
13 Product measures and Fubini’s

theorem

Solutions to Problems 13.1–13.14

Problem 13.1 • We have

(x, y) ∈
(⋃

i

Ai

)
×B ⇐⇒ x ∈

⋃
i

Ai and y ∈ B

⇐⇒ ∃ i0 : x ∈ Ai0 and y ∈ B
⇐⇒ ∃ i0 : (x, y) ∈ Ai0 ×B
⇐⇒ (x, y) ∈

⋃
i

(Ai ×B).

• We have

(x, y) ∈
(⋂

i

Ai

)
×B ⇐⇒ x ∈

⋂
i

Ai and y ∈ B

⇐⇒ ∀ i : x ∈ Ai and y ∈ B
⇐⇒ ∀ i : (x, y) ∈ Ai ×B
⇐⇒ (x, y) ∈

⋂
i

(Ai ×B).

• Using the formula A × B = π−1
1 (A) ∩ π−1

2 (B) (see page 120 and
the fact that inverse maps interchange with all set operations, we
get

(A×B) ∩ (A′ ×B′) =
[
π−1

1 (A) ∩ π−1
2 (B)

]
∩
[
π−1

1 (A′) ∩ π−1
2 (B′)

]

=
[
π−1

1 (A) ∩ π−1
1 (A′)

]
∩
[
π−1

2 (B) ∩ π−1
2 (B′)

]

= π−1
1 (A ∩ A′) ∩ π−1

2 (B ∩B′)
= (A ∩ A′)× (B ∩B′).

• Using the formula A × B = π−1
1 (A) ∩ π−1

2 (B) (see page 120 and
the fact that inverse maps interchange with all set operations, we
get

Ac ×B = π−1
1 (Ac) ∩ π−1

2 (B)

1
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=
[
π−1

1 (A)
]c ∩ π−1

2 (B)

= π−1
1 (X) ∩ π−1

2 (B) ∩ [π−1
1 (A)

]c

= π−1
1 (X) ∩ π−1

2 (B) ∩
{[
π−1

1 (A)
]c ∪ [π−1

2 (B)
]c}

= (X ×B) ∩ [π−1
1 (A) ∩ π−1

2 (B)
]c

= (X ×B) ∩ [A×B]c
= (X ×B) \ (A×B).

• We have

A×B ⊂ A′ ×B′ ⇐⇒ [
(x, y) ∈ A×B =⇒ (x, y) ∈ A′ ×B′]

⇐⇒ [
x ∈ A, y ∈ B =⇒ x ∈ A′, y ∈ B′]

⇐⇒ A ⊂ A′, B ⊂ B′.

Problem 13.2 Pick two exhausting sequences (Ak)k ⊂ A and (Bk)k ⊂ B

such that µ(Ak), ν(Bk) < ∞ and Ak ↑ X, Bk ↑ Y . Then, because of
the continuity of measures,

µ× ν(A×N) = lim
k
µ× ν((A×N) ∩ (Ak ×Bk)

)

= lim
k
µ× ν((A ∩ Ak)× (N ∩Bk)

)

= lim
k

[
µ(A ∩ Ak)︸ ︷︷ ︸

<∞

· ν(N ∩Bk)︸ ︷︷ ︸
6 ν(N)=0

]

= 0.

Since A×N ∈ A×B ⊂ A⊗B, measurability is clear.

Problem 13.3 Since the two expressions are symmetric in x and y, they
must coincide if they converge. Let us, therefore only look at the left
hand side.

The inner integral, ∫

(0,∞)

e−xy sinxλ(dx)

clearly satisfies

∫

(0,∞)

∣∣e−xy sinx
∣∣λ(dx) 6

∫

(0,∞)

e−xy λ(dx)

=

∫ ∞
0

e−xy dx



Chapter 13. Solutions 13.1–13.14. Last update: 18-Mar-06 3

=

[
− e−xy

y

]∞

x=0

=
1

x
.

Since the integrand is continuous and has only one sign, we can use
Riemann’s integral. Thus, the integral exists. To calculate its value we
observe that two integrations by parts yield

∫ ∞
0

e−xy sinx dx = −e−xy cosx
∣∣∣
∞

x=0
−
∫ ∞

0

ye−xy cosx dx

= 1− y
∫ ∞

0

e−xy cosx dx

= 1− y
(
e−xy sinx

∣∣∣
∞

x=0
+

∫ ∞
0

ye−xy sinx dx

)

= 1− y2

∫ ∞
0

e−xy sinx dx.

And if we solve this equality for the integral expression, we get

(1 + y2)

∫ ∞
0

e−xy sinx dx = 1 =⇒
∫ ∞

0

e−xy sinx dx =
1

1 + y2
.

Alternative: Since sinx = Im eix we get
∫ ∞

0

e−xy sinx dx = Im
∫ ∞

0

e−(y−i)x dx = Im
1

y − i = Im
y + i

y2 + 1
=

1
y2 + 1

.

Thus the iterated integral exists, since
∫

(0,∞)

∣∣∣∣
sinx

1 + x2

∣∣∣∣ dx 6
∫

(0,∞)

1

1 + x2
dx = arctan x

∣∣∞
0

=
π

2
.

(Here we used again that improper Riemann integrals with positive
integrands coincide with Lebesgue integrals.)

In principle, the existence and equality of iterated integrals is not good
enough to guarantee the existence of the double integral. For this
one needs the existence of the absolute iterated integrals—cf. Tonelli’s
theorem 13.8. In the present case one can see that the absolute iterated
integrals exist, though:

On the one hand we find
∫

(0,∞)

e−xy| sin(x)|λ(dx) 6 e−xy

−y

∣∣∣∣
∞

0

=
1

y
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and sin y
y

is, as a bounded continuous function, Lebesgue integrable over

(0, 1).

On the other hand we can use integration by parts to get
∫ (k+1)π

kπ

e−xy sinx dx =
e−xy

−y sinx
∣∣(k+1)π

kπ
−
∫ (k+1)π

kπ

e−xy

−y cosx dx

=
e−xy

−y2
cosx

∣∣(k+1)π

kπ
−
∫ (k+1)π

kπ

e−xy

−y2
(−1) sin x dx

which is equivalent to

y2 + 1

y2

∫ (k+1)π

kπ

e−xy sinx dx =
e−(k+1)πy

−y2
(−1)k+1 − e−kπy

−y2
(−1)k

=
(−1)k

y2
(e−(k+1)πy + e−kπy),

i.e.
∫ (k+1)π

kπ
e−xy sinx dx = (−1)k 1

y2+1
(e−(k+1)πy + e−kπy).

Now we find a bound for y ∈ (1,∞).

∫

(0,∞)

e−xy| sin(x)|dx =
∞∑

k=0

∫ (k+1)π

kπ

e−xy sinx(−1)k dx

=
∞∑

k=0

(−1)k(−1)k
1

y2 + 1
(e−(k+1)πy + e−kπy)

6 2

y2 + 1

∞∑

k=0

(e−πy)k

y>1

6 2

y2 + 1

∞∑

k=0

(e−π)k

which means that the left hand side is integrable over (1,∞).

Thus we have∫

(0,∞)

∫

(0,∞)

|e−xy sinx sin y|λ(dx)λ(dy)

6
∫

(0,1]

sin y

y
λ(dy) +

∫

(1,∞)

2

y2 + 1
λ(dy)

∞∑

k=0

(e−π)k

<∞.

By Fubini’s theorem we know that the iterated integrals as well as the
double integral exist and their values are identical.
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Problem 13.4 Note that

d

dy

y

x2 + y2
=

x2 − y2

(x2 + y2)2
.

Thus we can compute
∫

(0,1)

∫

(0,1)

x2 − y2

(x2 + y2)2
dy dx =

∫

(0,1)

1

x2 + 1
dx = arctan x

∣∣1
0

=
π

4
.

By symmetry of x and y in the integrals it follows that
∫

(0,1)

∫

(0,1)

y2 − x2

(x2 + y2)2
dy dx = −π

4

and therefore the double integral can not exist. Since the existence
would imply the equality of the two above integrals. We can see this
directly by

∫

(0,1)

∫

(0,1)

∣∣∣∣
x2 − y2

(x2 + y2)2

∣∣∣∣ dy dx >
∫ 1

0

∫ x

0

x2 − y2

(x2 + y2)2
dy dx

=

∫ 1

0

x

x2 + x2
dx

=
1

2

∫ 1

0

1

x
dx =∞.

Problem 13.5 Since the integrand is odd, we have for y 6= 0:
∫

(−1,1)

xy

(x2 + y2)2
dx = 0

and {0} is a null set. Thus the iterated integrals have common value 0.
But the double integral does not exist, since for the iterated absolute
integrals we get

∫

(−1,1)

∣∣∣∣
xy

(x2 + y2)2

∣∣∣∣ dx =
1

|y|
∫ 1/|y|

0

ξ

(ξ2 + 1)2
dξ > 2

|y|
∫ 1

0

ξ

(ξ2 + 1)2
dξ

︸ ︷︷ ︸
<∞

.

Here we used the substitution x = ξ|y| and the fact that |y| 6 1, thus
1/|y| > 1. But the outer integral is bounded below by

∫

(−1,1)

2

|y| dy which is divergent.
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Problem 13.6 (i) Since for continuous integrands over a compact interval
Riemann and Lebesgue integrals coincide, we find

lim
k→∞

∫

(0,k)

e−tx λ(dt) = lim
k→∞

∫

[0,k]

e−tx dt

= lim
k→∞

e−tx

−x

∣∣∣∣
k

0

= lim
n→∞

e−kx

−x −
1

−x =
1

x
.

(ii) Since | sinx ∫
(0,k)

e−tx dt| 6 | sinx
x
| and since sin x/x is continuous

and bounded on the interval [0, n], we can use dominated conver-
gence to get

lim
n→∞

∫

(0,n)

sinx

x
λ(dx) = lim

n→∞

∫

(0,n)

sinx lim
k→∞

∫

(0,k)

e−tx dt dx

= lim
n→∞

lim
k→∞

∫

(0,n)

∫

(0,k)

sinx e−tx dt dx.

Since the integrand is continuous and since we integrate over a
(relatively) compact set we can use Fubini’s theorem and find

lim
n→∞

∫

(0,n)

sinx

x
λ(dx)

= lim
n→∞

lim
k→∞

∫

(0,k)

∫

(0,n)

sinx e−tx dx dt

= lim
n→∞

lim
k→∞

∫

(0,k)

1

t2 + 1

(
1− e−nt(cosn+ t sinn)

)
dt

where we also used that
∫ b

a
e−xy sinx dx =

1
y2 + 1

(
e−ay(cos a+ y sin a)− e−by(cos b+ y sin b)

)

Since ∣∣∣∣1(0,k)(t)
1

t2 + 1

(
1− e−nt(cosn+ t sinn)

)∣∣∣∣

6 2

t2 + 1
+

t

t2 + 1
e−nt ∈ L1(0,∞),

dominated convergence yields

lim
n→∞

∫

(0,n)

sinx
x

λ(dx) = lim
n→∞

∫

(0,∞)

1
t2 + 1

(
1−e−nt(cosn+ t sinn)

)
dt
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and, again by dominated convergence, since the integrand is for
n > 1 bounded by the integrable function (0,∞) 3 t 7→ 2

t2+1
+

t
t2+1

e−t

lim
n→∞

∫

(0,n)

sinx

x
λ(dx) =

∫

(0,∞)

1

t2 + 1
dt = arctan t

∣∣∞
0

=
π

2
.

Problem 13.7 Note that the diagonal ∆ ⊂ R2 is measurable, i.e. the (dou-
ble) integrals are well-defined. The inner integral on the l.h.S. satisfies

∫

[0,1]

1∆(x, y)λ(dx) = λ({y}) = 0 ∀ y ∈ [0, 1]

so that the left-hand side∫

[0,1]

∫

[0,1]

1∆(x, y)λ(dx)µ(dy) =

∫

[0,1]

0µ(dy) = 0.

On the other hand, the inner integral on the right-hand side equals
∫

[0,1]

1∆(x, y)µ(dy) = µ({x}) = 1 ∀ x ∈ [0, 1]

so that the right-hand side
∫

[0,1]

∫

[0,1]

1∆(x, y)µ(dy)λ(dx) =

∫

[0,1]

1λ(dx) = 1.

This shows that the double integrals are not equal. This does not
contradict Tonelli’s theorem since µ is not σ-finite.

Problem 13.8 (i) Note that, due to the countability of N and N × N
there are no problems with measurability and σ-finiteness (of the
counting measure).

Tonelli’s Theorem. Let (ajk)j,k∈N be a double sequence of pos-
itive numbers ajk > 0. Then

∑

j∈N

∑

k∈N
ajk =

∑

k∈N

∑

j∈N
ajk

with the understanding that both sides are either finite or infinite.

Fubini’s Theorem. Let (ajk)j,k∈N ⊂ R be a double sequence of
real numbers ajk. If

∑

j∈N

∑

k∈N
|ajk| or

∑

k∈N

∑

j∈N
|ajk|
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is finite, then all of the following expressions converge absolutely
and sum to the same value:

∑

j∈N

(∑

k∈N
|ajk|

)
,
∑

k∈N

(∑

j∈N
|ajk|

)
,

∑

(j,k)∈N×N
|ajk|.

(ii) Consider the (obviously σ-finite) measures µj :=
∑

k∈Aj δk and

ν =
∑

j∈N µj. Tonelli’s theorem tells us that

∑

j∈N

∑

k∈Aj
|xk| =

∫

N

∫

N
|xk|µj(dk)µ(dj)

=

∫

N

∫

N
|xk|1Aj(k)µ(dk)µ(dj)

=

∫

N

∫

N
|xk|1Aj(k)µ(dj)µ(dk)

=

∫

N
|xk|

(∫

N
1Aj(k)µ(dj)

)

︸ ︷︷ ︸
= 1, as the Aj are disjoint

µ(dk)

=

∫

N
|xk|µ(dk)

=
∑

k∈N
|xk|.

Problem 13.9 (i) Set U(a, b) := a− b. Then

U(u(x), y)1[0,∞)(y) > 0 ⇐⇒ u(x) > y > 0

and U(u(x), y)1[0,∞)(y) is a combination/sum/product of B(R2)
resp. B(R)-measurable functions. Thus S[u] is B(R2)-measurable.

(ii) Yes, true, since by Tonelli’s theorem

λ2(S[u]) =

∫

R2

1S[u](x, y)λ2(d(x, y))

=

∫

R

∫

R
1{(x,y) : u(x)>y>0}(x, y)λ1(dy)λ1(dx)

=

∫

R

∫

[0,u(x)]

1λ1(dy)λ1(dx)

=

∫

R
u(x)λ1(dx)
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(iii) Measurability follows from (i) and with the hint. Moreover,

λ2(Γ[u]) =

∫

R2

1Γ[u](x, y)λ2(d(x, y))

=

∫

R

∫

R
1{(x,y) : y=u(x)}(x, y)λ1(dy)λ1(dx)

=

∫

R

∫

[u(x),u(x)]

1λ1(dy)λ1(dx)

=

∫

R
λ1({u(x)})λ1(dx)

=

∫

R
0λ1(dx)

= 0.

Problem 13.10 The hint given in the text should be good enough to solve
this problem....

Problem 13.11 Since (i) implies (ii), we will only prove (i) under the as-
sumption that both (X,A, µ) and (Y,B, ν) are complete measure spaces.
Note that we have to assume σ-finiteness of µ and ν, otherwise the prod-
uct construction would not work. Pick some set Z ∈ P(X) \A (which
is, because of completeness, not a null-set!), and some ν-null set N ∈ B

and consider Z ×N .

We get for some exhausting sequence (Ak)k ⊂ A, Ak ↑ X and µ(Ak) <
∞:

µ× ν(X ×N) = sup
k∈N

µ× ν(Ak ×N)

= sup
k∈N

(
µ(Ak)︸ ︷︷ ︸
<∞

· ν(N)︸ ︷︷ ︸
= 0

)

= 0;

thus Z ×N ⊂ X ×N is a subset of a measurable µ× ν null set, hence
it should be A ⊗ B-measurable, if the product space were complete.
On the other hand, because of Theorem 13.10(iii), if Z ×N is A⊗B-
measurable, then the section

x 7→ 1Z×N(x, y) = 1Z(x)1N(y)
y∈N
= 1Z(x)

is A-measurable which is only possible if Z ∈ A.
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Problem 13.12 (i) Let A ∈ B[0,∞)⊗ P(N), fix k ∈ N and consider

1A(x, k) and Bk := {x : 1A(x, k) = 1};

because of Theorem 13.10(iii), Bk ∈ B[0,∞). Since

(x, k) ∈ A ⇐⇒ 1A(x, k) = 1

⇐⇒ ∃ k ∈ N : 1A(x, k) = 1

⇐⇒ ∃ k ∈ N : x ∈ Bk

it is clear that A =
⋃
k∈NBk × {k}.

(ii) Let M ∈ P(N) and set ζ :=
∑

j∈N δj; we know that ζ is a (σ-finite)
measure on P(N). Using Tonelli’s theorem 13.8 we get

π(B ×M) :=
∑
m∈M

π(B × {m})

:=
∑
m∈M

∫

B

e−t
tm

m!
µ(dt)

=

∫

M

∫

B

e−t
tm

m!
µ(dt) ζ(dm)

=

∫∫

B×M
e−t

tm

m!
µ× ζ(dt, dm)

which shows that the measure π(dt, dm) := e−t t
m

m!
µ × ζ(dt, dm)

has all the properties required by the exercise.

The uniqueness follows, however, from the uniqueness theorem
for measures (Theorem 5.7): the family of ‘rectangles’ of the form
B ×M ∈ B[0,∞) × P(N) is a ∩-stable generator of the product
σ-algebra B[0,∞) ⊗ P(N) and contains an exhausting sequence,
say, [0,∞)× {1, 2, . . . k} ↑ [0,∞)× N. But on this generator π is
(uniquely) determined by prescribing the values π(B × {m}).

Problem 13.13 (i) This is similar to Problem 7.9, in particular (i) and
(vi).

(ii) Note that

1B(x, y) = 1(a,b](x)1[x,b](y)

= 1(a,b](y)1(a,y](x)

= 1(a,b](x)1(a,b](y)1[0,∞)(y − x);
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the last expression is, however, a product of (combinations of)
measurable functions, thus 1B is measurable and so is then B.

Without loss of generality we can assume that a > 0, all other
cases are similar.

Using Tonelli’s theorem 13.8 we get

µ× ν(B) =

∫∫
1B(x, y)µ× ν(dx, dy)

=

∫∫
1(a,b](y)1(a,y](x)µ× ν(dx, dy)

=

∫

(a,b]

∫

(a,y]

µ(dx) ν(dy)

=

∫

(a,b]

µ(a, y] ν(dy)

=

∫

(a,b]

(
µ(0, y]− µ(0, a]

)
ν(dy)

=

∫

(a,b]

µ(0, y]ν(dy)− µ(0, a]

∫

(a,b]

ν(dy)

=

∫

(a,b]

F (y) dG(y)− F (a)
(
G(b)−G(a)

)
. (*)

We remark at this point already that a very similar calculation
(with µ, ν and F,G interchanged and with an open interval rather
than a semi-open interval) yields

∫∫
1(a,b](y)1(y,b](x) ν(dy)µ(dx)

=

∫

(a,b]

G(y−) dF (y)−G(a)
(
F (b)− F (a)

)
.

(**)

(iii) On the one hand we have

µ× ν((a, b]× (a, b]
)

= µ(a, b]ν(a, b]

=
(
F (b)− F (a)

)(
G(b)−G(a)

) (+)

and on the other we find, using Tonelli’s theorem at step (T)

µ× ν((a, b]× (a, b]
)

=

∫∫
1(a,b](x)1(a,b](y)µ(dx) ν(dy)
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=

∫∫
1(a,b](x)1(x,b](y)µ(dx) ν(dy)+

+

∫∫
1(a,b](x)1(a,x)(y)µ(dx) ν(dy)

T
=

∫∫
1(a,b](x)1(x,b](y)µ(dx) ν(dy)+

+

∫∫
1(a,b](y)1(y,b](x) ν(dy)µ(dx)

∗,∗∗
=

∫

(a,b]

F (y) dG(y)− F (a)
(
G(b)−G(a)

)
+

+

∫

(a,b]

G(y−) dF (y)−G(a)
(
F (b)− F (a)

)
.

Combining this formula with the previous one marked (+) reveals
that

F (b)G(b)− F (a)G(a) =

∫

(a,b]

F (y) dG(y) +

∫

(a,b]

G(y−) dF (y).

Finally, observe that
∫

(a,b]

(
F (y)− F (y−)

)
dG(y) =

∫

(a,b]

µ({y}) ν(dy)

=
∑

a<y6b
µ({y})ν({y})

=
∑

a<y6b
∆F (y)∆G(y).

(Mind that the sum is at most countable because of Lemma 13.12)
from which the claim follows.

(iv) It is clear that uniform approximation allows to interchange lim-
iting and integration procedures so that we *really* do not have
to care about this. We show the formula for monomials t, t2, t3, ...
by induction. Write φn(t) = tn, n ∈ N.

Induction start n = 1: in this case φ1(t) = t, φ′1(t) = 1 and
φ(F (s))− φ(F (s−))−∆F (s) = 0, i.e. the formula just becomes

F (b)− F (a) =

∫

(a,b]

dF (s)

which is obviously true.
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Induction assumption: for some n we know that

φn(F (b))− φn(F (a)) =

∫

(a,b]

φ′n(F (s−)) dF (s)

+
∑

a<s6b

[
φn(F (s))− φn(F (s−))− φ′n(F (s−))∆F (s)

]
.

Mind the misprint in the statement of the problem!

Induction step n  n + 1: Write, for brevity F = F (s) and
F− = F (s−). We have because of (iii) with G = φn ◦ F and
because of the induction assumption

φn+1(F (b))− φn+1(F (a))
= F (b)φn(F (b))− F (a)φn(F (a))

=
∫

(a,b]
Fn− dF +

∫

(a,b]
F− dFn +

∑
∆F∆Fn

=
∫

(a,b]
Fn− dF +

∫

(a,b]
F− φ′n(F−) dF+

+
∑[

F−φn(F )− F−φn(F−)− F−φ′n(F−)∆F
]

+
∑

∆F∆Fn

=
∫

(a,b]
Fn− dF +

∫

(a,b]
F− nFn−1

− dF+

+
∑[

F−Fn − Fn+1
− − F−nFn−1

− ∆F + ∆F∆Fn
]

=
∫

(a,b]
(n+ 1)Fn− dF +

∑[
F−Fn − Fn+1

− − nFn−∆F + ∆F∆Fn
]

=
∫

(a,b]
φ′n+1 ◦ F− dF +

∑[
F−Fn − Fn+1

− − nFn−∆F + ∆F∆Fn
]

The expression under the sum can be written as

F−F n − F n+1
− − nF n

−∆F + ∆F∆F n

= (F− − F )F n + F n+1 − F n+1
− − nF n

−∆F + ∆F∆F n

= F n+1 − F n+1
− + ∆F

(
− F n − nF n

− + ∆F n
)

= F n+1 − F n+1
− + ∆F

(
− F n − nF n

− + F n − F n
−
)

= F n+1 − F n+1
− − (n+ 1)F n

−∆F

= φn+1 ◦ F − φn+1 ◦ F− − φ′n+1 ◦ F−∆F

and the induction is complete.
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Problem 13.14 Mind the misprint in the problem:

µf (t) := µ({|f | > t}).
(i) We find the following pictures:

-

6

1 3 4 5 6 9 x

2

4

3

f(x)
This is the graph of the
original function f(x).
Open and full dots in-
dicate the continuity
behaviour at the jump
points.
x-values are to be mea-
sured in µ-length, i.e. x
is a point in the measure
space (X,A, µ).

-

6

2 3 4 t

m1

m2

m3

µf (t) This is the graph of the as-
sociated distribution func-
tion µf (t). It is decreasing
and left-continuous at the
jump points.
t-values are to be mea-
sured using Lebesgue mea-
sure in [0,∞).
m1 = µ

(
[4, 5]

)
m2 −m1 = µ

(
[6, 9]

)
m3 −m2 = µ

(
[4, 5]

)

-

6

2

3

4

f∗(ξ)

m1 m2 m3 ξ

This is the graph of
the decreasing rearrange-
ment f ∗(ξ) of f(x). It
is decreasing and left-
continuous at the jump
points.
ξ-values are to be mea-
sured using Lebesgue mea-
sure in [0,∞).
m1,m2,m3 are as in the
previous picture.
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(ii) The first equality,

∫

R
|f |p dµ = p

∫ ∞
0

tp−1 µf (t) dt,

follows immediately from Theorem 13.11 with u = |f | and µf (t) =
µ({|f | > t}).
To show the second equality we have two possibilities. We can...

a) ...show the second equality first for (positive) elementary func-
tions and use then a (by now standard...) Beppo Levi/monotone
convergence argument to extend the result to all positive measur-
able functions. Assume that f(x) =

∑N
j=0 aj1Bj(x) is a positive

elementary function in standard representation, i.e. a0 = 0 < a1 <
· · · < an < ∞ and the sets Bj = {f = aj} are pairwise disjoint.
Then we have

µ({f = aj}) = µ({f > aj} \ {f > aj+1})
= µ({f > aj})− µ({f > aj+1})
= µf (aj)− µf (aj+1) (an+1 :=∞, µf (an+1) = 0)

= λ1
(
(µf (aj+1), µf (aj)]

)

= λ1(f ∗ = aj).

This proves

∫
f p dµ =

n∑
j=0

apj µ(Bj) =
n∑
j=0

apj λ
1(f ∗ = aj) =

∫
(f ∗)p dλ1

and the general case follows from the above-mentioned Beppo Levi
argument.

or we can

b) use Theorem 13.11 once again with u = f ∗ and µ = λ1 provided
we know that

µ
({|f | > t}) = λ1

({f ∗ > t}).

This, however, follows from

f ∗(ξ) > t ⇐⇒ inf{s : µf (s) 6 ξ} > t
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⇐⇒ µf (t) 6 ξ (as µf is left cts. & decreasing)

⇐⇒ µ
({|f | > t}) 6 ξ

and therefore

λ1
({ξ : f ∗(ξ) > t}) = λ1

({ξ : µ(|f | > t) 6 ξ}) = µ(|f | > t).



14 Integrals with respect to image

measures

Solutions to Problems 14.1–14.11

Problem 14.1 The first equality
∫
u d(T (f µ)) =

∫
u ◦ T f dµ

is just Theorem 14.1 combined with Lemma 10.8 the formula for mea-
sures with a density.

The second equality
∫
u ◦ T f dµ =

∫
u f ◦ T−1 dT (µ)

is again Theorem 14.1.

The third equality finally follows again from Lemma 10.8.

Problem 14.2 We have for any C ∈ B

T (µ)|B(C) = T (µ)(B ∩ C)

= µ
(
T−1(B ∩ C)

)

= µ
(
T−1(B) ∩ T−1(C)

)

= µ
(
A ∩ T−1(C)

)

= µ|A
(
T−1(C)

)

= T (µ|A)(C).

Problem 14.3 By definition, we find for any Borel set B ∈ B(Rn)

δx ? δy(B) =

∫∫
1B(s+ t) δx(ds) δy(dt)

=

∫
1B(x+ t) δy(dt)

= 1B(x+ y)

=

∫
B(z) δx+y(dz)

17
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which means that δx ? δy = δx+y. Note that, by Tonelli’s theorem the
order of the iterated integrals is irrelevant.

Similarly, since z + t ∈ B ⇐⇒ t ∈ B − z, we find

δz ? µ(B) =

∫∫
1B(s+ t) δz(ds)µ(dt)

=

∫
1B(z + t)µ(dt)

=

∫
1B−z(t)µ(dt)

= µ(B − z)

= τ−z(µ)(B)

where τz(t) := τ(t− z) is the shift operator so that τ−1
−z (B) = B − z.

Problem 14.4 Since x + y ∈ B ⇐⇒ x ∈ B − y, we can rewrite formula
(14.9) in the following way:

µ ? ν(B) =

∫∫
1B(x+ y)µ(dx) ν(dy)

=

∫ [ ∫
1B−y(x)µ(dx)

]
ν(dy)

=

∫
µ(B − y) ν(dy).

Similarly we get

µ ? ν(B) =

∫
µ(B − y) ν(dy) =

∫
ν(B − x)µ(dx).

Thus, if µ has no atoms, i.e. if µ({z}) = 0 for all z ∈ Rn, we find

µ ? ν({z}) =

∫
µ
({z} − y) ν(dy) =

∫
µ
( {z − y}︸ ︷︷ ︸

= 0

)
ν(dy) = 0.

Problem 14.5 Because of Tonelli’s theorem we can iterate the very defini-
tion of ‘convolution’ of two measures, Definition 14.4(iii), and get

µ1 ? · · · ? µn(B) =

∫
· · ·
∫

1B(x1 + · · ·+ xn)µ1(dx1) · · ·µn(dxn)

so that the formula derived at the end of Remark 14.5(ii), page 138,
applies and yields
∫
|ω|P ?n(dω)
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=

∫
· · ·
∫
|ω1 + ω2 + · · ·+ ωn|P (dω1)P (dω2) · · ·P (dωn)

∗
6
∫
· · ·
∫ (
|ω1|+ |ω2|+ · · ·+ |ωn|

)
P (dω1)P (dω2) · · ·P (dωn)

=
n∑
j=1

∫
· · ·
∫
|ωj|P (dω1)P (dω2) · · ·P (dωn)

=
n∑
j=1

∫
|ωj|P (dωj) ·

∏

k 6=j

∫
P (dωk)

=
n∑
j=1

∫
|ωj|P (dωj)

= n

∫
|ω1|P (dω1)

where we used the symmetry of the iterated integrals in the integrating
measures as well as the fact that P (Rn) =

∫
P (dωk) = 1. Note that we

can have +∞ on either side.

The equality
∫
ω P ?n(dω) = n

∫
ω P (dω) follows with same calculation

(note that we do not get an inequality as there is no need for the
triangle inequality at point (*) above). The integrability condition is
now needed since the integrands are no longer positive. Note that,
since ω ∈ Rn, the above equality is an equality between vectors in Rn;
this is no problem, just read the equality coordinate-by-coordinate.

Problem 14.6 Since the convolution p 7→ u ? p is linear, it is enough to
consider monomials of the form p(x) = xk. Thus, by the binomial
formula,

u ? p(x) =

∫
u(x− y) yk dy

=

∫
u(y) (x− y)k dy

=
k∑
j=0

(
k

j

)
xj
∫
u(y) yk−j dy.

Since suppu is compact, there is some r > 0 such that supp u ⊂ Br(0)
and we get for any m ∈ N0, and in particular for m = k − j or m = k,
that ∣∣∣∣

∫
u(y)ym dy

∣∣∣∣ 6
∫

suppu

‖u‖∞|y|m dy
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6
∫

Br(0)

‖u‖∞rm dy

= 2r · rm · ‖u‖∞
which is clearly finite. This shows that u ? p exists and that it is a
polynomial.

Problem 14.7 That the convolution u?w is bounded and continuous follows
from Theorem 14.8.

Monotonicity follows from the monotonicity of the integral: if x 6 z,
then

u ? w(x) =

∫
u(y)︸︷︷︸
> 0

·w(x− y)︸ ︷︷ ︸
6w(z−y)

dy 6
∫
u(y) · w(z − y) dy = u ? w(y).

Problem 14.8 (This solution is written for u ∈ Cc(Rn) and w ∈ C∞(Rn)).

Let ∂j = ∂/∂xj denote the partial derivative in direction xj where
x = (x1, . . . , xn) ∈ Rn. Since

w ∈ C∞ =⇒ ∂jw ∈ C∞,
it is enough to show ∂j(u ?w) = u ? ∂jw and to iterate this equality. In
particular, we find ∂α(u ? w) = u ? ∂αw where

∂α =
∂α1+···αn

∂α1x1 · · · ∂αnxn , α ∈ Nn0 .

Since u has compact support and since the derivative is a local opera-
tion (i.e., we need to know a function only in a neighbourhood of the
point where we differentiate), and since we have for any r > 0

sup
y∈suppu

sup
x∈Br(0)

∣∣∣ ∂
∂xj
w(x− y)

∣∣∣ 6 c(r),

we can use the differentiability lemma for parameter-dependent inte-
grals, Theorem 11.5 to find for any x ∈ Br/2(0), say,

∂

∂xj

∫
u(y)w(x− y) dy =

∫
u(y)

∂

∂xj
w(x− y) dy

=

∫
u(y)

(
∂
∂xj
w
)
(x− y) dy

= u ? ∂jw(x).
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Problem 14.9 The measurability considerations are just the same as in
Theorem 14.6, so we skip this part.

By assumption,
1

p
+

1

q
= 1 +

1

r
;

We can rewrite this as

1

r
+

[
1

p
− 1

r

]

︸ ︷︷ ︸
= 1− 1

q
∈[0,1)

+

[
1

q
− 1

r

]

︸ ︷︷ ︸
= 1− 1

p
∈[0,1)

= 1. (*)

Now write the integrand appearing in the definition of u ? w(x) in the
form

|u(x−y)w(y)| =
[
|u(x−y)|p/r|w(y)|q/r

]
·
[
|u(x−y)|1−p/r

]
·
[
|w(y)|1−q/r

]

and apply the generalized Hölder inequality (cf. Problem 12.4) with the
exponents from (*):

|u ? w(x)| 6
∫
|u(x− y)w(y)| dy

6
[ ∫
|u(x− y)|p|w(y)|q dy

] 1
r
[ ∫
|u(x− y)|p dy

] 1
p
− 1
r
[ ∫
|w(y)|p dy

] 1
q
− 1
r

.

Raising this inequality to the rth power we get, because of the trans-
lation invariance of Lebesgue measure,

|u ? w(x)|r 6
[ ∫
|u(x− y)|p|w(y)|q dy

]
‖u‖r−pp · ‖w‖r−qq

= |u|p ? |w|q(x) · ‖u‖r−pp · ‖w‖r−qq .

Now we integrate this inequality over x and use Theorem 14.6 for p = 1
and the integral

∫
|u|p ? |w|q(x) dx = ‖|u|p ? |w|q‖1 6 ‖u‖pp · ‖w‖qq.

Thus,

‖u?w‖rr =

∫
|u?w(x)|r dx 6 ‖u‖pp · ‖w‖qq · ‖u‖r−pp · ‖w‖r−qq = ‖u‖rp · ‖w‖rq

and the claim follows.
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Problem 14.10 (i) Since φ is rotationally invariant, it is enough to show
that the function

ψ(r) := e1/(r2−1)1[−1,1](r)

is of class C∞. This is a standard argument and we only sketch it
here. Clearly, the critical points are r = ±1. Since ψ(±1) = 0 =
e−1/0 = e−∞ = 0, the function ψ is continuous. Differentiability is
shown using induction:

ψ′(r) =
2r

1− r2
e1/(r2−1)1[−1,1](r)

and if ψ(k)(r) = fk(r)e
1/(r2−1)1[−1,1](r), then

ψ(k+1)(r) = f ′k(r)e
1/(r2−1)1[−1,1](r) + fk(r)

2r

1− r2
e1/(r2−1)1[−1,1](r).

This shows that fk(r) is for all k ∈ N a rational function whose
growth to ±∞ as r → ±1 is not so strong as the decay of e1/(r2−1)

to 0 as r → ±1. This proves that ψ(r) is arbitrarily often differen-
tiable at the points r = ±1 (with zero derivative). For all r 6= ±1
the situation is clear.

The constant κ−1 is necessarily the integral of the function φ:

κ−1 =

∫

B1(0)

exp

[
1

|x|2 − 1

]
dx .

(ii) That φε is a C∞-function is clear, since φε is constructed from φ
by a dilation.

Clearly,

φε(x) = 0 ⇐⇒ φ(x/ε) = 0 ⇐⇒ |x/ε| > 1 ⇐⇒ |x| > ε.

This means that suppφε = Bε(0).

Using Theorem 14.1 for the dilation T = T1/ε : x 7→ x/ε and, cf.
Problem 5.8 or Theorem 7.10, the fact that for Borel sets B ∈
B(Rn)

T1/ε(λ
n)(B)

def
= λn(T−1

1/ε(B))

= λn(Tε(B))

= λn(ε ·B)
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7.10
= εn · λn(B),

we get
∫
φε(x)λn(dx) = ε−n

∫
φ(T1/ε(x))λn(dx)

= ε−n
∫
φ(x)T1/ε(λ

n)(dx)

= ε−n
∫
φ(x) εn · λn(dx)

=

∫
φ(x)λn(dx).

(iii) We show, more generally, that

suppu ? w ⊂ suppu+ suppw (*)

whenever u ? w makes sense. Now∫
u(x− y)w(y) dy =

∫

suppw

u(x− y)w(y) dy

so that
x− y 6∈ suppu ⇐⇒ x 6∈ y + supp u .

Thus,
x 6∈ suppu+ suppw =⇒ u ? w(x) = 0.

Since supp u+ suppw is a closed set, we have shown (*).

(iv) The estimate

‖φε ? u‖p 6 ‖φε‖1 · ‖u‖p (**)

follows from Theorem 14.6.

Since φε ∈ C∞c =⇒ ∂αφε ∈ C∞c for any α ∈ Nn0 . This means
that u ? ∂αφε is well defined. However, if p 6= 1, we cannot ap-
peal naively to the differentiability lemma, Theorem 11.5 to swap
integration (i.e. convolution) and differentiation. To do this we
consider the sequence

uk(x) :=
(
(−k) ∨ u(x) ∧ k)1Bk(0)(x)

and note that, by dominated convergence, Lp-limk uk = u while
uk ∈ L1 ∩L∞. In this setting we can apply Theorem 11.5 and get

∂α
(
φε ? uk(x)

)
=

∂α1+···+αn

∂α1x1 · · · ∂αnxn

∫
φε(x− y)uk(y) dy
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=

∫
∂α1+···+αn

∂α1x1 · · · ∂αnxnφε(x− y)uk(y) dy

=
(
∂αφε

)
? uk(x).

(Note that φε and uk have compact support and are bounded
functions, so domination is no problem at all.) Using the estimate
(**) we find that

‖∂α(φε ? (uk − u`)
)‖p = ‖(∂αφε

)
? (uk − u`)‖p

6 ‖∂αφε‖1 · ‖uk − u`‖p k,`→∞−−−−→ 0.

Since, similarly,

‖(∂αφε
)
? (uk − u)‖p 6 ‖∂αφε‖1 · ‖uk − u‖p k→∞−−−→ 0,

we conclude that

(
∂αφε

)
? uk

k→∞−−−→
Lp

(
∂αφε

)
? u

and
∂α
(
φε ? uk

) k→∞−−−→
Lp

∂α
(
φε ? u

)

so that
∂α
(
φε ? u

)
=
(
∂αφε

)
? u.

(v) Since
∫
φε(y) dy = 1, we get from Minkowski’s inequality for inte-

grals, Theorem 13.14,

‖u− u ? φε‖p

=

(∫ ∣∣∣∣
∫ (

u(x)− u(x− y)
)
φε(y) dy

∣∣∣∣
p

dx

)1/p

6
∫
‖u(·)− u(· − y)‖p φε(y) dy

=

{ ∫

|y|6h

+

∫

|y|>h

}
‖u(·)− u(· − y)‖p φε(y) dy.

Since the integrand y 7→ ‖u(·)− u(· − y)‖p is continuous, cf. The-
orem 14.8, we can, for a given δ > 0, pick h = h(δ) in such a way
that

‖u(·)− u(· − y)‖p 6 δ ∀ |y| 6 h.
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Thus, using this estimate for the first integral term, and the tri-
angle inequality in Lp and the translation invariance of Lebesgue
integrals for the second integral expression, we get

‖u− u ? φε‖p 6
∫

|y|6h

δ φε(y) dy +

∫

|y|>h

2‖u‖p φε(y) dy

6 δ

∫
φε(y) dy + 2‖u‖p

∫

|y|>h

φε(y) dy

6 δ + 2‖u‖p
∫

|y|>h

φε(y) dy.

Since suppφε = Bε(0), we can let ε→ 0, and then δ → 0, and get

lim sup
ε→0

‖u− u ? φε‖p 6 δ
δ→0−−→ 0,

and the claim follows.

Problem 14.11 Note that v(x) = d
dx

(1 − cosx)1[0,2π)(x) = 1(0,2π)(x) sin x.
Thus,

(i)

u ? v(x) =

∫ 2π

0

1R(x− y) sin y dy =

∫ 2π

0

sin y dy = 0 ∀ x.

(ii) Since all functions u, v, w, φ are continuous, we can use the usual
rules for the (Riemann) integral and get, using integration by parts
and the fundamental theorem of integral calculus,

v ? w(x) =

∫
d
dx
φ(x− y)

∫ x

−∞
φ(t) dt dx

=

∫ (− d
dy
φ(x− y)

) ∫ y

−∞
φ(t) dt dx

=

∫
φ(x− y) d

dy

∫ y

−∞
φ(t) dt dx

=

∫
φ(x− y)φ(y) dy

= φ ? φ(x).

If x ∈ (0, 4π), then x − y ∈ (0, 2π) for some suitable y = y= and
even for all y from an interval (y0− ε, y0 + ε) ⊂ (0, 2π). Since φ is
positive with support [0, 2π], the positivity follows.
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(iii) Obviously,

(u ? v) ? w
(i)
= 0 ? w = 0

while

u ? (v ? w)(x) =

∫
1R(x− y)v ? w(y) dy

=

∫
v ? w(y) dy

=

∫
φ ? φ(y) dy

> 0.

Note that w is not an (pth power, p < ∞) integrable function so
that we cannot use Fubini’s theorem to prove associativity of the
convolution.


