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These notes extend the notion of Lagrange interpolation to Hermite in-
terpolation. We study iterative interpolation and the Newton form.

1 Hermite interpolation

Suppose that xg, 21, . . ., x, are distinct points in [a, b] and that f is a function

that has derivatives of orders 0,1,...,r;, for each 2 =0,1,...

Theorem 1 With .
N =n+ Z T,
i=0

there is a unique polynomial p € wn such that

p®(x) = F®(z), i=0,1,...,n, k=0,1,...

Proof. Any p € mn can be expressed uniquely as
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The interpolation conditions (1) are then

N .
| .
S L = (W), =010, k=0,1,...,r,

F — k)]
= U=k
which can be expressed as the linear system
Mc=f, (2)
where ¢ = (cg, c1,...,cn)T and
1 w0 af xy o ] [ f(0)]
Ty 2w 3k --- Nal ™t 1 (o)
M=l S v /= flan) |
T, 21 31’% s Nfljjlv_l f/(xl)

and it is sufficient to show that M is non-singular. To demonstrate this
suppose that ¢ satisfies the homogeneous equation Mc¢ = 0. Then the poly-

nomial
N
glx) =) e
§=0

satisfies the conditions
¢ (x;) = 0, i=0,1,...,n, k=0,1,...,7;.

Then ¢ € wn and has at least NV + 1 roots, counting multiplicities, and,
similar to the Lagrange case, by the fundamental theorem of algebra, ¢ = 0.
Hence ¢ = 0 and M is indeed non-singular. a

2 Iterative interpolation

One way of finding the Hermite interpolant p € my is through the same
iterative procedure we looked at in the first lecture. First, observe that if
n = 0, the interpolant is the Taylor polynomial,
0 .
. (x — )’
p(x) =Y f9 (wo)——. (3)
j=0

J!
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Otherwise n > 1, and suppose that g € my_; satisfies the conditions

¢ (x;) = f¥(z), 1=0,1,....n—1, k=0,1,...,7;,
¢ () = fP (z,), k=0,1,...,r, — 1,

where we understand the second condition to be ‘empty’ if r, = 0, and
similarly suppose that r € my_; satisfies

Theorem 2 The polynomaial

Ty — X

p(z) = - xOQ(x) Al

r(z) (4)
is the polynomial in wy that solves the Hermite interpolation problem (1).

Proof. By the Leibniz rule, the k-th derivative of p in (4) is

_ _ (k—1) _ 4k=1)
Tn — X Tp — X Tpn — X
and it follows that
K () = T = Fi )y 4 T EO0 (k)
P () - x()q (z3) + P {Eor (74),

foralli=0,1,2,...,nand k=0,1,...,r;. Thus,

p*(20) = ¢ (20) = fP(w0), k=0,1,....m,

and,
P (@n) = r®(@n) = P (@), k=0,1,...,7m,
and, fori=1,...,n—1,
Ty — T xT; — T
p(k)(xZ) - Ty — l’of(k)( Z) + _ Of(k)(l’z) = f(k)(xl)v k: = 07 17 » i



In order to look at an example, denote p by
po,...,01,...,1..n,....,n
——
ro+1 r1+1 rmn+1

and consider cubic interpolation with g =0, z; = 1, and ro = r; = 1. The
iteration gives

poor1 = (1 — 2)poo1 + o1,
poor = (1 — )poo + xpo1,
poir = (1 — 2)por + xpu1,

= (1 —2)po + xpu,

and the Taylor polynomial (3) gives
bo = f(0)7 Poo = f(O) + Zl?f/(O),
p=f1), pu=f1)+@-1f1).

Therefore,

pla) = (1 —2)*(f(0) + 2 f'(0))
+22(1 —2)((1 —2)f(0) + 2 f(1))
+2?(f(1) + (z = 1) f'(1)).

3 The Newton form

A Hermite interpolant can also be represented in Newton form, the advan-
tage being that the divided differences can be computed just once, and the
evaluation of the interpolant for any given x is relatively fast, requiring only

O(n) flops.
Defining the polynomial,
wn () = (2 — 20)° T - (2 — )" T (= )™

we can express the interpolant p = py as

pn(z) = pn-1(z) + enwn (@),



with cy the leading coefficient of py. Continuing the recursion, we obtain
the Newton form of the Hermite interpolant,

pn(x) = Z ciw; (). (5)

In the special case that n = 0, the leading coefficient of py is

ey = fU(x0) /o), (6)

while if n > 1, the iterative interpolation algorithm, Theorem 2, gives a
recursion for cy, because, with lc(p) denoting the leading coefficient of p,

equation (4) implies
le(r) — le(q)

Tn — Zo

le(p) = (7)

In this way we can compute all the divided differences ¢, required in (5), and
due to (6) and (7) we now see that cy is the divided difference

CN:[@07---,339,@17---al'y---aiﬂm--w%ﬁf-
vV

Vv Vv
ro+1 r1+1 T

Consider again the example of cubic interpolation, with ro =y = 1. The
Newton form of the interpolant is

p(x) = [zo] f + [0, ol f (x — x0) + [0, o, 1] f (x — x0)?
+ [0, o, 71, 21]f ( — 20)* (2 — 21).

These divided differences can be computed from

[zol f = f(w0), [21]f = f(21),

wosolf = Flao),  [wosar]f = LV TI@) 1 = P,

1T — X
[0, o, 1] f = [0, z1]f — f’(xo), (2o, 20,1 = (1) — [:po,xl]f7
1 — X T — T

and
[x())xl;xl]f - [I‘O,I‘O,[El]f
1 — 2o )

[x()a‘%'Oaxla:El]f =



From now on we can simplify notation and consider a sequence of points
xo,..., T, in [a,b], that are distinct or not. For each i, we let p; be the
left-multiplicity of x;,

pi=NR0<j<ira; =wmj,

i.e., the number of points in the sequence x,...,x;_; that are equal to x;.
The Hermite interpolant to f is then the unique polynomial p, € m, such
that

Pl () = £ (xy), 1=0,...,n.

We have shown that
pn(x) = pnfl(l’) + ann(l’),
where
wn(z) = (x —x0) -+ (¥ = Tn-1),
and ¢, is the divided difference of f,
Cp = [x()wrlu s 7'rn]f

This divided difference is symmetric in the points zg, . .., z,, and so we may
assume that x; < x;,1, in which case

[0, 1, ..., xp|f = (21, 2l f = [ﬁo,---,$n_1]f7 if zg < xy,
Iy — o
and
(20, @1, ..., xn]f = f™ (20)/n, if 9=+ = z,.

The Newton form of p is

n

p(z) = Z[a:o, oo T fwi(),

=0

and its error is

f(@) =p(x) = [xo, .., wn, 2l f (€ = w0) -+ (& — ),

and there is some £ in the smallest interval containing xq, ..., x, and z such
that : +1)< )
S
L0,y Ty, T f = —25,
[0 If (n+1)!



As an example, we find the error of the cubic Hermite interpolant p3 we
studied previsouly, at the points xg, z1, with zq < x;. For z € [zg, xq], if
f € C*xg, x1], there is some & € [z, z1] such that

(4)
ola) i= (@) — pale) = (& — o)z — ).
Since 1
L ax (z = 2o)*(x — ;) = 7,

where h = x1 — zy, we deduce that

()] < M
m [
vobasy (V= "oy

where
M= max |fP(y).

zo<y<z1

As a final remark, we note that by the common Newton form of both
Hermite and Lagrange interpolation, we see that a Hermite interpolant is
the limit of Lagrange interpolants as some points coallesce, provided f has
sufficiently many derivatives.



