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These notes derive the Newton form of polynomial interpolation, and
study the associated divided differences.

1 The Newton form

Recall that for distinct points x0, x1, . . . , xn, and a real function f defined at
these points, there is a unique polynomial interpolant pn ∈ πn. The idea of
Newton interpolation is to build up pn from the interpolant pn−1 for n ≥ 1.
Defining the polynomial,

ωn(x) := (x − x0)(x − x1) · · · (x − xn−1),

we can express the interpolant pn as

pn(x) = pn−1(x) + cnωn(x), (1)

for some constant cn ∈ R. To see this, let x = xi for some i ∈ {0, 1, . . . , n−1}.
Since ωn(xi) = 0,

pn(xi) = pn−1(xi) = f(xi).

On the other hand, since ωn(xn) 6= 0, we can determine cn to solve the
remaining interpolation condition, pn(xn) = f(xn). This condition becomes

f(xn) = pn−1(xn) + cnωn(xn),

and the solution is to take

cn =
f(xn) − pn−1(xn)

ωn(xn)
.
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We can continue in this way, expressing pn−1 in terms of pn−2, and so on.
Since clearly p0(x) = f(x0), we deduce that

pn(x) =
n∑

k=0

ckωk(x), (2)

where ω0(x) := 1 and c0 = f(x0). This is the so-called Newton form of the
interpolant. Once we have found the coefficients ck, we can adapt Horner’s
rule to evaluate pn. For example, we compute p3 as

p3(x) = c0 + (x − x0)(c1 + (x − x1)(c2 + (x − x2)c3)).

2 Divided differences

Consider the coefficient cn in equation (1). Since

ωn(x) = xn + lower order terms,

ωn has leading coefficient 1. Since also pn−1 ∈ πn−1, it follows from equa-
tion (1) that cn is the leading coefficient of pn, and, more generally, ck is the
leading coefficient of the polynomial in πk that interpolates f at x0, x1, . . . , xk.
To indicate this dependency we express ck as

ck = [x0, x1, . . . , xk]f,

and we use the fact that it is the leading coefficient of pk to find a conve-
nient way of computing it, for k ≥ 1. Recall the iterative interpolation of
the previous lecture. If qk−1 ∈ πk−1 is the interpolant to f on the points
x1, x2, . . . , xk, we can express the interpolant pk as

pk(x) =
xk − x

xk − x0

pk−1(x) +
x − x0

xk − x0

qk−1(x).

Since pk−1 has leading coefficient [x0, x1, . . . , xk−1]f and qk−1 has leading
coefficient [x1, x2, . . . , xk]f , equating the leading coefficients of the two sides
of the equation gives

[x0, x1, . . . , xk]f =
[x1, x2, . . . , xk]f − [x0, x1, . . . , xk−1]f

xk − x0

. (3)
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For this reason, the coefficient ck is known as the divided difference of f at
the points x0, x1, . . . , xk. This formula can be used to compute the divided

difference table, which provides the divided differences required in the Newton
form (2). The table for n = 3 is shown below.

[x0]f
[x1]f [x0, x1]f
[x2]f [x1, x2]f [x0, x1, x2]f
[x3]f [x2, x3]f [x1, x2, x3]f [x0, x1, x2, x3]f

Each entry in the table is computed from two entries in the previous column:
the one in the row above and the one in the same row. Hence the complete
table can be constructed, for example, row by row, or column by column.
The divided differences required in (2) are on the top diagonal. The first
examples are

[x0]f = f(x0),

[x0, x1]f =
f(x1) − f(x0)

x1 − x0

,

[x0, x1, x2]f =

(
f(x2) − f(x1)

x2 − x1

−
f(x1) − f(x0)

x1 − x0

) /

(x2 − x0).

If we add a new point xn+1 to the interpolation, we can compute pn+1(x)
from pn(x) using the fact that

pn+1(x) = pn(x) + [x0, . . . , xn+1]fωn+1(x).

We can compute ωn+1(x) as

ωn+1(x) = (x − xn)ωn(x),

and find [x0, . . . , xn+1]f by computing one more row of the table.
Note also that since the interpolant pk is independent of the ordering of

the point x0, x1, . . . , xk, the divided difference [x0, . . . , xk]f is symmetric in
its arguments: it is unchanged if xi and xj are swapped for any i 6= j. This
fact can be used to derive alternative recursion formulas. For example, by
swapping x0 and xk−1 in (3) we obtain

[x0, x1, . . . , xk]f =
[x0, x1, . . . , xk−2, xk]f − [x0, x1, . . . , xk−1]f

xk − xk−1

. (4)
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The symmetry property means, more generally, that a divided difference of
order k can be expressed as the difference between the two divided differences
of order k−1 obtained by removing each of any two of the nodes, and dividing
by the difference between the nodes.

We can also obtain an explicit formula for divided differences from the
Lagrange form of interpolation. Recall the Lagrange form of pn from the
previous lecture,

pn(x) =
n∑

i=0

n∏

j=0
j 6=i

x − xj

xi − xj

f(xi).

By extracting the leading coefficient from the right hand side, we deduce that

[x0, . . . , xn]f =
n∑

i=0

n∏

j=0
j 6=i

1

xi − xj

f(xi). (5)

3 Equidistant points

A frequently occurring case of divided differences is when the points are
equidistant. If xi = x0 + ih, i = 1, . . . , n, for some h > 0, we find

[x0, x1, . . . , xn]f =
∆nf0

hnn!
, (6)

where fi := f(xi) and ∆ is the forward difference operator, defined by

∆f0 := f1 − f0,

and for k > 1,
∆kf := ∆(∆k−1f0).

This means that

∆2f0 = f2 − 2f1 + f0, ∆3f0 = f3 − 3f2 + 3f1 − f0,

and more generally,

∆nf0 =
n∑

i=0

(
n

i

)

(−1)n−ifi.

Equation (6) is easily established by induction on n from the recursion for-
mula (3).
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4 Interpolation error

An advantage of the Newton form of interpolation is that it also provides a
formula for the interpolation error, f(x) − pn(x).

Theorem 1 For x distinct from x0, . . . , xn,

f(x) − pn(x) = [x0, . . . , xn, x]fωn+1(x).

Proof. Let pn+1 ∈ πn+1 be the interpolant to f on the points x0, x1, . . . , xn, x.
Then

pn+1(y) = pn(y) + cn+1ωn+1(y), y ∈ R,

with cn+1 the leading coefficient of pn+1, i.e.,

cn+1 = [x0, . . . , xn, x]f.

Letting y = x and using the fact that pn+1(x) = f(x) gives the result. 2

5 Genocchi-Hermite formula

We have obtained a formula for the error of interpolation in terms of a divided
difference of f . If f is sufficiently smooth, the error can also be expressed
in terms of derivatives of f . One way of doing this is to use the Genocchi-
Hermite formula.

Theorem 2 For n ≥ 1, let x0, . . . , xn be distinct points and suppose f (n) is

continuous in an interval containing them. Then

[x0, . . . , xn]f =

∫ 1

0

∫ t1

0

· · ·

∫ tn−1

0

f (n)(ξ)dtn · · · dt2dt1, (7)

where

ξ = x0 +
n∑

i=1

ti(xi − xi−1). (8)

Proof. We prove the formula by induction on n. For n = 1 we use the integral
representation,

[x0, x1]f =
1

x1 − x0

∫ x1

x0

f ′(x) dx,
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and then make the change of variable,

x = x0 + t(x1 − x0),

giving

[x0, x1]f =

∫ 1

0

f ′(x0 + t(x1 − x0)) dt.

For n ≥ 2,

[x0, . . . , xn]f =
[x0, . . . , xn−2, xn]f − [x0, . . . , xn−2, xn−1]f

xn − xn−1

,

and so, by the induction hypothesis,

[x0, . . . , xn]f =

∫ 1

0

· · ·

∫ tn−2

0

f (n−1)(ξ1) − f (n−1)(ξ0)

xn − xn−1

dtn−1 · · · dt1, (9)

where

ξ0 = x0 +
n−1∑

i=1

ti(xi − xi−1),

ξ1 = x0 +
n−2∑

i=1

ti(xi − xi−1) + tn−1(xn − xn−2).

Using the fact that

f (n−1)(ξ1) − f (n−1)(ξ0) =

∫ ξ1

ξ0

f (n)(ξ) dξ,

and changing the variable ξ to tn via (8), gives

f (n−1)(ξ1) − f (n−1)(ξ0)

xn − xn−1

=

∫ tn−1

0

f (n)(ξ) dtn.

Substituting this into (9) gives the result. 2

One can view the integral in the theorem as an integral over the simplex
S ⊂ R

n with vertices

vi = (1, . . . , 1
︸ ︷︷ ︸

i

, 0, . . . , 0
︸ ︷︷ ︸

n−i

), i = 0, 1, . . . , n.
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The theorem then says that

[x0, . . . , xn]f =

∫

t∈S

f (n)(ξ(t)) dt,

where ξ : R
n → R is the linear polynomial such that ξ(vi) = xi, i =

0, 1, . . . , n.

Corollary 1 If f (n) is continuous in the smallest interval [a, b] containing

x0, . . . , xn, there is some ξ ∈ (a, b) such that

[x0, . . . , xn]f =
f (n)(ξ)

n!
.

Proof. By the mean value theorem for integrals, there is some ξ ∈ (a, b) such
that

[x0, . . . , xn]f = f (n)(ξ)

∫

t∈S

1 dt,

and the integral on the right is the volume of S, which is 1/n!. 2

6 Interpolation error

We now return to the error in polynomial interpolation and consider again
the error formula in Theorem 1. Due to Corollary 1, we deduce the following.

Corollary 2 If f (n) is continuous in an interval (a, b) containing the distinct

points x0, . . . , xn, x, there is some ξ ∈ (a, b) such that

f(x) − pn(x) = (x − x0) · · · (x − xn)
f (n+1)(ξ)

(n + 1)!
.

As an example, consider the error in linear interpolation on the points
x0, x1, with x0 < x1, when f ∈ C2[x0, x1]. For x ∈ [x0, x1] there is some
ξ ∈ [x0, x1] such that

e(x) := f(x) − p1(x) = (x − x0)(x − x1)
f ′′(ξ)

2!
.

Since |(x − x0)(x − x1)| attains its maximum value at x = (x0 + x1)/2,

max
x0≤x≤x1

|(x − x0)(x − x1)| =
h2

4
,
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where h = x1 − x0, and it follows that

max
x0≤x≤x1

|e(x)| ≤
h2M

8
,

where
M = max

x0≤y≤x1

|f ′′(y)|.

7 Non-distinct points

Another consequence of the Genocchi-Hermite formula is that it shows that
[x0, . . . , xn]f is a continuous function of the points x0, . . . , xn in any interval
in which f (n) is continuous. Thus, the formula defines the unique continu-
ous extension of [x0, . . . , xn]f to non-distinct points x0, . . . , xn when f (n) is
continuous. A special case is

[x, x, . . . , x
︸ ︷︷ ︸

n+1

]f =
f (n)(x)

n!
.

If not all the points are equal, we can apply recursion: if f (n−1) is continuous
in [a, b], and x0, x1, . . . , xn are any points in [a, b], not-necessarily distinct,
but x0 and xn are distinct, then

[x0, . . . , xn]f =
[x1, . . . , xn]f − [x0, . . . , xn−1]f

xn − x0

.
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