1 Prologue.
Solutions to Problems 1.1-1.2

Problem 1.1 Name the figures on the left and right Figure 1 and Figure 2,
respectively. Figure 1 is a triangle but Figure 2 is a (convex) quadran-
gle: the ‘hypotenuse’ has a kink. This is easily seen by comparing in
Figure 2 the slopes of the small triangle in the lower left (it is 2/5) and

the larger triangle on top (it is 3/8 # 2/5).

Problem 1.2 We have to calculate the area of an isosceles triangle of side-
length 7, base b, height h and opening angle ¢ := 27/27. From elemen-
tary geometry we know that

¢ _h in® b
cos 3 =7 and sin§ =

so that
. 1 2 b b r?
area (triangle) = 5 hb = r”cos §sin § = B sing.
Since we have limg_,g % =1 we find
area (circle) = lim 2/ — sin 27
j—oo 2
i 21
sin £%
= 27”271' hm TQJ
J—00 %9
= 2r’r

just as we had expected.



2 The pleasures of counting.
Solutions to Problems 2.1-2.21

Problem 2.1 (i) We have

r€A\B < x€Aandx ¢ B
& x € Aand z € B
— rxe€ AN B°.

(ii) Using (i) and de Morgan’s laws (*) yields
A\ B\ CZ(ANBYNC = AnB°NCe
—ANBNC)E AN(BUC) = A\ (BUC).
(iii) Using (i), de Morgan’s laws (*) and the fact that (C°)¢ = C gives
A\B\C)ZAn BNy

@AQ(BCUC)
=(ANBY)U(ANC)

DA\ B)yUANO).
(iv) Using (i) and de Morgan’s laws (*) gives
ABNOYLAn(BNO)
Q AnBeUC)
=(ANB)U(ANCY)
()
= (A\B)U(A\C)
(v) Using (i) and de Morgan’s laws (*) gives
ABUuA)EAn(BUO)
O An(Bence
=ANB‘NCe
=ANB‘NANC*

DA\ Byu4\0)
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Problem 2.2 Observe, first of all, that
A\C C (A\B)U(B\C). (%)
This follows easily from
A\C=(A\O)nX
=(ANC°)N(BUB°
=(ANC°NB)U(ANC°N B
C(BNC°)U (AN B°)
= (B\C)U(4\ B).
Using this and the analogous formula for C'\ A then gives
(AUBUC)\ (AnBNC(C)

= (AuBUC)N(ANBNCQO)°
= [AN(ANBNC)Y]U[BN(ANBNC)|UCN(ANBNC)
= [A\N(ANBNO)JU[B\(ANBNO)UI[C\(ANnBNC)
= [A\(BNC)U[B\(ANC)U[C\ (AN B)]

LY (AN B)UA\C)U(B\AU(B\C)U(C\A)U(C\ B)
Y (A\B)U(B\A)U(B\C)U(C\ B)
= (AAB)U(BACQ)

Problem 2.3 It is clearly enough to prove (2.3) as (2.2) follows if I contains
2 points. De Morgan’s identities state that for any index set I (finite,
countable or not countable) and any collection of subsets A; C X,
1 € I, we have

(a) (UA) :ﬂAg and  (b) (ﬂA) :UA;.

In order to see (a) we note that

a€ (UAZ)C = a¢|JA

iel el
<~ Viel :adg A
— Viel : ae A
= ac()AS

iel
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and (b) follows from

a?—zﬂAi

i€l
digel : ag A,
dige I : aGAfo

ac| As

i€l

a€ <QA)

[

Problem 2.4 (i) The inclusion f(AN B) C f(A) N f(B) is always true

since ANB C Aand ANB C B imply that f(ANB) C f(A) and
f(ANB) C f(B), respectively. Thus, f(ANB) C f(A)N f(B).
Furthermore, y € f(A) \ f(B) means that there is some z € A
but © ¢ B such that y = f(x), that is: y € f(A\ B). Thus,
A\ f(B) C f(A\ B).

To see that the converse inclusions cannot hold we consider some
non injective f. Take X = [0,2], A = (0,1), B = (1,2), and
f:10,2] - R with  — f(x) = ¢ (c is some constant). Then f is
not injective and

0=fO) =r((0,1)N(1,2)) # f((0,1)) U f((1,2)) = {c}.

Moreover, f(X) = f(B) = {c} = f(X\ B) but f(X)\ f(B) = 0.
Recall, first of all, the definition of f~* for a map f: X — Y and
BCY

fY(B)={reX : f(z) € B}.

Observe that

z € [T UiesCi) <= f(z) € UiesC;
<~ Jigel : f(zx) € C;
< Jigel : xze€ f1(Cy)
— z € Uierf (),

and
z € [T (MierCy) <= f(x) € NiesCs
— Viel: f(z)eC;
= Viel:ze f 1)
< T € ﬂie[f_1<ci),
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and, finally,

r€f Y (C\D) < f(z)eC\D
< f(r) e C and f(z)¢D
< ze€fH(C) and x¢ f (D)
= z € [THO)\ [THD).

Problem 2.5
(i), (vi) For every x we have
laynp(z) =1 < € ANB

< x€A reB
< 1u(z)=1=1p(2)
=

{1,4(3;) () =1
min{1l4(z),15(z)} =1

(ii), (v) For every x we have

laup(z) =1 < € AUB
<~ rvc€AorxzeB
g 1A($)—|—1B(Z‘)>1

{min{lA(x) +1p(2), 1k =1
max{1a(z),15(z)} =1

(iii) Since A = (AN B)W(A\ B) we see that 14np(x) + La\p(z) can
never have the value 2, thus part (ii) implies

14(z) = LanByuap) (@) = min{lanp(z) + 1ap(z), 1}
= 1np(z) + Lo\ p(2)
and all we have to do is to subtract 14~5(z) on both sides of the
equation.
(iv) With the same argument that we used in (iii) and with the result
of (iii) we get
1au(7) = 1(a\B)uanB)uB\4)(T)

= 1ap(x) + Lanp(z) + 1pa(2)
=14(2) — Lanp(x) + 1anp(x) + 1p(x) — Lanp(x)
=14(z) + 1p(x) — Lanp(zx).
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Problem 2.6 (i) Using 2.5(iii), (iv) we see that

1aas(r) = 1a\n) us\a) ()
= 1as(z) + 1p ()
= 14(z) — 1anp(z) + 1p(z) — Lanp(x)
=14(z) + 1p(x) — 21 anp(2)

and this expression is 1 if, and only if, = is either in A or B but
not in both sets. Thus

lanp(x) <= 1la(x)+1p(x) =1 <= 14(x)+1p(z)mod2 = 1.
It is also possible to show that
laap=|1a—1p|
This follows from
0, if € AN B;
1a() — 1p(z) = 0, if z € A°Nn B¢

+1, if x € A\ B;
-1, if xe B\ A.

Thus,
|1a(z) —1p(z)|=1 <= 2€ (A\B)U(B\A)=AAB.
(ii) From part (i) we see that

lyanacy=1la+1pac —214lpac
=14+ 1p+1c—2151c —214(15 + 1¢ — 2151¢)
1yt 15410 — 21510 — 21415 — 21410 + 4141510

and this expression treats A, B, C' in a completely symmetric way,
ie.
lanmwac)=luapac
(iii) Step 1: (P(X), A, D) is an abelian group.
Neutral element: AAQ)=0A A= A;
Inverse element: AA A= (A\A)U(A\ A) =0, i.e. each element

1s 1ts own inverse.

Associativity: see part (ii);
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Commutativity: AAB =B A A.

Step 2: For the multiplication N we have
Associativity: AN (BNC)=(ANB)NC,
Commutativity: AN B = BN A,
One-element: ANX =XNA=A.

Step 3: Distributive law:
AN(BAC)=(ANB)A(ANC).

For this we use again indicator functions and the rules from (i)
and Problem 2.5:

lanBac) = lalpac =14(1p+1¢ mod 2)
= [14(1p +1¢)] mod 2
= [1a1lp+141¢] mod 2
= [14np + 1anc] mod 2

= 1(anB) & (AnC)-

Problem 2.7 Let f: X — Y. One has

f surjective <= VBCY : fof'(B)=B
< VBCY : fofB)DB.

This can be seen as follows: by definition f~(B) = {z : f(x) € B} so
that

fof7(B)=f({z : flz) € B}) ={f(z) : flx) € B} C{y:y€ B}

and we have equality in the last step if, and only if, we can guarantee
that every y € B is of the form y = f(x) for some z. Since this must
hold for all sets B, this amounts to saying that f(X) =Y, i.e. that f
is surjective. The second equivalence is clear since our argument shows
that the inclusion ‘C’ always holds.

Thus, we can construct a counterexample by setting f : R — R, f(z) :=
2? and B = [—1,1]. Then

FH=11) =[0,1] and fo f7H([-1,1]) = f([0,1]) = [0,1] & [-1,1].



8 Schilling: Measures, Integrals € Martingales

On the other hand

[ injective <= VAC X : flof(A)=A
— VACX : flof(A) CA.

To see this we observe that because of the definition of f~!

flof(Ay={z: fla) e f(A)} D {z : ze A} =4 (*)

since x € A always entails f(z) € f(A). The reverse is, for non-
injective f, wrong since then there might be some xy € A but with
f(xo) = f(z) € f(A) i.e. ;g € f~1o f(A)\ A. This means that we have
equality in (x) if, and only if, f is injective. The second equivalence is
clear since our argument shows that the inclusion ‘D’ always holds.

Thus, we can construct a counterexample by setting f : R — R, f = 1.
Then

£([0,1]) = {1} and f~'o f([0,1]) = f'({1}) =R 2 [0,1].

Problem 2.8 Assume that for x,y we have f o g(x) = f o g(y). Since f is
injective, we conclude that

flg(x)) = flg(y)) = g(z) = g(y),

and, since ¢ is also injective,

showing that f o g is injective.

Problem 2.9 e Call the set of odd numbers O. Every odd number is of
the form 2k — 1 where £ € N. We are done, if we can show that
themap f: N — O, k — 2k —1 is bijective. Surjectivity is clear as
f(N) = O. For injectivity we take i,j € N such that f(i) = f(j).
The latter means that 20 — 1 =25 — 1, so ¢ = 7, i.e. injectivity.

e The quickest solution is to observe that NxZ = Nx NUNx {0} U
N x (=N) where —N := {—n : n € N} are the strictly negative
integers. We know from Example 2.5(iv) that N x N is countable.
Moreover, the map 5 : N x N — N x (=N), 5((i,k)) = (i, —k) is
bijective, thus #N x (—N) = #N x N is also countable and so is
N x {0} since v: N — N x {0}, y(n) := (n,0) is also bijective.
Therefore, N x Z is a union of three countable sets, hence count-

able.
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An alternative approach would be to write out Z x N (the swap of
Z and N is for notational reasons—since the map 3((j, k)) := (k, j)
from Z x N to N x Z is bijective, the cardinality does not change)
in the following form

O U W N~
— — N

NN SN AN AN T
|
LW Lo Lo W W W

and going through the array, starting with (0,1), then (1,1) —
(1,2) — (0,2) — (=1,2) — (—1,1), then (2,1) — (2,2) —
(2,3) — (1,3) — ... in clockwise oriented | J-shapes down, left,
up.

e In Example 2.5(iv) we have shown that #Q < #N. Since N C Q,
we have a canonical injection j: N — Q, 7 — ¢ so that #N < #Q.
Using Theorem 2.7 we conclude that #Q = #N.

The proof of #(N x N) = #N can be easily adapted—using some
pretty obvious notational changes—to show that the Cartesian
product of any two countable sets of cardinality #N has again
cardinality #N. Applying this m—1 times we see that #Q" = #N.

e J,,en Q™ is a countable union of countable sets, hence countable,

cf. Theorem 2.6.

Problem 2.10 Following the hint it is clear that 5 : N — Nx {1}, — (i,1)
is a bijection and that 7 : Nx {1} — NxN, (¢,1) — (4, 1) is an injection.
Thus, #N < #(N x N).

On the other hand, N x N = J;.y N x {j} which is a countable union
of countable sets, thus #(N x N) < #N.

Applying Theorem 2.7 finally gives #(N x N) = #N.

Problem 2.11 Since F C F the map j: E — F,e + e is an injection, thus
#L < #F.

Problem 2.12 Assume that the set {0, 1}N were indeed countable and that
{s;}jen was an enumeration: each s; would be a sequence of the form
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(&}, d5, 5, ..., dL, ...) with &l € {0,1}. We could write these sequences
in an infinite list of the form:

o = A db dd ... d
o= & EE .. &
5 = & & B P D
s = dbdb 4L
o = dF &5 &b

and produce a new 0-1-sequence S = (e, €, €3, ...) by setting

0, if dm=1
Em =
1, if d»=0

Since S differs from s, exactly at position ¢, S cannot be in the above
list, thus, the above list did not contain all 0-1-sequences, hence a
contradiction.

Problem 2.13 Consider the function f: (0,1) — R given by

1 1
Jw) = l—z
This function is obviously continuous and we have lim,_o f(z) = —o0

and lim, ., f(x) = +00. By the intermediate value theorem we have
therefore f((0,1)) = R, i.e. surjectivity.

1 . 1
(1—2)2 a2
that f is strictly increasing, hence injective, hence bijective.

Since f is also differentiable and f'(z) = > (0, we see

Problem 2.14 Since A; C [J;cy 4 it is clear that ¢ = #A; < # ;o 4)-
On the other hand, #A4; = ¢ means that we can map A; bijectively
onto R and, using Problem 2.13, we map R bijectively onto (0, 1) or
(j —1,7). This shows that # ey 47 < #U vl — 1,7) < #R =c.
Using Theorem 2.7 finishes the proof.

Problem 2.15 Since we can write each # € (0,1) as an infinite dyadic
fraction (o.k. if it is finite, fill it up with an infinite tail of zeroes !), the
proof of Theorem 2.8 shows that #(0, 1) < #{0, 1}N.



Chapter 2. Solutions 2.1-2.21. Last update: 12-Dec-05 11

On the other hand, thinking in base-4 expansions, each element of
{1,2}N can be interpreted as a unique base-4 fraction (having no 0 or
3 in its expansion) of some number in (0,1). Thus, #{1,2}N < #N.
But #{1,2}N = #{0,1}N and we conclude with Theorem 2.7 that
#(0,1) = #{0, 1}".

Problem 2.16 Just as before, expand = € (0,1) as an n-adic fraction, then

interpret each element of {1,2,...,n + 1}N as a unique (n + 1)-adic
expansion of a number in (0, 1) and observe that #{1,2,..., n+1}N =
{0,1,...,n}N.

Problem 2.17 Take a vector (z,y) € (0,1) x (0,1) and expand its coordi-
nate entries x, y as dyadic numbers:

= 0.212073 . .., y = 0.y192Y3 . . ..

Then z := 0.21y122Y223Y3 - . . is a number in (0, 1). Conversely, we can
‘zip” each z = 0.21222324 ... € (0,1) into two numbers x,y € (0,1) by
setting

r:=0.29242628 . . ., y:=0.21232527 . ..

This is obviously a bijective operation.

Since we have a bijection between (0,1) <> R it is clear that we have
also a bijection between (0,1) x (0,1) < R x R.

Problem 2.18 We have seen in Problem 2.18 that #{0, 1}N = #{1,2}N = .
Obviously, {1,2}N ¢ NN C RN and since we have a bijection between

(0,1) <> R one extends this (using coordinates) to a bijection between
(0,1)N «» RN. Using Theorem 2.9 we get

c=#{1 2}V <H#NV < H#R =,
and, because of Theorem 2.7 we have equality in the above formula.

Problem 2.19 Let F' € F with #F = n Then we can write F' as a tuple of
length n (having n pairwise different entries...) and therefore we can
interpret F' as an element of (J,, .y N™. In this sense, I — J,, o N"
and #3 < U,,en N™ = #N since countably many countable sets are
again countable. Since N C F we get #3F = #N by Theorem 2.7.

Alternative: Define a map ¢ : F — N by
FoA— ¢(A) = 22“

a€A
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. It is clear that ¢ increases if A gets bigger: A C B — ¢(A) <
¢(B). Let A, B € F be two finite sets, say A = {a,as,...,ay} and
{b1,bs,...,bn} (ordered according to size with a;,b; being the small-
est and ays, by the biggest) such that ¢(A) = ¢(B). Assume, to the
contrary, that A # B. If ay; # by, say ap; > by, then

ap—1

20 — ] .
B(A) > o({au)) > 2 > T s = 37
j=1

= ¢({1,2,3,...ap — 1})
> ¢(B),

which cannot be the case since we assumed ¢(A) = ¢(B). Thus, ay =
by. Now consider recursively the next elements, ay;—; and by_; and
the same conclusion yields their equality etc. The process stops after
min{ M, N} steps. But if M # N, say M > N, then A would contain
at least one more element than B, hence ¢(A) > ¢(B), which is also a
contradiction. This, finally shows that A = B, hence that ¢ is injective.

On the other hand, each natural number can be expressed in terms of
finite sums of powers of base-2, so that ¢ is also surjective.

Thus, #F = #N.

Problem 2.20 (Let F be as in the previous exercise.) Observe that the
infinite sets from P(N), J := P(N) \ F can be surjectively mapped
onto {0, 1}N: if {a;,as,a3,...} = A C N, then define an infinite 0-1-
sequence (b1, by, bs, . ..) by setting b; = 0 or b; = 1 according to whether
a; is even or odd. This is a surjection of P(N) onto {0,1}N and so
#P(N) > #{0,1}N. Call this map v and consider the family v~*(s),
s € {0,1}N in J, consisting of obviously disjoint infinite subsets of N
which lead to the same 0-1-sequence s. Now choose from each family
7~1(s) a representative, call it r(s) € J. Then the map s — r(s) is a
bijection between {0, 1}N and a subset of J, the set of all representatives.
Hence, J has at least the same cardinality as {0, 1}N and as such a bigger
cardinality than N.

Problem 2.21 Denote by © the map P(N) 3 A — 14 € {0,1}N. Let
§ = (dy,dg,ds,...) € {0,1}" and define A(d) := {j € N : d; = 1}.
Then § = (14¢5)(j));jen showing that © is surjective.

On the other hand,
This shows the injectivity of ©, and #P(N) = #{0, 1}V follows.



