Solution to: MAT4300 Mandatory Assignment, Fall 2010

a) We use induction on the number of sets. The condition is obviously satisfied for $n=1$ and $n=2$, and if it holds for $n=k$, the following argument shows that it holds for $n=k+1$:

$$
A_{1} \cup A_{2} \cup \ldots \cup A_{k+1}=\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right) \cup A_{k+1} \in \mathcal{A}
$$

since $A_{1} \cup A_{2} \cup \ldots \cup A_{k}$ is in \mathcal{A} by the induction hypothesis, and the union of two sets in \mathcal{A} is in \mathcal{A} by property (iii).
b) By De Morgan's laws, $A \cap B=\left(A^{c} \cup B^{c}\right)^{c}$ which is in \mathcal{A} since \mathcal{A} is closd under complements and finite unions. Since $A \backslash B=A \cap B^{c}$, it follows that $A \backslash B \in \mathcal{A}$
c) Call a set cofinite if it has finite complement. We check the three conditions:
(i) $\emptyset \in \mathcal{B}$ since it is finite.
b) If A is finite, A^{c} is cofinite, and if A is cofinite, A^{c} is finite. In either case, $A^{c} \in \mathcal{B}$.
c) If both A and B are finite, then $A \cup B$ is finite, and hence in \mathcal{A}. If one of the sets A, B is cofinite, so is the (even bigger) set $A \cup B$, and hence $A \cup B \in \mathcal{B}$.
d) Any subset C of \mathbb{N} is countable, and hence the countable union of singletons (sets with only one element). Since the singletons are in $\mathcal{B}, C \in \sigma(\mathcal{B})$. This means that $\sigma(\mathcal{B})=\mathcal{P}(\mathbb{N})$, the set of all subsets of \mathbb{N}.
e) We prove this by induction on the number of sets. The condition obviously holds for $n=1$ and $n=2$, and if it holds for $n=k$, the following argument shows that it holds for $n=k+1$:

$$
\begin{gathered}
\mu\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k+1}\right)=\mu\left(\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right) \cup A_{k+1}\right)= \\
=\mu\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right)+\mu\left(A_{k+1}\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}\right)+\cdots+\mu\left(A_{k}\right)+\mu\left(A_{k+1}\right)
\end{gathered}
$$

where we first used property (ii) and then the induction hypothesis.
f) Since \emptyset is finite, $\nu(\emptyset)=0$, and hence it suffices to prove that $\nu(A \cup B)=$ $\nu(A)+\nu(B)$ for all disjoint $A, B \in \mathcal{B}$. Since two cofinite sets can not be disjoint, it suffices to look at the cases where one or both of the sets A and B are finite. If both the sets are finite, so is $A \cup B$, and hence $\nu(A \cup B)=0$ and $\nu(A)+\nu(B)=0+0=0$. If one of the sets is finite and the other is cofinite, then $A \cup B$ is cofinite, and hence $\nu(A \cup B)=1$ and $\nu(A)+\nu(B)=1+0=1$.
g) No. Assume μ is such an extension, then

$$
1=\mu(\mathbb{N})=\mu\left(\bigcup_{n \in \mathbb{N}}\{n\}\right)=\sum_{n \in \mathbb{N}} \mu(\{n\})=\sum_{n \in \mathbb{N}} 0=0
$$

Comment: Some have attempted to solve this problem by showing that the conditions of Caratheodory's Extension Theorem is not satisfied. In general, this is not a good strategy - the conclusion of a theorem may hold even if the conditions fail!
h) Define

$$
f(n)= \begin{cases}\frac{1}{n} & \text { if } n \text { is odd } \\ 0 & \text { if } n \text { is even }\end{cases}
$$

Then $f^{-1}((-\infty, \alpha))$ is empty if $\alpha \leq 0$ and cofinite if $\alpha>0$, and hence in \mathcal{B} in both cases. However, $f^{-1}((-\infty, 0])$ is the set of even numbers which is not in \mathcal{B}.
i) Let $f=\sum_{i=1}^{n} a_{i} \mathbf{1}_{A_{i}}$ and $g=\sum_{j=1}^{m} b_{j} \mathbf{1}_{B_{j}}$ where we assume that $X=$ $\bigcup_{i=1}^{n} A_{i}=\bigcup_{j=1}^{m} B_{j}$. Then $f=\sum_{i, j} a_{i} \mathbf{1}_{A_{i} \cap B_{j}}$ and $g=\sum_{i, j} b_{j} \mathbf{1}_{A_{i} \cap B_{j}}$ are also simple function representations of f and g. If $A_{i} \cap B_{j} \neq \emptyset$, we must have $a_{i} \leq b_{j}$ since $f \leq g$, and hence

$$
I(f)=\sum_{i, j} a_{i} \mu\left(A_{i} \cap B_{j}\right) \leq \sum_{i, j} b_{j} \mu\left(A_{i} \cap B_{j}\right)=I(g)
$$

j) From i) we see that

$$
\begin{gathered}
\int f d \mu=\inf \{I(g) \mid g \text { is a simple function } f \leq g\}=I(f) \\
\underline{\int} f d \mu=\sup \{I(g) \mid g \text { is a simple function } 0 \leq g \leq f\}=I(f)
\end{gathered}
$$

since f is a simple function in the sets we are taking inf and sup over. Hence f is integrable, and $\int f d \mu=I(f)$.
k) For all $N \in \mathbb{N}$, the function $f=\mathbf{1}_{\{1,2, \ldots, n-1\}}+\frac{1}{n} \mathbf{1}_{\{n, n+1 \ldots\}}$ is a step function majorizing h, and

$$
I(f)=1 \cdot \nu(\{1,2, \ldots, n-1\})+\frac{1}{n} \nu(\{n . n+1, \ldots\})=0+\frac{1}{n}=\frac{1}{n}
$$

This means that $\bar{\int} h d \nu \leq 0$. On the other hand, the constant function $g \equiv 0$ is a lower approximation to h, and since $I(g)=0, \underline{\int} h d \nu \geq 0$. Since we always have $\underline{\int} h d \mu \leq \bar{\int} h d \nu$, this means that h is integrable and $\int h d \nu=0$.

Comment: Some try to use Beppo Levi's Theorem here, but we have only proved the theorem for countably additive measures, and here we are in a finitely additive situation.

1) Obviously, $Y=\bigcup_{n \in \mathbb{N}} f^{-1}\left(\left(\frac{1}{n}, \infty\right)\right)$, and by continuity of measures,

$$
\lim _{n \rightarrow \infty} \lambda\left(f^{-1}\left(\left(\frac{1}{n}, \infty\right)\right)\right)=\lambda(Y)>0
$$

Hence there must be an n such that $\alpha:=\lambda\left(f^{-1}\left(\left(\frac{1}{n}, \infty\right)\right)\right)>0$. But then $g=\frac{1}{n} \mathbf{1}_{\left\{f^{-1}\left(\left(\frac{1}{n}, \infty\right)\right)\right\}}$ is a step function majorized by f, and thus

$$
\left.\int f d \lambda \geq \int g d \lambda\right)=\frac{1}{n} \lambda\left(f^{-1}\left(\left(\frac{1}{n}, \infty\right)\right)\right)=\frac{1}{n} \alpha>0
$$

