1 Prologue. Solutions to Problems 1.1–1.2

- **Problem 1.1** Name the figures on the left and right *Figure 1* and *Figure 2*, respectively. Figure 1 is a triangle but Figure 2 is a (convex) quadrangle: the 'hypotenuse' has a kink. This is easily seen by comparing in Figure 2 the slopes of the small triangle in the lower left (it is 2/5) and the larger triangle on top (it is $3/8 \neq 2/5$).
- **Problem 1.2** We have to calculate the area of an isosceles triangle of sidelength r, base b, height h and opening angle $\phi := 2\pi/2^j$. From elementary geometry we know that

$$\cos\frac{\phi}{2} = \frac{h}{r}$$
 and $\sin\frac{\phi}{2} = \frac{b}{2r}$

so that

area (triangle) =
$$\frac{1}{2}hb = r^2 \cos \frac{\phi}{2} \sin \frac{\phi}{2} = \frac{r^2}{2} \sin \phi$$
.

Since we have $\lim_{\phi\to 0}\frac{\sin\phi}{\phi}=1$ we find

area (circle) =
$$\lim_{j \to \infty} 2^j \frac{r^2}{2} \sin \frac{2\pi}{2^j}$$

= $2r^2 \pi \lim_{j \to \infty} \frac{\sin \frac{2\pi}{2^j}}{\frac{2\pi}{2^j}}$
= $2r^2 \pi$

just as we had expected.

2 The pleasures of counting. Solutions to Problems 2.1–2.21

Problem 2.1 (i) We have

$$x \in A \setminus B \iff x \in A \text{ and } x \notin B$$
$$\iff x \in A \text{ and } x \in B^c$$
$$\iff x \in A \cap B^c.$$

(ii) Using (i) and de Morgan's laws (*) yields

$$(A \setminus B) \setminus C \stackrel{(i)}{=} (A \cap B^c) \cap C^c = A \cap B^c \cap C^c$$
$$= A \cap (B^c \cap C^c) \stackrel{(*)}{=} A \cap (B \cup C)^c = A \setminus (B \cup C).$$

(iii) Using (i), de Morgan's laws (*) and the fact that $(C^c)^c = C$ gives

$$A \setminus (B \setminus C) \stackrel{(1)}{=} A \cap (B \cap C^c)^c$$
$$\stackrel{(*)}{=} A \cap (B^c \cup C)$$
$$= (A \cap B^c) \cup (A \cap C)$$
$$\stackrel{(i)}{=} (A \setminus B) \cup (A \cap C).$$

(iv) Using (i) and de Morgan's laws (*) gives

$$A \setminus (B \cap C) \stackrel{(i)}{=} A \cap (B \cap C)^{c}$$
$$\stackrel{(*)}{=} A \cap (B^{c} \cup C^{c})$$
$$= (A \cap B^{c}) \cup (A \cap C^{c})$$
$$\stackrel{(i)}{=} (A \setminus B) \cup (A \setminus C)$$

(v) Using (i) and de Morgan's laws (*) gives

$$A \setminus (B \cup C) \stackrel{(i)}{=} A \cap (B \cup C)^{c}$$
$$\stackrel{(*)}{=} A \cap (B^{c} \cap C^{c})$$
$$= A \cap B^{c} \cap C^{c}$$
$$= A \cap B^{c} \cap A \cap C^{c}$$
$$\stackrel{(i)}{=} (A \setminus B) \cup (A \setminus C)$$

Problem 2.2 Observe, first of all, that

$$A \setminus C \subset (A \setminus B) \cup (B \setminus C). \tag{(*)}$$

This follows easily from

$$A \setminus C = (A \setminus C) \cap X$$

= $(A \cap C^c) \cap (B \cup B^c)$
= $(A \cap C^c \cap B) \cup (A \cap C^c \cap B^c)$
 $\subset (B \cap C^c) \cup (A \cap B^c)$
= $(B \setminus C) \cup (A \setminus B).$

Using this and the analogous formula for $C \setminus A$ then gives $(A \cup B \cup C) \setminus (A \cap B \cap C)$

$$= (A \cup B \cup C) \cap (A \cap B \cap C)^{c}$$

$$= [A \cap (A \cap B \cap C)^{c}] \cup [B \cap (A \cap B \cap C)^{c}] \cup [C \cap (A \cap B \cap C)^{c}]$$

$$= [A \setminus (A \cap B \cap C)] \cup [B \setminus (A \cap B \cap C)] \cup [C \setminus (A \cap B \cap C)]$$

$$= [A \setminus (B \cap C)] \cup [B \setminus (A \cap C)] \cup [C \setminus (A \cap B)]$$

$$\stackrel{(2.1(iv))}{=} (A \setminus B) \cup (A \setminus C) \cup (B \setminus A) \cup (B \setminus C) \cup (C \setminus A) \cup (C \setminus B)$$

$$\stackrel{(*)}{=} (A \setminus B) \cup (B \setminus A) \cup (B \setminus C) \cup (C \setminus B)$$

$$= (A \Delta B) \cup (B \Delta C)$$

Problem 2.3 It is clearly enough to prove (2.3) as (2.2) follows if I contains 2 points. De Morgan's identities state that for any index set I (finite, countable or not countable) and any collection of subsets $A_i \subset X$, $i \in I$, we have

(a)
$$\left(\bigcup_{i\in I} A_i\right)^c = \bigcap_{i\in I} A_i^c$$
 and (b) $\left(\bigcap_{i\in I} A_i\right)^c = \bigcup_{i\in I} A_i^c$.

In order to see (a) we note that

$$a \in \left(\bigcup_{i \in I} A_i\right)^c \iff a \notin \bigcup_{i \in I} A_i$$
$$\iff \forall i \in I : a \notin A_i$$
$$\iff \forall i \in I : a \in A_i^c$$
$$\iff a \in \bigcap_{i \in I} A_i^c,$$

and (b) follows from

$$a \in \left(\bigcap_{i \in I} A_i\right)^c \iff a \notin \bigcap_{i \in I} A_i$$
$$\iff \exists i_0 \in I : a \notin A_{i_0}$$
$$\iff \exists i_0 \in I : a \in A_{i_0}^c$$
$$\iff a \in \bigcup_{i \in I} A_i^c.$$

Problem 2.4 (i) The inclusion $f(A \cap B) \subset f(A) \cap f(B)$ is always true since $A \cap B \subset A$ and $A \cap B \subset B$ imply that $f(A \cap B) \subset f(A)$ and $f(A \cap B) \subset f(B)$, respectively. Thus, $f(A \cap B) \subset f(A) \cap f(B)$. Furthermore, $y \in f(A) \setminus f(B)$ means that there is some $x \in A$

Furthermore, $y \in f(A) \setminus f(B)$ means that there is some $x \in A$ but $x \notin B$ such that y = f(x), that is: $y \in f(A \setminus B)$. Thus, $f(A) \setminus f(B) \subset f(A \setminus B)$.

To see that the converse inclusions cannot hold we consider some non injective f. Take X = [0,2], A = (0,1), B = (1,2), and $f : [0,2] \to \mathbb{R}$ with $x \mapsto f(x) = c$ (c is some constant). Then f is not injective and

$$\emptyset = f(\emptyset) = f((0,1) \cap (1,2)) \neq f((0,1)) \cup f((1,2)) = \{c\}.$$

Moreover, $f(X) = f(B) = \{c\} = f(X \setminus B)$ but $f(X) \setminus f(B) = \emptyset$. (ii) Recall, first of all, the definition of f^{-1} for a map $f : X \to Y$ and

$$B \subset Y$$

$$f^{-1}(B) := \{ x \in X : f(x) \in B \}.$$

Observe that

$$x \in f^{-1}(\bigcup_{i \in I} C_i) \iff f(x) \in \bigcup_{i \in I} C_i$$
$$\iff \exists i_0 \in I : f(x) \in C_{i_0}$$
$$\iff \exists i_0 \in I : x \in f^{-1}(C_{i_0})$$
$$\iff x \in \bigcup_{i \in I} f^{-1}(C_i),$$

and

$$x \in f^{-1}(\bigcap_{i \in I} C_i) \iff f(x) \in \bigcap_{i \in I} C_i$$
$$\iff \forall i \in I : f(x) \in C_i$$
$$\iff \forall i \in I : x \in f^{-1}(C_i)$$
$$\iff x \in \bigcap_{i \in I} f^{-1}(C_i),$$

4

and, finally,

$$\begin{aligned} x \in f^{-1}(C \setminus D) & \iff f(x) \in C \setminus D \\ & \iff f(x) \in C \text{ and } f(x) \notin D \\ & \iff x \in f^{-1}(C) \text{ and } x \notin f^{-1}(D) \\ & \iff x \in f^{-1}(C) \setminus f^{-1}(D). \end{aligned}$$

Problem 2.5

(i), (vi) For every x we have

$$\mathbf{1}_{A\cap B}(x) = 1 \iff x \in A \cap B$$
$$\iff x \in A, \ x \in B$$
$$\iff \mathbf{1}_A(x) = 1 = \mathbf{1}_B(x)$$
$$\iff \begin{cases} \mathbf{1}_A(x) \cdot \mathbf{1}_B(x) = 1\\ \min\{\mathbf{1}_A(x), \mathbf{1}_B(x)\} = 1 \end{cases}$$

(ii), (v) For every x we have

$$\mathbf{1}_{A\cup B}(x) = 1 \iff x \in A \cup B$$
$$\iff x \in A \text{ or } x \in B$$
$$\iff \mathbf{1}_A(x) + \mathbf{1}_B(x) \ge 1$$
$$\iff \begin{cases} \min\{\mathbf{1}_A(x) + \mathbf{1}_B(x), 1\} = 1\\ \max\{\mathbf{1}_A(x), \mathbf{1}_B(x)\} = 1 \end{cases}$$

(iii) Since $A = (A \cap B) \cup (A \setminus B)$ we see that $\mathbf{1}_{A \cap B}(x) + \mathbf{1}_{A \setminus B}(x)$ can never have the value 2, thus part (ii) implies

$$\mathbf{1}_{A}(x) = \mathbf{1}_{(A \cap B) \cup (A \setminus B)}(x) = \min\{\mathbf{1}_{A \cap B}(x) + \mathbf{1}_{A \setminus B}(x), 1\}$$
$$= \mathbf{1}_{A \cap B}(x) + \mathbf{1}_{A \setminus B}(x)$$

and all we have to do is to subtract $\mathbf{1}_{A \cap B}(x)$ on both sides of the equation.

(iv) With the same argument that we used in (iii) and with the result of (iii) we get

$$\mathbf{1}_{A\cup B}(x) = \mathbf{1}_{(A\setminus B)\cup(A\cap B)\cup(B\setminus A)}(x)$$

= $\mathbf{1}_{A\setminus B}(x) + \mathbf{1}_{A\cap B}(x) + \mathbf{1}_{B\setminus A}(x)$
= $\mathbf{1}_{A}(x) - \mathbf{1}_{A\cap B}(x) + \mathbf{1}_{A\cap B}(x) + \mathbf{1}_{B}(x) - \mathbf{1}_{A\cap B}(x)$
= $\mathbf{1}_{A}(x) + \mathbf{1}_{B}(x) - \mathbf{1}_{A\cap B}(x).$

Problem 2.6 (i) Using 2.5(iii), (iv) we see that

$$\mathbf{1}_{A \triangle B}(x) = \mathbf{1}_{(A \setminus B) \cup (B \setminus A)}(x)$$

= $\mathbf{1}_{A \setminus B}(x) + \mathbf{1}_{B \setminus A}(x)$
= $\mathbf{1}_{A}(x) - \mathbf{1}_{A \cap B}(x) + \mathbf{1}_{B}(x) - \mathbf{1}_{A \cap B}(x)$
= $\mathbf{1}_{A}(x) + \mathbf{1}_{B}(x) - 2\mathbf{1}_{A \cap B}(x)$

and this expression is 1 if, and only if, x is either in A or B but not in both sets. Thus

$$\mathbf{1}_{A \bigtriangleup B}(x) \iff \mathbf{1}_{A}(x) + \mathbf{1}_{B}(x) = 1 \iff \mathbf{1}_{A}(x) + \mathbf{1}_{B}(x) \mod 2 = 1.$$

It is also possible to show that

$$\mathbf{1}_{A \bigtriangleup B} = |\mathbf{1}_A - \mathbf{1}_B|.$$

This follows from

$$\mathbf{1}_A(x) - \mathbf{1}_B(x) = \begin{cases} 0, & \text{if } x \in A \cap B; \\ 0, & \text{if } x \in A^c \cap B^c; \\ +1, & \text{if } x \in A \setminus B; \\ -1, & \text{if } x \in B \setminus A. \end{cases}$$

Thus,

$$|\mathbf{1}_A(x) - \mathbf{1}_B(x)| = 1 \iff x \in (A \setminus B) \cup (B \setminus A) = A \triangle B.$$

(ii) From part (i) we see that

$$\begin{aligned} \mathbf{1}_{A \triangle (B \triangle C)} &= \mathbf{1}_{A} + \mathbf{1}_{B \triangle C} - 2\mathbf{1}_{A}\mathbf{1}_{B \triangle C} \\ &= \mathbf{1}_{A} + \mathbf{1}_{B} + \mathbf{1}_{C} - 2\mathbf{1}_{B}\mathbf{1}_{C} - 2\mathbf{1}_{A}\left(\mathbf{1}_{B} + \mathbf{1}_{C} - 2\mathbf{1}_{B}\mathbf{1}_{C}\right) \\ &= \mathbf{1}_{A} + \mathbf{1}_{B} + \mathbf{1}_{C} - 2\mathbf{1}_{B}\mathbf{1}_{C} - 2\mathbf{1}_{A}\mathbf{1}_{B} - 2\mathbf{1}_{A}\mathbf{1}_{C} + 4\mathbf{1}_{A}\mathbf{1}_{B}\mathbf{1}_{C} \end{aligned}$$

and this expression treats A,B,C in a completely symmetric way, i.e.

$$\mathbf{1}_{A \bigtriangleup (B \bigtriangleup C)} = \mathbf{1}_{(A \bigtriangleup B) \bigtriangleup C}.$$

(iii) Step 1: (𝒫(𝑋), △, ∅) is an abelian group. Neutral element: 𝐴 △ ∅ = ∅ △ 𝐴 = 𝐴; Inverse element: 𝐴 △ 𝐴 = (𝐴 ∖ 𝐴) ∪ (𝐴 ∖ 𝐴) = ∅, i.e. each element is its own inverse. Associativity: see part (ii); Chapter 2. Solutions 2.1–2.21. Last update: 12-Dec-05

Commutativity: $A \triangle B = B \triangle A$.

Step 2: For the multiplication \cap we have Associativity: $A \cap (B \cap C) = (A \cap B) \cap C$; Commutativity: $A \cap B = B \cap A$; One-element: $A \cap X = X \cap A = A$.

Step 3: Distributive law:

$$A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C).$$

For this we use again indicator functions and the rules from (i) and Problem 2.5:

$$\mathbf{1}_{A\cap(B\,\triangle\,C)} = \mathbf{1}_A \mathbf{1}_{B\,\triangle\,C} = \mathbf{1}_A (\mathbf{1}_B + \mathbf{1}_C \mod 2)$$
$$= \begin{bmatrix} \mathbf{1}_A (\mathbf{1}_B + \mathbf{1}_C) \end{bmatrix} \mod 2$$
$$= \begin{bmatrix} \mathbf{1}_A \mathbf{1}_B + \mathbf{1}_A \mathbf{1}_C \end{bmatrix} \mod 2$$
$$= \begin{bmatrix} \mathbf{1}_{A\cap B} + \mathbf{1}_{A\cap C} \end{bmatrix} \mod 2$$
$$= \mathbf{1}_{(A\cap B)\,\triangle\,(A\cap C)}.$$

Problem 2.7 Let $f: X \to Y$. One has

$$f \text{ surjective } \iff \forall B \subset Y : f \circ f^{-1}(B) = B$$
$$\iff \forall B \subset Y : f \circ f^{-1}(B) \supset B.$$

This can be seen as follows: by definition $f^{-1}(B) = \{x \, : \, f(x) \in B\}$ so that

$$f \circ f^{-1}(B) = f(\{x : f(x) \in B\}) = \{f(x) : f(x) \in B\} \subset \{y : y \in B\}$$

and we have equality in the last step if, and only if, we can guarantee that every $y \in B$ is of the form y = f(x) for some x. Since this must hold for all sets B, this amounts to saying that f(X) = Y, i.e. that f is surjective. The second equivalence is clear since our argument shows that the inclusion ' \subset ' always holds.

Thus, we can construct a counterexample by setting $f : \mathbb{R} \to \mathbb{R}$, $f(x) := x^2$ and B = [-1, 1]. Then

$$f^{-1}([-1,1]) = [0,1]$$
 and $f \circ f^{-1}([-1,1]) = f([0,1]) = [0,1] \subsetneq [-1,1].$

On the other hand

$$f \text{ injective } \iff \forall A \subset X : f^{-1} \circ f(A) = A$$
$$\iff \forall A \subset X : f^{-1} \circ f(A) \subset A.$$

To see this we observe that because of the definition of f^{-1}

$$f^{-1} \circ f(A) = \{x : f(x) \in f(A)\} \supset \{x : x \in A\} = A \quad (*)$$

since $x \in A$ always entails $f(x) \in f(A)$. The reverse is, for noninjective f, wrong since then there might be some $x_0 \notin A$ but with $f(x_0) = f(x) \in f(A)$ i.e. $x_0 \in f^{-1} \circ f(A) \setminus A$. This means that we have equality in (*) if, and only if, f is injective. The second equivalence is clear since our argument shows that the inclusion ' \supset ' always holds.

Thus, we can construct a counterexample by setting $f : \mathbb{R} \to \mathbb{R}, f \equiv 1$. Then

$$f([0,1]) = \{1\}$$
 and $f^{-1} \circ f([0,1]) = f^{-1}(\{1\}) = \mathbb{R} \supseteq [0,1].$

Problem 2.8 Assume that for x, y we have $f \circ g(x) = f \circ g(y)$. Since f is injective, we conclude that

$$f(g(x)) = f(g(y)) \implies g(x) = g(y),$$

and, since g is also injective,

$$g(x) = g(y) \implies x = y$$

showing that $f \circ g$ is injective.

- **Problem 2.9** Call the set of odd numbers \mathcal{O} . Every odd number is of the form 2k 1 where $k \in \mathbb{N}$. We are done, if we can show that the map $f : \mathbb{N} \to \mathcal{O}, k \mapsto 2k 1$ is bijective. Surjectivity is clear as $f(\mathbb{N}) = \mathcal{O}$. For injectivity we take $i, j \in \mathbb{N}$ such that f(i) = f(j). The latter means that 2i 1 = 2j 1, so i = j, i.e. injectivity.
 - The quickest solution is to observe that N×Z = N×N∪N×{0}∪ N×(-N) where -N := {-n : n ∈ N} are the strictly negative integers. We know from Example 2.5(iv) that N×N is countable. Moreover, the map β : N×N → N×(-N), β((i,k)) = (i,-k) is bijective, thus #N×(-N) = #N×N is also countable and so is N×{0} since γ : N → N×{0}, γ(n) := (n,0) is also bijective. Therefore, N×Z is a union of three countable sets, hence countable.

An alternative approach would be to write out $\mathbb{Z} \times \mathbb{N}$ (the swap of \mathbb{Z} and \mathbb{N} is for notational reasons—since the map $\beta((j, k)) := (k, j)$ from $\mathbb{Z} \times \mathbb{N}$ to $\mathbb{N} \times \mathbb{Z}$ is bijective, the cardinality does not change) in the following form

 (-3, 1)	(-2, 1)	(-1, 1)	(0, 1)	(1, 1)	(2, 1)	(3, 1)	
 (-3, 2)	(-2, 2)	(-1, 2)	(0, 2)	(1, 2)	(2, 2)	(3, 2)	
 (-3, 3)	(-2,3)	(-1, 3)	(0,3)	(1, 3)	(2, 3)	(3,3)	
 (-3, 4)	(-2, 4)	(-1, 4)	(0, 4)	(1, 4)	(2, 4)	(3, 4)	
 (-3, 5)	(-2,5)	(-1,5)	(0, 5)	(1, 5)	(2, 5)	(3, 5)	
 (-3, 6)	(-2, 6)	(-1, 6)	(0, 6)	(1, 6)	(2, 6)	(3, 6)	
:	:	:	:	:	:	:	
•	•	•	•	•	•	•	

and going through the array, starting with (0,1), then $(1,1) \rightarrow (1,2) \rightarrow (0,2) \rightarrow (-1,2) \rightarrow (-1,1)$, then $(2,1) \rightarrow (2,2) \rightarrow (2,3) \rightarrow (1,3) \rightarrow \dots$ in clockwise oriented \square -shapes down, left, up.

• In Example 2.5(iv) we have shown that $\#\mathbb{Q} \leq \#\mathbb{N}$. Since $\mathbb{N} \subset \mathbb{Q}$, we have a canonical injection $j: \mathbb{N} \to \mathbb{Q}, i \mapsto i$ so that $\#\mathbb{N} \leq \#\mathbb{Q}$. Using Theorem 2.7 we conclude that $\#\mathbb{Q} = \#\mathbb{N}$.

The proof of $\#(\mathbb{N} \times \mathbb{N}) = \#\mathbb{N}$ can be easily adapted—using some pretty obvious notational changes—to show that the Cartesian product of any two countable sets of cardinality $\#\mathbb{N}$ has again cardinality $\#\mathbb{N}$. Applying this m-1 times we see that $\#\mathbb{Q}^n = \#\mathbb{N}$.

- $\bigcup_{m \in \mathbb{N}} \mathbb{Q}^m$ is a countable union of countable sets, hence countable, cf. Theorem 2.6.
- **Problem 2.10** Following the hint it is clear that $\beta : \mathbb{N} \to \mathbb{N} \times \{1\}, i \mapsto (i, 1)$ is a bijection and that $j : \mathbb{N} \times \{1\} \to \mathbb{N} \times \mathbb{N}, (i, 1) \mapsto (i, 1)$ is an injection. Thus, $\#\mathbb{N} \leq \#(\mathbb{N} \times \mathbb{N})$.

On the other hand, $\mathbb{N} \times \mathbb{N} = \bigcup_{j \in \mathbb{N}} \mathbb{N} \times \{j\}$ which is a countable union of countable sets, thus $\#(\mathbb{N} \times \mathbb{N}) \leqslant \#\mathbb{N}$.

Applying Theorem 2.7 finally gives $\#(\mathbb{N} \times \mathbb{N}) = \#\mathbb{N}$.

- **Problem 2.11** Since $E \subset F$ the map $j: E \to F, e \mapsto e$ is an injection, thus $\#E \leq \#F$.
- **Problem 2.12** Assume that the set $\{0,1\}^{\mathbb{N}}$ were indeed countable and that $\{s_j\}_{j\in\mathbb{N}}$ was an enumeration: each s_j would be a sequence of the form

 $(d_1^j, d_2^j, d_3^j, ..., d_k^j, ...)$ with $d_k^j \in \{0, 1\}$. We could write these sequences in an infinite list of the form:

s_1	=	d_1^1	d_2^1	d_3^1	d_4^1		d_k^1	
s_2	=	d_1^2	d_{2}^{2}	d_{3}^{2}	d_4^2		d_k^2	
s_3	=	d_{1}^{3}	d_{2}^{3}	d_{3}^{3}	d_4^3		d_k^3	
s_4	=	d_1^4	d_2^4	d_3^4	d_4^4		d_k^4	
÷	÷	÷	÷	÷	÷	۰.	÷	۰.
s_k	=	d_1^k	d_2^k	d_3^k	d_4^k		d_k^k	
÷	÷	÷	÷	÷	÷	۰.	÷	۰.

and produce a new 0-1-sequence $S = (e_1, e_2, e_3, ...)$ by setting

$$e_m := \begin{cases} 0, & \text{if } d_m^m = 1 \\ 1, & \text{if } d_m^m = 0 \end{cases}$$

Since S differs from s_{ℓ} exactly at position ℓ , S cannot be in the above list, thus, the above list did not contain all 0-1-sequences, hence a contradiction.

Problem 2.13 Consider the function $f: (0,1) \to \mathbb{R}$ given by

$$f(x) := \frac{1}{1-x} - \frac{1}{x}.$$

This function is obviously continuous and we have $\lim_{x\to 0} f(x) = -\infty$ and $\lim_{x\to 1} f(x) = +\infty$. By the intermediate value theorem we have therefore $f((0,1)) = \mathbb{R}$, i.e. surjectivity.

Since f is also differentiable and $f'(x) = \frac{1}{(1-x)^2} + \frac{1}{x^2} > 0$, we see that f is strictly increasing, hence injective, hence bijective.

- **Problem 2.14** Since $A_1 \subset \bigcup_{j \in \mathbb{N}} A_j$ it is clear that $\mathfrak{c} = \#A_1 \leqslant \# \bigcup_{j \in \mathbb{N}} A_j$. On the other hand, $\#A_j = \mathfrak{c}$ means that we can map A_j bijectively onto \mathbb{R} and, using Problem 2.13, we map \mathbb{R} bijectively onto (0,1) or (j-1,j). This shows that $\# \bigcup_{j \in \mathbb{N}} A_j \leqslant \# \bigcup_{j \in \mathbb{N}} (j-1,j) \leqslant \#\mathbb{R} = \mathfrak{c}$. Using Theorem 2.7 finishes the proof.
- **Problem 2.15** Since we can write each $x \in (0,1)$ as an infinite dyadic fraction (o.k. if it is finite, fill it up with an infinite tail of zeroes !), the proof of Theorem 2.8 shows that $\#(0,1) \leq \#\{0,1\}^{\mathbb{N}}$.

On the other hand, thinking in base-4 expansions, each element of $\{1,2\}^{\mathbb{N}}$ can be interpreted as a unique base-4 fraction (having no 0 or 3 in its expansion) of some number in (0,1). Thus, $\#\{1,2\}^{\mathbb{N}} \leq \#\mathbb{N}$.

But $\#\{1,2\}^{\mathbb{N}} = \#\{0,1\}^{\mathbb{N}}$ and we conclude with Theorem 2.7 that $\#(0,1) = \#\{0,1\}^{\mathbb{N}}$.

- **Problem 2.16** Just as before, expand $x \in (0, 1)$ as an *n*-adic fraction, then interpret each element of $\{1, 2, \ldots, n+1\}^{\mathbb{N}}$ as a unique (n+1)-adic expansion of a number in (0, 1) and observe that $\#\{1, 2, \ldots, n+1\}^{\mathbb{N}} = \{0, 1, \ldots, n\}^{\mathbb{N}}$.
- **Problem 2.17** Take a vector $(x, y) \in (0, 1) \times (0, 1)$ and expand its coordinate entries x, y as dyadic numbers:

$$x = 0.x_1 x_2 x_3 \dots, \qquad y = 0.y_1 y_2 y_3 \dots$$

Then $z := 0.x_1y_1x_2y_2x_3y_3...$ is a number in (0, 1). Conversely, we can 'zip' each $z = 0.z_1z_2z_3z_4... \in (0, 1)$ into two numbers $x, y \in (0, 1)$ by setting

$$x := 0.z_2 z_4 z_6 z_8 \dots, \qquad y := 0.z_1 z_3 z_5 z_7 \dots$$

This is obviously a bijective operation.

Since we have a bijection between $(0,1) \leftrightarrow \mathbb{R}$ it is clear that we have also a bijection between $(0,1) \times (0,1) \leftrightarrow \mathbb{R} \times \mathbb{R}$.

Problem 2.18 We have seen in Problem 2.18 that $\#\{0,1\}^{\mathbb{N}} = \#\{1,2\}^{\mathbb{N}} = \mathfrak{c}$. Obviously, $\{1,2\}^{\mathbb{N}} \subset \mathbb{N}^{\mathbb{N}} \subset \mathbb{R}^{\mathbb{N}}$ and since we have a bijection between $(0,1) \leftrightarrow \mathbb{R}$ one extends this (using coordinates) to a bijection between $(0,1)^{\mathbb{N}} \leftrightarrow \mathbb{R}^{\mathbb{N}}$. Using Theorem 2.9 we get

$$\mathfrak{c} = \#\{1,2\}^{\mathbb{N}} \leqslant \#\mathbb{N}^{\mathbb{N}} \leqslant \#\mathbb{R}^{\mathbb{N}} = \mathfrak{c},$$

and, because of Theorem 2.7 we have equality in the above formula.

Problem 2.19 Let $F \in \mathcal{F}$ with #F = n Then we can write F as a tuple of length n (having n pairwise different entries...) and therefore we can interpret F as an element of $\bigcup_{m \in \mathbb{N}} \mathbb{N}^m$. In this sense, $\mathcal{F} \hookrightarrow \bigcup_{m \in \mathbb{N}} \mathbb{N}^m$ and $\#\mathcal{F} \leqslant \bigcup_{m \in \mathbb{N}} \mathbb{N}^m = \#\mathbb{N}$ since countably many countable sets are again countable. Since $\mathbb{N} \subset \mathcal{F}$ we get $\#\mathcal{F} = \#\mathbb{N}$ by Theorem 2.7.

Alternative: Define a map $\phi : \mathfrak{F} \to \mathbb{N}$ by

$$\mathcal{F} \ni A \mapsto \phi(A) := \sum_{a \in A} 2^a$$

. It is clear that ϕ increases if A gets bigger: $A \subset B \implies \phi(A) \leq \phi(B)$. Let $A, B \in \mathcal{F}$ be two finite sets, say $A = \{a_1, a_2, \ldots, a_M\}$ and $\{b_1, b_2, \ldots, b_N\}$ (ordered according to size with a_1, b_1 being the smallest and a_M, b_N the biggest) such that $\phi(A) = \phi(B)$. Assume, to the contrary, that $A \neq B$. If $a_M \neq b_N$, say $a_M > b_N$, then

$$\phi(A) \ge \phi(\{a_M\}) \ge 2^{a_M} > \frac{2^{a_M} - 1}{2 - 1} = \sum_{j=1}^{a_M - 1} 2^j$$
$$= \phi(\{1, 2, 3, \dots a_M - 1\})$$
$$\ge \phi(B),$$

which cannot be the case since we assumed $\phi(A) = \phi(B)$. Thus, $a_M = b_N$. Now consider recursively the next elements, a_{M-1} and b_{N-1} and the same conclusion yields their equality etc. The process stops after $\min\{M, N\}$ steps. But if $M \neq N$, say M > N, then A would contain at least one more element than B, hence $\phi(A) > \phi(B)$, which is also a contradiction. This, finally shows that A = B, hence that ϕ is injective.

On the other hand, each natural number can be expressed in terms of finite sums of powers of base-2, so that ϕ is also surjective.

Thus, $\#\mathcal{F} = \#\mathbb{N}$.

Problem 2.20 (Let \mathcal{F} be as in the previous exercise.) Observe that the infinite sets from $\mathcal{P}(\mathbb{N})$, $\mathcal{I} := \mathcal{P}(\mathbb{N}) \setminus \mathcal{F}$ can be surjectively mapped onto $\{0,1\}^{\mathbb{N}}$: if $\{a_1, a_2, a_3, \ldots\} = A \subset \mathbb{N}$, then define an infinite 0-1-sequence (b_1, b_2, b_3, \ldots) by setting $b_j = 0$ or $b_j = 1$ according to whether a_j is even or odd. This is a surjection of $\mathcal{P}(\mathbb{N})$ onto $\{0,1\}^{\mathbb{N}}$ and so $\#\mathcal{P}(\mathbb{N}) \geq \#\{0,1\}^{\mathbb{N}}$. Call this map γ and consider the family $\gamma^{-1}(s)$, $s \in \{0,1\}^{\mathbb{N}}$ in \mathcal{I} , consisting of obviously disjoint infinite subsets of \mathbb{N} which lead to the same 0-1-sequence s. Now choose from each family $\gamma^{-1}(s)$ a representative, call it $r(s) \in \mathcal{I}$. Then the map $s \mapsto r(s)$ is a bijection between $\{0,1\}^{\mathbb{N}}$ and a subset of \mathcal{I} , the set of all representatives. Hence, \mathcal{I} has at least the same cardinality as $\{0,1\}^{\mathbb{N}}$ and as such a bigger cardinality than \mathbb{N} .

Problem 2.21 Denote by Θ the map $\mathcal{P}(\mathbb{N}) \ni A \mapsto \mathbf{1}_A \in \{0,1\}^{\mathbb{N}}$. Let $\delta = (d_1, d_2, d_3, \ldots) \in \{0,1\}^{\mathbb{N}}$ and define $A(\delta) := \{j \in \mathbb{N} : d_j = 1\}$. Then $\delta = (\mathbf{1}_{A(\delta)}(j))_{j \in \mathbb{N}}$ showing that Θ is surjective.

On the other hand,

 $\mathbf{1}_A = \mathbf{1}_B \iff \mathbf{1}_A(j) = \mathbf{1}_B(j) \ \forall j \in \mathbb{N} \iff A = B.$

This shows the injectivity of Θ , and $\#\mathcal{P}(\mathbb{N}) = \#\{0,1\}^{\mathbb{N}}$ follows.