Gauss quadrature

Michael S. Floater

June 4, 2013

These notes derive Gauss quadrature using Hermite interpolation. We would like to approximate the integral

$$I[f] = \int_{a}^{b} f(x) \, dx,$$

of a real function $f:[a,b] \to \mathbb{R}$ by an *n*-point rule of the form

$$I_n[f] = \sum_{i=1}^n w_i f(x_i),$$
 (1)

for certain points $a \leq x_1 < x_2 < \cdots < x_n \leq b$ and weights $w_i \in \mathbb{R}$.

We say that I_n has degree of precision d if it is exact for polynomials of degree $\leq d$, i.e., for polynomials in π_d .

For any choice of points x_i we can find weights w_i for which I_n has degree of precision $\geq n - 1$. We do this by integrating the Lagrange interpolant $p \in \pi_{n-1}$ to f at these points. Since

$$p(x) = \sum_{i=1}^{n} L_i(x) f(x_i),$$

where

$$L_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j},$$

we have

$$I[p] = \sum_{i=1}^{n} w_i f(x_i),$$

where $w_i = I[L_i]$. This gives us the rule

$$I_n[f] = I[p],\tag{2}$$

and it has degree of precision at least n-1 because if $f \in \pi_{n-1}$ then p = f.

The idea of Gauss quadrature is to choose the *n* points x_i in the rule (2) in such a way as to raise its degree of precision to 2n - 1. We note that there is no hope of raising its degree of precision to 2n or higher because for any points x_i if

$$s(x) = (x - x_1)(x - x_2) \cdots (x - x_n), \tag{3}$$

then $s^2 \in \pi_{2n}$ but

 $I_n[s^2] = 0, \qquad I[s^2] > 0.$

One way to derive the Gauss rule is to integrate the Hermite interpolant q to f, the polynomial $q \in \pi_{2n-1}$ such that

$$q(x_i) = f(x_i), \quad q'(x_i) = f'(x_i), \qquad i = 1, \dots, n$$

If we set

$$I_n[f] = I[q]$$

then I_n clearly has degree of precision 2n-1, which is what we want. At the same time, it turns out that it is possible to choose the x_i in such a way that the integral of q is independent of the derivatives $f'(x_i)$. To see this define the inner product of two functions f and g on [a, b] by

$$\langle f,g\rangle = \int_{a}^{b} f(x)g(x) \, dx.$$

Theorem 1 If s in (3) is orthogonal to π_{n-1} then

$$I[q] = I[p].$$

Proof. Since q - p is a polynomial in π_{2n-1} which is zero at $x_i, i = 1, ..., n$, there must be some polynomial $r \in \pi_{n-1}$ such that

$$q = p + sr.$$

Therefore,

$$I[q] = I[p] + \langle s, r \rangle,$$

and since r is orthogonal to s, the inner product on the right is zero. \Box

Thus if x_1, \ldots, x_n are the roots of a polynomial in π_n that is orthogonal to π_{n-1} the rule (2) has degree of precision 2n-1, and this is what we call the *n*-point Gauss quadrature rule. Fortunately there is a solution. We have shown earlier that we can construct a sequence of polynomials ϕ_k , $k = 0, 1, 2, \ldots$ such that $\phi_k \in \pi_k$ and $\langle \phi_j, \phi_k \rangle = 0$ for $j \neq k$ and $\langle \phi_k, \phi_k \rangle \neq 0$. These are known as Legendre polynomials.

Theorem 2 The Legendre polynomial ϕ_n has real, distinct roots and they are all in (a, b).

Proof. Let $a < x_1 < x_2 < \cdots < x_m < b$ be the *m* distinct real roots of ϕ_n in (a, b) that have odd multiplicity. Then $m \leq n$. If $q(x) = (x - x_1) \cdots (x - x_m)$, then $q \in \pi_m$ and the product $q\phi_n$ is a function of one sign in [a, b] and so $\langle q, \phi_n \rangle \neq 0$, and thus ϕ_n is not orthogonal to *q*. Therefore, the degree of *q* must be at least *n*, i.e., m = n.

If ϕ_n is normalized to have leading coefficient 1, we can thus set $s = \phi_n$, so that x_1, \ldots, x_n are the roots of ϕ_n . In addition to its high degree of precision, Gauss quadrature also has positive weights which gives it numerical stability.

Theorem 3 The weights in the Gauss rule are positive because $w_i = I[L_i^2]$.

Proof. By definition, $w_i = I[L_i]$. Therefore,

$$w_i = I[L_i^2] + I[L_i(1 - L_i)].$$

Since $L_i(x_i) = 1$, there is some polynomial $r \in \pi_{n-2}$ such that

$$1 - L_i(x) = (x - x_i)r(x),$$

and so there is some constant c such that

$$L_i(x)(1 - L_i(x)) = cs(x)r(x),$$

and since $\langle s, r \rangle = 0$,

$$I[L_i(1-L_i)] = 0.$$

We also obtain the error in the Gauss rule from the Newton form of q.

Theorem 4 If $f \in C^{2n}[a, b]$ then there is some $\xi \in (a, b)$ such that

$$I[f] - I_n[f] = \frac{f^{(2n)}(\xi)}{(2n)!} I[s^2].$$

Proof. The Newton error formula for Hermite interpolation gives

$$f(x) - q(x) = s^2(x)[x_1, \dots, x_n, x_1, \dots, x_n, x]f,$$

and integrating this equation over [a, b] gives

$$I[f] - I_n[f] = \int_a^b s^2(x)[x_1, \dots, x_n, x_1, \dots, x_n, x] f \, dx,$$

and since s^2 is a function of one sign in [a, b] and

$$[x_1,\ldots,x_n,x_1,\ldots,x_n,x]f$$

is a continuous function of x, the mean value theorem for integrals implies there is some $\eta \in [a, b]$ such that

$$I[f] - I_n[f] = [x_1, \dots, x_n, x_1, \dots, x_n, \eta] f \int_a^b s^2(x) \, dx,$$

which gives the result.

1	-	-	-	
			1	