11 Convergence theorems and their

applications.
Solutions to Problems 11.1-11.21

Problem 11.1 We start with the simple remark that

o = b < ([al + [0])?
< (max{lal, [b]} + max{|al, |b[})”
= 2P max{|al, |b|}*
= 2 max{[a|”, |b]"}
< 2%(laf” + [b[").
Because of this we find that |u; —ul? < 2P¢” and the right-hand side is

an integrable dominating function.

Proof alternative 1: Apply Theorem 11.2 on dominated convergence
to the sequence ¢; = |u; — u|P of integrable functions. Note that
¢j(x) — 0 and that 0 < ¢; < @ where & = 2PgP is integrable and
independent of j. Thus,

i [ oy~ uP dp = i [ 6y d = [ Tim 05 d
j—oo j—oo

Jj—oo
:/Odu = 0.

Proof alternative 2: Mimic the proof of Theorem 11.2 on dominated
convergence. To do so we remark that the sequence of functions
j—oo0

0 < :=2Pg" —|u; — uff —— 2P¢P

Since the limit lim;v; exists, it coincides with liminf;);, and so we
can use Fatou’s Lemma to get

/2”9” dp = /liminfwj du
j—o00

< liminf/@bj du
1

J—o0
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= liminf/ (27¢” — Juj — ul?) du

Jj—00

:/2pgpdu+ligglf(—/|uj—u|pdu)

= /ngp dp — 1imsup/ lu; — ulP dp
j—o0

where we used that liminf;(—a;) = —limsup, ;. This shows that
limsup; [ [u; — u[? du = 0, hence

0< liminf/ lu; — ulP dp < hmsup/ lu; —ulPdp <0

J—00 j—00

showing that lower and upper limit coincide and equal to 0, hence
lim; [ |u; — ulPdp = 0.

Problem 11.2 Assume that, as in the statement of Theorem 11.2, u; — u
and that |u;| < f € L'(u). In particular,

—f<wu; and u; < f

(7 € N) is an integrable minorant resp. majorant. Thus, using Problem
10.8 at * below,

/udu:/liminfujd,u
j—o0

% liminf/uj dp

J—00

< limsup/uj du

Jj—o0

g/limsupujd,u = /ud,u.
Jj—oo

This proves [ udp = lim; [ u; dpu.

Addition: since 0 < |u — u;| < [limjuy] + |uj| < 2f € LY(p), the
sequence |u — u;| has an integrable majorant and using Problem 10.8
we get

hmsup/|u]—u|du /limsup|uj—u|du:/0d,u:0

‘]*)OO ]*)OO

and also (i) of Theorem 11.2 follows...
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Problem 11.3 By assumption we have

ngk_gkmf_%
0<Gy— fr 2% G- .

Using Fatou’s Lemma we find
/(f —g)dp = /li,gn(fk — gr) dp
= /limkinf(fk — gk) dp
< limkinf/(fk — k) dp
= limkinf/fk dp — /gd,u,
and
/(G— f)du = /lilgn(Gk — fr)du
= /limkinf(Gk — fx)du
< limkinf/(G;C — fr)du
= /Gdu — limksup/fk dp.
Adding resp. subtracting [ gdu resp. [ G du therefore yields
fimsup [ fedu < [ fdu < timint [ fud

and the claim follows.

Problem 11.4 Using Beppo Levi’s theorem in the form of Corollary 9.9 we
find

/ZIUdeMZZ/Iuj|dM<oo, %)
j=1 j=1

which means that the positive function Z;; |u;| is finite almost every-
where, i.e. the series Z;’;l u; converges (absolutely) almost everywhere.
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Moreover,

/é%dﬂ:é/wdu (**)

and, using the triangle inequality both quantities

’/gujdﬂ jé/ujdu'

can be estimated by

and

al N
[ 3 wldn =0
j=n

because of (*). This shows that both sides in (**) are Cauchy sequences,
i.e. they are convergent.

Problem 11.5 Since £'(u) 3 u; | 0 we find by monotone convergence,
Theorem 11.1, that [ w;du | 0. Therefore,

[e.9]

o — Z(_l)juj and S = Z(_l)j/uj dp converge
j=1

J=1

(conditionally, in general). Moreover, for every N € N,

/i(—l)j% dp = i/(—l)juj du Y= 3.

All that remains is to show that the right-hand side converges to [ o dp.

Observe that for Sy := Zj.v:l(—l)juj we have
Son < Sony2 <... < S

and we find, as S; € L(u), by monotone convergence that

lim [ Sondp = /adu.

N—oo

Problem 11.6 Consider u;(z) := j - 11/ (x), j € N. It is clear that u; is
measurable and Lebesgue integrable with integral

1
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Thus, lim; [ u; d\ = 1. On the other hand, the pointwise limit is

u(zx) == lijm uj(x) =0

so that 0 = [wdX = [lim;ju;dX # 1.

The example does not contradict dominated convergence as there is no
uniform dominating integrable function.

Alternative: a similar situation can be found for vi(z) := 1 Ljox(2)
and the pointwise limit v = 0. Note that in this case the limit is
even uniform and still limy, [vyd\ =1 # 0 = [vd\. Again there is
no contradiction to dominated convergence as there does not exist a
uniform dominating integrable function.

Problem 11.7 Let p be an arbitrary Borel measure on the line R and define
the integral function for some u € L'(p) through

@)= 1) o= [ wouan) = [ 100 )

For any sequence 0 < [; — x, [; < x from the left and r, — z, 1, > @
from the right we find

j—o0 k—o0

Lo4;)(t) — Lom)(t) and 1o (t) —— Loq(t).

Since [1(pu| < |u] € L' is a uniform dominating function, Lebesgue’s
dominated convergence theorem yields

I(z+) — I(z—) = lim I(r )—hjm[(l)
Loy (E)ult) pldt) — / 0.0y (£)u(t) pu(dt)
— Lo (1)) u(t) pu(dt)

p(dt)

&.

1y (1)
) u({x}).

Thus I(z) is continuous at z if, and only if, = is not an atom of pu.

I
s \\\ ?T

Remark: the proof shows, by the way, that I}(z) is always left-
continous at every z, no matter what u or u look like.
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Problem 11.8 (i) We have

1

1
= lim [ —1p,)(z)de by Beppo Levi’s thm.
n—oo x
= lim —dx usual shorthand
: "1 : o
= lim (R) / —dx Riemann- / exists
neo 1z 1
= lim [logz]}
= lim [log(n) —log(1)] = oo

which means that 1 is not Lebesgue-integrable over [1,00).
(ii) We have

1
/ = 1p ) (2) do

= lim 1[1 n () dx by Beppo Levi’s thm.

n—oo

= lim — clx usual shorthand
n—oo 1 n) x

n
= lim (R — dx Riemann- exists
TL"OO 1

:lim[

n—oo

= lim [1 — ] 1 <oo

n—oo

which means that x—lg is Lebesgue-integrable over [1,00).
(iii) We have

f dwto

= lim / L ma( by Beppo Levi’s thm.
= lim —dz usual shorthand
=00 J(1/n,1] \/_
1 1
= lim (R) / —dz Riemann- exists
n—oo n \/E n
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= lim [2\/_ }

= lim {2—2 %]
=2 <00

which means that \/Lg is Lebesgue-integrable over (0, 1].
(iv) We have

/i oy(@) do
1

= lim [ —1¢qmy(z)de by Beppo Levi’s thm.
T

n—oo

= lim —dx usual shorthand
n—oo (l/n,l] €T
1 1
= lim (R) / —dx Riemann- / exists
n—oo n 1/n

= lim logal},
= nh_}r{)lo [log(1) —log 1]
=00
which means that 1 is not Lebesgue-integrable over (0, 1].

Problem 11.9 We construct a dominating integrable function.

If z < 1, we have clearly exp(—x®) < 1, and f(o glde =1 < oois
integrable.

If z > 1, we have exp(—z®) < Mx~2 for some suitable constant M =
M, < oo. This function is integrable in [1,00), see e.g. Problem 11.8.
The estimate is easily seen from the fact that z — x?exp(—2?) is
continuous in [1, 00) with lim, ., 2% exp(—z®) = 0.

This shows that exp(—z®) < 1(,1) + M2 ™% 11 o) with the right-hand
side being integrable.

Problem 11.10 Take o € (a,b) where 0 < a < b < oo are fixed (but
arbitrary). We show that the function is continuous for these a. This
shows the general case since continuity is a local property and we can
‘catch’ any given ag by some choice of a and b’s.

We use the Continuity lemma (Theorem 11.4) and have to find uni-
form (for @ € (a,b)) dominating bounds on the integrand function
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fla,z) = (Si%)ge_‘m. First of all, we remark that ’¥| < M
which follows from the fact that ®% is a continuous function such
that lim, . 2% = 0 and lim, 10 Sigz = 1. (Actually, we could choose
M = 1...). Moreover, exp(—ax) < 1 for x € (0,1) and exp(—ax) <
C,px~2 for & > 1—use for this the continuity of z? exp(—ax) and the

fact that lim, .., 22 exp(—ax) = 0. This shows that

|f(Oé, I)| < M (1(071)(37) + Caybl‘_2 1[1,oo)<x>)

and the right-hand side is an integrable dominating function which
does not depend on a—as long as « € (a,b). But since a — f(a,x)
is obviously continuous, the Continuity lemma applies and proves that
Ji0.00) f(ct, ) da is continuous.

Problem 11.11 Fix some number N > 0 and take z € (=N, N). We show
that G(x) is continuous on this set. Since N was arbitrary, we find that
G is continuous for every = € R.

Set g(t,z) = ts(i?f:;)) =2z Sia%”) z- Then, using that || < M, we
have

1 1
lg(t,x)| <z -M <M-N- (1(0,1)(75) + = 1[1,00)(15)>

EEE 2

and the right-hand side is a uniformly dominating function, i.e. G(x)
makes sense and we find G(0) = [, 4 9(t,0)dt = 0. To see differentia-
bility, we use the Differentiability lemma (Theorem 11.5) and need to

prove that |0,¢(t,x)| exists (this is clear) and is uniformly dominated
for x € (=N, N). We have

B sin(tx) cos(tx)
1
g R
1+1¢2
1
S <1(o,1)(t) to 1[1,oo>(t))

and this allows us to apply the Differentiability lemma, so

@) =0, | gtx)dt = / Dog(t, ) dt
t£0 t#0

t
_ / cos( :162) 0
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t
_ / cos( 262) gt
R 1+t
(use in the last equality that {0} is a Lebesgue null set). Thus, by

a Beppo-Levi argument (and using that Riemann=Lebesgue whenever
the Riemann integral over a compact interval exists...)

G’(o):/ ! dtzlim(R)/n ! dt

R 1+1t2 n—oo I
= lim [tan"'(#)]",,
= .

Now observe that

O, sin(txr) = tcos(tx) = ! x cos(tz) = ! Oy sin(tz).
x x

Since the integral defining G'(z) exists we can use a Beppo-Levi ar-
gument, Riemann=Lebesgue (whenever the Riemann integral over an
interval exists) and integration by parts (for the Riemann integral) to
find

;[ wcos(tx)
xG' () = A—1+t2 dt

, " 20, sin(tx)
=lm [ e !

, " t0ysin(tx)
= Jim (R) / e &

" Oysin(t
=i [P

1
1+ t2
= lim {sm(tm)] — lim (R)/ sin(tx) - @Ldt

n—oo | 1+ 12 n—o00 1+ 12

t=—n —n

dt

= lim (R) / Z 9, sin(tz) -

n—oo

" 2t

2t si
_ / sin(tx) "
R (1+12)
Problem 11.12 (i) Note that for 0 < a,b < 1

1 1
1—(1—a)b:/ bt“dt>/ bdt = ba
1 l1—a

—a
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so that we get for 0 <z < kand a :=z/k, b:=k/(k+ 1)

k
T\ w41 T
1--) <1— o 0<z<k
( 2 k+1 v
or,
T k T k+1
- 100 < (1= 2) )

Therefore we can appeal to Beppo Levi’s theorem to get

k k
lim (1 - %) Inz \'(dz) = sup/ L) () (1 - %) Inx A (dz)

koo J k) FeN

= /sup [1(17@(@(1 - %)k] Inx M (dz)

keN

:/1(1700)(35)6“7 Inx \'(dz).

That e *Inz is integrable in (1,00) follows easily from the esti-
mates
e <Oy ™ and Inz <

which hold for all x > 1 and N € N.

Note that x — Inz is continuous and bounded in [e, 1], thus Rie-
mann integrable. It is easy to see that xIlnx — x is a primitive for
Inx. The improper Riemann integral

€E—>

1
/ Inzdr =limzlnz — 2] = —1
0

exists and, since In x is negative throughout (0, 1), improper Rie-
mann and Lebesgue integrals coincide. Thus, Inz € L'(dz, (0,1)).

(1-7) ma

is uniformly dominated by an integrable function and we can use
dominated convergence to get

li]{:n o (1 — %)k Inxdx = /(071) lillgn (1 — %)k Inx dx

:/ e lnxdx
(0,1)

Therefore,

< |Inz|, Vze(0,1)
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Problem 11.13 Fix throughout (a,b) C (0,00) and take x € (a,b). Let us
remark that, just as in Problem 11.8, we prove that

/ t0dt <oo Vo<1 and / t0dt <oo V4> 1.
(0,1) (1,00)

(i)

(i)

That the integrand function x +— ~(¢,x) is continuous on (a,b)
is clear. It is therefore enough to find an integrable dominating
function. We have

et <t Ve (0,1), € (a,b)
which is clearly integrable on (0,1) and

e TP Moyt Vt>1, 1€ (a,b)

t t

where we used that t?e™", p > 0, is continuous and lim; .., t’e™" =
0 to find M,;. This function is integrable over [1,00). Both
estimates together give the wanted integrable dominating func-
tion. The Continuity lemma (Theorem 11.4) applies. The well-
definedness of I'(z) comes for free as a by-product of the existence
of the dominating function.

Induction Hypothesis: T'"™ exists and is of the form as claimed in
the statement of the problem.

Induction Start m = 1: We have to show that I'(z) is differ-
entiable. We want to use the Differentiability lemma, Theorem
11.5. For this we remark first of all, that the integrand function
x +— v(t, z) is differentiable on (a,b) and that

0uy(t, ) = Ope ' t* 1 = e "1 logt.

We have now to find a uniform (for z € (a,b)) integrable domi-
nating function for |0,v(t, x)|. Since logt < ¢ for all ¢ > 0 (the
logarithm is a concave function!),

‘e‘t tr! 10gt‘ =e 11" ! logt
et < e < Gyt™? Vt=1, z€(ab)

(use for the last step the argument used in part (i) of this problem).
Moreover,

et logt| < ¢! |log
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1
=t"ogs < Gt VEe(0,1), w € (ab)

where we used the fact that lim;_o t* log % = 0 which is easily seen
by the substitution ¢ = e™ and u — oo and the continuity of the
function t* log %

Both estimates together furnish an integrable dominating func-
tion, so the Differentiability lemma applies and shows that

IM(z) = / Opy(t,x) dt = / e tt* L logtdt =TV (x).
(0,00)

(0,00)

Induction Step m ~~ m + 1: Set ™ (t,x) = e tt*~ (logt)™.
We want to apply the Differentiability Lemma to '™ (z). With
very much the same arguments as in the induction start we find
that "D (t, 2) = 9,7™(t, r) exists (obvious) and satisfies the
following bounds

’6—1? t;t—l (10g t)m—l—l’ — B_t t;v—l (IOg t)m+1

< efttm%»m
e

N

—ttb-i—m

<
<Cpmt™?  Vt=1, 7€ (a,b)
<t logt|™

1 m+1
=t""! (log =

Camt™/? Vte (0,1), =€ (a,b)

‘eft txfl (10g t)erl ‘

N

and the Differentiability lemma applies completing the induction
step.

Using a combination of Beppo-Levi (indicated by ‘B-L’), Rie-
mann=Lebesgue (if the Riemann integral over an interval exists)
and integration by parts (for the Riemann integral, indicated by
‘I-by-P’) techniques we get

xl(z) = lim e tat™ldt B-L

e J (1 nn)

= lim (R)/ e " ottt dt
n—oo 1/n
— lim (R) e "t*dt  I-by-P

n

= lim [e_t tmL:l/n

n—oo
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= lim (R) / ettt D=1 gy
n—oo 1/n

— lim e tEH)=1 gy

:/ e—tt(x-i-l)—l dt B-L
(0,00)

=I(z+1).

13

Problem 11.14 Fix (a,b) C (0,1) and let always u € (a,b). We have for

r>0and L € Ny

|2 f (u, 2)| = |=|*

ey ‘

e +1

— [L’L e(u—l)x

< 1po1)(2) + Maplin,eo) () z?

where we used that u—1 < 0, the continuity and boundedness of z”e™

for x € [1,00) and p > 0. If 2 < 0 we get

L B . euT
)| = el |
_ |.’L”L €—u|a:|

ax

Both inequalities give dominating functions which are integrable; there-

fore, the integral [, 2% f(u,z) dz exists.

To see m-fold differentiability, we use the Differentiability lemma (The-
orem 11.5) m-times. Formally, we have to use induction. Let us only
make the induction step (the start is very similar!). For this, observe

that .
am n = 8m =

but, as we have seen in the first step with L = n +m, this is uniformly
bounded by an integrable function. Therefore, the Differentiability

lemma applies and shows that

m n o n Qm _ n+m
o /R:r f(u,x)dm—/Rx o f(u,x)da:—/:z f(u,z) de.

R
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Problem 11.15 Note the misprint in this problem: the random variable X
should be positive.
(i) Since

dt_me :lee_tX ng
m applications of the differentiability lemma, Theorem 11.5, show
that ¢§}“’(0+) exists and that

m
‘d —ix

O (0+4) = (—1)m/Xm dP.
(ii) Using the exponential series we find that

e—tX . iXk (_1)ktk — i Xk (_1)ktk
k
k=0

| |
) k=m+1 k!
_ gl iXmJFHj (_1>m+1+jtj ]
— (m+1+ j)!
7=0

Since the left-hand side has a finite P-integral, so has the right,

i.e.
o (=1 m+1+jtj
/ ( g AL %) dP  converges
, m )N
Jj=0

and we see that
" —1)ktk
/ <€_tX — ZXk %) dP = O(tm)
k=0 ’
ast — 0.

(iii) We show, by induction in m, that

< — Yu > 0. (*)

Because of the elementary inequality
le™ — 1| <u Yu>0

the start of the induction m = 1 is clear. For the induction step

m — m + 1 we note that
_a\k U m—Ll . Nk
(—u) :‘/ (6_y_ (y)>dy‘
0 k!
k=0

[aay

et —

k!

m
k=0
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Problem

(iv)

= (—y)F
!

e_y —

dy

u
g/
0

(*) u m
< / Y ay
o m!

m+1

k=0

u
(m—+1)!"

and the claim follows.
Setting x = tX in (*), we find by integration that

i(/e—tX—le(—nktkkadP) . tr [ Xmdp

k! m)
k=0

If ¢ is in the radius of convergence of the power series, we know
that m gp
tm m
lim —’ "J =
m—00 m!

which, when combined with (iii), proves that

0

m—1
. [ X*ap
bx(t) = lim 3o (-1 I
k=0
11.16 (i) Wrong, u is NOT continuous on the irrational num-
bers. To see this, just take a sequence of rationals ¢; € QN [0, 1]

approximating p € [0,1] \ Q. Then

limu(g;) =1# 0= u(p) = u(limg;).

True. Mind that v is not continuous at 0, but {n~!,n € N} U {0}
is still countable.

True. The points where u and v are not 0 (that is: where they are
1) are countable sets, hence measurable and also Lebesgue null
sets. This shows that u, v are measurable and almost everywhere
0, hence [ud\=0= [vdA.

True. Since QN |0, 1] as well as [0, 1]\ Q are dense subsets of [0, 1],
ALL lower resp. upper Darboux sums are always

Selul =0 resp. S™[u] =1

(for any finite partition 7 of [0, 1]). Thus upper and lower integrals
of u have the value 0 resp. 1 and it follows that w cannot be
Riemann integrable.
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Problem 11.17 Note that every function which has finitely many disconti-
nuities is Riemann integrable. Thus, if {¢;};en is an enumeration of Q,
the functions u; () := 14, g....q;3 (¢) are Riemann integrable (with Rie-
mann integral 0) while their increasing limit u,, = 1g is not Riemann
integrable.

Problem 11.18 Of course we have to assume that u is Borel measurable! By
assumption we know that u; := ul ;) is (properly) Riemann integrable,
hence Lebesgue integrable and

J oo
/ ud\ = / ujd\ = (R)/ u(z)de — Eimia u(z) dz.
[0,5] [0,4] 0 0

The last limit exists because of improper Riemann integrability. More-
over, this limit is an increasing limit, i.e. a ‘sup’. Since 0 < u; T u we
can invoke Beppo Levi’s theorem and get

/ud)\:sup/ujd)\:/ u(z)dr < oo
J 0

proving Lebesgue integrability.

Problem 11.19 Observe that 22> = kn <= o = Vkm, z > 0, k €
Ny. Thus, Since sinz? is continuous, it is on every bounded interval
Riemann integrable. By a change of variables, y = 22, we get

7
/ | sin(x ]dx—/ |siny| ——= \/_ i |;ljf|d

which means that for a = a = kr and b = by, = (k + 1) = ag,; the
JaRTT

values f | sin(z?)| dz are a decreasing sequence with limit 0. Since

on [«/ Qs /ak+1j| the function sin 22 has only one sign (and alternates its
sign from interval to interval), we can use Leibniz’ convergence criterion
to see that the series

> /f sin(2?) dz ()

converges, hence the improper integral exists.

The function cos 22 can be treated similarly. Alternatively, we remark

that sin x? = cos(z? — m/2).

The functions are not Lebesgue integrable. Either we show that the
series (*) does not converge absolutely, or we argue as follows:
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sinz? = cos(z? — 7/2) shows that [ |sinz?|dz and [ |cosz?|dx either
both converge or diverge. If they would converge (this is equivalent to
Lebesgue integrability...) we would find because of sin? + cos? = 1 and
|sin |, |cos| < 1,

o0

00 = ldx = / [(sinz?)® + (cos 2?)?] dx
0 0
:/ (sin z%)? dx—l—/ (cosz®)* dx
0 0
</ |sinm2|dx+/ |cos 2% dr < oo,
0 0

which is a contradiction.

Problem 11.20 Let r < s and, without loss of generality, a < b. A change
of variables yields

/fbx /fbx —/SMd

bs y

br Yy / y
_ / ) , / I,
as y y
Using the mean value theorem for integrals, E.12

/f’”” )da:—f<§s>/b81dy—f(£r>/m§dy

as ar

= f(&) g — f(&) 2.

, we get

Since & € (as,bs) and & € (ar,br), we find that & > oo and

&r 29, 0 which means that

[T g~ (g6 - pe)) =2 -y,

r—0

Problem 11.21 (i) The function z — zIn x is bounded and continuous in
[0, 1], hence Riemann integrable. Since in this case Riemann and
Lebesgue integrals coincide, we may use Riemann’s integral and
the usual rules for integration. Thus, changing variables according
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tox =et dr = —etdt and then s = (k+ 1)t, ds = (k+ 1) ds
we find,

/Ol(xlnx)kd:zr—/oo [e=t(—1)]" e~ at

k;/ootk —t(k+1) g
k/°°< e ds

o \k+ k:—i—l

1

k (k+1)-1 e~
(k:+1> / ds
k( )T

E+1

(ii) Following the hint we write

k=0

Since for € (0,1) the terms under the sum are all positive, we
can use Beppo Levi’s theorem and the formula T'(k + 1) = k! to
get
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Solutions to Problems 12.1-12.22

Problem 12.1 (i) We use Hélder’s inequality for 7, s € (1,00) and £+ 1 =
1 to get

Jullg = [t = [ a1
(o) ()"
- (i)

Now let us choose r and s. We take

1
r:]—?>1:>—:

g and
q r p

hence

a/p-1/q
Jullg = (/ |ul? d,u) . (H(X))(lfq/p)(l/q)

B (/ [ul” dﬂ) . (p(x)) o
= [lully - ((3)"/77.

(i) If w € LP we know that w is measurable and |ul|, < oco. The
inequality in (i) then shows that

Jull, < const - [lull, < oo,

hence u € L£4. This gives LP C L% The inclusion £¢ C L! follows
by taking p ~~ ¢, ¢ ~~ 1.

Let (up)nen C LP be a Cauchy sequence, i.e. lim, oo ||[tn —
Um||, = 0. Since by the inequality in (i) also

lim s = wllg < p(X)YTHP limJug =, = 0

m,n— 00 m,n— o0

we get that (u,),en C L9 is also a Cauchy sequence in LY.

19
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(iii) No, the assertion breaks down completely if the measure y has infi-
nite mass. Here is an example: p = Lebesgue measure on (1, 00).

Then the function f(z) = I is not integrable over [1,00), but

f*(x) = % is. In other words: f ¢ L'(1,00) but f € L2(1,00),
hence £2(1,00) ¢ L'(1,00). (Playing around with different expo-
nents shows that the assertion also fails for other p,q > 1....).

Problem 12.2 This is going to be a bit messy and rather than showing the
‘streamlined’ solution we indicate how one could find out the numbers
oneself. Now let A be some number in (0,1) and let «, 3 be conjugate
indices: i + % = 1 where «, 5 € (1,00). Then by the Holder inequality

[l = [ Jal a2 dg
1 1
< ( [ du)“ ( / IUIT(I_Wduy
A r(d=X)
_ (/ ‘u‘rm dﬂ) A (/ |u\7"(1*)‘)5 du) m—x)ﬁ'

Taking rth roots on both sides yields

2 on
lull, < ( [ du) ( [ du)

= llullballulligt s

This leads to the following system of equations:

1t
=7rA =r(1-XNpl=—+—=
p=riagq r(L=A)fL=—+ 5
with unknown quantities «, 3, A. Solving it yields
11 B B
pa @ Tr

Problem 12.3 v € £°°(u) means that |v(x)] < (||v]je +€) for all z € N =
N, with p(N) = 0. Using in step * below Theorem 10.9, we get

/ww</wa
= [ Julleldu
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< [ Jullolle + ) d
NC
— (el +€) 1ol ds
NC
< (Il +) | fulds

and since the left-hand side does not depend on € > 0, we can let € — 0

and find
e—0
[wwus ] [ du‘ < [ i < (Bl + )l <=2 ol

Problem 12.4 Proof by induction in N.
Start N = 2: this is just Holder’s inequality.
Hypothesis: the generalized Holder inequality holds for some N > 2.

Step N ~ N + 1:. Let uy,...,uy,w be N + 1 functions and let
p ,...,pN,q > 1 be such that pl_l—l—p;l—i-...—l—p]_vl +q ' = 1. Set
=p; 4+ pyt +...+py. Then, by the ordinary Holder inequality,

1/p
/|u1 Usg - -uN~w|du<</|u1-u2~...-uN|pd,u) l|wllq
1/p
= ([t el )l

Now use the induction hypothesis which allows us to apply the gen-
eralized Holder inequality for N (!) factors A\; := p/p;, and thus
Z] LA ' = p/p =1, to the first factor to get

1/p
/]u1~u2-...~uN~w\du: (/\ulyp-\uzyp-....mmw) lull,

< wllpy - flellps - - el [[llg-

Problem 12.5 Draw a picture similar to the one used in the proof of Lemma
12.1 (note that the increasing function need not be convex or con-
cave....). Without loss of generality we can assume that A, B > 0 are
such that ¢(A) > B which is equivalent to A > ¥(B) since ¢ and

are inverses. Thus,

B (B) A
ABz/O w<n>dn+/0 ¢<§>d£+/¢ B,

(B)
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Using the fact that ¢ increases, we get that
o((B)) =B = ¢(C) 2B VC =>9(B)

and we conclude that

B ¥(B) A
ABjA¢@M+A ¢@%+/ Bt

(B

)
B »(B) A
< d d d
géwwn+é ¢@5+L®w®§
B A
5Awwm+4¢@@
— U(B) + &(A)

Problem 12.6 Let us show first of all that £P-limj_ . u; = w. This follows
immediately from limy_. ||u—wug||, = 0 since the series Y oo | |lu—ugl,
converges.

Therefore, we can find a subsequence (ug(j));jen such that

lim wyjy(2) = u(x) almost everywhere.

j—00

Now we want to show that u is the a.e. limit of the original sequence.
For this we mimic the trick from the Riesz-Fischer theorem 12.7 and
show that the series

[e%S) K
E (uj41 —uj) = lim g (uj41 —uj) = lim wug
K—o0 K—oo
Jj=0 Jj=0
(again we agree on ug := 0 for notational convenience) makes sense.

So let us employ Lemma 12.6 used in the proof of the Riesz-Fischer
theorem to get

o o
D (ur —u) || <D g — wyl
=0 =0

p p

o0
<D i — wllp
=0

J

< (luja = ullp + [lu — ;)

I

Il
=)

J
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< 00

where we used Minkowski’s inequality, the function u from above and
the fact that 7%, |lu; — ul|, < co along with [, < co. This shows
that limp o ux (v) = 377 (uj41(2) —u;(r)) exists almost everywhere.

We still have to show that limg o ux(x) = u(x). For this we re-
mark that a subsequence has necessarily the same limit as the original
sequence—whenever both have limits, of course. But then,

and the claim follows.
Problem 12.7 That for every fixed x the sequence

Uy () =111 /m)(r) — 0

is obvious. On the other hand, for any subsequence (u,;)); we have

1 .
Uiy |P AN = n(§)P —— =n(j)P 1 = ¢
[ il ax =y — = i)

with ¢ = 1 in case p = 1 and ¢ = oo if p > 1. This shows that the

LP-limit of this subsequence—let us call it w if it exists at all-—cannot
be (not even a.e.) u = 0.

On the other hand, we know that a sub-subsequence (txj)); of (ux(;);
converges pointwise almost everywhere to the LP-limit:

lign k() (z) = w(z).

Since the full sequence lim, u,(x) = u(z) = 0 has a limit, this shows
that the sub-sub-sequence limit w(xz) = 0 almost everywhere—a con-
tradiction. Thus, w does not exist in the first place.

Problem 12.8 Using Minkowski’s and Holder’s inequalities we find for all
e>0

lugve — wvl|y = ||ugve — ugv + upv — |

< luw - (o = )| + [ (ur — w)v]]

< ullpllve = vllg 4+ llue = ullpllvllg
< (M 4+ lv]lg)e
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for all n > N.. We used here that the sequence (||ug|p)ken is bounded.
Indeed, by Minkowski’s inequality

Jurllp = llur — ullp + [lullp, < €+ flull, =: M.
Problem 12.9 We use the simple identity
i = w3 = [ (0 =
= /(ui — 2Up Uy, + Uyy,) dp (*)
= el =2 [ e
Case 1: u, — w in £2. This means that (u,)nen is an £? Cauchy

sequence, i.e. that lim,, , oo ||ty — |3 = 0. On the other hand, we
get from the lower triangle inequality for norms

lim {[[unl2 = [Jullo] < T flu, —ull; =0
n—oo n—oo
so that also lim, o ||un |3 = limy, oo ||tum |3 = ||u||3. Using (*) we find

2 / Wt dpt = a3+ el — et — 3

n,Mm—00

lull3 + llull3 — 0
= 2||ull3.

Case 2: Assume that lim,, ;.0 f Up Uy, dp = ¢ for some number ¢ € R.
By the very definition of this double limit, i.e.

Ve>0 dN.eN ‘/unumd,u—c <e VYn,m>= N,

we see that lim,,_.. f UpUy dpp = ¢ = limy, o f U Uy dpe hold (with the
same c!). Therefore, again by (*), we get

it — 2 = lanll2 + ffml% — 2 / i dt

n,Mm—00

c+c—2c = 0,

i.e. (tup)nen is a Cauchy sequence in £2 and has, by the completeness
of this space, a limit.
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Problem 12.10 Use the exponential series to conclude from the positivity
of h and u(zx) that

Integrating this gives

hN
m/uNdu < /exp(hu) dp < 00

and we find that u € LV. Since y is a finite measure we know from
Problem 12.1 that for N > p we have LY C LP.

Problem 12.11 (i) We have to show that |u,(z)|P := n?*(z + n)~?° has
finite integral—measurability is clear since u,, is continuous. Since
nPY is a constant, we have only to show that (z-+n) P isin L', Set
v :=pf > 1. Then we get from a Beppo-Levi and a domination

argument
/ (x+n)"7 Adz) < / (x 4+ 1)77 A(dx)
(0,00) (0,00)
< / 1 \(de) +/ (z+ 1)~ A(dz)
(0,1) (1,00)
<1+ lim x 7 AN(dx).
k—o0 (1,k)

Now using that Riemann=Lebesgue on intervals where the Rie-
mann integral exists, we get

k

lim 7 ANdx) = lim [ x7dx
: 1 1ok
= fa [0 =7,

—(1—~\"1pg 1=y _
= (1=)7 Jlim (K77 - 1)
=(y-1)""' < o0

which shows that the integral is finite.

(i) We have to show that |v,(z)|? := n?e 7" is in L1—again mea-
surability is inferred from continuity. Since n?” is a constant, it is
enough to show that e™?"* is integrable. Set § = gn. Since

lim ((51‘)26_5z =0 and el Yo >=0,

Tr—00
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and since e~ is continuous on [0, 00), we conclude that there are

constants C, C'(d) such that

el
com{1 ]

= C(9) (1(01 (%) 4 11,00 é)

but the latter is an integrable function on (0, co).

Problem 12.12 Without loss of generality we may assume that o < 5. We
distinguish between the case x € (0,1) and z € [1,00). If x < 1, then
1 1 1 1/2

—_— > > = < 1:
xe T go B T ogpo g pa4ogo vesl

this shows that (z® + 27)~% is in £L((0, 1), dx) if, and only if, o < 1.
Similarly, if x > 1, then

1 1 1 1/2

— 2 > =

P T x4 b T P+ af 2P+ af
this shows that (z% + 2%)~1 is in £L1((1, ), dx) if, and only if, 5 > 1.
Thus, (z%+2°)7!is in LY(R, dz) if, and only if, both o < 1 and 3 > 1.

Ve>1

Problem 12.13 If weuse X ={1,2,...,n}, z(j) = x;, p = €1+ - - +¢, we

have
n 1/p
(Z \:vjlp> = |1l 1o

and it is clear that this is a norm for p > 1 and, in view of Problem
12.18 it is not a norm for p < 1 since the triangle (Mlnkowskl) inequality
fails. (This could also be shown by a direct counterexample.

Problem 12.14 Without loss of generality we can restrict ourselves to pos-
itive functions—else we would consider positive and negative parts.
Separability can obviously considered separately!

Assume that L} is separable and choose v € Lf. Then v? € L' and,
because of separability, there is a sequence (f,), C D; C L' such that
in L1

P p in L! P
fn — U’ == Uy, — U
n—00 n—00



Chapter 12. Solutions 12.1-12.22. Last update: 2-Feb-06 27

if we set u, := fa/’ € LP. In particular, Upry () — u(z) almost

everywhere for some subsequence and ||w, x|, hoeo, l|lul|,. Thus, Riesz’
theorem 12.10 applies and proves that
in LP
Lp :
> Unth) T
Obviously the separating set D, is essentially the same as D;, and we
are done.

The converse is similar (note that we did not make any assumptions
on p > 1 or p < 1—this is immaterial in the above argument).

Problem 12.15 We have seen in the lecture that, whenever lim,, . ||u —
Uy||, = 0, there is a subsequence ) such that limy_. tnr)(z) = u(x)
almost everywhere. Since, by assumption, lim;_ . u;(z) = w(x) a.e.,
we have also that lim; .. un)(z) = w(x) a.e., hence u(r) = w(x)
almost everywhere.

Problem 12.16 We remark that y — logy is concave. Therefore, we can
use Jensen’s inequality for concave functions to get for the probability

measure u/pu(X) = pu(X) 'y p

o s <o </ “%)

and the claim follows.

Problem 12.17 As a matter of fact,

/ u(s)ds - / logu(t) dt < / u(x) log u(x) dx.
(0,1) (0,1) (0,1)

We begin by proving the hint. logz > 0 <= = > 1. So,

Vy>1: <logy<ylogy — 1<y>

and Vy <1 : <logy<ylogy == 1>y>.
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Problem 12.18 Note the misprint: ¢ = p/(p—1) <~

Schilling: Measures, Integrals € Martingales

Assume now that f(o 3 u(z) dxr = 1. Substituting in the above inequal-
ity y = u(z) and integrating over (0, 1) yields

/ log u(x) dr < / u(z)logu(z) dx.
(0,1) (0,1)

Now assume that o = [, u(z) dz. Then [, u(z)/adz =1 and the
above inequality gives

/ log@dxg/ @log—dx
(0,1) « o1 a

which is equivalent to

/ log u(z) dz — log
(0,1)

= / log u(x) dex — / log avdx
(0,1) (0,1)

—log@da:
o

/A
=
IS
o=

1
= —/ u(z) log@dx
(0% (0,1) «
1 1
= —/ u(zx) log u(x) dx — —/ u(zx) log adx
@ Jo ®Jo
1 1
= —/ u(z)logu(z) dx — —/ u(z) dxlog «
RACAY @ Joy
1
= —/ u(z)log u(z) dx — log .
@ Jon

The claim now follows by adding log a on both sides and then multi-
plying by o = f(o,1) u(zx) de.
%—i— % = 1 indepen-
dent of p € (1,00) or p € (0,1)!
(i) Let p € (0,1) and pick the conjugate index ¢ := p/(p — 1) < 0.
Moreover, s := 1/p € (1,00) and the conjugate index ¢, + + ¢ =1,
is given by
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Thus, using the normal Holder inequality for s,t we get
p
/updu:/upw—d,u
wP
1/s 1/t
(Jer o) (o)
p I-p
= (/uw du) (/wp/(p_l) d,u) :

Taking pth roots on either side yields

(/ v d“) Ve < / w0 du) < / wp/(pl)cffb)ﬂp)/p
() (frran)™”

and the claim follows.

(ii) This ‘reversed” Minkowski inequality follows from the ‘reversed’
Holder inequality in exactly the same way as Minkowski’s inequal-
ity follows from Holder’s inequality, cf. Corollary 12.4. To wit:

/<u+v>pdu:/<u+v>-<u+v>p-1du
:/u-<u+v>pldu+/v~<u+v>p1du
>l - [ 0P, + ol - lu+ 071

Dividing both sides by |||u + v[P~!||, proves our claim since

vy, = ( [+ du) " ( / (u—i—v)pdu)l_l/p.

Problem 12.19 By assumption, |u| < ||u]/s < C < 0o and u # 0.

(i) We have

M, = / lul" dp < C’"/d,u =C"u(X) € (0,00).

Note that M, > 0.
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(ii) By the Cauchy-Schwarz-Inequality,

Mn:/|u|”du
ntl, n-l
Z/IUI2IUI2du
1/2 1/2
< ( [ du> ( [ du)

=V MnJranfl .

(iii) The upper estimate follows from

Mo = [ fuld < [ Jal o di = ull 21

Set P := p/p(X); the lower estimate is equivalent to
(o )" = i
ul" —— =
wX)) T [l s
1+1/n
— (/wdp) < /\u|"+1 qP
(n+1)/n
= </|u\"dP) g/]u\"ﬂ dP

and the last inequality follows easily from Jensen’s inequality since
P is a probability measure:

(n+1)/
(/|u|“dp> /|u|" s dP = /|u|"+1 dP.

(iv) Following the hint we get

&‘:

1/n n— 00
el > (s > Moo = €}) ™ (lulloe = €) “==> o

le.
liminf ||ul, > ||v]|co-
n—oo

Combining this with the estimate from (iii), we get

lulloo < liminf o(X) ™" ull,
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(iii)
< liminf

n—oo

Mn+1

n

Mot
< limsup —~
= n—oo M’I’L

< [ullee-

Problem 12.20 The hint says it all.... Maybe, you have a look at the
specimen solution of Problem 12.19, too.

Problem 12.21 Without loss of generality we may assume that f > 0. We
use the following standard representation of f, see (8.7):

N
= Z Pila,
=0

with 0 = ¢g < ¢1 < ... < ¢y < 00 and mutually disjoint sets A;.
Clearly, {f #0} = AjW--- U Ap.

Assume first that f € €N LP(u). Then
N N

so > [ rdn=3" G uA) > 3 S ul) = (s # 0
=1 =1

thus p({f # 0}) < oo.
Conversely, if u({f # 0}) < oo, we get

[ 7= 3 4 < 30 i) = olls #0)) < o

Since this integrability criterion does not depend on p > 1, it is clear
that EFNLP(u) = ETNLY (1), and the rest follows since & = €T — 7.

Problem 12.22 (i) Note that A(z) = z'/9 is concave—e.g. differentiate
twice and show that it is negative—and using Jensen’s inequality
for positive f,g > 0 yields

/ Jgdu = / 0f Loy 7 dp

_ 1/q
< /fpdu<f9qf ﬁ;f;;}f”du>
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(fra) " (fes)”

where we used 120y < 1 in the last step. Note that fg € L!
follows from the fact that (gqf_pl{#o})fp =gle Ll

(ii) The function A(z) = (2'/? 4 1)? has second derivative
AH(ZL‘) — ﬂ (1 + x—l/P) - 1=1/p <0
p

showing that A is concave. Using Jensen’s inequality gives for
f920

g p
/(f +9) L0 dpp = / (; Liszop + 1) F g0y dp

1 p
o o | (L9 oy A\
{f#0} f{f;éo} frdp

1/p 1/pp
L)+ () T
{f#0} {f#0}

Adding on both sides f{f:o}(f + g)Pdu = f{f:o} gP du yields, be-

cause of the elementary inequality A? + B? < (A+ B)?, A,B >
0, p=1,

/(f +9)" du

()" Uy T+l
<[(fora) +([fra) ]

N



