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These notes extend the notion of Lagrange interpolation to Hermite in-
terpolation. We study iterative interpolation and the Newton form.

1 Hermite interpolation

Suppose that x0, x1, . . . , xn are distinct points in [a, b] and that f is a function
that has derivatives of orders 0, 1, . . . , ri, for each i = 0, 1, . . . , n.

Theorem 1 With

N = n +
n∑

i=0

ri,

there is a unique polynomial p ∈ πN such that

p(k)(xi) = f (k)(xi), i = 0, 1, . . . , n, k = 0, 1, . . . , ri. (1)

Proof. Any p ∈ πN can be expressed uniquely as

p(x) =
N∑

j=0

cjx
j,

and its k-th derivative is

p(k)(x) =
N∑

j=k

j!

(j − k)!
cjx

j−k.
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The interpolation conditions (1) are then

N∑

j=k

j!

(j − k)!
cjx

j−k
i = f (k)(xi), i = 0, 1, . . . , n, k = 0, 1, . . . , ri.

which can be expressed as the linear system

Mc = f, (2)

where c = (c0, c1, . . . , cN)T and

M =












1 x0 x2
0 x3

0 · · · xN
0

x0 2x0 3x2
0 · · · NxN−1

0
...

1 x1 x2
1 x3

1 · · · xN
1

x1 2x1 3x2
1 · · · NxN−1

1
...












, f =












f(x0)
f ′(x0)

...
f(x1)
f ′(x1)

...












,

and it is sufficient to show that M is non-singular. To demonstrate this
suppose that c satisfies the homogeneous equation Mc = 0. Then the poly-
nomial

q(x) =
N∑

j=0

cjx
j

satisfies the conditions

q(k)(xi) = 0, i = 0, 1, . . . , n, k = 0, 1, . . . , ri.

Then q ∈ πN and has at least N + 1 roots, counting multiplicities, and,
similar to the Lagrange case, by the fundamental theorem of algebra, q = 0.
Hence c = 0 and M is indeed non-singular. 2

2 Iterative interpolation

One way of finding the Hermite interpolant p ∈ πN is through the same
iterative procedure we looked at in the first lecture. First, observe that if
n = 0, the interpolant is the Taylor polynomial,

p(x) =

r0∑

j=0

f (j)(x0)
(x − x0)

j

j!
. (3)
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Otherwise n ≥ 1, and suppose that q ∈ πN−1 satisfies the conditions

q(k)(xi) = f (k)(xi), i = 0, 1, . . . , n − 1, k = 0, 1, . . . , ri,

q(k)(xn) = f (k)(xn), k = 0, 1, . . . , rn − 1,

where we understand the second condition to be ‘empty’ if rn = 0, and
similarly suppose that r ∈ πN−1 satisfies

r(k)(x0) = f (k)(x0), k = 0, 1, . . . , r0 − 1,

r(k)(xi) = f (k)(xi), i = 1, 2, . . . , n, k = 0, 1, . . . , ri.

Theorem 2 The polynomial

p(x) :=
xn − x

xn − x0

q(x) +
x − x0

xn − x0

r(x) (4)

is the polynomial in πN that solves the Hermite interpolation problem (1).

Proof. By the Leibniz rule, the k-th derivative of p in (4) is

p(k)(x) =
xn − x

xn − x0

q(k)(x) +
x − x0

xn − x0

r(k)(x) + k
r(k−1)(x) − q(k−1)(x)

xn − x0

,

and it follows that

p(k)(xi) =
xn − xi

xn − x0

q(k)(xi) +
xi − x0

xn − x0

r(k)(xi),

for all i = 0, 1, 2, . . . , n and k = 0, 1, . . . , ri. Thus,

p(k)(x0) = q(k)(x0) = f (k)(x0), k = 0, 1, . . . , r0,

and,
p(k)(xn) = r(k)(xn) = f (k)(xn), k = 0, 1, . . . , rn,

and, for i = 1, . . . , n − 1,

p(k)(xi) =
xn − xi

xn − x0

f (k)(xi) +
xi − x0

xn − x0

f (k)(xi) = f (k)(xi), k = 0, 1, . . . , ri.

2
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In order to look at an example, denote p by

p0, . . . , 0
︸ ︷︷ ︸

r0+1

,1, . . . , 1
︸ ︷︷ ︸

r1+1

,...,n, . . . , n
︸ ︷︷ ︸

rn+1

,

and consider cubic interpolation with x0 = 0, x1 = 1, and r0 = r1 = 1. The
iteration gives

p0011 = (1 − x)p001 + xp011,

p001 = (1 − x)p00 + xp01,

p011 = (1 − x)p01 + xp11,

p01 = (1 − x)p0 + xp1,

and the Taylor polynomial (3) gives

p0 = f(0), p00 = f(0) + xf ′(0),

p1 = f(1), p11 = f(1) + (x − 1)f ′(1).

Therefore,

p(x) = (1 − x)2(f(0) + xf ′(0))

+ 2x(1 − x)((1 − x)f(0) + xf(1))

+ x2(f(1) + (x − 1)f ′(1)).

3 The Newton form

A Hermite interpolant can also be represented in Newton form, the advan-
tage being that the divided differences can be computed just once, and the
evaluation of the interpolant for any given x is relatively fast, requiring only
O(n) flops.

Defining the polynomial,

ωN(x) := (x − x0)
r0+1 · · · (x − xi−1)

ri−1+1(x − xi)
rn ,

we can express the interpolant p = pN as

pN(x) = pN−1(x) + cNωN(x),
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with cN the leading coefficient of pN . Continuing the recursion, we obtain
the Newton form of the Hermite interpolant,

pN(x) =
N∑

i=0

ciωi(x). (5)

In the special case that n = 0, the leading coefficient of pN is

cN = f (r0)(x0)/r0!, (6)

while if n ≥ 1, the iterative interpolation algorithm, Theorem 2, gives a
recursion for cN , because, with lc(p) denoting the leading coefficient of p,
equation (4) implies

lc(p) =
lc(r) − lc(q)

xn − x0

. (7)

In this way we can compute all the divided differences ck required in (5), and
due to (6) and (7) we now see that cN is the divided difference

cN = [x0, . . . , x0
︸ ︷︷ ︸

r0+1

, x1, . . . , x1
︸ ︷︷ ︸

r1+1

, . . . , xn, . . . , xn
︸ ︷︷ ︸

rn

]f.

Consider again the example of cubic interpolation, with r0 = r1 = 1. The
Newton form of the interpolant is

p(x) = [x0]f + [x0, x0]f (x − x0) + [x0, x0, x1]f (x − x0)
2

+ [x0, x0, x1, x1]f (x − x0)
2(x − x1).

These divided differences can be computed from

[x0]f = f(x0), [x1]f = f(x1),

[x0, x0]f = f ′(x0), [x0, x1]f =
f(x1) − f(x0)

x1 − x0

, [x1, x1]f = f ′(x1),

[x0, x0, x1]f =
[x0, x1]f − f ′(x0)

x1 − x0

, [x0, x1, x1]f =
f ′(x1) − [x0, x1]f

x1 − x0

,

and

[x0, x0, x1, x1]f =
[x0, x1, x1]f − [x0, x0, x1]f

x1 − x0

.
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From now on we can simplify notation and consider a sequence of points
x0, . . . , xn in [a, b], that are distinct or not. For each i, we let ρi be the
left-multiplicity of xi,

ρi = |{0 ≤ j < i : xj = xi}|,

i.e., the number of points in the sequence x0, . . . , xi−1 that are equal to xi.
The Hermite interpolant to f is then the unique polynomial pn ∈ πn such
that

p(ρi)
n (xi) = f (ρi)(xi), i = 0, . . . , n.

We have shown that

pn(x) = pn−1(x) + cnωn(x),

where
ωn(x) = (x − x0) · · · (x − xn−1),

and cn is the divided difference of f ,

cn = [x0, x1, . . . , xn]f.

This divided difference is symmetric in the points x0, . . . , xn, and so we may
assume that xi ≤ xi+1, in which case

[x0, x1, . . . , xn]f =
[x1, . . . , xn]f − [x0, . . . , xn−1]f

xn − x0

, if x0 < xn,

and
[x0, x1, . . . , xn]f = f (n)(x0)/n!, if x0 = · · · = xn.

The Newton form of p is

p(x) =
n∑

i=0

[x0, . . . , xi]f ωi(x),

and its error is

f(x) − p(x) = [x0, . . . , xn, x]f (x − x0) · · · (x − xn),

and there is some ξ in the smallest interval containing x0, . . . , xn and x such
that

[x0, . . . , xn, x]f =
f (n+1)(ξ)

(n + 1)!
.
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As an example, we find the error of the cubic Hermite interpolant p3 we
studied previsouly, at the points x0, x1, with x0 < x1. For x ∈ [x0, x1], if
f ∈ C4[x0, x1], there is some ξ ∈ [x0, x1] such that

e(x) := f(x) − p3(x) = (x − x0)
2(x − x1)

2f (4)(ξ)

4!
.

Since

max
x0≤x≤x1

(x − x0)
2(x − x1)

2 =
h4

16
,

where h = x1 − x0, we deduce that

max
x0≤x≤x1

|e(x)| ≤
h4M

384
,

where
M = max

x0≤y≤x1

|f (4)(y)|.

As a final remark, we note that by the common Newton form of both
Hermite and Lagrange interpolation, we see that a Hermite interpolant is
the limit of Lagrange interpolants as some points coallesce, provided f has
sufficiently many derivatives.
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