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These notes study bivariate polynomial interpolation, focusing on tensor-
product and lower set interpolation.

1 Tensor-product interpolation

Suppose that a real, bivariate function f is defined at the points (z;,y,) € R?,
with g, ..., z, € R distinct and yq, ..., y, € R distinct. The set of all these
points, X = {(z;,y;)}, forms a Cartesian, rectangular grid in the plane. Let
Tm.n denoting the linear space of all bivariate polynomials of the form

n

pley) =D ) curty. (1)

k=0 1=0
We will show

Theorem 1 There exists a unique p in T, , that interpolates f on X, i.e.,
such that

p(xi ) = fxi,y5), 1=0,....m, 57=0,...,n. (2)
Proof. Let I be the set of multi-indices, i.e., index pairs,
I'={(k1):0<k<m,0<1]<n}.

Then, similar to the univariate case, we can express the (m + 1)(n + 1)
equations (2) in matrix form as

Mc =f,



where

M = [xfy;](i,j),(k,l)ela CcC= [Ckl](k,l)eh f= [f(xiyyj)](i,j)elu

with respect to some ordering of the multi-indices in I, and ¢ and f column
vectors. The existence and uniqueness of p is then equivalent to the non-
singularity of M. So, suppose Mc = 0 for some c. Then the polynomial

n

is zero at every point (x;,y;). For each j = 0,...,n, let p;(z) = q(x,y;).
Then p; belong to m, and has zeros xzy,...,2,. So by the Fundamental
Theorem of Algebra, p; = 0 and therefore its coefficients are zero, i.e.,

n

chlyé»:(), k=0,...,m. (3)

=0

Then, for each £k =0,...,m, let

re(y) = Z cry'.
1=0

Since r, € m, and has zeros vo, ..., Y., the F.T.A. can again be applied to

show that r, = 0, and hence its coefficients are zero, i.e., ¢,y = 0,1 =0,...,n.
Hence ¢ = 0 and M is non-singular. a

The monomial form (1) is not the only way of representing p. If ¢g, ..., O
is any basis for m,, and 1y, ..., 1, any basis for m,, we can form the (tensor-)
products

B(z,y) = é(x)i(y),

and represent p as

p(z, y) = Z Z Clekl<5U7 y).

k=0 1=0
For example, choosing the univariate Lagrange bases

ou(e) =[] ——2=,  wily) = [ 22,

o Tk — L szoyl_ys
r#k s#l




means that
Br(z4,y;) = o) i(y;) = Oridiy,

from which it follows that

p(:c,y) = Z f(l'k,yl)Bkl(l',y),

m n
k=0 =0

is the interpolant in 7, ,, to f.

2 Newton form

There is also a Newton representation for the interpolant, which at the same
time leads to error formulas. Here, a divided difference of a function of several
variables is formed by keeping one variable fixed and taking the indicated
differences with respect to the free variable. Thus, for example,

[x07"'7xm;y07"'7yn]f:

['r17"'7xm;y07"'7yn]f_[x()’"'axm*l;y()?"wyn]f
Tm — Lo
if m>1, and
[x07"'7xm;y07"'7yn]f:
['IOV"axm;ylw"vyn]f_['I()a"'axm;yO)"'ayn—l]f
Yn — Yo

ifn>1. If both m > 1 and n > 1 either formula can be used. In the case
m=n =0, [xo,yo] [ = f(z0, o).

By the obvious extension of the Genocchi-Hermite formula to bivariate
divided differences, there is some point (£,7) in the smallest rectangle D
containing the points (x,¥;), (k,1) € I such that

1 O"f(E )
[xo,...,$k;y0,--'ayl]f:mﬁxk—ayl’

provided the mixed derivative O**! f/(9x*dy') is continuous in D.
Using these bivariate divided differences, the polynomial interpolant and
its error can be derived simultaneously from the corresponding formulas from
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the univariate case. We first expand f with respect to the x variable and the
points xg, . .., Tpy:

m

flxy) =Y m(@)lwo, . x5yl f + Ralx,y), (4)

with remainder

Here,
po(z) =1, and () = (x —x0) -+ (¥ —wp—1), k=1

Then, treating [z, ...,k y]f as a function of y, we make a Newton expan-
sion of it with respect to the y variable and the points yq, ..., Yx:

[x():"'axk;y}f:Zyl(y)[x[)a"'7xk;y07"'7yl]f+R2,k(y)>
=0

with
RQ,k(y> = Vn+1(y>[l’0, <o Ty Yoy - - 7yn>y]f7

where
w(y) =1, and  w(y)=@—y) -y —wy-) (=1
Substituting this into (4) gives

f(z,y) = p(z,y) + R(z,y),

where .
ple,y) =Y > ml@)m()[zo, - xesvo, - ulf, (5)
. k=0 1=0
R(z,y) = Ri(z,y) + Ra(z,y), (6)
with -
Ry(w,9) = vus1(y) D p(@)[@o, -, 2x5 Y0, - Y Y-
k=0



Since
Rl(xi,y):O, z':(),...,m,

and
RQ((E,yj):O, j:O,...,n,

it follows that R(z;,y;) = 0 at the (m + 1)(n + 1) points (x;,y;), (i,7) € 1.
Therefore p in (8) is the unique interpolant to f in 7y, ,, and R its error. To
simplify the expression for the latter, a further Newton expansion shows that

m

Z/’Lk(x)[x()""Jxk;y(]?"'?yn)y]f:

k=0
[x;y(h S ay'rmy]f - Mm+1(x)[$07 e Ty L3 Yo,y - - 7yn7y]f7

and substituting this into the second term in (9) gives

Theorem 2 The interpolant p can be expressed in the Newton form (8), and
the error, R= f —p, is

R(z,y) = ptms1(x)[To, - . ., o, 5 Y) f + Va3 Y0, - -, Yns ) f
- :um+1<x>yn+1(y)[x07 s T T3Yos -y Yns y]f

A corollary of this three-term error formula is that

_ Hmya(@) (& y) | veraly) 0" f(x,n)
R(xay) - (m + 1)| Orm+1 (n + 1)' 8y"+1

— Mm+1(x)yn+1(y) am+n+2f(€/777/)
(m+ 1)l(n+ 1) Jzmtigynt!

3 Lower set interpolation

We now consider interpolation on a more general set of points, a subset of a
rectangular grid. For any non-increasing sequence,

let L C NZ be the set of multi-indices,

L={(j):0<i<m,0<j<n}.



Such a set L is called a lower set, and it is closed under the usual partial
ordering of multi-indices. Two multi-indices (7, 7) and (k, ) in N2 are ordered,
with (4,7) < (k,1), if both i < k and 7 <. We see then that L is closed in
the sense that if (k,l) € L and (4, 5) < (k,[) then (i,5) € L.
We want to show that we can uniquely interpolate a function f on the
points
Xy = {(in,yj) : (Zaj) S L}7

from the linear space 7y, of polynomials of the form

m Nk
p(z,y) = Z chzxkyl = Z ey’
k=0 1=0 (k1)EL

To show this, we return to the first Newton expansion (4) and now expand
the term [z, ..., zx; y]f as a Newton polynomial of degree ny:

ng
[SL’(), s 7xk7y}f = Zyl(y)[ﬂﬁo, <o TEi Yo, - 7yl]f + RQ,k(y)7
=0

with
RQ,k(y) = Vnk—l—l(y)[x()a s Ty Yo, - - YUny,s y]f
Substituting this into (4) gives

f(z,y) = p(r,y) + R(z,y),

where _—
p(z,y) = Zzuk(ﬂf)”z(y)[xo, TR Yoy U (8)
k=0 1=0
and
R(l’,y) :Rl(l‘wy)_’_RQ(z:y)’ (9)
with

R2(x7 y) = Z Mk(I)Vnk-H(y) [ZL’(), sy Ty Yoy - -0 Yny y]f
k=0

Clearly, p € 7y and to show that p interpolates f on X, we show that
R(x;,y;) = 0forall (4,5) € L. Solet (i,5) € L. Asin the tensor-product case,



Ry (z;,y;) = 0 since piyq1(x;) = 0. It remains to show that Ry(wx;,y;) = 0.
Since py(x;) = 0 if k > 7, we see that

Ry(wi,y5) = Z 1 () Vg1 () [0 - -+ Th Yo -+ -5 Yng, Y5 -
k=0

Thus k£ < in the sum, and so, due to condition (7), ny > n;. Therefore,
J<n; <mny,

which implies that v, +1(y;) = 0. Thus Ra(x;,y;) = 0 as claimed.
The error can be expressed in terms of derivatives as

frmi1(z) 0" f(E,y)
R(z,y) = (mi nt ggm+l

() Vg1 (y) O F(E )
Kl(ng+ 1)  dzkoymtt

_|_



