Gauss quadrature

Michael S. Floater

June 4, 2013

These notes derive Gauss quadrature using Hermite interpolation.
We would like to approximate the integral

$$
I[f]=\int_{a}^{b} f(x) d x
$$

of a real function $f:[a, b] \rightarrow \mathbb{R}$ by an n-point rule of the form

$$
\begin{equation*}
I_{n}[f]=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right), \tag{1}
\end{equation*}
$$

for certain points $a \leq x_{1}<x_{2}<\cdots<x_{n} \leq b$ and weights $w_{i} \in \mathbb{R}$.
We say that I_{n} has degree of precision d if it is exact for polynomials of degree $\leq d$, i.e., for polynomials in π_{d}.

For any choice of points x_{i} we can find weights w_{i} for which I_{n} has degree of precision $\geq n-1$. We do this by integrating the Lagrange interpolant $p \in \pi_{n-1}$ to f at these points. Since

$$
p(x)=\sum_{i=1}^{n} L_{i}(x) f\left(x_{i}\right)
$$

where

$$
L_{i}(x)=\prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

we have

$$
I[p]=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

where $w_{i}=I\left[L_{i}\right]$. This gives us the rule

$$
\begin{equation*}
I_{n}[f]=I[p], \tag{2}
\end{equation*}
$$

and it has degree of precision at least $n-1$ because if $f \in \pi_{n-1}$ then $p=f$.
The idea of Gauss quadrature is to choose the n points x_{i} in the rule (2) in such a way as to raise its degree of precision to $2 n-1$. We note that there is no hope of raising its degree of precision to $2 n$ or higher because for any points x_{i} if

$$
\begin{equation*}
s(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right), \tag{3}
\end{equation*}
$$

then $s^{2} \in \pi_{2 n}$ but

$$
I_{n}\left[s^{2}\right]=0, \quad I\left[s^{2}\right]>0 .
$$

One way to derive the Gauss rule is to integrate the Hermite interpolant q to f, the polynomial $q \in \pi_{2 n-1}$ such that

$$
q\left(x_{i}\right)=f\left(x_{i}\right), \quad q^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right), \quad i=1, \ldots, n
$$

If we set

$$
I_{n}[f]=I[q]
$$

then I_{n} clearly has degree of precision $2 n-1$, which is what we want. At the same time, it turns out that it is possible to choose the x_{i} in such a way that the integral of q is independent of the derivatives $f^{\prime}\left(x_{i}\right)$. To see this define the inner product of two functions f and g on $[a, b]$ by

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

Theorem 1 If s in (3) is orthogonal to π_{n-1} then

$$
I[q]=I[p] .
$$

Proof. Since $q-p$ is a polynomial in $\pi_{2 n-1}$ which is zero at $x_{i}, i=1, \ldots, n$, there must be some polynomial $r \in \pi_{n-1}$ such that

$$
q=p+s r
$$

Therefore,

$$
I[q]=I[p]+\langle s, r\rangle,
$$

and since r is orthogonal to s, the inner product on the right is zero.

Thus if x_{1}, \ldots, x_{n} are the roots of a polynomial in π_{n} that is orthogonal to π_{n-1} the rule (2) has degree of precision $2 n-1$, and this is what we call the n point Gauss quadrature rule. Fortunately there is a solution. We have shown earlier that we can construct a sequence of polynomials $\phi_{k}, k=0,1,2, \ldots$ such that $\phi_{k} \in \pi_{k}$ and $\left\langle\phi_{j}, \phi_{k}\right\rangle=0$ for $j \neq k$ and $\left\langle\phi_{k}, \phi_{k}\right\rangle \neq 0$. These are known as Legendre polynomials.

Theorem 2 The Legendre polynomial ϕ_{n} has real, distinct roots and they are all in (a, b).

Proof. Let $a<x_{1}<x_{2}<\cdots<x_{m}<b$ be the m distinct real roots of ϕ_{n} in (a, b) that have odd multiplicity. Then $m \leq n$. If $q(x)=\left(x-x_{1}\right) \cdots\left(x-x_{m}\right)$, then $q \in \pi_{m}$ and the product $q \phi_{n}$ is a function of one sign in $[a, b]$ and so $\left\langle q, \phi_{n}\right\rangle \neq 0$, and thus ϕ_{n} is not orthogonal to q. Therefore, the degree of q must be at least n, i.e., $m=n$.

If ϕ_{n} is normalized to have leading coefficient 1 , we can thus set $s=\phi_{n}$, so that x_{1}, \ldots, x_{n} are the roots of ϕ_{n}. In addition to its high degree of precision, Gauss quadrature also has positive weights which gives it numerical stability.

Theorem 3 The weights in the Gauss rule are positive because $w_{i}=I\left[L_{i}^{2}\right]$.
Proof. By definition, $w_{i}=I\left[L_{i}\right]$. Therefore,

$$
w_{i}=I\left[L_{i}^{2}\right]+I\left[L_{i}\left(1-L_{i}\right)\right] .
$$

Since $L_{i}\left(x_{i}\right)=1$, there is some polynomial $r \in \pi_{n-2}$ such that

$$
1-L_{i}(x)=\left(x-x_{i}\right) r(x)
$$

and so there is some constant c such that

$$
L_{i}(x)\left(1-L_{i}(x)\right)=c s(x) r(x),
$$

and since $\langle s, r\rangle=0$,

$$
I\left[L_{i}\left(1-L_{i}\right)\right]=0 .
$$

We also obtain the error in the Gauss rule from the Newton form of q.

Theorem 4 If $f \in C^{2 n}[a, b]$ then there is some $\xi \in(a, b)$ such that

$$
I[f]-I_{n}[f]=\frac{f^{(2 n)}(\xi)}{(2 n)!} I\left[s^{2}\right] .
$$

Proof. The Newton error formula for Hermite interpolation gives

$$
f(x)-q(x)=s^{2}(x)\left[x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{n}, x\right] f
$$

and integrating this equation over $[a, b]$ gives

$$
I[f]-I_{n}[f]=\int_{a}^{b} s^{2}(x)\left[x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{n}, x\right] f d x
$$

and since s^{2} is a function of one sign in $[a, b]$ and

$$
\left[x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{n}, x\right] f
$$

is a continuous function of x, the mean value theorem for integrals implies there is some $\eta \in[a, b]$ such that

$$
I[f]-I_{n}[f]=\left[x_{1}, \ldots, x_{n}, x_{1}, \ldots, x_{n}, \eta\right] f \int_{a}^{b} s^{2}(x) d x
$$

which gives the result.

