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These notes derive Gauss quadrature using Hermite interpolation.
We would like to approximate the integral

b
1] = / f(x) d,

of a real function f : [a,b] — R by an n-point rule of the form

In[f] = Zwif(xi)a (1)

for certain points a < x; < 19 < - -+ < 1, < b and weights w; € R.

We say that I,, has degree of precision d if it is exact for polynomials of
degree < d, i.e., for polynomials in 7.

For any choice of points x; we can find weights w; for which I,, has degree
of precision > n — 1. We do this by integrating the Lagrange interpolant
p € m,_1 to f at these points. Since

pe) =3 Li@)f(),

where

we have



where w; = I[L;]. This gives us the rule

L[f] = Ipl, (2)

and it has degree of precision at least n — 1 because if f € m,_; then p = f.
The idea of Gauss quadrature is to choose the n points z; in the rule (2)
in such a way as to raise its degree of precision to 2n — 1. We note that there
is no hope of raising its degree of precision to 2n or higher because for any
points x; if
s(x) = (v —21)(x —22) -+ (2 — ), (3)
then s% € my, but
I,[s*] =0, I[s*] > 0.

One way to derive the Gauss rule is to integrate the Hermite interpolant
q to f, the polynomial g € my,_; such that

q(z;) = f(x), d(z;) = (), i=1,...,n.
If we set
L[ f] = Ilq]

then I, clearly has degree of precision 2n — 1, which is what we want. At the
same time, it turns out that it is possible to choose the x; in such a way that
the integral of ¢ is independent of the derivatives f'(x;). To see this define
the inner product of two functions f and g on [a, b] by

<fag>:/ f(x)g(z) de.

Theorem 1 If s in (3) is orthogonal to m,_, then

Proof. Since ¢ — p is a polynomial in my,_; which is zero at z;, i =1,...,n,
there must be some polynomial r € m,_; such that

q=p-+sr.
Therefore,
Ig) = Ilp] + (s, 7),
and since r is orthogonal to s, the inner product on the right is zero. a
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Thus if 24, ..., x, are the roots of a polynomial in 7, that is orthogonal to
Tn—1 the rule (2) has degree of precision 2n—1, and this is what we call the n-
point Gauss quadrature rule. Fortunately there is a solution. We have shown
earlier that we can construct a sequence of polynomials ¢, k = 0,1,2,...
such that ¢, € m, and (¢;, ¢x) = 0 for j # k and (¢, ¢x) # 0. These are
known as Legendre polynomials.

Theorem 2 The Legendre polynomial ¢, has real, distinct roots and they
are all in (a,b).

Proof. Let a < x1 < 19 < -++ < x,, < b be the m distinct real roots of ¢, in
(a,b) that have odd multiplicity. Then m < n. If ¢(z) = (r—x1) - - - (x — ),
then ¢ € m, and the product g¢, is a function of one sign in [a,b] and so
(q,dn) # 0, and thus ¢, is not orthogonal to gq. Therefore, the degree of ¢
must be at least n, i.e., m = n. O

If ¢,, is normalized to have leading coefficient 1, we can thus set s = ¢,,, so
that x1, ..., x, are the roots of ¢,,. In addition to its high degree of precision,
Gauss quadrature also has positive weights which gives it numerical stability.

Theorem 3 The weights in the Gauss rule are positive because w; = I[L?].
Proof. By definition, w; = I[L;]. Therefore,
w; = T[L?] + I[L;(1 — Ly)].
Since L;(z;) = 1, there is some polynomial r € 7, 5 such that
1—Li(z) = (x — xy)r(z),
and so there is some constant ¢ such that
Li(z)(1 = Li(x)) = es(z)r(x),

and since (s,r) =0,
I[L;(1 = Ly)] = 0.

O

We also obtain the error in the Gauss rule from the Newton form of q.



Theorem 4 If f € C?"[a,b] then there is some & € (a,b) such that

Fe(E)

o) I[s%].

I[f] = L[f] =

Proof. The Newton error formula for Hermite interpolation gives

f(x) —q(z) = *(2)[x1,. .., 20y 21, - . ., T, 2] f,

and integrating this equation over [a, b] gives

b
I[f] — L.[f] :/ s(x)[w1, .. Ty T, - T, 2] f d,

and since s?

is a function of one sign in [a, b] and
[T1, .o Ty T1y ey Ty, ] f

is a continuous function of x, the mean value theorem for integrals implies
there is some 7 € [a, b] such that

b
Ilf] = L.[f] = [x1,. . s xn, X1, .o T, M) f / s%(z) dw,

which gives the result. a



