1 Prologue. Solutions to Problems 1.1-1.2

Problem 1.1 Name the figures on the left and right Figure 1 and Figure 2, respectively. Figure 1 is a triangle but Figure 2 is a (convex) quadrangle: the 'hypotenuse' has a kink. This is easily seen by comparing in Figure 2 the slopes of the small triangle in the lower left (it is $2 / 5$) and the larger triangle on top (it is $3 / 8 \neq 2 / 5$).

Problem 1.2 We have to calculate the area of an isosceles triangle of sidelength r, base b, height h and opening angle $\phi:=2 \pi / 2^{j}$. From elementary geometry we know that

$$
\cos \frac{\phi}{2}=\frac{h}{r} \quad \text { and } \quad \sin \frac{\phi}{2}=\frac{b}{2 r}
$$

so that

$$
\text { area }(\text { triangle })=\frac{1}{2} h b=r^{2} \cos \frac{\phi}{2} \sin \frac{\phi}{2}=\frac{r^{2}}{2} \sin \phi
$$

Since we have $\lim _{\phi \rightarrow 0} \frac{\sin \phi}{\phi}=1$ we find

$$
\text { area } \begin{aligned}
(\text { circle }) & =\lim _{j \rightarrow \infty} 2^{j} \frac{r^{2}}{2} \sin \frac{2 \pi}{2^{j}} \\
& =2 r^{2} \pi \lim _{j \rightarrow \infty} \frac{\sin \frac{2 \pi}{2^{j}}}{\frac{2 \pi}{2^{j}}} \\
& =2 r^{2} \pi
\end{aligned}
$$

just as we had expected.

2 The pleasures of counting. Solutions to Problems 2.1-2.21

Problem 2.1 (i) We have

$$
\begin{aligned}
x \in A \backslash B & \Longleftrightarrow x \in A \text { and } x \notin B \\
& \Longleftrightarrow x \in A \text { and } x \in B^{c} \\
& \Longleftrightarrow x \in A \cap B^{c} .
\end{aligned}
$$

(ii) Using (i) and de Morgan's laws (*) yields

$$
\begin{aligned}
(A \backslash B) \backslash C & \stackrel{(\mathrm{i})}{=}\left(A \cap B^{c}\right) \cap C^{c}=A \cap B^{c} \cap C^{c} \\
& =A \cap\left(B^{c} \cap C^{c}\right) \stackrel{(*)}{=} A \cap(B \cup C)^{c}=A \backslash(B \cup C) .
\end{aligned}
$$

(iii) Using (i), de Morgan's laws $\left(^{*}\right)$ and the fact that $\left(C^{c}\right)^{c}=C$ gives

$$
\begin{aligned}
A \backslash(B \backslash C) & \stackrel{(\mathrm{i})}{=} A \cap\left(B \cap C^{c}\right)^{c} \\
& \stackrel{(*)}{=} A \cap\left(B^{c} \cup C\right) \\
& =\left(A \cap B^{c}\right) \cup(A \cap C) \\
& \stackrel{(\mathrm{i})}{=}(A \backslash B) \cup(A \cap C) .
\end{aligned}
$$

(iv) Using (i) and de Morgan's laws (*) gives

$$
\begin{aligned}
A \backslash(B \cap C) & \stackrel{(\mathrm{i})}{=} A \cap(B \cap C)^{c} \\
& \stackrel{(*)}{=} A \cap\left(B^{c} \cup C^{c}\right) \\
& =\left(A \cap B^{c}\right) \cup\left(A \cap C^{c}\right) \\
& \stackrel{(\mathrm{i})}{=}(A \backslash B) \cup(A \backslash C)
\end{aligned}
$$

(v) Using (i) and de Morgan's laws $\left({ }^{*}\right)$ gives

$$
\begin{aligned}
A \backslash(B \cup C) & \stackrel{(\mathrm{i})}{=} A \cap(B \cup C)^{c} \\
& \stackrel{(*)}{=} A \cap\left(B^{c} \cap C^{c}\right) \\
& =A \cap B^{c} \cap C^{c} \\
& =A \cap B^{c} \cap A \cap C^{c} \\
& \stackrel{(\mathrm{i})}{=}(A \backslash B) \cup(A \backslash C)
\end{aligned}
$$

Problem 2.2 Observe, first of all, that

$$
\begin{equation*}
A \backslash C \subset(A \backslash B) \cup(B \backslash C) \tag{*}
\end{equation*}
$$

This follows easily from

$$
\begin{aligned}
A \backslash C & =(A \backslash C) \cap X \\
& =\left(A \cap C^{c}\right) \cap\left(B \cup B^{c}\right) \\
& =\left(A \cap C^{c} \cap B\right) \cup\left(A \cap C^{c} \cap B^{c}\right) \\
& \subset\left(B \cap C^{c}\right) \cup\left(A \cap B^{c}\right) \\
& =(B \backslash C) \cup(A \backslash B) .
\end{aligned}
$$

Using this and the analogous formula for $C \backslash A$ then gives

$$
\begin{aligned}
(A & \cup B \cup C) \backslash(A \cap B \cap C) \\
& =(A \cup B \cup C) \cap(A \cap B \cap C)^{c} \\
& =\left[A \cap(A \cap B \cap C)^{c}\right] \cup\left[B \cap(A \cap B \cap C)^{c}\right] \cup\left[C \cap(A \cap B \cap C)^{c}\right] \\
& =[A \backslash(A \cap B \cap C)] \cup[B \backslash(A \cap B \cap C)] \cup[C \backslash(A \cap B \cap C)] \\
& =[A \backslash(B \cap C)] \cup[B \backslash(A \cap C)] \cup[C \backslash(A \cap B)] \\
& \stackrel{(2.1(\text { (iv) })}{=}(A \backslash B) \cup(A \backslash C) \cup(B \backslash A) \cup(B \backslash C) \cup(C \backslash A) \cup(C \backslash B) \\
& \stackrel{(*)}{=}(A \backslash B) \cup(B \backslash A) \cup(B \backslash C) \cup(C \backslash B) \\
& =(A \Delta B) \cup(B \Delta C)
\end{aligned}
$$

Problem 2.3 It is clearly enough to prove (2.3) as (2.2) follows if I contains 2 points. De Morgan's identities state that for any index set I (finite, countable or not countable) and any collection of subsets $A_{i} \subset X$, $i \in I$, we have
(a) $\left(\bigcup_{i \in I} A_{i}\right)^{c}=\bigcap_{i \in I} A_{i}^{c} \quad$ and
(b) $\left(\bigcap_{i \in I} A_{i}\right)^{c}=\bigcup_{i \in I} A_{i}^{c}$.

In order to see (a) we note that

$$
\begin{aligned}
a \in\left(\bigcup_{i \in I} A_{i}\right)^{c} & \Longleftrightarrow a \notin \bigcup_{i \in I} A_{i} \\
& \Longleftrightarrow \forall i \in I: a \notin A_{i} \\
& \Longleftrightarrow \forall i \in I: a \in A_{i}^{c} \\
& \Longleftrightarrow a \in \bigcap_{i \in I} A_{i}^{c}
\end{aligned}
$$

and (b) follows from

$$
\begin{aligned}
a \in\left(\bigcap_{i \in I} A_{i}\right)^{c} & \Longleftrightarrow a \notin \bigcap_{i \in I} A_{i} \\
& \Longleftrightarrow \exists i_{0} \in I: a \notin A_{i_{0}} \\
& \Longleftrightarrow \exists i_{0} \in I: a \in A_{i_{0}}^{c} \\
& \Longleftrightarrow a \in \bigcup_{i \in I} A_{i}^{c}
\end{aligned}
$$

Problem 2.4 (i) The inclusion $f(A \cap B) \subset f(A) \cap f(B)$ is always true since $A \cap B \subset A$ and $A \cap B \subset B$ imply that $f(A \cap B) \subset f(A)$ and $f(A \cap B) \subset f(B)$, respectively. Thus, $f(A \cap B) \subset f(A) \cap f(B)$.
Furthermore, $y \in f(A) \backslash f(B)$ means that there is some $x \in A$ but $x \notin B$ such that $y=f(x)$, that is: $y \in f(A \backslash B)$. Thus, $f(A) \backslash f(B) \subset f(A \backslash B)$.
To see that the converse inclusions cannot hold we consider some non injective f. Take $X=[0,2], A=(0,1), B=(1,2)$, and $f:[0,2] \rightarrow \mathbb{R}$ with $x \mapsto f(x)=c(c$ is some constant $)$. Then f is not injective and

$$
\emptyset=f(\emptyset)=f((0,1) \cap(1,2)) \neq f((0,1)) \cup f((1,2))=\{c\} .
$$

Moreover, $f(X)=f(B)=\{c\}=f(X \backslash B)$ but $f(X) \backslash f(B)=\emptyset$.
(ii) Recall, first of all, the definition of f^{-1} for a map $f: X \rightarrow Y$ and $B \subset Y$

$$
f^{-1}(B):=\{x \in X: f(x) \in B\} .
$$

Observe that

$$
\begin{aligned}
x \in f^{-1}\left(\cup_{i \in I} C_{i}\right) & \Longleftrightarrow f(x) \in \cup_{i \in I} C_{i} \\
& \Longleftrightarrow \exists i_{0} \in I: f(x) \in C_{i_{0}} \\
& \Longleftrightarrow \exists i_{0} \in I: x \in f^{-1}\left(C_{i_{0}}\right) \\
& \Longleftrightarrow x \in \cup_{i \in I} f^{-1}\left(C_{i}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
x \in f^{-1}\left(\cap_{i \in I} C_{i}\right) & \Longleftrightarrow f(x) \in \cap_{i \in I} C_{i} \\
& \Longleftrightarrow \forall i \in I: f(x) \in C_{i} \\
& \Longleftrightarrow \forall i \in I: x \in f^{-1}\left(C_{i}\right) \\
& \Longleftrightarrow x \in \cap_{i \in I} f^{-1}\left(C_{i}\right),
\end{aligned}
$$

and, finally,

$$
\begin{aligned}
x \in f^{-1}(C \backslash D) & \Longleftrightarrow f(x) \in C \backslash D \\
& \Longleftrightarrow f(x) \in C \quad \text { and } \quad f(x) \notin D \\
& \Longleftrightarrow x \in f^{-1}(C) \text { and } \quad x \notin f^{-1}(D) \\
& \Longleftrightarrow x \in f^{-1}(C) \backslash f^{-1}(D) .
\end{aligned}
$$

Problem 2.5

(i), (vi) For every x we have

$$
\begin{aligned}
\mathbf{1}_{A \cap B}(x)=1 & \Longleftrightarrow x \in A \cap B \\
& \Longleftrightarrow x \in A, x \in B \\
& \Longleftrightarrow \mathbf{1}_{A}(x)=1=\mathbf{1}_{B}(x) \\
& \Longleftrightarrow\left\{\begin{array}{l}
\mathbf{1}_{A}(x) \cdot \mathbf{1}_{B}(x)=1 \\
\min \left\{\mathbf{1}_{A}(x), \mathbf{1}_{B}(x)\right\}=1
\end{array}\right.
\end{aligned}
$$

(ii), (v) For every x we have

$$
\begin{aligned}
\mathbf{1}_{A \cup B}(x)=1 & \Longleftrightarrow x \in A \cup B \\
& \Longleftrightarrow x \in A \text { or } x \in B \\
& \Longleftrightarrow \mathbf{1}_{A}(x)+\mathbf{1}_{B}(x) \geqslant 1 \\
& \Longleftrightarrow\left\{\begin{array}{l}
\min \left\{\mathbf{1}_{A}(x)+\mathbf{1}_{B}(x), 1\right\}=1 \\
\max \left\{\mathbf{1}_{A}(x), \mathbf{1}_{B}(x)\right\}=1
\end{array}\right.
\end{aligned}
$$

(iii) Since $A=(A \cap B) \cup(A \backslash B)$ we see that $\mathbf{1}_{A \cap B}(x)+\mathbf{1}_{A \backslash B}(x)$ can never have the value 2 , thus part (ii) implies

$$
\begin{aligned}
\mathbf{1}_{A}(x)=\mathbf{1}_{(A \cap B) \cup(A \backslash B)}(x) & =\min \left\{\mathbf{1}_{A \cap B}(x)+\mathbf{1}_{A \backslash B}(x), 1\right\} \\
& =\mathbf{1}_{A \cap B}(x)+\mathbf{1}_{A \backslash B}(x)
\end{aligned}
$$

and all we have to do is to subtract $\mathbf{1}_{A \cap B}(x)$ on both sides of the equation.
(iv) With the same argument that we used in (iii) and with the result of (iii) we get

$$
\begin{aligned}
\mathbf{1}_{A \cup B}(x) & =\mathbf{1}_{(A \backslash B) \cup(A \cap B) \cup(B \backslash A)}(x) \\
& =\mathbf{1}_{A \backslash B}(x)+\mathbf{1}_{A \cap B}(x)+\mathbf{1}_{B \backslash A}(x) \\
& =\mathbf{1}_{A}(x)-\mathbf{1}_{A \cap B}(x)+\mathbf{1}_{A \cap B}(x)+\mathbf{1}_{B}(x)-\mathbf{1}_{A \cap B}(x) \\
& =\mathbf{1}_{A}(x)+\mathbf{1}_{B}(x)-\mathbf{1}_{A \cap B}(x) .
\end{aligned}
$$

Problem 2.6 (i) Using 2.5(iii), (iv) we see that

$$
\begin{aligned}
\mathbf{1}_{A \triangle B}(x) & =\mathbf{1}_{(A \backslash B) \cup(B \backslash A)}(x) \\
& =\mathbf{1}_{A \backslash B}(x)+\mathbf{1}_{B \backslash A}(x) \\
& =\mathbf{1}_{A}(x)-\mathbf{1}_{A \cap B}(x)+\mathbf{1}_{B}(x)-\mathbf{1}_{A \cap B}(x) \\
& =\mathbf{1}_{A}(x)+\mathbf{1}_{B}(x)-2 \mathbf{1}_{A \cap B}(x)
\end{aligned}
$$

and this expression is 1 if, and only if, x is either in A or B but not in both sets. Thus
$\mathbf{1}_{A \triangle B}(x) \Longleftrightarrow \mathbf{1}_{A}(x)+\mathbf{1}_{B}(x)=1 \Longleftrightarrow \mathbf{1}_{A}(x)+\mathbf{1}_{B}(x) \bmod 2=1$.
It is also possible to show that

$$
\mathbf{1}_{A \triangle B}=\left|\mathbf{1}_{A}-\mathbf{1}_{B}\right| .
$$

This follows from

$$
\mathbf{1}_{A}(x)-\mathbf{1}_{B}(x)= \begin{cases}0, & \text { if } x \in A \cap B \\ 0, & \text { if } x \in A^{c} \cap B^{c} ; \\ +1, & \text { if } x \in A \backslash B \\ -1, & \text { if } x \in B \backslash A\end{cases}
$$

Thus,

$$
\left|\mathbf{1}_{A}(x)-\mathbf{1}_{B}(x)\right|=1 \Longleftrightarrow x \in(A \backslash B) \cup(B \backslash A)=A \triangle B
$$

(ii) From part (i) we see that

$$
\begin{aligned}
\mathbf{1}_{A \triangle(B \triangle C)} & =\mathbf{1}_{A}+\mathbf{1}_{B \triangle C}-2 \mathbf{1}_{A} \mathbf{1}_{B \triangle C} \\
& =\mathbf{1}_{A}+\mathbf{1}_{B}+\mathbf{1}_{C}-2 \mathbf{1}_{B} \mathbf{1}_{C}-2 \mathbf{1}_{A}\left(\mathbf{1}_{B}+\mathbf{1}_{C}-2 \mathbf{1}_{B} \mathbf{1}_{C}\right) \\
& =\mathbf{1}_{A}+\mathbf{1}_{B}+\mathbf{1}_{C}-2 \mathbf{1}_{B} \mathbf{1}_{C}-2 \mathbf{1}_{A} \mathbf{1}_{B}-2 \mathbf{1}_{A} \mathbf{1}_{C}+4 \mathbf{1}_{A} \mathbf{1}_{B} \mathbf{1}_{C}
\end{aligned}
$$

and this expression treats A, B, C in a completely symmetric way, i.e.

$$
\mathbf{1}_{A \Delta(B \Delta C)}=\mathbf{1}_{(A \triangle B) \Delta C} .
$$

(iii) Step 1: $(\mathcal{P}(X), \triangle, \emptyset)$ is an abelian group.

Neutral element: $A \triangle \emptyset=\emptyset \triangle A=A$;
Inverse element: $A \triangle A=(A \backslash A) \cup(A \backslash A)=\emptyset$, i.e. each element is its own inverse.
Associativity: see part (ii);

Commutativity: $A \triangle B=B \triangle A$.
Step 2: For the multiplication \cap we have
Associativity: $A \cap(B \cap C)=(A \cap B) \cap C$;
Commutativity: $A \cap B=B \cap A$;
One-element: $A \cap X=X \cap A=A$.
Step 3: Distributive law:

$$
A \cap(B \triangle C)=(A \cap B) \triangle(A \cap C)
$$

For this we use again indicator functions and the rules from (i) and Problem 2.5:

$$
\begin{aligned}
\mathbf{1}_{A \cap(B \triangle C)}=\mathbf{1}_{A} \mathbf{1}_{B \triangle C} & =\mathbf{1}_{A}\left(\mathbf{1}_{B}+\mathbf{1}_{C}\right. \\
& \bmod 2) \\
& =\left[\mathbf{1}_{A}\left(\mathbf{1}_{B}+\mathbf{1}_{C}\right)\right] \bmod 2 \\
& =\left[\mathbf{1}_{A} \mathbf{1}_{B}+\mathbf{1}_{A} \mathbf{1}_{C}\right] \bmod 2 \\
& =\left[\mathbf{1}_{A \cap B}+\mathbf{1}_{A \cap C}\right] \\
& \bmod 2 \\
& =\mathbf{1}_{(A \cap B) \triangle(A \cap C)} .
\end{aligned}
$$

Problem 2.7 Let $f: X \rightarrow Y$. One has

$$
\begin{aligned}
f \text { surjective } & \Longleftrightarrow \forall B \subset Y: f \circ f^{-1}(B)=B \\
& \Longleftrightarrow \forall B \subset Y: f \circ f^{-1}(B) \supset B
\end{aligned}
$$

This can be seen as follows: by definition $f^{-1}(B)=\{x: f(x) \in B\}$ so that
$f \circ f^{-1}(B)=f(\{x: f(x) \in B\})=\{f(x): f(x) \in B\} \subset\{y: y \in B\}$
and we have equality in the last step if, and only if, we can guarantee that every $y \in B$ is of the form $y=f(x)$ for some x. Since this must hold for all sets B, this amounts to saying that $f(X)=Y$, i.e. that f is surjective. The second equivalence is clear since our argument shows that the inclusion ' \subset ' always holds.

Thus, we can construct a counterexample by setting $f: \mathbb{R} \rightarrow \mathbb{R}, f(x):=$ x^{2} and $B=[-1,1]$. Then
$f^{-1}([-1,1])=[0,1]$ and $f \circ f^{-1}([-1,1])=f([0,1])=[0,1] \nsubseteq[-1,1]$.

On the other hand

$$
\begin{aligned}
f \text { injective } & \Longleftrightarrow \forall A \subset X: f^{-1} \circ f(A)=A \\
& \Longleftrightarrow \forall A \subset X: f^{-1} \circ f(A) \subset A .
\end{aligned}
$$

To see this we observe that because of the definition of f^{-1}

$$
\begin{equation*}
f^{-1} \circ f(A)=\{x: f(x) \in f(A)\} \supset\{x: x \in A\}=A \tag{*}
\end{equation*}
$$

since $x \in A$ always entails $f(x) \in f(A)$. The reverse is, for noninjective f, wrong since then there might be some $x_{0} \notin A$ but with $f\left(x_{0}\right)=f(x) \in f(A)$ i.e. $x_{0} \in f^{-1} \circ f(A) \backslash A$. This means that we have equality in (*) if, and only if, f is injective. The second equivalence is clear since our argument shows that the inclusion ' \supset ' always holds.

Thus, we can construct a counterexample by setting $f: \mathbb{R} \rightarrow \mathbb{R}, f \equiv 1$. Then

$$
f([0,1])=\{1\} \text { and } f^{-1} \circ f([0,1])=f^{-1}(\{1\})=\mathbb{R} \supseteq[0,1] .
$$

Problem 2.8 Assume that for x, y we have $f \circ g(x)=f \circ g(y)$. Since f is injective, we conclude that

$$
f(g(x))=f(g(y)) \Longrightarrow g(x)=g(y),
$$

and, since g is also injective,

$$
g(x)=g(y) \Longrightarrow x=y
$$

showing that $f \circ g$ is injective.
Problem 2.9 - Call the set of odd numbers \mathcal{O}. Every odd number is of the form $2 k-1$ where $k \in \mathbb{N}$. We are done, if we can show that the map $f: \mathbb{N} \rightarrow \mathcal{O}, k \mapsto 2 k-1$ is bijective. Surjectivity is clear as $f(\mathbb{N})=\mathcal{O}$. For injectivity we take $i, j \in \mathbb{N}$ such that $f(i)=f(j)$. The latter means that $2 i-1=2 j-1$, so $i=j$, i.e. injectivity.

- The quickest solution is to observe that $\mathbb{N} \times \mathbb{Z}=\mathbb{N} \times \mathbb{N} \cup \mathbb{N} \times\{0\} \cup$ $\mathbb{N} \times(-\mathbb{N})$ where $-\mathbb{N}:=\{-n: n \in \mathbb{N}\}$ are the strictly negative integers. We know from Example 2.5(iv) that $\mathbb{N} \times \mathbb{N}$ is countable. Moreover, the map $\beta: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \times(-\mathbb{N}), \beta((i, k))=(i,-k)$ is bijective, thus $\# \mathbb{N} \times(-\mathbb{N})=\# \mathbb{N} \times \mathbb{N}$ is also countable and so is $\mathbb{N} \times\{0\}$ since $\gamma: \mathbb{N} \rightarrow \mathbb{N} \times\{0\}, \gamma(n):=(n, 0)$ is also bijective.
Therefore, $\mathbb{N} \times \mathbb{Z}$ is a union of three countable sets, hence countable.

An alternative approach would be to write out $\mathbb{Z} \times \mathbb{N}$ (the swap of \mathbb{Z} and \mathbb{N} is for notational reasons - since the map $\beta((j, k)):=(k, j)$ from $\mathbb{Z} \times \mathbb{N}$ to $\mathbb{N} \times \mathbb{Z}$ is bijective, the cardinality does not change) in the following form

$$
\begin{array}{lllllllll}
\ldots & (-3,1) & (-2,1) & (-1,1) & (0,1) & (1,1) & (2,1) & (3,1) & \ldots \\
\ldots & (-3,2) & (-2,2) & (-1,2) & (0,2) & (1,2) & (2,2) & (3,2) & \cdots \\
\ldots & (-3,3) & (-2,3) & (-1,3) & (0,3) & (1,3) & (2,3) & (3,3) & \ldots \\
\ldots & (-3,4) & (-2,4) & (-1,4) & (0,4) & (1,4) & (2,4) & (3,4) & \ldots \\
\cdots & (-3,5) & (-2,5) & (-1,5) & (0,5) & (1,5) & (2,5) & (3,5) & \cdots \\
\cdots & (-3,6) & (-2,6) & (-1,6) & (0,6) & (1,6) & (2,6) & (3,6) & \cdots
\end{array}
$$

and going through the array, starting with $(0,1)$, then $(1,1) \rightarrow$ $(1,2) \rightarrow(0,2) \rightarrow(-1,2) \rightarrow(-1,1)$, then $(2,1) \rightarrow(2,2) \rightarrow$ $(2,3) \rightarrow(1,3) \rightarrow \ldots$ in clockwise oriented \bigsqcup-shapes down, left, up.

- In Example 2.5(iv) we have shown that $\# \mathbb{Q} \leqslant \# \mathbb{N}$. Since $\mathbb{N} \subset \mathbb{Q}$, we have a canonical injection $\jmath: \mathbb{N} \rightarrow \mathbb{Q}, i \mapsto i$ so that $\# \mathbb{N} \leqslant \# \mathbb{Q}$. Using Theorem 2.7 we conclude that $\# \mathbb{Q}=\# \mathbb{N}$.
The proof of $\#(\mathbb{N} \times \mathbb{N})=\# \mathbb{N}$ can be easily adapted-using some pretty obvious notational changes - to show that the Cartesian product of any two countable sets of cardinality $\# \mathbb{N}$ has again cardinality $\# \mathbb{N}$. Applying this $m-1$ times we see that $\# \mathbb{Q}^{n}=\# \mathbb{N}$.
- $\bigcup_{m \in \mathbb{N}} \mathbb{Q}^{m}$ is a countable union of countable sets, hence countable, cf. Theorem 2.6.

Problem 2.10 Following the hint it is clear that $\beta: \mathbb{N} \rightarrow \mathbb{N} \times\{1\}, i \mapsto(i, 1)$ is a bijection and that $\jmath: \mathbb{N} \times\{1\} \rightarrow \mathbb{N} \times \mathbb{N},(i, 1) \mapsto(i, 1)$ is an injection. Thus, $\# \mathbb{N} \leqslant \#(\mathbb{N} \times \mathbb{N})$.
On the other hand, $\mathbb{N} \times \mathbb{N}=\bigcup_{j \in \mathbb{N}} \mathbb{N} \times\{j\}$ which is a countable union of countable sets, thus $\#(\mathbb{N} \times \mathbb{N}) \leqslant \# \mathbb{N}$.
Applying Theorem 2.7 finally gives $\#(\mathbb{N} \times \mathbb{N})=\# \mathbb{N}$.
Problem 2.11 Since $E \subset F$ the map $\jmath: E \rightarrow F, e \mapsto e$ is an injection, thus $\# E \leqslant \# F$.

Problem 2.12 Assume that the set $\{0,1\}^{\mathbb{N}}$ were indeed countable and that $\left\{s_{j}\right\}_{j \in \mathbb{N}}$ was an enumeration: each s_{j} would be a sequence of the form
$\left(d_{1}^{j}, d_{2}^{j}, d_{3}^{j}, \ldots, d_{k}^{j}, \ldots\right)$ with $d_{k}^{j} \in\{0,1\}$. We could write these sequences in an infinite list of the form:

$$
\begin{array}{rcccccccc}
s_{1} & = & d_{1}^{1} & d_{2}^{1} & d_{3}^{1} & d_{4}^{1} & \ldots & d_{k}^{1} & \ldots \\
s_{2} & = & d_{1}^{2} & d_{2}^{2} & d_{3}^{2} & d_{4}^{2} & \ldots & d_{k}^{2} & \ldots \\
s_{3} & = & d_{1}^{3} & d_{2}^{3} & d_{3}^{3} & d_{4}^{3} & \ldots & d_{k}^{3} & \ldots \\
s_{4} & = & d_{1}^{4} & d_{2}^{4} & d_{3}^{4} & d_{4}^{4} & \ldots & d_{k}^{4} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\
s_{k} & = & d_{1}^{k} & d_{2}^{k} & d_{3}^{k} & d_{4}^{k} & \ldots & d_{k}^{k} & \ldots
\end{array}
$$

and produce a new 0 -1-sequence $S=\left(e_{1}, e_{2}, e_{3}, \ldots\right)$ by setting

$$
e_{m}:=\left\{\begin{array}{lll}
0, & \text { if } & d_{m}^{m}=1 \\
1, & \text { if } & d_{m}^{m}=0
\end{array} .\right.
$$

Since S differs from s_{ℓ} exactly at position ℓ, S cannot be in the above list, thus, the above list did not contain all 0 -1-sequences, hence a contradiction.

Problem 2.13 Consider the function $f:(0,1) \rightarrow \mathbb{R}$ given by

$$
f(x):=\frac{1}{1-x}-\frac{1}{x} .
$$

This function is obviously continuous and we have $\lim _{x \rightarrow 0} f(x)=-\infty$ and $\lim _{x \rightarrow 1} f(x)=+\infty$. By the intermediate value theorem we have therefore $f((0,1))=\mathbb{R}$, i.e. surjectivity.
Since f is also differentiable and $f^{\prime}(x)=\frac{1}{(1-x)^{2}}+\frac{1}{x^{2}}>0$, we see that f is strictly increasing, hence injective, hence bijective.

Problem 2.14 Since $A_{1} \subset \bigcup_{j \in \mathbb{N}} A_{j}$ it is clear that $\mathfrak{c}=\# A_{1} \leqslant \# \bigcup_{j \in \mathbb{N}} A_{j}$. On the other hand, $\# A_{j}=\mathfrak{c}$ means that we can map A_{j} bijectively onto \mathbb{R} and, using Problem 2.13, we map \mathbb{R} bijectively onto $(0,1)$ or $(j-1, j)$. This shows that $\# \bigcup_{j \in \mathbb{N}} A_{j} \leqslant \# \bigcup_{j \in \mathbb{N}}(j-1, j) \leqslant \# \mathbb{R}=\mathfrak{c}$. Using Theorem 2.7 finishes the proof.

Problem 2.15 Since we can write each $x \in(0,1)$ as an infinite dyadic fraction (o.k. if it is finite, fill it up with an infinite tail of zeroes !), the proof of Theorem 2.8 shows that $\#(0,1) \leqslant \#\{0,1\}^{\mathbb{N}}$.

On the other hand, thinking in base-4 expansions, each element of $\{1,2\}^{\mathbb{N}}$ can be interpreted as a unique base-4 fraction (having no 0 or 3 in its expansion) of some number in $(0,1)$. Thus, $\#\{1,2\}^{\mathbb{N}} \leqslant \# \mathbb{N}$.
But $\#\{1,2\}^{\mathbb{N}}=\#\{0,1\}^{\mathbb{N}}$ and we conclude with Theorem 2.7 that $\#(0,1)=\#\{0,1\}^{\mathbb{N}}$.

Problem 2.16 Just as before, expand $x \in(0,1)$ as an n-adic fraction, then interpret each element of $\{1,2, \ldots, n+1\}^{\mathbb{N}}$ as a unique $(n+1)$-adic expansion of a number in $(0,1)$ and observe that $\#\{1,2, \ldots, n+1\}^{\mathbb{N}}=$ $\{0,1, \ldots, n\}^{\mathbb{N}}$.

Problem 2.17 Take a vector $(x, y) \in(0,1) \times(0,1)$ and expand its coordinate entries x, y as dyadic numbers:

$$
x=0 . x_{1} x_{2} x_{3} \ldots, \quad y=0 . y_{1} y_{2} y_{3} \ldots
$$

Then $z:=0 . x_{1} y_{1} x_{2} y_{2} x_{3} y_{3} \ldots$ is a number in $(0,1)$. Conversely, we can 'zip' each $z=0 . z_{1} z_{2} z_{3} z_{4} \ldots \in(0,1)$ into two numbers $x, y \in(0,1)$ by setting

$$
x:=0 . z_{2} z_{4} z_{6} z_{8} \ldots, \quad y:=0 . z_{1} z_{3} z_{5} z_{7} \ldots
$$

This is obviously a bijective operation.
Since we have a bijection between $(0,1) \leftrightarrow \mathbb{R}$ it is clear that we have also a bijection between $(0,1) \times(0,1) \leftrightarrow \mathbb{R} \times \mathbb{R}$.

Problem 2.18 We have seen in Problem 2.18 that $\#\{0,1\}^{\mathbb{N}}=\#\{1,2\}^{\mathbb{N}}=\boldsymbol{c}$. Obviously, $\{1,2\}^{\mathbb{N}} \subset \mathbb{N}^{\mathbb{N}} \subset \mathbb{R}^{\mathbb{N}}$ and since we have a bijection between $(0,1) \leftrightarrow \mathbb{R}$ one extends this (using coordinates) to a bijection between $(0,1)^{\mathbb{N}} \leftrightarrow \mathbb{R}^{\mathbb{N}}$. Using Theorem 2.9 we get

$$
\mathfrak{c}=\#\{1,2\}^{\mathbb{N}} \leqslant \# \mathbb{N}^{\mathbb{N}} \leqslant \# \mathbb{R}^{\mathbb{N}}=\mathfrak{c}
$$

and, because of Theorem 2.7 we have equality in the above formula.
Problem 2.19 Let $F \in \mathcal{F}$ with $\# F=n$ Then we can write F as a tuple of length n (having n pairwise different entries...) and therefore we can interpret F as an element of $\bigcup_{m \in \mathbb{N}} \mathbb{N}^{m}$. In this sense, $\mathcal{F} \hookrightarrow \bigcup_{m \in \mathbb{N}} \mathbb{N}^{m}$ and $\# \mathcal{F} \leqslant \bigcup_{m \in \mathbb{N}} \mathbb{N}^{m}=\# \mathbb{N}$ since countably many countable sets are again countable. Since $\mathbb{N} \subset \mathcal{F}$ we get $\# \mathcal{F}=\# \mathbb{N}$ by Theorem 2.7.

Alternative: Define a map $\phi: \mathcal{F} \rightarrow \mathbb{N}$ by

$$
\mathcal{F} \ni A \mapsto \phi(A):=\sum_{a \in A} 2^{a}
$$

. It is clear that ϕ increases if A gets bigger: $A \subset B \Longrightarrow \phi(A) \leqslant$ $\phi(B)$. Let $A, B \in \mathcal{F}$ be two finite sets, say $A=\left\{a_{1}, a_{2}, \ldots, a_{M}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{N}\right\}$ (ordered according to size with a_{1}, b_{1} being the smallest and a_{M}, b_{N} the biggest) such that $\phi(A)=\phi(B)$. Assume, to the contrary, that $A \neq B$. If $a_{M} \neq b_{N}$, say $a_{M}>b_{N}$, then

$$
\begin{aligned}
\phi(A) \geqslant \phi\left(\left\{a_{M}\right\}\right) \geqslant 2^{a_{M}}>\frac{2^{a_{M}}-1}{2-1} & =\sum_{j=1}^{a_{M}-1} 2^{j} \\
& =\phi\left(\left\{1,2,3, \ldots a_{M}-1\right\}\right) \\
& \geqslant \phi(B)
\end{aligned}
$$

which cannot be the case since we assumed $\phi(A)=\phi(B)$. Thus, $a_{M}=$ b_{N}. Now consider recursively the next elements, a_{M-1} and b_{N-1} and the same conclusion yields their equality etc. The process stops after $\min \{M, N\}$ steps. But if $M \neq N$, say $M>N$, then A would contain at least one more element than B, hence $\phi(A)>\phi(B)$, which is also a contradiction. This, finally shows that $A=B$, hence that ϕ is injective. On the other hand, each natural number can be expressed in terms of finite sums of powers of base-2, so that ϕ is also surjective.
Thus, $\# \mathcal{F}=\# \mathbb{N}$.
Problem 2.20 (Let \mathcal{F} be as in the previous exercise.) Observe that the infinite sets from $\mathcal{P}(\mathbb{N}), \mathcal{J}:=\mathcal{P}(\mathbb{N}) \backslash \mathcal{F}$ can be surjectively mapped onto $\{0,1\}^{\mathbb{N}}$: if $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}=A \subset \mathbb{N}$, then define an infinite 0-1sequence $\left(b_{1}, b_{2}, b_{3}, \ldots\right)$ by setting $b_{j}=0$ or $b_{j}=1$ according to whether a_{j} is even or odd. This is a surjection of $\mathcal{P}(\mathbb{N})$ onto $\{0,1\}^{\mathbb{N}}$ and so $\# \mathcal{P}(\mathbb{N}) \geqslant \#\{0,1\}^{\mathbb{N}}$. Call this map γ and consider the family $\gamma^{-1}(s)$, $s \in\{0,1\}^{\mathbb{N}}$ in \mathcal{J}, consisting of obviously disjoint infinite subsets of \mathbb{N} which lead to the same 0 -1-sequence s. Now choose from each family $\gamma^{-1}(s)$ a representative, call it $r(s) \in \mathcal{J}$. Then the map $s \mapsto r(s)$ is a bijection between $\{0,1\}^{\mathbb{N}}$ and a subset of \mathcal{J}, the set of all representatives. Hence, \mathcal{J} has at least the same cardinality as $\{0,1\}^{\mathbb{N}}$ and as such a bigger cardinality than \mathbb{N}.

Problem 2.21 Denote by Θ the map $\mathcal{P}(\mathbb{N}) \ni A \mapsto \mathbf{1}_{A} \in\{0,1\}^{\mathbb{N}}$. Let $\delta=\left(d_{1}, d_{2}, d_{3}, \ldots\right) \in\{0,1\}^{\mathbb{N}}$ and define $A(\delta):=\left\{j \in \mathbb{N}: d_{j}=1\right\}$. Then $\delta=\left(\mathbf{1}_{A(\delta)}(j)\right)_{j \in \mathbb{N}}$ showing that Θ is surjective.
On the other hand,

$$
\mathbf{1}_{A}=\mathbf{1}_{B} \Longleftrightarrow \mathbf{1}_{A}(j)=\mathbf{1}_{B}(j) \forall j \in \mathbb{N} \Longleftrightarrow A=B
$$

This shows the injectivity of Θ, and $\# \mathcal{P}(\mathbb{N})=\#\{0,1\}^{\mathbb{N}}$ follows.

