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These notes study bivariate polynomial interpolation, focusing on tensor-
product and lower set interpolation.

1 Tensor-product interpolation

Suppose that a real, bivariate function f is defined at the points (xi, yj) ∈ R
2,

with x0, . . . , xm ∈ R distinct and y0, . . . , yn ∈ R distinct. The set of all these
points, X = {(xi, yj)}, forms a Cartesian, rectangular grid in the plane. Let
πm,n denoting the linear space of all bivariate polynomials of the form

p(x, y) =
m∑

k=0

n∑

l=0

cklx
kyl. (1)

We will show

Theorem 1 There exists a unique p in πm,n that interpolates f on X, i.e.,
such that

p(xi, yj) = f(xi, yj), i = 0, . . . ,m, j = 0, . . . , n. (2)

Proof. Let I be the set of multi-indices, i.e., index pairs,

I = {(k, l) : 0 ≤ k ≤ m, 0 ≤ l ≤ n}.

Then, similar to the univariate case, we can express the (m + 1)(n + 1)
equations (2) in matrix form as

Mc = f ,
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where

M = [xk
i y

l
j](i,j),(k,l)∈I , c = [ckl](k,l)∈I , f = [f(xi, yj)](i,j)∈I ,

with respect to some ordering of the multi-indices in I, and c and f column
vectors. The existence and uniqueness of p is then equivalent to the non-
singularity of M . So, suppose Mc = 0 for some c. Then the polynomial

q(x, y) =
m∑

k=0

n∑

l=0

cklx
kyl

is zero at every point (xi, yj). For each j = 0, . . . , n, let pj(x) = q(x, yj).
Then pj belong to πm and has zeros x0, . . . , xm. So by the Fundamental
Theorem of Algebra, pj = 0 and therefore its coefficients are zero, i.e.,

n∑

l=0

ckly
l
j = 0, k = 0, . . . ,m. (3)

Then, for each k = 0, . . . ,m, let

rk(y) =
n∑

l=0

ckly
l.

Since rk ∈ πn and has zeros y0, . . . , yn, the F.T.A. can again be applied to
show that rk = 0, and hence its coefficients are zero, i.e., ckl = 0, l = 0, . . . , n.
Hence c = 0 and M is non-singular. 2

The monomial form (1) is not the only way of representing p. If φ0, . . . , φm

is any basis for πm and ψ0, . . . , ψn any basis for πn, we can form the (tensor-)
products

Bkl(x, y) = φk(x)ψl(y),

and represent p as

p(x, y) =
m∑

k=0

n∑

l=0

cklBkl(x, y).

For example, choosing the univariate Lagrange bases

φk(x) =
m∏

r=0
r 6=k

x − xr

xk − xr

, ψl(y) =
n∏

s=0
s 6=l

y − ys

yl − ys

,
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means that
Bkl(xi, yj) = φk(xi)ψl(yj) = δkiδlj,

from which it follows that

p(x, y) =
m∑

k=0

n∑

l=0

f(xk, yl)Bkl(x, y),

is the interpolant in πm,n to f .

2 Newton form

There is also a Newton representation for the interpolant, which at the same
time leads to error formulas. Here, a divided difference of a function of several
variables is formed by keeping one variable fixed and taking the indicated
differences with respect to the free variable. Thus, for example,

[x0, . . . , xm; y0, . . . , yn]f =

[x1, . . . , xm; y0, . . . , yn]f − [x0, . . . , xm−1; y0, . . . , yn]f

xm − x0

if m ≥ 1, and

[x0, . . . , xm; y0, . . . , yn]f =

[x0, . . . , xm; y1, . . . , yn]f − [x0, . . . , xm; y0, . . . , yn−1]f

yn − y0

if n ≥ 1. If both m ≥ 1 and n ≥ 1 either formula can be used. In the case
m = n = 0, [x0, y0]f = f(x0, y0).

By the obvious extension of the Genocchi-Hermite formula to bivariate
divided differences, there is some point (ξ, η) in the smallest rectangle D
containing the points (xk, yl), (k, l) ∈ I such that

[x0, . . . , xk; y0, . . . , yl]f =
1

k!l!

∂k+lf(ξ, η)

∂xk∂yl
,

provided the mixed derivative ∂k+lf/(∂xk∂yl) is continuous in D.
Using these bivariate divided differences, the polynomial interpolant and

its error can be derived simultaneously from the corresponding formulas from
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the univariate case. We first expand f with respect to the x variable and the
points x0, . . . , xm:

f(x, y) =
m∑

k=0

µk(x)[x0, . . . , xk; y]f + R1(x, y), (4)

with remainder

R1(x, y) = µm+1(x)[x0, . . . , xm, x; y]f.

Here,

µ0(x) := 1, and µk(x) := (x − x0) · · · (x − xk−1), k ≥ 1.

Then, treating [x0, . . . , xk; y]f as a function of y, we make a Newton expan-
sion of it with respect to the y variable and the points y0, . . . , yn:

[x0, . . . , xk; y]f =
n∑

l=0

νl(y)[x0, . . . , xk; y0, . . . , yl]f + R2,k(y),

with
R2,k(y) = νn+1(y)[x0, . . . , xk; y0, . . . , yn, y]f,

where

ν0(y) := 1, and νl(y) := (y − y0) · · · (y − yl−1), l ≥ 1.

Substituting this into (4) gives

f(x, y) = p(x, y) + R(x, y),

where

p(x, y) =
m∑

k=0

n∑

l=0

µk(x)νl(y)[x0, . . . , xk; y0, . . . , yl]f, (5)

and
R(x, y) = R1(x, y) + R2(x, y), (6)

with

R2(x, y) = νn+1(y)
m∑

k=0

µk(x)[x0, . . . , xk; y0, . . . , yn, y]f.
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Since
R1(xi, y) = 0, i = 0, . . . ,m,

and
R2(x, yj) = 0, j = 0, . . . , n,

it follows that R(xi, yj) = 0 at the (m + 1)(n + 1) points (xi, yj), (i, j) ∈ I.
Therefore p in (8) is the unique interpolant to f in πm,n, and R its error. To
simplify the expression for the latter, a further Newton expansion shows that

m∑

k=0

µk(x)[x0, . . . , xk; y0, . . . , yn, y]f =

[x; y0, . . . , yn, y]f − µm+1(x)[x0, . . . , xm, x; y0, . . . , yn, y]f,

and substituting this into the second term in (9) gives

Theorem 2 The interpolant p can be expressed in the Newton form (8), and
the error, R = f − p, is

R(x, y) = µm+1(x)[x0, . . . , xm, x; y]f + νn+1(y)[x; y0, . . . , yn, y]f

− µm+1(x)νn+1(y)[x0, . . . , xm, x; y0, . . . , yn, y]f.

A corollary of this three-term error formula is that

R(x, y) =
µm+1(x)

(m + 1)!

∂m+1f(ξ, y)

∂xm+1
+

νn+1(y)

(n + 1)!

∂n+1f(x, η)

∂yn+1

−
µm+1(x)νn+1(y)

(m + 1)!(n + 1)!

∂m+n+2f(ξ′, η′)

∂xm+1∂yn+1
.

3 Lower set interpolation

We now consider interpolation on a more general set of points, a subset of a
rectangular grid. For any non-increasing sequence,

n0 ≥ n1 ≥ · · · ≥ nm ≥ 0, (7)

let L ⊂ N
2
0 be the set of multi-indices,

L = {(i, j) : 0 ≤ i ≤ m, 0 ≤ j ≤ ni}.
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Such a set L is called a lower set, and it is closed under the usual partial
ordering of multi-indices. Two multi-indices (i, j) and (k, l) in N

2
0 are ordered,

with (i, j) ≤ (k, l), if both i ≤ k and j ≤ l. We see then that L is closed in
the sense that if (k, l) ∈ L and (i, j) ≤ (k, l) then (i, j) ∈ L.

We want to show that we can uniquely interpolate a function f on the
points

XL := {(xi, yj) : (i, j) ∈ L},

from the linear space πL of polynomials of the form

p(x, y) =
m∑

k=0

nk∑

l=0

cklx
kyl =

∑

(k,l)∈L

cklx
kyl.

To show this, we return to the first Newton expansion (4) and now expand
the term [x0, . . . , xk; y]f as a Newton polynomial of degree nk:

[x0, . . . , xk; y]f =

nk∑

l=0

νl(y)[x0, . . . , xk; y0, . . . , yl]f + R2,k(y),

with
R2,k(y) = νnk+1(y)[x0, . . . , xk; y0, . . . , ynk

, y]f.

Substituting this into (4) gives

f(x, y) = p(x, y) + R(x, y),

where

p(x, y) =
m∑

k=0

nk∑

l=0

µk(x)νl(y)[x0, . . . , xk; y0, . . . , yl]f, (8)

and
R(x, y) = R1(x, y) + R2(x, y), (9)

with

R2(x, y) =
m∑

k=0

µk(x)νnk+1(y)[x0, . . . , xk; y0, . . . , ynk
, y]f.

Clearly, p ∈ πL and to show that p interpolates f on XL we show that
R(xi, yj) = 0 for all (i, j) ∈ L. So let (i, j) ∈ L. As in the tensor-product case,
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R1(xi, yj) = 0 since µm+1(xi) = 0. It remains to show that R2(xi, yj) = 0.
Since µk(xi) = 0 if k > i, we see that

R2(xi, yj) =
i∑

k=0

µk(xi)νnk+1(yj)[x0, . . . , xk; y0, . . . , ynk
, yj]f.

Thus k ≤ i in the sum, and so, due to condition (7), nk ≥ ni. Therefore,

j ≤ ni ≤ nk,

which implies that νnk+1(yj) = 0. Thus R2(xi, yj) = 0 as claimed.
The error can be expressed in terms of derivatives as

R(x, y) =
µm+1(x)

(m + 1)!

∂m+1f(ξ, y)

∂xm+1

+
m∑

k=0

µk(x)νnk+1(y)

k!(nk + 1)!

∂k+nk+1f(ξ′, η′)

∂xk∂ynk+1
.
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