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These notes start a study of interpolation by polynomials, treating exis-
tence and uniqueness and various choices of basis functions.

1 The interpolation problem

Recall that a polynomial p : R → R of degree ≤ n is a function that can be
expressed in the form

p(x) =
n

∑

j=0

cjx
j, x ∈ R, (1)

where cj ∈ R, j = 0, 1, . . . , n. We denote the linear space of all such polyno-
mials by πn. The degree of p is the largest j for which cj 6= 0.

Let f : [a, b] → R be a real function and let x0, x1, . . . , xn be distinct
points in [a, b]. We are interested in finding a polynomial p ∈ πn that inter-
polates f , in the sense that

p(xi) = f(xi), i = 0, 1, . . . , n. (2)

We will show that there exists a unique solution to this interpolation problem.
Because the monomials {1, x, x2, . . . , xn} form a basis for πn, each poly-

nomial p ∈ πn is uniquely determined by its n+1 coefficients c0, c1, . . . , cn in
(1). If p ∈ πn satisfies the interpolation conditions (2) then these coefficients
satisfy the linear system of n + 1 equations,

c0 + c1xi + · · · + cnx
n
i = f(xi), i = 0, 1, . . . , n.
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This equation system can be expressed in matrix and vector notation as

Mc = f, (3)

where

M =











1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

...
...

...
...

1 xn x2
n · · · xn

n











, c =











c0

c1

...
cn











, f =











f(x0)
f(x1)

...
f(xn)











.

There is therefore a unique solution to the interpolation problem if and only
if there is a unique solution vector c to (3). From linear algebra we know
that the latter is true if the matrix M is non-singular. We will show that M

is indeed non-singular by showing that the only solution to the homogeneous
equation

Mc = 0, (4)

is c = 0. Suppose that c is a solution to this equation. Then the polynomial

q(x) =
n

∑

j=0

cjx
j

has the property that q(xi) = 0, i = 0, 1, . . . , n. But then q has degree at
most n and at least n + 1 roots, and by the fundamental theorem of algebra,
q = 0, which means that cj = 0, j = 0, 1, . . . , n. This proves that M is indeed
non-singular. In summary we have shown

Theorem 1 There exists a unique solution p ∈ πn to the interpolation prob-
lem (2).

The matrix M is known as a Vandermonde matrix. It can be shown that
its determinant is equal to

det(M) =
∏

0≤i<j≤n

(xj − xi) 6= 0,

which also shows that M is non-singular.
Once we have found the coefficients ci in (1), we typically want to evaluate

p, i.e., find p(x) for a given x ∈ R. Horner’s rule is a computationally efficient
way of doing this. For example, the rule for n = 3 expresses p(x) as

p(x) = c0 + x(c1 + x(c2 + xc3)),

and similarly for arbitrary n. Due to the n − 1 nested parentheses, the
evaluation of p requires only n multiplications and n additions.
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2 Other bases

As we have seen, we can find the interpolant p in the form (1) by solving
the linear system (3) to find the coefficients c0, c1, . . . , cn. The representation
(1) is known as the monomial form of p. The polynomial p is expressed in
terms of the monomial basis, {1, x, x2, . . . , xn}. In practice, we might want to
represent p with respect to some other basis of πn. Any linearly independent
set of n + 1 polynomials φ0, φ1, . . . , φn in πn forms a basis for πn, and any
p ∈ πn can be uniquely represented as a linear combination

p(x) =
n

∑

j=0

cjφj(x). (5)

The interpolation problem (2) then leads to the linear system of equations

c0φ0(xi) + c1φ1(xi) + · · · + cnφn(xi) = f(xi), i = 0, 1, . . . , n,

which can also be expressed as (3), but now with the matrix

M =











φ0(x0) φ1(x0) · · · φn(x0)
φ0(x1) φ1(x1) · · · φn(x1)

...
...

...
φ0(xn) φ1(xn) · · · φn(xn)











. (6)

This matrix, like the Vandermonde matrix, is non-singular because if c sat-
isfies the homogeneous equation Mc = 0, the polynomial

q(x) =
n

∑

j=0

cjφj(x)

satisfies q(xi) = 0, i = 0, 1, . . . , n, and because q ∈ πn, we have q = 0. Since
φ0, . . . , φn form a basis for πn it follows that c0 = c1 = · · · = cn = 0.

3 Lagrange basis

One choice of basis that makes the interpolation problem easy to solve is the
Lagrange basis, L0, L1, . . . , Ln, defined by

Lj(x) =
n

∏

k=0
k 6=j

x − xk

xj − xk

.

3



Since

Lj(xi) = δij :=

{

1 if i = j;

0 if i 6= j,

it follows that the interpolation problem can be solved directly:

p(x) =
n

∑

j=0

f(xj)Lj(x).

There is no need to solve the linear system (3) because the matrix M in this
case is the identity matrix.

4 Iterative interpolation

Another way of finding the interpolant is through recursion. Suppose that
q ∈ πn−1 satisfies

q(xi) = f(xi), i = 0, 1, . . . , n − 1,

and that r ∈ πn−1 satisfies

r(xi) = f(xi), i = 1, 2, . . . , n.

Then

p(x) :=
xn − x

xn − x0

q(x) +
x − x0

xn − x0

r(x)

is the polynomial in πn that solves the interpolation problem (2). This can
easily be checked by considering the three cases x = x0, x = xn, and x = xi,
i = 1, . . . , n− 1. Applying this formula recursively leads to the Neville algo-
rithm. We initialize the algorithm by setting pi,0 = f(xi) for i = 0, 1, . . . , n.
Then, for a given x ∈ R, and for r = 1, . . . , n, and i = 0, 1, . . . n − r, we
compute

pi,r(x) =
xi+r − x

xi+r − xi

pi,r−1(x) +
x − xi

xi+r − xi

pi+1,r−1(x),
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and p0,n(x) is then the value at x of the interpolant satisfying (2). The
algorithm is a triangular scheme, as shown below for the case n = 3.

p0,0(x)
p0,1(x)

p1,0(x) p0,2(x)
p1,1(x) p0,3(x)

p2,0(x) p1,2(x)
p2,1(x)

p3,0(x)

The entries in the scheme are computed column by column from left to
right, which each entry being computed from the two entries in the previous
column, one above and one below.
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