UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF4110/MAT-INF9110 - Mathematical
Day of examination: Monday, December 2, 2013
Examination hours: 09.00-13.00
This problem set consists of 3 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

There are 11 questions with about the same weight, except that 1 b has double weight.

Problem 1

1a

Let x be a flow in a (directed) graph $D=(V, E)$. How is the divergence Div_{x} of x defined? Show that $\sum_{v \in V} \operatorname{Div}_{x}(v)=0$.

1b
State Hoffman's circulation theorem, and prove it (at least the main steps).
Consider the (directed) graph $D=(V, E)$ shown in Figure 1. Let the functions l and u from E into \mathbb{R} be as indicated in the figure, where the pair $(l(e), u(e))$ is shown along each edge e.

1c

Prove that there is no circulation x in D which satisfies $l \leq x \leq u$.

1d

Explain the Ford-Fulkerson max-flow algorithm. In this connection you should also explain the notion of an x-augmenting path and the graph D_{x}.

Problem 2

2 a

Let $m=6, n=8, R=(5,5,5,3,2,2)$ and $S=(5,5,5,5,1,1,0,0)$. Does there exist a $(0,1)$-matrix of size 6×8 such that A has row sum vector R and column sum vector S ? Explain.
(Continued on page 2.)

Figure 1: The graph D, showing $(l(e), u(e))$.

Consider the matrix

$$
A=\left[\begin{array}{ccc}
0 & 0.6 & 0.4 \\
0.7 & 0 & 0.3 \\
0.3 & 0.4 & 0.3
\end{array}\right]
$$

2b

Show that A can be written as a convex combination $\sum_{k} \lambda_{k} P_{k}$ of permutation matrices P_{k} by finding such P_{k}^{\prime} 's and λ_{k}.

Let $x^{1}, x^{2}, \ldots, x^{47}$ be 47 distinct points (vectors) in \mathbb{R}^{10} and let P be the convex hull of these 47 points. Assume that $z \in P$.

2c

Explain why z can written as a convex combination of at most 11 of these 47 points. State (but not prove) the theorem you use here. Next, let
$R=\left\{x \in \mathbb{R}^{3}: x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{1}+x_{2} \leq 1, x_{1}+x_{3} \leq 1, x_{2}+x_{3} \leq 1\right\}$.
Show that $y=(1 / 2,1 / 2,1 / 2)$ is an extreme point of R.

Problem 3

Let S be the following set of 5 points in \mathbb{R}^{3} :

$$
S=\{(0,0,0),(1,0,0),(0,1,0),(1,1,0),(1,1,1)\} .
$$

Let $P=\operatorname{conv}(S)$.

3a

Determine each face F of P that contains $(1,1,1)$. You shall specify each such F by giving its extreme points and determine the dimension of F.

Let K be a polytope in \mathbb{R}^{n} and let H be a halfspace in \mathbb{R}^{n}.

3b

Define $L:=K \cap H$. Show that L is a polytope (you may refer to a general theorem in this proof). Let x be an extreme point of K and assume that $x \in H$. Show that x is also an extreme point of L. Finally, give an example (for n being 1 or 2) that L may have other extreme points that those of K.

Problem 4

4a

Let T be a tree (i.e., a connected graph with no cycles). Let n be the number of vertices of T, and m its number of edges. Prove that $m=n-1$.

Consider the matrix

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

4b

Is A totally unimodular (TU)? Find an integral vector $b \in \mathbb{R}^{4}$ such that the polyhedron

$$
P=\left\{x \in \mathbb{R}^{4}: A x \leq b, x \geq O\right\}
$$

is not integral. Explain your answers.

Good luck!

