Hermite interpolation

Michael S. Floater

January 27, 2014

These notes extend the notion of Lagrange interpolation to Hermite interpolation. We study iterative interpolation and the Newton form.

1 Hermite interpolation

Suppose that $x_{0}, x_{1}, \ldots, x_{n}$ are distinct points in $[a, b]$ and that f is a function that has derivatives of orders $0,1, \ldots, r_{i}$, for each $i=0,1, \ldots, n$.

Theorem 1 With

$$
N=n+\sum_{i=0}^{n} r_{i}
$$

there is a unique polynomial $p \in \pi_{N}$ such that

$$
\begin{equation*}
p^{(k)}\left(x_{i}\right)=f^{(k)}\left(x_{i}\right), \quad i=0,1, \ldots, n, \quad k=0,1, \ldots, r_{i} . \tag{1}
\end{equation*}
$$

Proof. Any $p \in \pi_{N}$ can be expressed uniquely as

$$
p(x)=\sum_{j=0}^{N} c_{j} x^{j}
$$

and its k-th derivative is

$$
p^{(k)}(x)=\sum_{j=k}^{N} \frac{j!}{(j-k)!} c_{j} x^{j-k}
$$

The interpolation conditions (1) are then

$$
\sum_{j=k}^{N} \frac{j!}{(j-k)!} c_{j} x_{i}^{j-k}=f^{(k)}\left(x_{i}\right), \quad i=0,1, \ldots, n, \quad k=0,1, \ldots, r_{i}
$$

which can be expressed as the linear system

$$
\begin{equation*}
M c=f \tag{2}
\end{equation*}
$$

where $c=\left(c_{0}, c_{1}, \ldots, c_{N}\right)^{T}$ and

$$
M=\left[\begin{array}{cccccc}
1 & x_{0} & x_{0}^{2} & x_{0}^{3} & \cdots & x_{0}^{N} \\
& x_{0} & 2 x_{0} & 3 x_{0}^{2} & \cdots & N x_{0}^{N-1} \\
& & & & & \vdots \\
1 & x_{1} & x_{1}^{2} & x_{1}^{3} & \cdots & x_{1}^{N} \\
& x_{1} & 2 x_{1} & 3 x_{1}^{2} & \cdots & N x_{1}^{N-1} \\
& & & & & \vdots
\end{array}\right], \quad f=\left[\begin{array}{c}
f\left(x_{0}\right) \\
f^{\prime}\left(x_{0}\right) \\
\vdots \\
f\left(x_{1}\right) \\
f^{\prime}\left(x_{1}\right) \\
\vdots
\end{array}\right]
$$

and it is sufficient to show that M is non-singular. To demonstrate this suppose that c satisfies the homogeneous equation $M c=0$. Then the polynomial

$$
q(x)=\sum_{j=0}^{N} c_{j} x^{j}
$$

satisfies the conditions

$$
q^{(k)}\left(x_{i}\right)=0, \quad i=0,1, \ldots, n, \quad k=0,1, \ldots, r_{i}
$$

Then $q \in \pi_{N}$ and has at least $N+1$ roots, counting multiplicities, and, similar to the Lagrange case, by the fundamental theorem of algebra, $q=0$. Hence $c=0$ and M is indeed non-singular.

2 Iterative interpolation

One way of finding the Hermite interpolant $p \in \pi_{N}$ is through the same iterative procedure we looked at in the first lecture. First, observe that if $n=0$, the interpolant is the Taylor polynomial,

$$
\begin{equation*}
p(x)=\sum_{j=0}^{r_{0}} f^{(j)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{j}}{j!} \tag{3}
\end{equation*}
$$

Otherwise $n \geq 1$, and suppose that $q \in \pi_{N-1}$ satisfies the conditions

$$
\begin{aligned}
q^{(k)}\left(x_{i}\right) & =f^{(k)}\left(x_{i}\right), \quad i=0,1, \ldots, n-1, \quad k=0,1, \ldots, r_{i}, \\
q^{(k)}\left(x_{n}\right) & =f^{(k)}\left(x_{n}\right), \quad k=0,1, \ldots, r_{n}-1,
\end{aligned}
$$

where we understand the second condition to be 'empty' if $r_{n}=0$, and similarly suppose that $r \in \pi_{N-1}$ satisfies

$$
\begin{aligned}
r^{(k)}\left(x_{0}\right) & =f^{(k)}\left(x_{0}\right), & & k=0,1, \ldots, r_{0}-1 \\
r^{(k)}\left(x_{i}\right) & =f^{(k)}\left(x_{i}\right), & & i=1,2, \ldots, n, \quad k=0,1, \ldots, r_{i} .
\end{aligned}
$$

Theorem 2 The polynomial

$$
\begin{equation*}
p(x):=\frac{x_{n}-x}{x_{n}-x_{0}} q(x)+\frac{x-x_{0}}{x_{n}-x_{0}} r(x) \tag{4}
\end{equation*}
$$

is the polynomial in π_{N} that solves the Hermite interpolation problem (1).
Proof. By the Leibniz rule, the k-th derivative of p in (4) is

$$
p^{(k)}(x)=\frac{x_{n}-x}{x_{n}-x_{0}} q^{(k)}(x)+\frac{x-x_{0}}{x_{n}-x_{0}} r^{(k)}(x)+k \frac{r^{(k-1)}(x)-q^{(k-1)}(x)}{x_{n}-x_{0}},
$$

and it follows that

$$
p^{(k)}\left(x_{i}\right)=\frac{x_{n}-x_{i}}{x_{n}-x_{0}} q^{(k)}\left(x_{i}\right)+\frac{x_{i}-x_{0}}{x_{n}-x_{0}} r^{(k)}\left(x_{i}\right),
$$

for all $i=0,1,2, \ldots, n$ and $k=0,1, \ldots, r_{i}$. Thus,

$$
p^{(k)}\left(x_{0}\right)=q^{(k)}\left(x_{0}\right)=f^{(k)}\left(x_{0}\right), \quad k=0,1, \ldots, r_{0}
$$

and,

$$
p^{(k)}\left(x_{n}\right)=r^{(k)}\left(x_{n}\right)=f^{(k)}\left(x_{n}\right), \quad k=0,1, \ldots, r_{n}
$$

and, for $i=1, \ldots, n-1$,

$$
p^{(k)}\left(x_{i}\right)=\frac{x_{n}-x_{i}}{x_{n}-x_{0}} f^{(k)}\left(x_{i}\right)+\frac{x_{i}-x_{0}}{x_{n}-x_{0}} f^{(k)}\left(x_{i}\right)=f^{(k)}\left(x_{i}\right), \quad k=0,1, \ldots, r_{i} .
$$

In order to look at an example, denote p by

$$
p_{\underbrace{0, \ldots, 0}_{r_{0}+1}}^{0, \underbrace{1, \ldots, 1}_{r_{1}+1}, \ldots, \underbrace{n, \ldots, n}_{r_{n}+1}},
$$

and consider cubic interpolation with $x_{0}=0, x_{1}=1$, and $r_{0}=r_{1}=1$. The iteration gives

$$
\begin{aligned}
p_{0011} & =(1-x) p_{001}+x p_{011}, \\
p_{001} & =(1-x) p_{00}+x p_{01}, \\
p_{011} & =(1-x) p_{01}+x p_{11}, \\
p_{01} & =(1-x) p_{0}+x p_{1},
\end{aligned}
$$

and the Taylor polynomial (3) gives

$$
\begin{gathered}
p_{0}=f(0), \quad p_{00}=f(0)+x f^{\prime}(0), \\
p_{1}=f(1), \quad p_{11}=f(1)+(x-1) f^{\prime}(1)
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
p(x) & =(1-x)^{2}\left(f(0)+x f^{\prime}(0)\right) \\
& +2 x(1-x)((1-x) f(0)+x f(1)) \\
& +x^{2}\left(f(1)+(x-1) f^{\prime}(1)\right)
\end{aligned}
$$

3 The Newton form

A Hermite interpolant can also be represented in Newton form, the advantage being that the divided differences can be computed just once, and the evaluation of the interpolant for any given x is relatively fast, requiring only $O(n)$ flops.

Defining the polynomial,

$$
\omega_{N}(x):=\left(x-x_{0}\right)^{r_{0}+1} \cdots\left(x-x_{i-1}\right)^{r_{i-1}+1}\left(x-x_{i}\right)^{r_{n}},
$$

we can express the interpolant $p=p_{N}$ as

$$
p_{N}(x)=p_{N-1}(x)+c_{N} \omega_{N}(x),
$$

with c_{N} the leading coefficient of p_{N}. Continuing the recursion, we obtain the Newton form of the Hermite interpolant,

$$
\begin{equation*}
p_{N}(x)=\sum_{i=0}^{N} c_{i} \omega_{i}(x) \tag{5}
\end{equation*}
$$

In the special case that $n=0$, the leading coefficient of p_{N} is

$$
\begin{equation*}
c_{N}=f^{\left(r_{0}\right)}\left(x_{0}\right) / r_{0}! \tag{6}
\end{equation*}
$$

while if $n \geq 1$, the iterative interpolation algorithm, Theorem 2, gives a recursion for c_{N}, because, with lc (p) denoting the leading coefficient of p, equation (4) implies

$$
\begin{equation*}
\operatorname{lc}(p)=\frac{\operatorname{lc}(r)-\operatorname{lc}(q)}{x_{n}-x_{0}} \tag{7}
\end{equation*}
$$

In this way we can compute all the divided differences c_{k} required in (5), and due to (6) and (7) we now see that c_{N} is the divided difference

$$
c_{N}=[\underbrace{x_{0}, \ldots, x_{0}}_{r_{0}+1}, \underbrace{x_{1}, \ldots, x_{1}}_{r_{1}+1}, \ldots, \underbrace{x_{n}, \ldots, x_{n}}_{r_{n}}] f
$$

Consider again the example of cubic interpolation, with $r_{0}=r_{1}=1$. The Newton form of the interpolant is

$$
\begin{aligned}
p(x)= & {\left[x_{0}\right] f+\left[x_{0}, x_{0}\right] f\left(x-x_{0}\right)+\left[x_{0}, x_{0}, x_{1}\right] f\left(x-x_{0}\right)^{2} } \\
& +\left[x_{0}, x_{0}, x_{1}, x_{1}\right] f\left(x-x_{0}\right)^{2}\left(x-x_{1}\right) .
\end{aligned}
$$

These divided differences can be computed from

$$
\begin{gathered}
{\left[x_{0}\right] f=f\left(x_{0}\right), \quad\left[x_{1}\right] f=f\left(x_{1}\right),} \\
{\left[x_{0}, x_{0}\right] f=f^{\prime}\left(x_{0}\right), \quad\left[x_{0}, x_{1}\right] f=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}, \quad\left[x_{1}, x_{1}\right] f=f^{\prime}\left(x_{1}\right),} \\
{\left[x_{0}, x_{0}, x_{1}\right] f=\frac{\left[x_{0}, x_{1}\right] f-f^{\prime}\left(x_{0}\right)}{x_{1}-x_{0}}, \quad\left[x_{0}, x_{1}, x_{1}\right] f=\frac{f^{\prime}\left(x_{1}\right)-\left[x_{0}, x_{1}\right] f}{x_{1}-x_{0}}}
\end{gathered}
$$

and

$$
\left[x_{0}, x_{0}, x_{1}, x_{1}\right] f=\frac{\left[x_{0}, x_{1}, x_{1}\right] f-\left[x_{0}, x_{0}, x_{1}\right] f}{x_{1}-x_{0}}
$$

From now on we can simplify notation and consider a sequence of points x_{0}, \ldots, x_{n} in $[a, b]$, that are distinct or not. For each i, we let ρ_{i} be the left-multiplicity of x_{i},

$$
\rho_{i}=\left|\left\{0 \leq j<i: x_{j}=x_{i}\right\}\right|,
$$

i.e., the number of points in the sequence x_{0}, \ldots, x_{i-1} that are equal to x_{i}. The Hermite interpolant to f is then the unique polynomial $p_{n} \in \pi_{n}$ such that

$$
p_{n}^{\left(\rho_{i}\right)}\left(x_{i}\right)=f^{\left(\rho_{i}\right)}\left(x_{i}\right), \quad i=0, \ldots, n .
$$

We have shown that

$$
p_{n}(x)=p_{n-1}(x)+c_{n} \omega_{n}(x),
$$

where

$$
\omega_{n}(x)=\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right),
$$

and c_{n} is the divided difference of f,

$$
c_{n}=\left[x_{0}, x_{1}, \ldots, x_{n}\right] f
$$

This divided difference is symmetric in the points x_{0}, \ldots, x_{n}, and so we may assume that $x_{i} \leq x_{i+1}$, in which case

$$
\left[x_{0}, x_{1}, \ldots, x_{n}\right] f=\frac{\left[x_{1}, \ldots, x_{n}\right] f-\left[x_{0}, \ldots, x_{n-1}\right] f}{x_{n}-x_{0}}, \quad \text { if } x_{0}<x_{n}
$$

and

$$
\left[x_{0}, x_{1}, \ldots, x_{n}\right] f=f^{(n)}\left(x_{0}\right) / n!, \quad \text { if } x_{0}=\cdots=x_{n}
$$

The Newton form of p is

$$
p(x)=\sum_{i=0}^{n}\left[x_{0}, \ldots, x_{i}\right] f \omega_{i}(x)
$$

and its error is

$$
f(x)-p(x)=\left[x_{0}, \ldots, x_{n}, x\right] f\left(x-x_{0}\right) \cdots\left(x-x_{n}\right),
$$

and there is some ξ in the smallest interval containing x_{0}, \ldots, x_{n} and x such that

$$
\left[x_{0}, \ldots, x_{n}, x\right] f=\frac{f^{(n+1)}(\xi)}{(n+1)!}
$$

As an example, we find the error of the cubic Hermite interpolant p_{3} we studied previsouly, at the points x_{0}, x_{1}, with $x_{0}<x_{1}$. For $x \in\left[x_{0}, x_{1}\right]$, if $f \in C^{4}\left[x_{0}, x_{1}\right]$, there is some $\xi \in\left[x_{0}, x_{1}\right]$ such that

$$
e(x):=f(x)-p_{3}(x)=\left(x-x_{0}\right)^{2}\left(x-x_{1}\right)^{2} \frac{f^{(4)}(\xi)}{4!}
$$

Since

$$
\max _{x_{0} \leq x \leq x_{1}}\left(x-x_{0}\right)^{2}\left(x-x_{1}\right)^{2}=\frac{h^{4}}{16},
$$

where $h=x_{1}-x_{0}$, we deduce that

$$
\max _{x_{0} \leq x \leq x_{1}}|e(x)| \leq \frac{h^{4} M}{384},
$$

where

$$
M=\max _{x_{0} \leq y \leq x_{1}}\left|f^{(4)}(y)\right|
$$

As a final remark, we note that by the common Newton form of both Hermite and Lagrange interpolation, we see that a Hermite interpolant is the limit of Lagrange interpolants as some points coallesce, provided f has sufficiently many derivatives.

