Weights in the barycentric Lagrange formula

Michael S. Floater

March 12, 2014

These notes derive the weights in the barycentric Lagrange formula when the interpolation points are Chebyshev points.

Let $p \in \pi_{n}$ be the polynomial interpolant, of degree $<n$, to $f_{1}, \ldots, f_{n} \in \mathbb{R}$ at the distinct points $x_{1}, \ldots, x_{n} \in \mathbb{R}$. The barycentric Lagrange formula for p is

$$
p(x)=\sum_{i=1}^{n} \frac{w_{i}}{x-x_{i}} f_{i} / \sum_{i=1}^{n} \frac{w_{i}}{x-x_{i}},
$$

where the weights are

$$
w_{i}=1 / \prod_{\substack{j=1 \\ j \neq i}}^{n}\left(x_{i}-x_{j}\right)
$$

Note that the formula for $p(x)$ is unchanged if the weights are scaled by a constant.

Theorem 1 If x_{1}, \ldots, x_{n} are the Chebyshev points of the first kind:

$$
x_{i}=\cos \left(\frac{2 i-1}{n} \frac{\pi}{2}\right), \quad i=1, \ldots, n,
$$

then

$$
w_{i}=(-1)^{i} \sin \left(\frac{2 i-1}{n} \frac{\pi}{2}\right) .
$$

Proof. Using the sum-to-product identity,

$$
\cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right),
$$

we find

$$
x_{i}-x_{j}=-2 s_{i+j-1} s_{i-j},
$$

where

$$
s_{k}:=\sin \left(\frac{k}{n} \frac{\pi}{2}\right) .
$$

It follows that

$$
\prod_{j \neq i}\left(x_{i}-x_{j}\right)=(-2)^{n-1} a b,
$$

where

$$
a=\prod_{j \neq i} s_{i+j-1}, \quad b=\prod_{j \neq i} s_{i-j} .
$$

Then

$$
a=\frac{s_{i} s_{i+1} \cdots s_{i+n-1}}{s_{2 i-1}}
$$

and

$$
b=s_{i-1} \cdots s_{1} s_{-1} \cdots s_{i-n},
$$

and since $s_{k+2 n}=-s_{k}$,

$$
b=(-1)^{n-i} s_{i-1} \cdots s_{1} s_{2 n-1} \cdots s_{i+n}
$$

and so

$$
a b=\frac{(-1)^{n-i} C_{n}}{s_{2 i-1}},
$$

where

$$
C_{n}=s_{1} \cdots s_{2 n+1},
$$

which is independent of i, and

$$
w_{i}=\frac{(-1)^{i-1}}{2^{n-1} C_{n}} s_{2 i-1} .
$$

Theorem 2 If x_{1}, \ldots, x_{n} are the Chebyshev points of the second kind:

$$
x_{i}=\cos \left(\frac{i-1}{n-1} \pi\right), \quad i=1, \ldots, n
$$

then $w_{i}=(-1)^{i} \delta_{i}$, where $\delta_{i}=1$ for $i=2, \ldots, n-1$ and $\delta_{1}=\delta_{n}=1 / 2$.

Proof. Using the sum-to-product identity again, and with

$$
s_{k}:=\sin \left(\frac{k}{n-1} \frac{\pi}{2}\right) .
$$

we find

$$
x_{i}-x_{j}=-2 s_{i+j-2} s_{i-j},
$$

and so

$$
\prod_{j \neq i}\left(x_{i}-x_{j}\right)=(-2)^{n-1} a b
$$

where

$$
a=\prod_{j \neq i} s_{i+j-2}, \quad b=\prod_{j \neq i} s_{i-j} .
$$

If $2 \leq i \leq n-1$, then

$$
a=\frac{s_{i-1} s_{i} \cdots s_{i+n-2}}{s_{2 i-2}},
$$

and

$$
b=s_{i-1} \cdots s_{1} s_{-1} \cdots s_{i-n}
$$

but since now $s_{k+2 n-2}=-s_{k}$,

$$
b=(-1)^{n-i} s_{i-1} \cdots s_{1} s_{2 n-3} \cdots s_{i+n-2} .
$$

Therefore,

$$
\begin{equation*}
a b=(-1)^{n-i} C_{i} D_{n}, \tag{1}
\end{equation*}
$$

where

$$
C_{i}=\frac{s_{i-1} s_{i+n-2}}{s_{2 i-2}},
$$

and

$$
D_{n}=s_{1} s_{2} \cdots s_{2 n-3} .
$$

By the double angle formula for sines, we have

$$
s_{2 i-2}=s_{2(i-1)}=2 s_{i-1} c_{i-1},
$$

where

$$
c_{k}:=\cos \left(\frac{k}{n-1} \frac{\pi}{2}\right) .
$$

Since further $s_{i+n-2}=c_{i-1}$, we find

$$
C_{i}=1 / 2
$$

This gives the formula for w_{i} for $i=2, \ldots, n-1$. It remains to consider the cases $i=1$ and $i=n$. In the case $i=1$,

$$
a=\prod_{j=2}^{n} s_{j-1}=s_{1} \cdots s_{n-1}
$$

and

$$
b=\prod_{j=2}^{n} s_{1-j}=(-1)^{n-1} \prod_{j=2}^{n} s_{2 n-j-1}=(-1)^{n-1} s_{n-1} \cdots s_{2 n-3}
$$

and so

$$
a b=(-1)^{n-1} s_{n-1} D_{n}=(-1)^{n-1} D_{n}
$$

which agrees with (1) if $C_{1}=1$.
In the case $i=n$,

$$
a=\prod_{j=1}^{n-1} s_{n+j-2}=s_{n-1} \cdots s_{2 n-3}
$$

and

$$
b=\prod_{j=1}^{n-1} s_{n-j}=s_{1} \cdots s_{n-1}
$$

and so

$$
a b=s_{n-1} D_{n}=D_{n},
$$

which again agrees with (1) if $C_{n}=1$.

