Question- and answer sheet for midterm exam in MAT1030

Candidate Number____

	ES: PENCIL AND PAPER EXAM. THERE ARE TEN QUESTIONS. NOT ALLOWED TO USE BOOKS, NOTES, CALCULATORS, ETC.	OCTOBER 16TH, 2003. NONE.						
Mark one answer only for each question. Multiple answers will score 0.								
1) To whice	h of the following statements is $\sim p \land \sim (p \lor q)$ equivalent ?							
a)	$\sim p \lor q$							
b)	$\sim (p \ \lor q)$ \square							
c)	$\sim p$							
d)	$\sim p \lor \sim q$							
2) Which o	one of the following statements is equivalent to $((p \to q) \to q)$	ightarrow p ?						
a)	q o p							
b)	T (tautology) \square							
c)	p \square							
d)	$\sim p o q$							
3) Which o	of the following rules of inference is $\underline{\text{not}}$ valid ?							
a)	$\begin{array}{ccc} p \rightarrow r \\ q \rightarrow r \\ \therefore & p \lor q \rightarrow r \end{array} \Box$							
b)	$\begin{array}{ccc} \sim p \to \sim q \\ q \\ \therefore & p \end{array} \qquad \Box$							
c)	$\begin{array}{ccc} p \rightarrow q \\ \sim q \rightarrow \sim r \\ \therefore & p \rightarrow r \end{array} \qquad \Box$							
d)	$egin{array}{cccc} p ightarrow q \ q ightarrow r \ p \ dots & r \end{array}$							

4)	Which	one of	the	following	set-t	theoretical	formulas	is	valid	for	arbitrary	sets	A	B	C	?
± /	VV IIICII	one or	ULIC	TOHOWING	SCU-L	meorencar	iormuras	GI.	vanu	101	arbitiary	SCUS	л,	$_{D}$.	\circ	

a)
$$(A \cap C) - (B \cap C) = (A \cap C) - B \Box$$

b)
$$(A \cup B) - C = A \cup (B - C)$$

c)
$$A - (B - C) \subseteq (A - B) - C$$

d)
$$A - B \subseteq (A \cup C) - (B \cup C)$$

5) What is the binary representation of 643?

6) If $n \in \mathbb{Z}^+$, then let $n! = 1 \cdot 2 \cdot \ldots \cdot n$. Which one of the following statements is <u>not</u> valid?

a)
$$\frac{11!}{10!} = 11$$

b)
$$n \mid n!$$
 for all integers $n > 1$

c)
$$10! \mid (10! + 1) \mid \Box$$

d)
$$13! = 13 \cdot 12 \cdot 11 \cdot (10!)$$

7) Which one of the following subsets of **Z** has a least element?

a)
$$\{n \in \mathbf{Z} : n < n^2 - 1\}$$

b)
$$\{n \in \mathbf{Z} : (n > 1) \land (n \mid (n^2 + 1))\}$$

c)
$$\{n \in \mathbf{Z} : n < n^3 - 1\}$$

d)
$$\{n \in \mathbf{Z} : 8 \mid (n^2 - 1)\}$$

8) If $n \in \mathbb{Z}^+$, then what is the value of

$$\sum_{k=1}^{n} (3k-1) = 2 + 5 + 8 + \dots + (3n-1) ?$$

a)
$$\frac{n(3n+1)}{2}$$
 \square

b)
$$n^2 + 2n - 1$$

c)
$$\frac{(n+1)(4n-1)}{3} \quad \square$$

$$\frac{5n^2+1}{3} \quad \Box$$

- 9) How many integers from 1 through 1000 are divisible by 5 or 7?
 - a) 342 ___
 - b) 286 ___
 - c) 314 ___
 - d) 325 ___
- 10) How many 5-tuples of nonnegative integers $(x_1, x_2, x_3, x_4, x_5)$ satisfy the equation

$$x_1 + x_2 + x_3 + x_4 + x_5 = 8$$
?

- a) $\begin{pmatrix} 12 \\ 4 \end{pmatrix}$ \square
- b) $\begin{pmatrix} 8 \\ 5 \end{pmatrix}$ \square
- c) $\begin{pmatrix} 12 \\ 5 \end{pmatrix}$ \square
- d) $\begin{pmatrix} 13 \\ 8 \end{pmatrix}$ \square