MAT3300/4300 - Fall 09 - Extra-exercise 2

As in Extra-Exercise 1, we let X be a nonempty set, $f: X \to [0, \infty]$ and μ_f be the measure on $\mathcal{P}(X)$ given by

$$\mu_f(A) = \sum_{x \in A} f(x) \,, \quad A \in \mathcal{P}(X) \,.$$

a) Show that μ_f is σ -finite if and only if $f(x) < \infty$ for all $x \in X$ and $\{x \in X \mid f(x) \neq 0\}$ is countable.

b) Set X = [0, 1] and define $f : X \to [0, \infty)$ by f(x) = 1/n when $x = m/n \in \mathbb{Q} \cap [0, 1]$, while f(x) = 0 when $x \in [0, 1] \setminus \mathbb{Q}$.

(Here, we always use the standard representation of a rational number x given by x = m/n where $m \in \mathbb{Z}, n \in \mathbb{N}$ and m, n are relatively prime, i.e. 1 is their only common divisor in \mathbb{N}).

Check that μ_f is σ -finite, but not finite.