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These notes derive Gauss quadrature using Hermite interpolation.
We would like to approximate the integral

I[f ] =

∫ b

a

f(x) dx,

of a real function f : [a, b] → R by an n-point rule of the form

In[f ] =
n∑

i=1

wif(xi), (1)

for certain points a ≤ x1 < x2 < · · · < xn ≤ b and weights wi ∈ R.
We say that In has degree of precision d if it is exact for polynomials of

degree ≤ d, i.e., for polynomials in πd.
For any choice of points xi we can find weights wi for which In has degree

of precision ≥ n − 1. We do this by integrating the Lagrange interpolant
p ∈ πn−1 to f at these points. Since

p(x) =
n∑

i=1

Li(x)f(xi),

where

Li(x) =
∏
j 6=i

x − xj

xi − xj

,

we have

I[p] =
n∑

i=1

wif(xi),
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where wi = I[Li]. This gives us the rule

In[f ] = I[p], (2)

and it has degree of precision at least n − 1 because if f ∈ πn−1 then p = f .
The idea of Gauss quadrature is to choose the n points xi in the rule (2)

in such a way as to raise its degree of precision to 2n−1. We note that there
is no hope of raising its degree of precision to 2n or higher because for any
points xi if

s(x) = (x − x1)(x − x2) · · · (x − xn), (3)

then s2 ∈ π2n but
In[s2] = 0, I[s2] > 0.

One way to derive the Gauss rule is to integrate the Hermite interpolant
q to f , the polynomial q ∈ π2n−1 such that

q(xi) = f(xi), q′(xi) = f ′(xi), i = 1, . . . , n.

If we set
In[f ] = I[q]

then In clearly has degree of precision 2n−1, which is what we want. At the
same time, it turns out that it is possible to choose the xi in such a way that
the integral of q is independent of the derivatives f ′(xi). To see this define
the inner product of two functions f and g on [a, b] by

〈f, g〉 =

∫ b

a

f(x)g(x) dx.

Theorem 1 If s in (3) is orthogonal to πn−1 then

I[q] = I[p].

Proof. Since q − p is a polynomial in π2n−1 which is zero at xi, i = 1, . . . , n,
there must be some polynomial r ∈ πn−1 such that

q = p + sr.

Therefore,
I[q] = I[p] + 〈s, r〉,

and since r is orthogonal to s, the inner product on the right is zero. 2
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Thus if x1, . . . , xn are the roots of a polynomial in πn that is orthogonal to
πn−1 the rule (2) has degree of precision 2n−1, and this is what we call the n-
point Gauss quadrature rule. Fortunately there is a solution. We have shown
earlier that we can construct a sequence of polynomials φk, k = 0, 1, 2, . . .
such that φk ∈ πk and 〈φj, φk〉 = 0 for j 6= k and 〈φk, φk〉 6= 0. These are
known as Legendre polynomials.

Theorem 2 The Legendre polynomial φn has real, distinct roots and they
are all in (a, b).

Proof. Let a < x1 < x2 < · · · < xm < b be the m distinct real roots of φn in
(a, b) that have odd multiplicity. Then m ≤ n. If q(x) = (x−x1) · · · (x−xm),
then q ∈ πm and the product qφn is a function of one sign in [a, b] and so
〈q, φn〉 6= 0, and thus φn is not orthogonal to q. Therefore, the degree of q

must be at least n, i.e., m = n. 2

If φn is normalized to have leading coefficient 1, we can thus set s = φn, so
that x1, . . . , xn are the roots of φn. In addition to its high degree of precision,
Gauss quadrature also has positive weights which gives it numerical stability.

Theorem 3 The weights in the Gauss rule are positive because wi = I[L2
i ].

Proof. By definition, wi = I[Li]. Therefore,

wi = I[L2
i ] + I[Li(1 − Li)].

Since Li(xi) = 1, there is some polynomial r ∈ πn−2 such that

1 − Li(x) = (x − xi)r(x),

and so there is some constant c such that

Li(x)(1 − Li(x)) = cs(x)r(x),

and since 〈s, r〉 = 0,
I[Li(1 − Li)] = 0.

2

We also obtain the error in the Gauss rule from the Newton form of q.
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Theorem 4 If f ∈ C2n[a, b] then there is some ξ ∈ (a, b) such that

I[f ] − In[f ] =
f (2n)(ξ)

(2n)!
I[s2].

Proof. The Newton error formula for Hermite interpolation gives

f(x) − q(x) = s2(x)[x1, . . . , xn, x1, . . . , xn, x]f,

and integrating this equation over [a, b] gives

I[f ] − In[f ] =

∫ b

a

s2(x)[x1, . . . , xn, x1, . . . , xn, x]f dx,

and since s2 is a function of one sign in [a, b] and

[x1, . . . , xn, x1, . . . , xn, x]f

is a continuous function of x, the mean value theorem for integrals implies
there is some η ∈ [a, b] such that

I[f ] − In[f ] = [x1, . . . , xn, x1, . . . , xn, η]f

∫ b

a

s2(x) dx,

which gives the result. 2
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