UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT 5360 - Mathematical optimization
Day of examination: December 2., 2010
Examination hours: 14.30-18.30
This problem set consists of 4 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

There are 12 questions with about the same weight.

Problem 1

1a

Let $C \subseteq \mathbb{R}^{n}$ be a convex set and consider a line $L=\left\{x \in \mathbb{R}^{n}: x=a+t r, t \in\right.$ $\mathbb{R}\}$ where $a, r \in \mathbb{R}^{n}$ are given vectors. Is $C \cap L$ a convex set? Depending on your answer, give a proof or a counterexample.

1b

Let $a, b \in \mathbb{R}^{n}$ and consider the set

$$
S=\left\{x \in \mathbb{R}^{n}:\|x-a\| \leq\|x-b\|\right\}
$$

where $\|z\|=\sqrt{z^{T} z}$ is the Euclidean norm of a vector z. Show that S is a halfspace. (Hint: work on the inequalities in the definition of S). Give an example in the plane, i.e., when $n=2$.

Problem 2

2a
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function and let $\alpha \in \mathbb{R}$. Show that the set

$$
K=\left\{x \in \mathbb{R}^{n}: f(x) \leq \alpha\right\}
$$

is convex.

2b

Let $x \in \mathbb{R}^{n}$ be a convex combination of the vectors $z_{1}, z_{2}, \ldots, z_{k} \in \mathbb{R}^{n}$, and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function. Show that

$$
f(x) \leq \max \left\{f\left(z_{1}\right), \ldots, f\left(z_{k}\right)\right\}
$$

(Hint: Jensen's inequality)

2c

Let $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ be a polyhedron (so A is a real $m \times n$ matrix and $b \in \mathbb{R}^{m}$). Show that the recession cone of P is given by

$$
\operatorname{rec}(P)=\left\{z \in \mathbb{R}^{n}: A z \leq O\right\}
$$

where O is the zero vector.

2d

Let $C \subset \mathbb{R}^{3}$ be the unit cube, i.e.,

$$
C=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: 0 \leq x_{i} \leq 1(i \leq 3)\right\}
$$

Determine, with reference to general theory, each face F of C such that $\operatorname{dim}(F)=1$ and F contains the point $(1,1,1)$.

Problem 3

3a

Give an example of a 2×2 matrix $B=\left[b_{i j}\right]$ where (a) $b_{i j} \in\{-1,0,1\}$ for $1 \leq i, j \leq 2$ and (b) B is not totally unimodular. Also, give a proof of the following fact: the node-edge incidence matrix of a directed graph is totally unimodular. (This is a result in the lecture notes.)

Problem 4

Let $F(G)=\left\{x \in \mathbb{R}^{E}: A x \leq b\right\}$ be the forest polytope associated with the undirected graph $G=(V, E)$ in Figure 1.a). An inequality of type $x_{e} \geq 0$ $(e \in E)$ is said to be a trivial inequality.

4 a

Let \mathcal{A} be a separation oracle for $F(G)$ and let $\hat{x} \in \mathbb{R}^{E}$ be the point indicated in the picture (i.e. $x_{13}=2 / 3, x_{12}=x_{14}=1 / 3, x_{23}=0, x_{24}=x_{34}=1$). If the input to \mathcal{A} is \hat{x}, what will it be its output?

Figure 1:

4b

Consider the spanning tree H of G given in Figure 1.b). The incidence vector of H is $x_{12}^{H}=x_{14}^{H}=x_{34}^{H}=1, x_{13}^{H}=x_{23}^{H}=x_{24}^{H}=0$. Show that x^{H} is a vertex of $F(G)$, without using trivial inequalities in your proof.

Problem 5

Let $G=(V, E)$ be an undirected simple graph (no loops, no multiple edges). A stable set of vertices is a set $S \subseteq V$ of pairwise non-adjacent vertices of G, i.e. for all $i, j \in S$ we have $[i, j] \notin E$. For example, in Figure 2, the set $S=\{2,3,5\}$ is a stable set.

Figure 2:
Let $Q(G) \subseteq\{0,1\}^{V}$ be the set of incidence vectors of stable sets of G. It is not difficult to see that a $(0,1)$-vector $x \in \mathbb{R}^{V}$ lies in $Q(G)$ if and only if it satisfies $x_{u}+x_{v} \leq 1$ for all $[u, v] \in E$. In other words, the polyhedron $P(G)=\left\{x \in \mathbb{R}^{V}: x_{u} \geq 0\right.$ for all $u \in V, x_{u}+x_{v} \leq 1$ for all $\left.[u, v] \in E\right\}$ is a formulation of $Q(G)$.

Consider now three distinct and pairwise adjacent vertices v, w, z of G, i.e. $\{[v, w],[w, z],[v, z]\} \subseteq E$.

5a

Show that the inequality $x_{v}+x_{w}+x_{z} \leq 1$ is valid for the convex hull of $Q(G)$.

5b

Show that the clique inequality $x_{v}+x_{w}+x_{z} \leq 1$ is not valid for $P(G)$.

Problem 6

Figure 3:

Consider the graph in Figure 3 where flow x_{e} and capacity c_{e} are shown next to each edge e (in this order).

$6 a$

Show that the given flow x is a maximum $s t$-flow.

Good luck!

