UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT 5360/9360 - Mathematical optimization
Day of examination: December 2., 2010
Examination hours: 14.30-18.30
This problem set consists of 6 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

There are 12 questions with about the same weight.

Solution.

Problem 1

1a

Let $C \subseteq \mathbb{R}^{n}$ be a convex set and consider a line $L=\left\{x \in \mathbb{R}^{n}: x=a+t r, t \in\right.$ $\mathbb{R}\}$ where $a, r \in \mathbb{R}^{n}$ are given vectors. Is $C \cap L$ a convex set? Depending on your answer, give a proof or a counterexample.

Solution: True. Proof: L is also convex (may be shown directly from the definition of convexity) and the intersection of convex sets is again convex. Thus $C \cap L$ is convex.

1b

Let $a, b \in \mathbb{R}^{n}$ and consider the set

$$
S=\left\{x \in \mathbb{R}^{n}:\|x-a\| \leq\|x-b\|\right\}
$$

where $\|z\|=\sqrt{z^{T} z}$ is the Euclidean norm of a vector z. Show that S is a halfspace. (Hint: work on the inequalities in the definition of S). Give an example in the plane, i.e., when $n=2$.

Solution: Since the norm is nonnegative, the following is equivalent: (i) $\|x-a\| \leq\|x-b\|$, and (ii) $\|x-a\|^{2} \leq\|x-b\|^{2}$. Moreover, a calculation in (ii) gives: $x^{T} x-2 a^{T} x+a^{T} a \leq x^{T} x-2 b^{T} x+b^{T} b$, or $(b-a)^{T} x \leq(1 / 2)\left(\|b\|^{2}-\|a\|^{2}\right)$. So S is the halfspace defined by this linear inequality (with normal vector $b-a)$. Example for $n=2$: let $a=(0,0)$ and $b=(2,0)$, then S is the halfspace given by $x_{1} \leq 1$; all points closer to a than b (or equal distance).

Problem 2

2 a

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function and let $\alpha \in \mathbb{R}$. Show that the set

$$
K=\left\{x \in \mathbb{R}^{n}: f(x) \leq \alpha\right\}
$$

is convex.
Solution: Let $x_{1}, x_{2} \in K$ and $\lambda \in[0,1]$. Then $f\left(x_{1}\right), f\left(x_{2}\right) \leq \alpha$ so by convexity of f

$$
f\left((1-\lambda) x_{1}+\lambda x_{2}\right) \leq(1-\lambda) f\left(x_{1}\right)+\lambda x_{2} f\left(x_{2}\right) \leq(1-\lambda) \alpha+\lambda \alpha=\alpha
$$

so $(1-\lambda) x_{1}+\lambda x_{2} \in K$, and this set is convex

2b

Let $x \in \mathbb{R}^{n}$ be a convex combination of the vectors $z_{1}, z_{2}, \ldots, z_{k} \in \mathbb{R}^{n}$, and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function. Show that

$$
f(x) \leq \max \left\{f\left(z_{1}\right), \ldots, f\left(z_{k}\right)\right\} .
$$

(Hint: Jensen's inequality)
Solution: Then $x=\sum_{j=1}^{k} \lambda_{j} z_{j}$ for some $\lambda_{j} \geq 0(j \leq k)$ and $\sum_{j=1}^{k} \lambda_{j}=1$. By Jensen's inequality

$$
f(x)=f\left(\sum_{j=1}^{k} \lambda_{j} z_{j}\right) \leq \sum_{j=1}^{k} \lambda_{j} f\left(z_{j}\right) \leq \sum_{j=1}^{k} \lambda_{j} M=M \sum_{j=1}^{k} \lambda_{j}=M
$$

where $M=\max \left\{f\left(z_{1}\right), \ldots, f\left(z_{k}\right)\right\}$. This proves the inequality.

2c

Let $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ be a polyhedron (so A is a real $m \times n$ matrix and $b \in \mathbb{R}^{m}$). Show that the recession cone of P is given by

$$
\operatorname{rec}(P)=\left\{z \in \mathbb{R}^{n}: A z \leq O\right\}
$$

where O is the zero vector.
Solution: Let $z \in \operatorname{rec}(P)$ and $x_{0} \in P$. Then $x(\lambda):=x_{0}+\lambda z \in P$ for each $\lambda \geq 0$. Now $A x(\lambda)=A x_{0}+\lambda A z$. If $(A z)_{i}>0$ for some i, then $(A x(\lambda))_{i}>b_{i}$ when λ is large enough, but this contradicts that $x(\lambda) \in P$. This proves that $A z \leq O$. Conversely: assume $A z \leq O$. Then, for each $x_{0} \in P, A\left(x_{0}+\lambda z\right)=A x_{0}+\lambda A z \leq b+O=b$, so $z \in \operatorname{rec}(P)$. Thus, $\operatorname{rec}(P)$ has the desired form.

2d

Let $C \subset \mathbb{R}^{3}$ be the unit cube, i.e.,

$$
C=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: 0 \leq x_{i} \leq 1(i \leq 3)\right\}
$$

Determine, with reference to general theory, each face F of C such that $\operatorname{dim}(F)=1$ and F contains the point $(1,1,1)$.

Solution: Since C is a polyhedron, each face F is an exposed face, and it is obtained by setting certain inequalities in the defining inequalities (for C) to equality (see Section 4.4 in "An Intro. to Convexity"). Since F has dimension 1, we must set two such inequalities to equality, and since F contains $(1,1,1)$ we can only use the inequalities $x_{i} \leq 1$ for this. The desired faces are therefore $F_{1}=\left\{x \in P: x_{2}=1, x_{3}=1\right\}=\operatorname{conv}\{(0,1,1),(1,1,1)\}$, $F_{2}=\left\{x \in P: x_{1}=1, x_{3}=1\right\}=\operatorname{conv}\{(1,0,1),(1,1,1)\}$ and $F_{3}=\{x \in P:$ $\left.x_{1}=1, x_{2}=1\right\}=\operatorname{conv}\{(1,1,0),(1,1,1)\}$.

Problem 3

3a

Give an example of a 2×2 matrix $B=\left[b_{i j}\right]$ where (a) $b_{i j} \in\{-1,0,1\}$ for $1 \leq i, j \leq 2$ and (b) B is not totally unimodular. Also, give a proof of the following fact: the node-edge incidence matrix of a directed graph is totally unimodular. (This is a result in the lecture notes.)

Solution: An example is

$$
A=\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

Then $\operatorname{det} A=2$ so A is not TU. The proof: see lecture notes on comb.opt., Proposition 2.12.

Problem 4

Let $F(G)=\left\{x \in \mathbb{R}^{E}: A x \leq b\right\}$ be the forest polytope associated with the undirected graph $G=(V, E)$ in Figure 1.a). An inequality of type $x_{e} \geq 0$ $(e \in E)$ is said to be a trivial inequality.

4 a

Let \mathcal{A} be a separation oracle for $F(G)$ and let $\hat{x} \in \mathbb{R}^{E}$ be the point indicated in the picture (i.e. $x_{13}=2 / 3, x_{12}=x_{14}=1 / 3, x_{23}=0, x_{24}=x_{34}=1$). If the input to \mathcal{A} is \hat{x}, what will it be its output?

Solution: The oracle returns the violated constraint $x_{12}+x_{13}+x_{14}+$ $x_{23}+x_{24}+x_{34} \leq 3$, associated with the vertex set $S=\{1,2,3,4\}$ (remark $E(S)=E)$.

Figure 1:

4b

Consider the spanning tree H of G given in Figure 1.b). The incidence vector of H is $x_{12}^{H}=x_{14}^{H}=x_{34}^{H}=1, x_{13}^{H}=x_{23}^{H}=x_{24}^{H}=0$. Show that x^{H} is a vertex of $F(G)$, without using trivial inequalities in your proof.

Solution: x^{H} satisfies with equality the following $|E|$ inequalities in the definition of $P: x_{12} \leq 1(S=\{1,2\}), x_{14} \leq 1(S=\{1,4\}), x_{34} \leq 1$ $(S=\{3,4\}), x_{12}+x_{14}+x_{24} \leq 2,(S=\{1,2,4\}), x_{13}+x_{14}+x_{34} \leq 2$ $(S=\{1,3,4\}), x_{12}+x_{13}+x_{14}+x_{23}+x_{24}+x_{34} \leq 3(S=\{1,2,3,4\})$.

Problem 5

Let $G=(V, E)$ be an undirected simple graph (no loops, no multiple edges). A stable set of vertices is a set $S \subseteq V$ of pairwise non-adjacent vertices of G, i.e. for all $i, j \in S$ we have $[i, j] \notin E$. For example, in Figure 2, the set $S=\{2,3,5\}$ is a stable set.

Figure 2:

Let $Q(G) \subseteq\{0,1\}^{V}$ be the set of incidence vectors of stable sets of G. It is not difficult to see that a $(0,1)$-vector $x \in \mathbb{R}^{V}$ lies in $Q(G)$ if and only if it satisfies $x_{u}+x_{v} \leq 1$ for all $[u, v] \in E$. In other words, the polyhedron
$P(G)=\left\{x \in \mathbb{R}^{V}: x_{u} \geq 0\right.$ for all $u \in V, x_{u}+x_{v} \leq 1$ for all $\left.[u, v] \in E\right\}$ is a formulation of $Q(G)$.

Consider now three distinct and pairwise adjacent vertices v, w, z of G, i.e. $\{[v, w],[w, z],[v, z]\} \subseteq E$.

$5 a$

Show that the inequality $x_{v}+x_{w}+x_{z} \leq 1$ is valid for the convex hull of $Q(G)$.

Solution: The inequality can be obtained as a Gomory cut from the constraints defining $P(G)$. In particular, for every edge $[i, j] \in E$, denote by $u_{i j}$ the multiplier associated with the constraint $x_{i}+x_{j} \leq 1$. Then we let $u_{v w}=u_{v z}=u_{w z}=1 / 2$, and all other multipliers be equal to 0 .

Sb

Show that the clique inequality $x_{v}+x_{w}+x_{z} \leq 1$ is not valid for $P(G)$.
Solution: Consider the point $\hat{x}_{v}=1 / 2(v \in V)$. It is not difficult to see that $\hat{x} \in P(G)$. But the clique inequality $x_{v}+x_{w}+x_{z} \leq 1$ is violated by \hat{x}.

Problem 6

Figure 3:
Consider the graph in Figure 3 where flow x_{e} and capacity c_{e} are shown next to each edge e (in this order).

$6 a$

Show that the given flow x is a maximum $s t$-flow.
Solution: We have $\operatorname{val}\left(x^{*}\right)=4$. Consider the st-cut $K=$ $\delta^{+}(\{s, 1,2,4,5\})=\{(1,3),(4,3),,(4, t)\}$. We have $c(K)=4$, and $c(K)=$ $\operatorname{val}\left(x^{*}\right)$, implying that K is a minimum st-cut and x^{*} a maximum st-flow.

Problem 7

(For the course INF-MAT9360)

An internet network can be modelled by means of a directed graph $G=(V, E)$, where the set of nodes V correspond to the routers, while a directed edge (u, v) represents a direct link from router u to router v, so that one can send traffic from u to v. Consider two distinct routers s and t.

7 a

We want to check if it is possible to send traffic from s to t even if at most k links fail. Find a suitable max-flow problem which solves this question.

Solution: For every $(u, v) \in E$, define the capacity $c(u, v)=1$. Find a maximum (integer) st-flow x^{*} with such capacities. If $\operatorname{val}\left(x^{*}\right)=q>k$ then the answer is YES, otherwise the answer is NO. First, suppose $q>k$: then we can decompose x^{*} into flows on st-paths P^{1}, \ldots, P^{r}, with $r \geq 1$ (flows on cycles can be neglected). Since edge capacities are unitary and x^{*} is integer, every path carries exactly 1 unit of flow, and no two paths share a common edge: the paths are disjoint. This implies that we have exactly q distinct paths $(r=q)$ and we are done as no choice of k edges can "hit" all these paths. If $q \leq k$, the max-flow value is q so the min-cut capacity is also q. But then there is a cut with at most k edges, so if they all fail, one cannot send traffic from s to t.

Good luck!

