UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination inINF-MAT 5360 — Mathematical optimizationDay of examination:December 2., 2010Examination hours:14.30 – 18.30This problem set consists of 4 pages.Appendices:NonePermitted aids:None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

There are 12 questions with about the same weight.

Problem 1

1a

Let $C \subseteq \mathbb{R}^n$ be a convex set and consider a line $L = \{x \in \mathbb{R}^n : x = a + tr, t \in \mathbb{R}\}$ where $a, r \in \mathbb{R}^n$ are given vectors. Is $C \cap L$ a convex set? Depending on your answer, give a proof or a counterexample.

1b

Let $a, b \in \mathbb{R}^n$ and consider the set

$$S = \{x \in \mathbb{R}^n : ||x - a|| \le ||x - b||\}$$

where $||z|| = \sqrt{z^T z}$ is the Euclidean norm of a vector z. Show that S is a halfspace. (Hint: work on the inequalities in the definition of S). Give an example in the plane, i.e., when n = 2.

Problem 2

2a

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function and let $\alpha \in \mathbb{R}$. Show that the set

$$K = \{ x \in \mathbb{R}^n : f(x) \le \alpha \}$$

is convex.

(Continued on page 2.)

2b

Let $x \in \mathbb{R}^n$ be a convex combination of the vectors $z_1, z_2, \ldots, z_k \in \mathbb{R}^n$, and let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function. Show that

$$f(x) \le \max\{f(z_1), \dots, f(z_k)\}.$$

(Hint: Jensen's inequality)

2c

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a polyhedron (so A is a real $m \times n$ matrix and $b \in \mathbb{R}^m$). Show that the recession cone of P is given by

$$\operatorname{rec}(P) = \{ z \in \mathbb{R}^n : Az \le O \}$$

where O is the zero vector.

2d

Let $C \subset \mathbb{R}^3$ be the unit cube, i.e.,

$$C = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : 0 \le x_i \le 1 \ (i \le 3) \}$$

Determine, with reference to general theory, each face F of C such that $\dim(F) = 1$ and F contains the point (1, 1, 1).

Problem 3

3a

Give an example of a 2×2 matrix $B = [b_{ij}]$ where (a) $b_{ij} \in \{-1, 0, 1\}$ for $1 \leq i, j \leq 2$ and (b) B is not totally unimodular. Also, give a proof of the following fact: the node-edge incidence matrix of a directed graph is totally unimodular. (This is a result in the lecture notes.)

Problem 4

Let $F(G) = \{x \in \mathbb{R}^E : Ax \leq b\}$ be the forest polytope associated with the undirected graph G = (V, E) in Figure 1.a). An inequality of type $x_e \geq 0$ $(e \in E)$ is said to be a *trivial inequality*.

4a

Let \mathcal{A} be a separation oracle for F(G) and let $\hat{x} \in \mathbb{R}^E$ be the point indicated in the picture (i.e. $x_{13} = 2/3$, $x_{12} = x_{14} = 1/3$, $x_{23} = 0$, $x_{24} = x_{34} = 1$). If the input to \mathcal{A} is \hat{x} , what will it be its output?

(Continued on page 3.)

Figure 1:

4b

Consider the spanning tree H of G given in Figure 1.b). The incidence vector of H is $x_{12}^H = x_{14}^H = x_{34}^H = 1$, $x_{13}^H = x_{23}^H = x_{24}^H = 0$. Show that x^H is a vertex of F(G), without using trivial inequalities in your proof.

Problem 5

Let G = (V, E) be an undirected simple graph (no loops, no multiple edges). A *stable set* of vertices is a set $S \subseteq V$ of pairwise non-adjacent vertices of G, i.e. for all $i, j \in S$ we have $[i, j] \notin E$. For example, in Figure 2, the set $S = \{2, 3, 5\}$ is a stable set.

Figure 2:

Let $Q(G) \subseteq \{0,1\}^V$ be the set of incidence vectors of stable sets of G. It is not difficult to see that a (0,1)-vector $x \in \mathbb{R}^V$ lies in Q(G) if and only if it satisfies $x_u + x_v \leq 1$ for all $[u,v] \in E$. In other words, the polyhedron $P(G) = \{x \in \mathbb{R}^V : x_u \geq 0 \text{ for all } u \in V, x_u + x_v \leq 1 \text{ for all } [u,v] \in E\}$ is a formulation of Q(G).

Consider now three distinct and pairwise adjacent vertices v, w, z of G, i.e. $\{[v, w], [w, z], [v, z]\} \subseteq E$.

5a

Show that the inequality $x_v + x_w + x_z \leq 1$ is valid for the convex hull of Q(G).

5b

Show that the *clique* inequality $x_v + x_w + x_z \leq 1$ is not valid for P(G).

Problem 6

Figure 3:

Consider the graph in Figure 3 where flow x_e and capacity c_e are shown next to each edge e (in this order).

6a

Show that the given flow x is a maximum st-flow.

Good luck!