MAT4300 - Fall 09 - Old exams, set 3.

Notation : we let $\mathcal{B} = \mathcal{B}(\mathbb{R})$ denote the σ -algebra of Borel subsets of \mathbb{R} and λ the Lebesgue measure on \mathcal{B} . If $E \in \mathcal{B}$, then \mathcal{B}_E denotes all Borel subsets of E and λ_E denotes the restriction of λ to \mathcal{B}_E .

Exercise 1, MAT254, Spring 1998

Let $f \in \mathcal{L}^1(\lambda)$.

a) Show that

$$\lim_{n \to \infty} \int f(x) e^{-n x^2} d\lambda(x) = 0.$$

b) Show that

$$\lim_{n \to \infty} \int f(x) e^{-\frac{1}{n}x^2} d\lambda(x) = \int f d\lambda.$$

Exercise 1, MAT254, Spring 2000

Set $\mu = \lambda_{[0,\infty)}$. Compute

$$\lim_{n \to \infty} \int e^{-\left(\frac{x^2 y^2}{n} + x + y\right)} d(\mu \times \mu)(x, y) \, .$$

Exercise 3, MAT254, Spring 2004

Let (X, \mathcal{A}, μ) be a probability space. Consider the following inequality :

(*)
$$e^{\int f d\mu} \leq \int e^{f(x)} d\mu(x).$$

- a) Show that (*) holds for all $f \in \mathcal{E}(\mathcal{A})$.
- b) Show that (*) holds for all f in $\mathcal{M}(A)$ which are bounded.