
11 Convergence theorems and their

applications.

Solutions to Problems 11.1–11.21

Problem 11.1 We start with the simple remark that

|a− b|p 6 (|a|+ |b|)p
6 (max{|a|, |b|}+ max{|a|, |b|})p
= 2p max{|a|, |b|}p
= 2p max{|a|p, |b|p}
6 2p(|a|p + |b|p).

Because of this we find that |uj − u|p 6 2pgp and the right-hand side is
an integrable dominating function.

Proof alternative 1: Apply Theorem 11.2 on dominated convergence
to the sequence φj := |uj − u|p of integrable functions. Note that
φj(x) → 0 and that 0 6 φj 6 Φ where Φ = 2pgp is integrable and
independent of j. Thus,

lim
j→∞

∫
|uj − u|p dµ = lim

j→∞

∫
φj dµ =

∫
lim
j→∞

φj dµ

=

∫
0 dµ = 0.

Proof alternative 2: Mimic the proof of Theorem 11.2 on dominated
convergence. To do so we remark that the sequence of functions

0 6 ψj := 2pgp − |uj − u|p j→∞−−−→ 2pgp

Since the limit limj ψj exists, it coincides with lim infj ψj, and so we
can use Fatou’s Lemma to get

∫
2pgp dµ =

∫
lim inf
j→∞

ψj dµ

6 lim inf
j→∞

∫
ψj dµ

1



2 Schilling: Measures, Integrals & Martingales

= lim inf
j→∞

∫ (
2pgp − |uj − u|p

)
dµ

=

∫
2pgp dµ+ lim inf

j→∞

(
−
∫
|uj − u|p dµ

)

=

∫
2pgp dµ− lim sup

j→∞

∫
|uj − u|p dµ

where we used that lim infj(−αj) = − lim supj αj. This shows that
lim supj

∫ |uj − u|p dµ = 0, hence

0 6 lim inf
j→∞

∫
|uj − u|p dµ 6 lim sup

j→∞

∫
|uj − u|p dµ 6 0

showing that lower and upper limit coincide and equal to 0, hence
limj

∫ |uj − u|p dµ = 0.

Problem 11.2 Assume that, as in the statement of Theorem 11.2, uj → u
and that |uj| 6 f ∈ L1(µ). In particular,

−f 6 uj and uj 6 f

(j ∈ N) is an integrable minorant resp. majorant. Thus, using Problem
10.8 at ∗ below,

∫
u dµ =

∫
lim inf
j→∞

uj dµ

∗
6 lim inf

j→∞

∫
uj dµ

6 lim sup
j→∞

∫
uj dµ

∗
6
∫

lim sup
j→∞

uj dµ =

∫
u dµ.

This proves
∫
u dµ = limj

∫
uj dµ.

Addition: since 0 6 |u − uj| 6 | limj uj| + |uj| 6 2f ∈ L1(µ), the
sequence |u − uj| has an integrable majorant and using Problem 10.8
we get

0 6 lim sup
j→∞

∫
|uj − u| dµ 6

∫
lim sup
j→∞

|uj − u| dµ =

∫
0 dµ = 0

and also (i) of Theorem 11.2 follows...
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Problem 11.3 By assumption we have

0 6 fk − gk k→∞−−−→ f − g,
0 6 Gk − fk k→∞−−−→ G− f.

Using Fatou’s Lemma we find
∫

(f − g) dµ =

∫
lim
k

(fk − gk) dµ

=

∫
lim inf

k
(fk − gk) dµ

6 lim inf
k

∫
(fk − gk) dµ

= lim inf
k

∫
fk dµ−

∫
g dµ,

and

∫
(G− f) dµ =

∫
lim
k

(Gk − fk) dµ

=

∫
lim inf

k
(Gk − fk) dµ

6 lim inf
k

∫
(Gk − fk) dµ

=

∫
Gdµ− lim sup

k

∫
fk dµ.

Adding resp. subtracting
∫
g dµ resp.

∫
Gdµ therefore yields

lim sup
k

∫
fk dµ 6

∫
f dµ 6 lim inf

k

∫
fk dµ

and the claim follows.

Problem 11.4 Using Beppo Levi’s theorem in the form of Corollary 9.9 we
find

∫ ∞∑
j=1

|uj| dµ =
∞∑
j=1

∫
|uj| dµ <∞, (*)

which means that the positive function
∑∞

j=1 |uj| is finite almost every-
where, i.e. the series

∑∞
j=1 uj converges (absolutely) almost everywhere.
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Moreover,

∫ N∑
j=1

uj dµ =
N∑
j=1

∫
uj dµ (**)

and, using the triangle inequality both quantities

∣∣∣∣
∫ N∑

j=n

uj dµ

∣∣∣∣ and

∣∣∣∣
N∑
j=n

∫
uj dµ

∣∣∣∣

can be estimated by

∫ N∑
j=n

|uj| dµ n,N→∞−−−−−→ 0

because of (*). This shows that both sides in (**) are Cauchy sequences,
i.e. they are convergent.

Problem 11.5 Since L1(µ) 3 uj ↓ 0 we find by monotone convergence,
Theorem 11.1, that

∫
uj dµ ↓ 0. Therefore,

σ =
∞∑
j=1

(−1)juj and S =
∞∑
j=1

(−1)j
∫
uj dµ converge

(conditionally, in general). Moreover, for every N ∈ N,

∫ N∑
j=1

(−1)juj dµ =
N∑
j=1

∫
(−1)juj dµ

N→∞−−−→ S.

All that remains is to show that the right-hand side converges to
∫
σ dµ.

Observe that for SN :=
∑N

j=1(−1)juj we have

S2N 6 S2N+2 6 . . . 6 S

and we find, as Sj ∈ L1(µ), by monotone convergence that

lim
N→∞

∫
S2N dµ =

∫
σ dµ.

Problem 11.6 Consider uj(x) := j · 1(0,1/j)(x), j ∈ N. It is clear that uj is
measurable and Lebesgue integrable with integral

∫
uj dλ = j

1

j
= 1 ∀ j ∈ N.
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Thus, limj

∫
uj dλ = 1. On the other hand, the pointwise limit is

u(x) := lim
j
uj(x) ≡ 0

so that 0 =
∫
u dλ =

∫
limj uj dλ 6= 1.

The example does not contradict dominated convergence as there is no
uniform dominating integrable function.

Alternative: a similar situation can be found for vk(x) := 1
k

1[0,k](x)
and the pointwise limit v ≡ 0. Note that in this case the limit is
even uniform and still limk

∫
vk dλ = 1 6= 0 =

∫
v dλ. Again there is

no contradiction to dominated convergence as there does not exist a
uniform dominating integrable function.

Problem 11.7 Let µ be an arbitrary Borel measure on the line R and define
the integral function for some u ∈ L1(µ) through

I(x) := Iuµ(x) :=

∫

(0,x)

u(t)µ(dt) =

∫
1(0,x)(t)u(t)µ(dt).

For any sequence 0 < lj → x, lj < x from the left and rk → x, rk > x
from the right we find

1(0,lj)(t)
j→∞−−−→ 1(0,x)(t) and 1(0,rk)(t)

k→∞−−−→ 1(0,x](t).

Since |1(0,x)u| 6 |u| ∈ L1 is a uniform dominating function, Lebesgue’s
dominated convergence theorem yields

I(x+)− I(x−) = lim
k
I(rk)− lim

j
I(lj)

=

∫
1(0,x](t)u(t)µ(dt)−

∫
1(0,x)(t)u(t)µ(dt)

=

∫ (
1(0,x](t)− 1(0,x)(t)

)
u(t)µ(dt)

=

∫
1{x}(t)u(t)µ(dt)

= u(x)µ({x}).

Thus I(x) is continuous at x if, and only if, x is not an atom of µ.

Remark: the proof shows, by the way, that Iuµ(x) is always left-
continous at every x, no matter what µ or u look like.
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Problem 11.8 (i) We have
∫

1

x
1[1,∞)(x) dx

= lim
n→∞

∫
1

x
1[1,n)(x) dx by Beppo Levi’s thm.

= lim
n→∞

∫

[1,n)

1

x
dx usual shorthand

= lim
n→∞

(R)

∫ n

1

1

x
dx Riemann-

∫ n

1

exists

= lim
n→∞

[log x]n1

= lim
n→∞

[log(n)− log(1)] =∞

which means that 1
x

is not Lebesgue-integrable over [1,∞).

(ii) We have
∫

1

x2
1[1,∞)(x) dx

= lim
n→∞

∫
1

x2
1[1,n)(x) dx by Beppo Levi’s thm.

= lim
n→∞

∫

[1,n)

1

x2
dx usual shorthand

= lim
n→∞

(R)

∫ n

1

1

x2
dx Riemann-

∫ n

1

exists

= lim
n→∞

[− 1
x

]n
1

= lim
n→∞

[1− 1
n
] = 1 <∞

which means that 1
x2 is Lebesgue-integrable over [1,∞).

(iii) We have
∫

1√
x

1(0,1](x) dx

= lim
n→∞

∫
1√
x

1(1/n,1](x) dx by Beppo Levi’s thm.

= lim
n→∞

∫

(1/n,1]

1√
x
dx usual shorthand

= lim
n→∞

(R)

∫ 1

1/n

1√
x
dx Riemann-

∫ 1

1/n

exists
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= lim
n→∞

[
2
√
x
]1

1/n

= lim
n→∞

[
2− 2

√
1
n

]

= 2 <∞
which means that 1√

x
is Lebesgue-integrable over (0, 1].

(iv) We have
∫

1

x
1(0,1](x) dx

= lim
n→∞

∫
1

x
1(1/n,1](x) dx by Beppo Levi’s thm.

= lim
n→∞

∫

(1/n,1]

1

x
dx usual shorthand

= lim
n→∞

(R)

∫ 1

1/n

1

x
dx Riemann-

∫ 1

1/n

exists

= lim
n→∞

[log x]11/n

= lim
n→∞

[
log(1)− log 1

n

]

=∞
which means that 1

x
is not Lebesgue-integrable over (0, 1].

Problem 11.9 We construct a dominating integrable function.

If x 6 1, we have clearly exp(−xα) 6 1, and
∫

(0,1]
1 dx = 1 < ∞ is

integrable.

If x > 1, we have exp(−xα) 6 Mx−2 for some suitable constant M =
Mα < ∞. This function is integrable in [1,∞), see e.g. Problem 11.8.
The estimate is easily seen from the fact that x 7→ x2 exp(−xα) is
continuous in [1,∞) with limx→∞ x2 exp(−xα) = 0.

This shows that exp(−xα) 6 1(0,1) + Mx−2 1[1,∞) with the right-hand
side being integrable.

Problem 11.10 Take α ∈ (a, b) where 0 < a < b < ∞ are fixed (but
arbitrary). We show that the function is continuous for these α. This
shows the general case since continuity is a local property and we can
‘catch’ any given α0 by some choice of a and b’s.

We use the Continuity lemma (Theorem 11.4) and have to find uni-
form (for α ∈ (a, b)) dominating bounds on the integrand function
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f(α, x) :=
(

sinx
x

)3
e−αx. First of all, we remark that

∣∣ sinx
x

∣∣ 6 M
which follows from the fact that sinx

x
is a continuous function such

that limx→∞ sinx
x

= 0 and limx↓0 sinx
x

= 1. (Actually, we could choose
M = 1...). Moreover, exp(−αx) 6 1 for x ∈ (0, 1) and exp(−αx) 6
Ca,bx

−2 for x > 1—use for this the continuity of x2 exp(−αx) and the
fact that limx→∞ x2 exp(−αx) = 0. This shows that

|f(α, x)| 6M
(
1(0,1)(x) + Ca,bx

−2 1[1,∞)(x)
)

and the right-hand side is an integrable dominating function which
does not depend on α—as long as α ∈ (a, b). But since α 7→ f(α, x)
is obviously continuous, the Continuity lemma applies and proves that∫

(0,∞)
f(α, x) dx is continuous.

Problem 11.11 Fix some number N > 0 and take x ∈ (−N,N). We show
that G(x) is continuous on this set. Since N was arbitrary, we find that
G is continuous for every x ∈ R.

Set g(t, x) := sin(tx)
t(1+t2)

= x sin(tx)
(tx)

1
1+t2

. Then, using that
∣∣ sinu

u

∣∣ 6 M , we
have

|g(t, x)| 6 x ·M · 1

1 + t2
6M ·N ·

(
1(0,1)(t) +

1

t2
1[1,∞)(t)

)

and the right-hand side is a uniformly dominating function, i.e. G(x)
makes sense and we find G(0) =

∫
t6=0

g(t, 0) dt = 0. To see differentia-

bility, we use the Differentiability lemma (Theorem 11.5) and need to
prove that |∂xg(t, x)| exists (this is clear) and is uniformly dominated
for x ∈ (−N,N). We have

|∂xg(t, x)| =
∣∣∣∣∂x

sin(tx)

t(1 + t2)

∣∣∣∣ =

∣∣∣∣
cos(tx)

(1 + t2)

∣∣∣∣

6 1

1 + t2

6
(

1(0,1)(t) +
1

t2
1[1,∞)(t)

)

and this allows us to apply the Differentiability lemma, so

G′(x) = ∂x

∫

t 6=0

g(t, x) dt =

∫

t 6=0

∂xg(t, x) dt

=

∫

t 6=0

cos(tx)

1 + t2
dt
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=

∫

R

cos(tx)

1 + t2
dt

(use in the last equality that {0} is a Lebesgue null set). Thus, by
a Beppo-Levi argument (and using that Riemann=Lebesgue whenever
the Riemann integral over a compact interval exists...)

G′(0) =

∫

R

1

1 + t2
dt = lim

n→∞
(R)

∫ n

−n

1

1 + t2
dt

= lim
n→∞

[tan−1(t)]n−n

= π.

Now observe that

∂x sin(tx) = t cos(tx) =
t

x
x cos(tx) =

t

x
∂t sin(tx).

Since the integral defining G′(x) exists we can use a Beppo-Levi ar-
gument, Riemann=Lebesgue (whenever the Riemann integral over an
interval exists) and integration by parts (for the Riemann integral) to
find

xG′(x) =

∫

R

x cos(tx)

1 + t2
dt

= lim
n→∞

(R)

∫ n

−n

x∂x sin(tx)

t(1 + t2)
dt

= lim
n→∞

(R)

∫ n

−n

t∂t sin(tx)

t(1 + t2)
dt

= lim
n→∞

(R)

∫ n

−n

∂t sin(tx)

1 + t2
dt

= lim
n→∞

(R)

∫ n

−n
∂t sin(tx) · 1

1 + t2
dt

= lim
n→∞

[
sin(tx)

1 + t2

]n

t=−n
− lim

n→∞
(R)

∫ n

−n
sin(tx) · ∂t 1

1 + t2
dt

= lim
n→∞

(R)

∫ n

−n
sin(tx) · 2t

(1 + t2)2
dt

=

∫

R

2t sin(tx)

(1 + t2)2
dt.

Problem 11.12 (i) Note that for 0 6 a, b 6 1

1− (1− a)b =

∫ 1

1−a
btb−1 dt >

∫ 1

1−a
b dt = ba
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so that we get for 0 6 x 6 k and a := x/k, b := k/(k + 1)

(
1− x

k

) k
k+1 6 1− x

k + 1
, 0 6 x 6 k

or, (
1− x

k

)k
1[0,k](x) 6

(
1− x

k + 1

)k+1

1[0,k+1](x).

Therefore we can appeal to Beppo Levi’s theorem to get

lim
k→∞

∫

(1,k)

(
1− x

k

)k
lnxλ1(dx) = sup

k∈N

∫
1(1,k)(x)

(
1− x

k

)k
ln xλ1(dx)

=

∫
sup
k∈N

[
1(1,k)(x)

(
1− x

k

)k]
lnxλ1(dx)

=

∫
1(1,∞)(x)e−x ln xλ1(dx).

That e−x ln x is integrable in (1,∞) follows easily from the esti-
mates

e−x 6 CNx
−N and ln x 6 x

which hold for all x > 1 and N ∈ N.

(ii) Note that x 7→ lnx is continuous and bounded in [ε, 1], thus Rie-
mann integrable. It is easy to see that x lnx− x is a primitive for
ln x. The improper Riemann integral

∫ 1

0

ln x dx = lim
ε→0

[x lnx− x]1ε = −1

exists and, since ln x is negative throughout (0, 1), improper Rie-
mann and Lebesgue integrals coincide. Thus, ln x ∈ L1(dx, (0, 1)).

Therefore,
∣∣∣∣
(

1− x

k

)k
lnx

∣∣∣∣ 6 | lnx|, ∀x ∈ (0, 1)

is uniformly dominated by an integrable function and we can use
dominated convergence to get

lim
k

∫

(0,1)

(
1− x

k

)k
ln x dx =

∫

(0,1)

lim
k

(
1− x

k

)k
lnx dx

=

∫

(0,1)

e−x lnx dx
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Problem 11.13 Fix throughout (a, b) ⊂ (0,∞) and take x ∈ (a, b). Let us
remark that, just as in Problem 11.8, we prove that

∫

(0,1)

t−δ dt <∞ ∀ δ < 1 and

∫

(1,∞)

t−δ dt <∞ ∀ δ > 1.

(i) That the integrand function x 7→ γ(t, x) is continuous on (a, b)
is clear. It is therefore enough to find an integrable dominating
function. We have

e−ttx−1 6 ta−1 ∀ t ∈ (0, 1), x ∈ (a, b)

which is clearly integrable on (0, 1) and

e−ttx−1 6Ma,b t
−2 ∀ t > 1, x ∈ (a, b)

where we used that tρe−t, ρ > 0, is continuous and limt→∞ tρe−t =
0 to find Ma,b. This function is integrable over [1,∞). Both
estimates together give the wanted integrable dominating func-
tion. The Continuity lemma (Theorem 11.4) applies. The well-
definedness of Γ(x) comes for free as a by-product of the existence
of the dominating function.

(ii) Induction Hypothesis: Γ(m) exists and is of the form as claimed in
the statement of the problem.

Induction Start m = 1: We have to show that Γ(x) is differ-
entiable. We want to use the Differentiability lemma, Theorem
11.5. For this we remark first of all, that the integrand function
x 7→ γ(t, x) is differentiable on (a, b) and that

∂xγ(t, x) = ∂xe
−t tx−1 = e−t tx−1 log t.

We have now to find a uniform (for x ∈ (a, b)) integrable domi-
nating function for |∂xγ(t, x)|. Since log t 6 t for all t > 0 (the
logarithm is a concave function!),

∣∣e−t tx−1 log t
∣∣ = e−t tx−1 log t

6 e−ttx 6 e−ttb 6 Cb t
−2 ∀ t > 1, x ∈ (a, b)

(use for the last step the argument used in part (i) of this problem).
Moreover,

∣∣e−t tx−1 log t
∣∣ 6 ta−1 | log t|
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= ta−1 log
1

t
6 Ca t

−1/2 ∀ t ∈ (0, 1), x ∈ (a, b)

where we used the fact that limt→0 t
ρ log 1

t
= 0 which is easily seen

by the substitution t = e−u and u→∞ and the continuity of the
function tρ log 1

t
.

Both estimates together furnish an integrable dominating func-
tion, so the Differentiability lemma applies and shows that

Γ′(x) =

∫

(0,∞)

∂xγ(t, x) dt =

∫

(0,∞)

e−t tx−1 log t dt = Γ(1)(x).

Induction Step m  m + 1: Set γ(m)(t, x) = e−t tx−1 (log t)m.
We want to apply the Differentiability Lemma to Γ(m)(x). With
very much the same arguments as in the induction start we find
that γ(m+1)(t, x) = ∂xγ

(m)(t, x) exists (obvious) and satisfies the
following bounds

∣∣e−t tx−1 (log t)m+1
∣∣ = e−t tx−1 (log t)m+1

6 e−ttx+m

6 e−ttb+m

6 Cb,m t
−2 ∀ t > 1, x ∈ (a, b)∣∣e−t tx−1 (log t)m+1

∣∣ 6 ta−1 | log t|m

= ta−1

(
log

1

t

)m+1

6 Ca,m t
−1/2 ∀ t ∈ (0, 1), x ∈ (a, b)

and the Differentiability lemma applies completing the induction
step.

(iii) Using a combination of Beppo-Levi (indicated by ‘B-L’), Rie-
mann=Lebesgue (if the Riemann integral over an interval exists)
and integration by parts (for the Riemann integral, indicated by
‘I-by-P’) techniques we get

xΓ(x) = lim
n→∞

∫

(1/n,n)

e−t xtx−1 dt B-L

= lim
n→∞

(R)

∫ n

1/n

e−t ∂ttx dt

= lim
n→∞

[
e−t tx

]n
t=1/n

− lim
n→∞

(R)

∫ n

1/n

∂te
−t tx dt I-by-P
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= lim
n→∞

(R)

∫ n

1/n

e−t t(x+1)−1 dt

= lim
n→∞

∫

(1/n,n)

e−t t(x+1)−1 dt

=

∫

(0,∞)

e−t t(x+1)−1 dt B-L

= Γ(x+ 1).

Problem 11.14 Fix (a, b) ⊂ (0, 1) and let always u ∈ (a, b). We have for
x > 0 and L ∈ N0

|xLf(u, x)| = |x|L
∣∣∣∣
eux

ex + 1

∣∣∣∣

= xL
eux

ex + 1

6 xL
eux

ex

= xL e(u−1)x

6 1[0,1](x) +Ma,b1(1,∞)(x)x−2

where we used that u−1 < 0, the continuity and boundedness of xρe−ax

for x ∈ [1,∞) and ρ > 0. If x 6 0 we get

|xLf(u, x)| = |x|L
∣∣∣∣
eux

ex + 1

∣∣∣∣
= |x|L e−u|x|
6 1[−1,0](x) +Na,b1(−∞,1)(x) |x|−2.

Both inequalities give dominating functions which are integrable; there-
fore, the integral

∫
R x

Lf(u, x) dx exists.

To see m-fold differentiability, we use the Differentiability lemma (The-
orem 11.5) m-times. Formally, we have to use induction. Let us only
make the induction step (the start is very similar!). For this, observe
that

∂mu (xnf(u, x)) = ∂mu
xneux

ex + 1
=
xn+meux

ex + 1
but, as we have seen in the first step with L = n+m, this is uniformly
bounded by an integrable function. Therefore, the Differentiability
lemma applies and shows that

∂mu

∫

R
xn f(u, x) dx =

∫

R
xn ∂mu f(u, x) dx =

∫

R
xn+m f(u, x) dx.
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Problem 11.15 Note the misprint in this problem: the random variable X
should be positive.

(i) Since ∣∣∣∣
dm

dtm
e−tX

∣∣∣∣ =
∣∣Xme−tX

∣∣ 6 Xm

m applications of the differentiability lemma, Theorem 11.5, show
that φ

(m)
X (0+) exists and that

φ
(m)
X (0+) = (−1)m

∫
Xm dP.

(ii) Using the exponential series we find that

e−tX −
m∑

k=0

Xk (−1)ktk

k!
=

∞∑

k=m+1

Xk (−1)ktk

k!

= tm+1

∞∑
j=0

Xm+1+j (−1)m+1+jtj

(m+ 1 + j)!
.

Since the left-hand side has a finite P -integral, so has the right,
i.e. ∫ ( ∞∑

j=0

Xm+1+j (−1)m+1+jtj

(m+ 1 + j)!

)
dP converges

and we see that
∫ (

e−tX −
m∑

k=0

Xk (−1)ktk

k!

)
dP = o(tm)

as t→ 0.

(iii) We show, by induction in m, that

∣∣∣∣e−u −
m−1∑

k=0

(−u)k

k!

∣∣∣∣ 6
um

m!
∀u > 0. (*)

Because of the elementary inequality

|e−u − 1| 6 u ∀u > 0

the start of the induction m = 1 is clear. For the induction step
m→ m+ 1 we note that

∣∣∣∣e−u −
m∑

k=0

(−u)k

k!

∣∣∣∣ =

∣∣∣∣
∫ u

0

(
e−y −

m−1∑

k=0

(−y)k

k!

)
dy

∣∣∣∣
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6
∫ u

0

∣∣∣∣e−y −
m−1∑

k=0

(−y)k

k!

∣∣∣∣ dy

(*)

6
∫ u

0

ym

m!
dy

=
um+1

(m+ 1)!
,

and the claim follows.

Setting x = tX in (*), we find by integration that

±
(∫

e−tX −
m−1∑

k=0

(−1)ktk
∫
Xk dP

k!

)
6 tm

∫
Xm dP

m!
.

(iv) If t is in the radius of convergence of the power series, we know
that

lim
m→∞

|t|m ∫ Xm dP

m!
= 0

which, when combined with (iii), proves that

φX(t) = lim
m→∞

m−1∑

k=0

(−1)ktk
∫
Xk dP

k!
.

Problem 11.16 (i) Wrong, u is NOT continuous on the irrational num-
bers. To see this, just take a sequence of rationals qj ∈ Q ∩ [0, 1]
approximating p ∈ [0, 1] \Q. Then

lim
j
u(qj) = 1 6= 0 = u(p) = u(lim

j
qj).

(ii) True. Mind that v is not continuous at 0, but {n−1, n ∈ N} ∪ {0}
is still countable.

(iii) True. The points where u and v are not 0 (that is: where they are
1) are countable sets, hence measurable and also Lebesgue null
sets. This shows that u, v are measurable and almost everywhere
0, hence

∫
u dλ = 0 =

∫
v dλ.

(iv) True. Since Q∩ [0, 1] as well as [0, 1]\Q are dense subsets of [0, 1],
ALL lower resp. upper Darboux sums are always

Sπ[u] ≡ 0 resp. Sπ[u] ≡ 1

(for any finite partition π of [0, 1]). Thus upper and lower integrals
of u have the value 0 resp. 1 and it follows that u cannot be
Riemann integrable.
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Problem 11.17 Note that every function which has finitely many disconti-
nuities is Riemann integrable. Thus, if {qj}j∈N is an enumeration of Q,
the functions uj(x) := 1{q1,q2,...,qj}(x) are Riemann integrable (with Rie-
mann integral 0) while their increasing limit u∞ = 1Q is not Riemann
integrable.

Problem 11.18 Of course we have to assume that u is Borel measurable! By
assumption we know that uj := u1[0,j] is (properly) Riemann integrable,
hence Lebesgue integrable and

∫

[0,j]

u dλ =

∫

[0,j]

uj dλ = (R)

∫ j

0

u(x) dx
j→∞−−−→

∫ ∞
0

u(x) dx.

The last limit exists because of improper Riemann integrability. More-
over, this limit is an increasing limit, i.e. a ‘sup’. Since 0 6 uj ↑ u we
can invoke Beppo Levi’s theorem and get

∫
u dλ = sup

j

∫
uj dλ =

∫ ∞
0

u(x) dx <∞

proving Lebesgue integrability.

Problem 11.19 Observe that x2 = kπ ⇐⇒ x =
√
kπ, x > 0, k ∈

N0. Thus, Since sin x2 is continuous, it is on every bounded interval
Riemann integrable. By a change of variables, y = x2, we get

∫ √b
√
a

| sin(x2)| dx =

∫ b

a

| sin y| dy
2
√
y

=

∫ b

a

| sin y|
2
√
y
dy

which means that for a = ak = kπ and b = bk = (k + 1)π = ak+1 the

values
∫ √ak+1√

ak
| sin(x2)| dx are a decreasing sequence with limit 0. Since

on
[√
ak,
√
ak+1

]
the function sin x2 has only one sign (and alternates its

sign from interval to interval), we can use Leibniz’ convergence criterion
to see that the series

∑

k

∫ √ak+1

√
ak

sin(x2) dx (*)

converges, hence the improper integral exists.

The function cos x2 can be treated similarly. Alternatively, we remark
that sin x2 = cos(x2 − π/2).

The functions are not Lebesgue integrable. Either we show that the
series (*) does not converge absolutely, or we argue as follows:
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sinx2 = cos(x2 − π/2) shows that
∫ | sinx2| dx and

∫ | cosx2| dx either
both converge or diverge. If they would converge (this is equivalent to
Lebesgue integrability...) we would find because of sin2 + cos2 ≡ 1 and
| sin |, | cos | 6 1,

∞ =

∫ ∞
0

1 dx =

∫ ∞
0

[
(sinx2)2 + (cos x2)2

]
dx

=

∫ ∞
0

(sinx2)2 dx+

∫ ∞
0

(cosx2)2 dx

6
∫ ∞

0

| sinx2| dx+

∫ ∞
0

| cosx2| dx < ∞,

which is a contradiction.

Problem 11.20 Let r < s and, without loss of generality, a 6 b. A change
of variables yields

∫ s

r

f(bx)− f(ax)

x
dx =

∫ s

r

f(bx)

x
dx−

∫ s

r

f(ax)

x
dx

=

∫ bs

br

f(y)

y
dy −

∫ as

ar

f(y)

y
dy

=

∫ bs

as

f(y)

y
dy −

∫ br

ar

f(y)

y
dy

Using the mean value theorem for integrals, E.12, we get

∫ s

r

f(bx)− f(ax)

x
dx = f(ξs)

∫ bs

as

1

y
dy − f(ξr)

∫ br

ar

1

y
dy

= f(ξs) ln b
a
− f(ξr) ln b

a
.

Since ξs ∈ (as, bs) and ξr ∈ (ar, br), we find that ξs
s→∞−−−→ ∞ and

ξr
r→0−−→ 0 which means that

∫ s

r

f(bx)− f(ax)

x
dx =

[
f(ξs)− f(ξr)

]
ln b

a

s→∞−−−−→
r→0

(M −m) ln b
a
.

Problem 11.21 (i) The function x 7→ x lnx is bounded and continuous in
[0, 1], hence Riemann integrable. Since in this case Riemann and
Lebesgue integrals coincide, we may use Riemann’s integral and
the usual rules for integration. Thus, changing variables according
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to x = e−t, dx = −e−t dt and then s = (k + 1)t, ds = (k + 1) ds
we find,

∫ 1

0

(x ln x)k dx =

∫ ∞
0

[
e−t(−t)]k e−t dt

= (−1)k
∫ ∞

0

tke−t(k+1) dt

= (−1)k
∫ ∞

0

( s

k + 1

)k
e−s

ds

k + 1

= (−1)k
( 1

k + 1

)k+1
∫ ∞

0

s(k+1)−1e−s ds

= (−1)k
( 1

k + 1

)k+1

Γ(k + 1).

(ii) Following the hint we write

x−x = e−x lnx =
∞∑

k=0

(−1)k
(x ln x)k

k!
.

Since for x ∈ (0, 1) the terms under the sum are all positive, we
can use Beppo Levi’s theorem and the formula Γ(k + 1) = k! to
get

∫

(0,1)

x−x dx =
∞∑

k=0

(−1)k
1

k!

∫

(0,1)

(x lnx)k dx

=
∞∑

k=0

(−1)k
1

k!
(−1)k

( 1

k + 1

)k+1

Γ(k + 1)

=
∞∑

k=0

( 1

k + 1

)k+1

=
∞∑
n=1

( 1

n

)n
.



12 The function spaces Lp, 1 6 p 6∞.

Solutions to Problems 12.1–12.22

Problem 12.1 (i) We use Hölder’s inequality for r, s ∈ (1,∞) and 1
s
+ 1

t
=

1 to get

‖u‖qq =

∫
|u|q dµ =

∫
|u|q · 1 dµ

6
(∫
|u|qr dµ

)1/r

·
(∫

1s dµ

)1/s

=

(∫
|u|qr dµ

)1/r

· (µ(X))1/s .

Now let us choose r and s. We take

r =
p

q
> 1 =⇒ 1

r
=
q

p
and

1

s
= 1− 1

r
= 1− q

p
,

hence

‖u‖q =

(∫
|u|p dµ

)q/p·1/q
· (µ(X))(1−q/p)(1/q)

=

(∫
|u|p dµ

)q/p·1/q
· (µ(X))1/q−1/p

= ‖u‖p · (µ(X))1/q−1/p .

(ii) If u ∈ Lp we know that u is measurable and ‖u‖p < ∞. The
inequality in (i) then shows that

‖u‖q 6 const · ‖u‖p <∞,
hence u ∈ Lq. This gives Lp ⊂ Lq. The inclusion Lq ⊂ L1 follows
by taking p q, q  1.

Let (un)n∈N ⊂ Lp be a Cauchy sequence, i.e. limm,n→∞ ‖un −
um‖p = 0. Since by the inequality in (i) also

lim
m,n→∞

‖un − um‖q 6 µ(X)1/q−1/p lim
m,n→∞

‖un − um‖p = 0

we get that (un)n∈N ⊂ Lq is also a Cauchy sequence in Lq.

19
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(iii) No, the assertion breaks down completely if the measure µ has infi-
nite mass. Here is an example: µ = Lebesgue measure on (1,∞).
Then the function f(x) = 1

x
is not integrable over [1,∞), but

f 2(x) = 1
x2 is. In other words: f 6∈ L1(1,∞) but f ∈ L2(1,∞),

hence L2(1,∞) 6⊂ L1(1,∞). (Playing around with different expo-
nents shows that the assertion also fails for other p, q > 1....).

Problem 12.2 This is going to be a bit messy and rather than showing the
‘streamlined’ solution we indicate how one could find out the numbers
oneself. Now let λ be some number in (0, 1) and let α, β be conjugate
indices: 1

α
+ 1

β
= 1 where α, β ∈ (1,∞). Then by the Hölder inequality

∫
|u|r dµ =

∫
|u|rλ|u|r(1−λ) dµ

6
(∫

|u|rλα dµ
) 1

α
(∫

|u|r(1−λ)β dµ

) 1
β

=

(∫
|u|rλα dµ

) rλ
rλα
(∫

|u|r(1−λ)β dµ

) r(1−λ)
r(1−λ)β

.

Taking rth roots on both sides yields

‖u‖r 6
(∫

|u|rλα dµ
) λ

rλα
(∫

|u|r(1−λ)β dµ

) (1−λ)
r(1−λ)β

= ‖u‖λrλα‖u‖1−λ
r(1−λ)β.

This leads to the following system of equations:

p = rλαq = r(1− λ)β1 =
1

α
+
t

β

with unknown quantities α, β, λ. Solving it yields

λ =

1
r
− 1

q

1
p
− 1

q

, α =
q − p
q − r β =

q − p
r − p .

Problem 12.3 v ∈ L∞(µ) means that |v(x)| 6 (‖v‖∞ + ε) for all x ∈ N =
Nε with µ(N) = 0. Using in step ∗ below Theorem 10.9, we get

∫
uv dµ 6

∫
|u||v| dµ

∗
=

∫

Nc

|u||v| dµ
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6
∫

Nc

|u|(‖v‖∞ + ε
)
dµ

=
(‖v‖∞ + ε

) ∫

Nc

|u| dµ

6
(‖v‖∞ + ε

) ∫ |u| dµ

and since the left-hand side does not depend on ε > 0, we can let ε→ 0
and find
∫
uv dµ 6

∣∣∣∣
∫
uv dµ

∣∣∣∣ 6
∫
|uv| dµ 6 (‖v‖∞ + ε

)‖u‖1
ε→0−−→ ‖v‖∞‖u‖1.

Problem 12.4 Proof by induction in N .

Start N = 2: this is just Hölder’s inequality.

Hypothesis: the generalized Hölder inequality holds for some N > 2.

Step N  N + 1:. Let u1, . . . , uN , w be N + 1 functions and let
p1, . . . , pN , q > 1 be such that p−1

1 + p−1
2 + . . . + p−1

N + q−1 = 1. Set
p−1 := p−1

1 + p−1
2 + . . .+ p−1

N . Then, by the ordinary Hölder inequality,

∫
|u1 · u2 · . . . · uN · w| dµ 6

(∫
|u1 · u2 · . . . · uN |p dµ

)1/p

‖u‖q

=

(∫
|u1|p · |u2|p · . . . · |uN |p dµ

)1/p

‖u‖q

Now use the induction hypothesis which allows us to apply the gen-
eralized Hölder inequality for N (!) factors λj := p/pj, and thus∑N

j=1 λ
−1
j = p/p = 1, to the first factor to get

∫
|u1 · u2 · . . . · uN · w| dµ =

(∫
|u1|p · |u2|p · . . . · |uN |p dµ

)1/p

‖u‖q
6 ‖u‖p1 · ‖u‖p2 · . . . · ‖u‖pN‖u‖q.

Problem 12.5 Draw a picture similar to the one used in the proof of Lemma
12.1 (note that the increasing function need not be convex or con-
cave....). Without loss of generality we can assume that A,B > 0 are
such that φ(A) > B which is equivalent to A > ψ(B) since φ and ψ
are inverses. Thus,

AB =

∫ B

0

ψ(η) dη +

∫ ψ(B)

0

φ(ξ) dξ +

∫ A

ψ(B)

B dξ.
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Using the fact that φ increases, we get that

φ(ψ(B)) = B =⇒ φ(C) > B ∀C > ψ(B)

and we conclude that

AB =

∫ B

0

ψ(η) dη +

∫ ψ(B)

0

φ(ξ) dξ +

∫ A

ψ(B)

B dξ

6
∫ B

0

ψ(η) dη +

∫ ψ(B)

0

φ(ξ) dξ +

∫ A

ψ(B)

φ(ξ) dξ

=

∫ B

0

ψ(η) dη +

∫ A

0

φ(ξ) dξ

= Ψ(B) + Φ(A).

Problem 12.6 Let us show first of all that Lp-limk→∞ uk = u. This follows
immediately from limk→∞ ‖u−uk‖p = 0 since the series

∑∞
k=1 ‖u−uk‖p

converges.

Therefore, we can find a subsequence (uk(j))j∈N such that

lim
j→∞

uk(j)(x) = u(x) almost everywhere.

Now we want to show that u is the a.e. limit of the original sequence.
For this we mimic the trick from the Riesz-Fischer theorem 12.7 and
show that the series

∞∑
j=0

(uj+1 − uj) = lim
K→∞

K∑
j=0

(uj+1 − uj) = lim
K→∞

uK

(again we agree on u0 := 0 for notational convenience) makes sense.
So let us employ Lemma 12.6 used in the proof of the Riesz-Fischer
theorem to get

∥∥∥∥∥
∞∑
j=0

(uj+1 − uj)
∥∥∥∥∥
p

6
∥∥∥∥∥
∞∑
j=0

|uj+1 − uj|
∥∥∥∥∥
p

6
∞∑
j=0

‖uj+1 − uj‖p

6
∞∑
j=0

(‖uj+1 − u‖p + ‖u− uj‖p)
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<∞

where we used Minkowski’s inequality, the function u from above and
the fact that

∑∞
j=1 ‖uj − u‖p <∞ along with ‖u1‖p <∞. This shows

that limK→∞ uK(x) =
∑∞

j=0(uj+1(x)−uj(x)) exists almost everywhere.

We still have to show that limK→∞ uK(x) = u(x). For this we re-
mark that a subsequence has necessarily the same limit as the original
sequence—whenever both have limits, of course. But then,

u(x) = lim
j→∞

uk(j)(x) = lim
k→∞

uk(x) =
∞∑
j=0

(uj+1(x)− uj(x))

and the claim follows.

Problem 12.7 That for every fixed x the sequence

un(x) := n1(0,1/n)(x)
n→∞−−−→ 0

is obvious. On the other hand, for any subsequence (un(j))j we have

∫
|un(j)|p dλ = n(j)p

1

n(j)
= n(j)p−1 j→∞−−−→ c

with c = 1 in case p = 1 and c = ∞ if p > 1. This shows that the
Lp-limit of this subsequence—let us call it w if it exists at all—cannot
be (not even a.e.) u = 0.

On the other hand, we know that a sub-subsequence (ũk(j))j of (uk(j))j
converges pointwise almost everywhere to the Lp-limit:

lim
j
ũk(j)(x) = w(x).

Since the full sequence limn un(x) = u(x) = 0 has a limit, this shows
that the sub-sub-sequence limit w(x) = 0 almost everywhere—a con-
tradiction. Thus, w does not exist in the first place.

Problem 12.8 Using Minkowski’s and Hölder’s inequalities we find for all
ε > 0

‖ukvk − uv‖1 = ‖ukvk − ukv + ukv − uv‖
6 ‖uk · (vk − v)‖+ ‖(uk − u)v‖
6 ‖uk‖p‖vk − v‖q + ‖uk − u‖p‖v‖q
6 (M + ‖v‖q)ε
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for all n > Nε. We used here that the sequence (‖uk‖p)k∈N is bounded.
Indeed, by Minkowski’s inequality

‖uk‖p = ‖uk − u‖p + ‖u‖p 6 ε+ ‖u‖p =: M.

Problem 12.9 We use the simple identity

‖un − um‖2
2 =

∫
(un − um)2 dµ

=

∫
(u2

n − 2unum + um) dµ

= ‖un‖2
2 + ‖um‖2

2 − 2

∫
unum dµ.

(*)

Case 1: un → u in L2. This means that (un)n∈N is an L2 Cauchy
sequence, i.e. that limm,n→∞ ‖un − um‖2

2 = 0. On the other hand, we
get from the lower triangle inequality for norms

lim
n→∞

|‖un‖2 − ‖u‖2| 6 lim
n→∞

‖un − u‖2 = 0

so that also limn→∞ ‖un‖2
2 = limm→∞ ‖um‖2

2 = ‖u‖2
2. Using (*) we find

2

∫
unum dµ = ‖un‖2

2 + ‖um‖2
2 − ‖un − um‖2

2

n,m→∞−−−−→ ‖u‖2
2 + ‖u‖2

2 − 0

= 2‖u‖2
2.

Case 2: Assume that limn,m→∞
∫
unum dµ = c for some number c ∈ R.

By the very definition of this double limit, i.e.

∀ ε > 0 ∃Nε ∈ N :

∣∣∣∣
∫
unum dµ− c

∣∣∣∣ < ε ∀n,m > Nε,

we see that limn→∞
∫
unun dµ = c = limm→∞

∫
umum dµ hold (with the

same c!). Therefore, again by (*), we get

‖un − um‖2
2 = ‖un‖2

2 + ‖um‖2
2 − 2

∫
unum dµ

n,m→∞−−−−→ c+ c− 2c = 0,

i.e. (un)n∈N is a Cauchy sequence in L2 and has, by the completeness
of this space, a limit.
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Problem 12.10 Use the exponential series to conclude from the positivity
of h and u(x) that

exp(hu) =
∞∑
j=0

hjuj

j!
> hN

N !
uN .

Integrating this gives

hN

N !

∫
uN dµ 6

∫
exp(hu) dµ <∞

and we find that u ∈ LN . Since µ is a finite measure we know from
Problem 12.1 that for N > p we have LN ⊂ Lp.

Problem 12.11 (i) We have to show that |un(x)|p := npα(x + n)−pβ has
finite integral—measurability is clear since un is continuous. Since
npα is a constant, we have only to show that (x+n)−pβ is in L1. Set
γ := pβ > 1. Then we get from a Beppo-Levi and a domination
argument
∫

(0,∞)

(x+ n)−γ λ(dx) 6
∫

(0,∞)

(x+ 1)−γ λ(dx)

6
∫

(0,1)

1λ(dx) +

∫

(1,∞)

(x+ 1)−γ λ(dx)

6 1 + lim
k→∞

∫

(1,k)

x−γ λ(dx).

Now using that Riemann=Lebesgue on intervals where the Rie-
mann integral exists, we get

lim
k→∞

∫

(1,k)

x−γ λ(dx) = lim
k→∞

∫ k

1

x−γ dx

= lim
k→∞

[
(1− γ)−1x1−γ]k

1

= (1− γ)−1 lim
k→∞

(
k1−γ − 1

)

= (γ − 1)−1 < ∞
which shows that the integral is finite.

(ii) We have to show that |vn(x)|q := nqγe−qnx is in L1—again mea-
surability is inferred from continuity. Since nqγ is a constant, it is
enough to show that e−qnx is integrable. Set δ = qn. Since

lim
x→∞

(δx)2e−δx = 0 and e−δx 6 1 ∀x > 0,
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and since e−δx is continuous on [0,∞), we conclude that there are
constants C,C(δ) such that

e−δx 6 min

{
1,

C

(δx)2

}

6 C(δ) min

{
1,

1

x2

}

= C(δ)

(
1(0,1)(x) + 1[1,∞)

1

x2

)

but the latter is an integrable function on (0,∞).

Problem 12.12 Without loss of generality we may assume that α 6 β. We
distinguish between the case x ∈ (0, 1) and x ∈ [1,∞). If x 6 1, then

1

xα
> 1

xα + xβ
> 1

xα + xα
=

1/2

xα + xα
∀x 6 1;

this shows that (xα + xβ)−1 is in L1((0, 1), dx) if, and only if, α < 1.

Similarly, if x > 1, then

1

xβ
> 1

xα + xβ
> 1

xβ + xβ
=

1/2

xβ + xβ
∀x > 1

this shows that (xα + xβ)−1 is in L1((1,∞), dx) if, and only if, β > 1.

Thus, (xα+xβ)−1 is in L1(R, dx) if, and only if, both α < 1 and β > 1.

Problem 12.13 If we use X = {1, 2, . . . , n}, x(j) = xj, µ = ε1 + · · ·+ εn we
have ( n∑

j=1

|xj|p
)1/p

= ‖x‖Lp(µ)

and it is clear that this is a norm for p > 1 and, in view of Problem
12.18 it is not a norm for p < 1 since the triangle (Minkowski) inequality
fails. (This could also be shown by a direct counterexample.

Problem 12.14 Without loss of generality we can restrict ourselves to pos-
itive functions—else we would consider positive and negative parts.
Separability can obviously considered separately!

Assume that L1
+ is separable and choose u ∈ L

p
+. Then up ∈ L1 and,

because of separability, there is a sequence (fn)n ⊂ D1 ⊂ L1 such that

fn
in L1−−−→
n→∞

up =⇒ upn
in L1−−−→
n→∞

up
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if we set un := f
1/p
n ∈ Lp. In particular, un(k)(x) → u(x) almost

everywhere for some subsequence and ‖un(k)‖p k→∞−−−→ ‖u‖p. Thus, Riesz’
theorem 12.10 applies and proves that

Lp 3 un(k)
in Lp−−−→
k→∞

u.

Obviously the separating set Dp is essentially the same as D1, and we
are done.

The converse is similar (note that we did not make any assumptions
on p > 1 or p < 1—this is immaterial in the above argument).

Problem 12.15 We have seen in the lecture that, whenever limn→∞ ‖u −
un‖p = 0, there is a subsequence un(k) such that limk→∞ un(k)(x) = u(x)
almost everywhere. Since, by assumption, limj→∞ uj(x) = w(x) a.e.,
we have also that limj→∞ un(j)(x) = w(x) a.e., hence u(x) = w(x)
almost everywhere.

Problem 12.16 We remark that y 7→ log y is concave. Therefore, we can
use Jensen’s inequality for concave functions to get for the probability
measure µ/µ(X) = µ(X)−11X µ

∫
(log u)

dµ

µ(X)
6 log

(∫
u

dµ

µ(X)

)

= log

(∫
u dµ

µ(X)

)

= log

(
1

µ(X)

)
,

and the claim follows.

Problem 12.17 As a matter of fact,

∫

(0,1)

u(s) ds ·
∫

(0,1)

log u(t) dt 6
∫

(0,1)

u(x) log u(x) dx.

We begin by proving the hint. log x > 0 ⇐⇒ x > 1. So,

∀y > 1 :
(

log y 6 y log y ⇐⇒ 1 6 y
)

and ∀y 6 1 :
(

log y 6 y log y ⇐⇒ 1 > y
)
.



28 Schilling: Measures, Integrals & Martingales

Assume now that
∫

(0,1)
u(x) dx = 1. Substituting in the above inequal-

ity y = u(x) and integrating over (0, 1) yields
∫

(0,1)

log u(x) dx 6
∫

(0,1)

u(x) log u(x) dx.

Now assume that α =
∫

(0,1)
u(x) dx. Then

∫
(0,1)

u(x)/α dx = 1 and the

above inequality gives
∫

(0,1)

log
u(x)

α
dx 6

∫

(0,1)

u(x)

α
log

u(x)

α
dx

which is equivalent to∫

(0,1)

log u(x) dx− logα

=

∫

(0,1)

log u(x) dx−
∫

(0,1)

logα dx

=

∫

(0,1)

log
u(x)

α
dx

6
∫

(0,1)

u(x)

α
log

u(x)

α
dx

=
1

α

∫

(0,1)

u(x) log
u(x)

α
dx

=
1

α

∫

(0,1)

u(x) log u(x) dx− 1

α

∫

(0,1)

u(x) logα dx

=
1

α

∫

(0,1)

u(x) log u(x) dx− 1

α

∫

(0,1)

u(x) dx logα

=
1

α

∫

(0,1)

u(x) log u(x) dx− logα.

The claim now follows by adding logα on both sides and then multi-
plying by α =

∫
(0,1)

u(x) dx.

Problem 12.18 Note the misprint: q = p/(p− 1) ⇐⇒ 1
p

+ 1
q

= 1 indepen-

dent of p ∈ (1,∞) or p ∈ (0, 1)!

(i) Let p ∈ (0, 1) and pick the conjugate index q := p/(p − 1) < 0.
Moreover, s := 1/p ∈ (1,∞) and the conjugate index t, 1

s
+ 1

t
= 1,

is given by

t =
s

s− 1
=

1
p

1
p
− 1

=
1

1− p ∈ (1,∞).
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Thus, using the normal Hölder inequality for s, t we get

∫
up dµ =

∫
up
wp

wp
dµ

6
(∫ (

upwp
)s
dµ

)1/s(∫
w−pt dµ

)1/t

=

(∫
uw dµ

)p(∫
wp/(p−1) dµ

)1−p
.

Taking pth roots on either side yields

(∫
up dµ

)1/p

6
(∫

uw dµ

)(∫
wp/(p−1) dµ

)(1−p)/p

=

(∫
uw dµ

)(∫
wq dµ

)−1/q

and the claim follows.

(ii) This ‘reversed’ Minkowski inequality follows from the ‘reversed’
Hölder inequality in exactly the same way as Minkowski’s inequal-
ity follows from Hölder’s inequality, cf. Corollary 12.4. To wit:

∫
(u+ v)p dµ =

∫
(u+ v) · (u+ v)p−1 dµ

=

∫
u · (u+ v)p−1 dµ+

∫
v · (u+ v)p−1 dµ

(i)

> ‖u‖p ·
∥∥(u+ v)p−1

∥∥
q

+ ‖v‖p ·
∥∥(u+ v)p−1

∥∥
q
.

Dividing both sides by ‖|u+ v|p−1‖q proves our claim since

∥∥(u+ v)p−1
∥∥
q

=

(∫
(u+ v)(p−1)q dµ

)1/q

=

(∫
(u+ v)p dµ

)1−1/p

.

Problem 12.19 By assumption, |u| 6 ‖u‖∞ 6 C <∞ and u 6≡ 0.

(i) We have

Mn =

∫
|u|n dµ 6 Cn

∫
dµ = Cnµ(X) ∈ (0,∞).

Note that Mn > 0.
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(ii) By the Cauchy-Schwarz-Inequality,

Mn =

∫
|u|n dµ

=

∫
|u|n+1

2 |u|n−1
2 dµ

6
(∫

|u|n+1 dµ

)1/2(∫
|u|n−1 dµ

)1/2

=
√
Mn+1Mn−1 .

(iii) The upper estimate follows from

Mn+1 =

∫
|u|n+1 dµ 6

∫
|u|n · ‖u‖∞ dµ = ‖u‖∞Mn.

Set P := µ/µ(X); the lower estimate is equivalent to

(∫
|u|n dµ

µ(X)

)1/n

6
∫ |u|n+1 dµ

µ(X)∫ |u|n dµ
µ(X)

⇐⇒
(∫

|u|n dP
)1+1/n

6
∫
|u|n+1 dP

⇐⇒
(∫

|u|n dP
)(n+1)/n

6
∫
|u|n+1 dP

and the last inequality follows easily from Jensen’s inequality since
P is a probability measure:

(∫
|u|n dP

)(n+1)/n ∫
|u|n·n+1

n dP =

∫
|u|n+1 dP.

(iv) Following the hint we get

‖u‖n >
(
µ
{
u > ‖u‖∞ − ε

})1/n(‖u‖∞ − ε
) n→∞−−−→

ε→0
‖u‖∞,

i.e.
lim inf
n→∞

‖u‖n > ‖u‖∞.
Combining this with the estimate from (iii), we get

‖u‖∞ 6 lim inf
n→∞

µ(X)−1/n‖u‖n



Chapter 12. Solutions 12.1–12.22. Last update: 2-Feb-06 31

(iii)

6 lim inf
n→∞

Mn+1

Mn

6 lim sup
n→∞

Mn+1

Mn

6 ‖u‖∞.

Problem 12.20 The hint says it all.... Maybe, you have a look at the
specimen solution of Problem 12.19, too.

Problem 12.21 Without loss of generality we may assume that f > 0. We
use the following standard representation of f , see (8.7):

f =
N∑
j=0

φj1Aj

with 0 = φ0 < φ1 < . . . < φN < ∞ and mutually disjoint sets Aj.
Clearly, {f 6= 0} = A1 ·∪ · · · ·∪AN .

Assume first that f ∈ E ∩ Lp(µ). Then

∞ >

∫
f p dµ =

N∑
j=1

φpj µ(Aj) >
N∑
j=1

φp1 µ(Aj) = φp1 µ({f 6= 0});

thus µ({f 6= 0}) <∞.

Conversely, if µ({f 6= 0}) <∞, we get

∫
f p dµ =

N∑
j=1

φpj µ(Aj) 6
N∑
j=1

φpN µ(Aj) = φpN µ({f 6= 0}) <∞.

Since this integrability criterion does not depend on p > 1, it is clear
that E+ ∩Lp(µ) = E+ ∩L1(µ), and the rest follows since E = E+−E+.

Problem 12.22 (i) Note that Λ(x) = x1/q is concave—e.g. differentiate
twice and show that it is negative—and using Jensen’s inequality
for positive f, g > 0 yields

∫
fg dµ =

∫
gf−p/q 1{f 6=0}f

p dµ

6
∫
fp dµ

(∫
gqf−p1{f 6=0}fp dµ∫

f p dµ

)1/q
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6
(∫

fp dµ

)1−1/q(∫
gq dµ

)1/q

where we used 1{f 6=0} 6 1 in the last step. Note that fg ∈ L1

follows from the fact that
(
gqf−p1{f 6=0}

)
f p = gq ∈ L1.

(ii) The function Λ(x) = (x1/p + 1)p has second derivative

Λ′′(x) =
1− p
p

(
1 + x−1/p

)
x−1−1/p 6 0

showing that Λ is concave. Using Jensen’s inequality gives for
f, g > 0

∫
(f + g)p1{f 6=0} dµ =

∫ ( g
f

1{f 6=0} + 1
)p
fp1{f 6=0} dµ

6
∫

{f 6=0}
fp dµ

[(∫
gp1{f 6=0} dµ∫
{f 6=0} f

p dµ

)1/p

+ 1

]p

=

[(∫

{f 6=0}
gp dµ

)1/p

+

(∫

{f 6=0}
f p dµ

)1/p]p
.

Adding on both sides
∫
{f=0}(f + g)p dµ =

∫
{f=0} g

p dµ yields, be-

cause of the elementary inequality Ap + Bp 6 (A + B)p, A,B >
0, p > 1,

∫
(f + g)p dµ

6
[(∫

{f 6=0}
gp dµ

)1/p

+

(∫

{f 6=0}
fp dµ

)1/p]p
+

[ ∫

{f=0}
gp dµ

]p/p

6
[(∫

gp dµ

)1/p

+

(∫
fp dµ

)1/p]p
.


