be the set of all n-permutations. For instance,
σ = (3, 1, 4, 2) ∈ S4. The set Sn is a group, called the symmetric group,
where the group operation is (function) composition. Here one may think of
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a permutation as a bijection (a function which is one-to-one and onto) on a
set of n elements, e.g., {1, 2, . . . , n}. The function, also denoted by σ is then
σ(i) = σi.

Now, permutations may be represented in other ways as well, also by
matrices, so-called permutation matrices. A permutation matrix is a (0, 1)-
matrix with exactly one 1 in every row and in every column, e.g.,

P =

 0 0 1
1 0 0
0 1 0

 .
A permutation σ ∈ Sn may be represented by the matrix P = [pij] ∈ IRn×n

where pij = 1 when j = σ(i) and pij = 0 otherwise. The permutation
matrix just shown corresponds to the permutation σ = (3, 1, 2). This is a
permutation matrix, and this defines a bijection between Sn and the set Pn of
all permutation matrices of order n. (One may also use the transpose P T to
represent a permutation; if this is done function composition of permutations
corresponds in the natural way to matrix multiplication.)

Now, note that each permutation matrix is also a doubly stochastic ma-
trix. In fact, the permutation matrices are precisely the integral doubly
stochastic matrices. A clasical theorem of Birkhoff (1946) and von Neumann
(1953) gives an elegant connection between these two matrix classes. Recall
that the convex hull of a set S (in a vector space), denoted by conv(S), is the
set of all convex combinations of points in S; it is the smallest (inclusionwise)
convex set containing S.

Theorem 2.6 (Birkhoff-von Neumann theorem) The set Ωn of all dou-
bly stochastic matrices of order n is the convex hull of all permutation ma-
trices of order n,

Ωn = conv(Pn).

Actually, Pn is the set of vertices of Ωn. So every doubly stochastic matrix
may be written as a convex combination of permutation matrices.

Proof. We give a proof using polyhedral theory. Since a polytope is the
convex hull of its vertices, it suffices to prove that the vertices of Ωn are the
permutation vertices.

First, we note that every permutation matrix is a vertex of Ωn (Exercise),
and that these are precisely the integral matrices in Ωn. Next, let A = [aij]
be a vertex of Ωn which is non-integral, so there exists (i1, j1) with 0 <
ai1j1 < 1. Since the j1’th column sum is 1 in A, there is an i2 6= i1 with
0 < ai2j1 < 1. And since the i2’th row sum is 1 in A, there is an j2 6= j1
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with 0 < ai2j2 < 1. Continuing like this we must eventually obtain a cycle
C with vertices i1, j1, i2, j2, . . . , ik, jk, i1 in the bipartite graph whose vertices
correspond to rows and columns in A and the edges correspond to positions
(or entries) in A. This is an even cycle with edges, say, e1, e2, . . . , e2t, and
the corresponding entries in A lie in the open interval 〈0, 1〉. Let V be the
n× n matrix with a 1 in the positions corresponding to edges ei with i ≤ 2t
and i odd, and −1 in the positions corresponding to edges ei with i ≤ 2t
and i even. Then, for suitabley small ε > 0, the matrices A1 = A + εV and
a2 = A− εV both lie in Ωn. But since A = (1/2)(A1 + A2), this contradicts
that A is an extreme point. Thus, there are only integral extreme points,
and these are the permutation matrices.

A detailed treatment of the Birkhoff polytope Ωn may be found in [4].
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Exercises
1. Let x be a flow in a graph D. Show that

∑
v∈V divx(v) = 0.

2. Let x be a circulation in a graph D = (V,E) and let S ⊆ V . Prove that∑
e∈δ−(S) x(e) =

∑
e∈δ+(S) x(e). (Hint: sum the flow balance equations

for vertices in S.)

3. Consider the problem treated in Hoffman’s circulation theorem (The-
orem 1.1): decide if a circulation x satisfying l ≤ x ≤ u exists and,
if so, find one. Show that this problem may be transformed into a
flow problem with zero lower bounds, but with given divergence. Hint:
apply the transformation x′(e) = x(e)− l(e) (e ∈ E).

4. Show that when x is an st-flow, then val(x) is equal to the total inflow
to the sink t.

5. Explain why the Extreme Value Theorem gives the existence of a max-
imum flow. Also explain how this following from linear programming
theory.

6. Use Theorem 1.5 to give a proof of the max-flow min-cut theorem.
Hint: consider a maximum flow.

7. Choose an example of D, s, t, c and find a maximum flow and minimum
cut using the Ford-Fulkerson algorithm.

8. How can we find a flow x with given divergence, say divx = b, and sat-
isfying capacity constraints O ≤ x ≤ c? This is an important problem
and it can be solved by transforming it into a maximum flow problem
(for which several extremely fast algorithms exist). The construction
is very similar to the one we gave in the proof of Theorem 1.2. Let
D = (V,E) be the given graph. Define V − = {v ∈ V : b(v) < 0} and
V + = {v ∈ V : b(v) > 0}. Construct a graph D′ = (V ′, E ′) with vertex
set V ′ = V ∪{s, t}, so we add two new vertices s and t. Let the edge set
of D′ consist of (i) each edge e ∈ E, (ii) an edge (s, v) for each v ∈ V +,
and (iii) an edge (v, t) for each v ∈ V −. Define a capacity function
c′ : E ′ → IR by c′(s, v) = b(v) for each v ∈ V +, c′(v, s) = −b(v) for
each v ∈ V −, and c′(e) = c(e) for each e ∈ E.
The questions: (a) Show that the maximum value of an st-flow is at
mostM :=

∑
v∈V + b(v). (b) Show that a flow x in D satisfying divx = b

and O ≤ x ≤ c exists if and only if the value of a maximum st-flow in
D′ equals M (defined in (a)). (c) How do you find the desired x from
this maximum flow?
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9. Fill in the details of the proof of Theorem 1.6 (the integrality theorem).

10. Consider the max-flow problem in the special case where c(e) = 1 for
each e ∈ E (unit capacities). Choose and example of D, s and t. Solve
the max-flow problem. What can be said about the structure of your
max-flow x? Prove, in general, that a max-flow may be represented by
a set of edge-disjoint st-paths (i.e., pairwise disjoint) and where there
is unit flow on each of these paths.

11. Prove Menger’s theorem: the maximum number of edge-disjoint st-
paths is equal to the minimum cardinality of an st-cut. This is a classical
minmax theorem in graph theory. Hint: consider the previous exercise.

12. The matrix rounding problem is the following problem. Given a real
m×nmatrix A = [aij] with row sums ri =

∑n
j=1 aij (i ≤ m) and column

sums sj =
∑n

i=1 aij (j ≤ n), round each entry aij to either baijc or daije
and also round each ri and sj either up or down, such that the new
matrix Ā has row and column sums equal to the corresponding rounded
sums. For instance, consider

A =

 4.2 3.5 2.6
1.1 2.1 8.3
6.5 3.9 1.2

 .
Here (r1, r2, r3) = (10.3, 11.5, 11.6) and (s1, s2, s3) = (11.8, 9.5, 12.1).
Then we might start by rounding a11, a12, a13 and r1 to 4, 4, 3 and
11, respectively. Go on, and try to solve the problem. The difficulty
is that we have to get the “right” column sums as well. The general
matrix rounding problem may be represented as a flow problem in
the following graph. Let G = (V,E) be a graph with vertex set V =
{s, t, u1, . . . , um, v1, . . . , vn} and the following edges (i) (s, ui) for i ≤ m,
(ii) (vj, t) for j ≤ n, (iii) (ui, vj) for i ≤ m, j ≤ n, and (iv) the single
edge (t, s). The idea is to represent the matrix entry āij by the flow
x(e) in the edge e = (ui, vj). Moreover, the ith row sum corresponds
to the flow in the edge (s, ui), and the jth column sum corresponds to
the flow in the edge (vj, t). Draw the graph for the specific example
above. Your task is to define a lower bound l(e) and an upper bound
u(e) on the flow in each edge e such that the matrix rounding problem
becomes that of finding a circulation x satisfying l ≤ x ≤ u.

13. Let P be a polytope contained in the unit cube, so each x ∈ P satisfies
0 ≤ xj ≤ 1 (j ≤ n). Prove that each (0, 1)-vector in P is a vertex of P .
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14. Show that every permutation matrix is a vertex of Ωn and that these are
precisely the integral matrices in Ωn. Hint: use the previous exercise.
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