MAT4300 - Fall 09 - Old exams, set 2.

Notation : we recall that if $\mathcal{B} = \mathcal{B}(\mathbb{R})$ denotes the σ -algebra of Borel subsets of \mathbb{R} , λ is the Lebesgue measure on \mathcal{B} and $E \in \mathcal{B}$, then \mathcal{B}_E denotes all Borel subsets of E and λ_E denotes the restriction of λ to \mathcal{B}_E .

Exercise 2, MAT4300, Fall 2006

Let μ be the counting measure on the σ -algebra $\mathcal{A} = \mathcal{P}(\mathbb{N})$. Set $\mathbb{J} = \{2n \mid n \in \mathbb{N}\}$ and define a measure ν on \mathcal{A} by

$$\nu(A) = \sum_{n \in A \cap \mathbb{J}} \frac{1}{n^2}.$$

a) Is $\mu \ll \nu$? Is $\nu \ll \mu$? Describe the Radon-Nykodym derivative when the answer is positive.

b) Find the Lebesgue decomposition of μ w. r. to ν .

Exercise 4, MAT4300, Fall 2006 and Exercise 4, Fall 2004 (both slightly reformulated).

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) denote σ -finite measure spaces and $\mu \times \nu$ denote the product measure on $\mathcal{C} = \mathcal{A} \otimes \mathcal{B}$.

Let $f \in \mathcal{M}^+(\mathcal{A}), g \in \mathcal{M}^+(\mathcal{B}).$

a) Consider the σ -finite measures $\mu_f = f \cdot \mu$ on \mathcal{A} and $\nu_g = g \cdot \nu$ on \mathcal{B} , and the associated product measure $\mu_f \times \nu_q$ on \mathcal{C} .

Define $F: X \times Y \to \mathbb{R}$ by F(x, y) = f(x) g(y). Show that $F \in \mathcal{M}^+(\mathcal{C})$ and $\mu_f \times \nu_g = F \cdot (\mu \times \nu)$.

b) Assume that $(Y, \mathcal{B}, \nu) = ([0, \infty), \mathcal{B}_{[0,\infty)}, \lambda_{[0,\infty)})$. Show that

$$\int f^2 d\mu = \int 2y \, \mu(\{f \ge y\}) \, d\lambda_{[0,\infty)}(y)$$

Hint: Consider the function $H \in \mathcal{M}^+(\mathcal{C})$ given by $H(x,y) = 2y \mathbf{1}_{[0,f(x)]}(y)$ $(= 2y \mathbf{1}_E(x,y)$ where $E = \{(x,y) \in X \times [0,\infty) \mid 0 \le y \le f(x)\} \in \mathcal{C}).$ Then integrate H w. r. to $\mu \times \lambda_{[0,\infty)}$. c) Assume now that $(Y, \mathcal{B}, \nu) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$. Define $G : X \times \mathbb{R} \to \mathbb{R}$ by $G(x, y) = f(x)y - y^2$. Let $A \in \mathcal{A}$ and set $B = \{(x, y) \in X \times \mathbb{R} \mid 0 \le y \le f(x), x \in A\} \in \mathcal{C}$. Note that $G \ge 0$ on B. Show that

$$\int_B G d(\mu \times \lambda) = \frac{1}{6} \int_A f(x)^3 d\mu(x) \,.$$

Exercise 2, MAT4300, Fall 2005 (slightly reformulated)

Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \mathbf{1}_{(n,n+1)}$. a) Is $f \in \mathcal{L}^1(\lambda)$? Does the improper Riemann-integral $\int_0^{\infty} f(x) dx$ converges?

- b) Set $g(x,y) = x f(x) e^{-xy}$, $(x,y) \in \mathbb{R}^2$. Find g^+ and g^- .
- c) Is $g \in \mathcal{L}^1(\lambda \times \lambda)$? Set $E = [1, \infty) \times [1, \infty)$. Is $1_E g \in \mathcal{L}^1(\lambda \times \lambda)$?