MAT3300/4300 - Fall 09 - Extra-exercise 1

Let X be a nonempty set and let $f: X \to [0, \infty]$. Define $\mu_f: \mathcal{P}(X) \to [0, \infty]$ by

$$\mu_f(A) = \sum_{x \in A} f(x) \,, \quad A \in \mathcal{P}(X) \,.$$

a) Show that μ_f is measure on $\mathcal{P}(X)$.

b) Set $X = \mathbb{R}$ and $f(x) = 1/x^2$ if $x \neq 0$, $f(0) = \infty$. Let $A \subset \mathbb{R}$ and $x \in X$. Find $\mu_f(A)$ in the following cases: $A = \{x\}$; $A = \mathbb{N}$; $A = \mathbb{Z}$; A = (0, 1].

Comment. It might not be obvious to everybody what we actually mean by the sum $\sum_{x \in A} f(x)$. The definition goes as follows :

If A is empty, we sum over nothing; so we set $\sum_{x \in A} f(x) := 0$ in this case. Assume from now on that A is non-empty.

If $f(x) = \infty$ for (at least one) $x \in A$, then the only reasonable value for the sum is ∞ , so we set $\sum_{x \in A} f(x) := \infty$ in this case.

Assume also from now on that $f(x) < \infty$ for all $x \in A$.

If A is finite, so we may enumerate $A = \{a_1, a_2, \dots, a_n\}$ (without repetitions), $\sum_{x \in A} f(x)$ has it obvious meaning, namely

$$\sum_{x \in A} f(x) := \sum_{i=1}^{n} f(a_i).$$

Finally, If A is infinite, then we set

$$\sum_{x \in A} f(x) := \sup\{\sum_{x \in B} f(x) \mid B \subset A, B \text{ finite}\}.$$

This means that $\sum_{x \in A} f(x) < \infty$ whenever the set of real numbers $\{\sum_{x \in B} f(x) | B \subset A, B \text{ finite} \} \subset [0, \infty)$ has an upper bound (in which case $\sum_{x \in A} f(x)$ is the least upper bound of this set), while $\sum_{x \in A} f(x) = \infty$ otherwise.

For example, in the special case when A is countably infinite, so we may enumerate $A = \{a_1, a_2, \ldots\}$ (without repetitions), one almost immediate sees that

$$\sum_{x \in A} f(x) = \sum_{i=1}^{\infty} f(a_i).$$

Remarks. Note that μ_f gives the counting measure on $\mathcal{P}(X)$ if one chooses f = 1, that is, f(x) = 1 for all $x \in X$.

If $x_0 \in X$ and we set $f = 1_{\{x_0\}}$, we then get a measure which is usually denoted by δ_{x_0} and called the *Dirac measure* on $\mathcal{P}(X)$. It satisfies:

$$\delta_{x_0}(A) = 1$$
 if $x_0 \in A$, while $\delta_{x_0}(A) = 0$ if $x_0 \notin A$.

Note also that if \mathcal{A} is a σ -algebra in X, then we may always restrict μ_f to \mathcal{A} and thereby obtain a measure on \mathcal{A} . This means that there are always exist many such measures on \mathcal{A} . However, we will see later on that there are usually many other measures on \mathcal{A} which are not given by this procedure.