Solution to: MAT4300 Mandatory Assignment, Fall 2010

a) We use induction on the number of sets. The condition is obviously satisfied
for n = 1 and n = 2, and if it holds for n = k, the following argument shows
that it holds for n = k + 1:

AjUAU . UAg1 = (A1 UA UL UA)UAg 1 €A

since A1 U Ay U...U Ag is in A by the induction hypothesis, and the union of
two sets in A is in A by property (iii).

b) By De Morgan’s laws, AN B = (A° U B¢)¢ which is in A since A is closd
under complements and finite unions. Since A\ B = AN B¢, it follows that

A\Be A

c) Call a set cofinite if it has finite complement. We check the three conditions:
(i) @ € B since it is finite.

b) If A is finite, A€ is cofinite, and if A is cofinite, A€ is finite. In either case,
A€ e B.

¢) If both A and B are finite, then A U B is finite, and hence in A. If one
of the sets A, B is cofinite, so is the (even bigger) set A U B, and hence
AUB € B.

d) Any subset C of N is countable, and hence the countable union of singletons
(sets with only one element). Since the singletons are in B, C' € o(B). This
means that o(B) = P(N), the set of all subsets of N.

e) We prove this by induction on the number of sets. The condition obviously
holds for n = 1 and n = 2, and if it holds for n = k, the following argument
shows that it holds for n = k + 1:

/,L(AlLJAQU...UAk_H):/.L((AlLJAgU...UAk)UAk_,_l):

= (A1 UA2 U U Ag) + p(Ags1) = p(Ar) + p(A2) + - + p(Ak) + p(Ak1)
where we first used property (ii) and then the induction hypothesis.

f) Since § is finite, ¥() = 0, and hence it suffices to prove that v(AU B) =
v(A) + v(B) for all disjoint A, B € B. Since two cofinite sets can not be dis-
joint, it suffices to look at the cases where one or both of the sets A and B
are finite. If both the sets are finite, so is AU B, and hence v(AU B) = 0
and v(A) + v(B) =0+ 0 = 0. If one of the sets is finite and the other is cofi-
nite, then AUB is cofinite, and hence v(AUB) = 1 and v(A)+v(B) =140 = 1.



g) No. Assume p is such an extension, then

1=M(N):H<U{”}> => u({n})=>0=0

neN neN neN

Comment: Some have attempted to solve this problem by showing that the
conditions of Caratheodory’s Extension Theorem is not satisfied. In general,
this is not a good strategy — the conclusion of a theorem may hold even if the
conditions fail!

h) Define
% if nis odd
f(n) =

0 ifniseven

Then f~1((—o0,q)) is empty if @ < 0 and cofinite if o > 0, and hence in B in
both cases. However, f~1((—oc,0]) is the set of even numbers which is not in B.

i) Let f = > a;1a, and g = 3770, bj1p, where we assume that X =

Uizt 4i = Uj, Bj. Then f =37, iaila,np, and g = >, ibj1a,np, are also
simple function representations of f and g. If A;NB; # (), we must have a; < b;
since f < g, and hence

I(f) = ZaiU(Ai NBj) < ijH(Ai N B;) = 1(g)

(2% 2%

j) From i) we see that
/f dp = inf{I(g) | g is a simple function f < g} = I(f)

/fdu =sup{I(g) | g is a simple function 0 < g < f} = I(f)

since f is a simple function in the sets we are taking inf and sup over. Hence f
is integrable, and [ fdp = I(f).

k) For all N € N, the function f = 1715 . -1} + %l{nmﬂ___} is a step function
majorizing h, and

I(f):1-1/({1,2,...,77,—1})4—%1/({71.714—1,...}):O‘f‘ﬁ:%

This means that Th dv < 0. On the other hand, the constant function g = 0
is a lower approximation to h, and since I(g) =0, [hdv > 0. Since we always

have [hdu < Th dv, this means that h is integrable and [ hdv = 0.



Comment: Some try to use Beppo Levi’s Theorem here, but we have only
proved the theorem for countably additive measures, and here we are in a finitely
additive situation.

1) Obviously, Y = U,,cn ffl((%, 00)), and by continuity of measures,

n— oo

i A (7100 ) = AY) >0

Hence there must be an n such that o := A (f7'((1,00))) > 0. But then

n’

g= %1“71((;’00))} is a step function majorized by f, and thus

[rarz [gan = (f-l((i,oo») ~Laso

n



