19 The Radon-Nikodym Theorem and

other applications of martingales
Solutions to Problems 19.1-19.18

Problem 19.1 This problem is intimately linked with problem 19.7.

Without loss of generality we assume that p and v are finite measures,
the case for o-finite p and arbitrary v is exactly as in the proof of
Theorem 19.2.

Let (A;); be as described in the problem and define the finite o-algebras
An i =0(Ay,...,A,). Using the hint we can achieve that

A, =0 (CP,...,Ch)

with mutually disjoint C}’s and £(n) < 2" 4+ 1 and UJ; €7 = X. Then
the construction of Example 19.5 yields a countably-indexed martingale
since the o-algebras A; are increasing.

This means, that the countable version of the martingale convergence
theorem is indeed enough for the proof.

Problem 19.2 Using simply the Radon-Nikodym theorem, Theorem 19.2,

gives
YVt dpi(x) such that v(dz) = pi(z) - pe(dx)

with a measurable function x — p;(x); it is, however, far from being
clear that (¢, x) — p;(z) is jointly measurable.

A slight variation of the proof of Theorem 19.2 allows us to incorpo-
rate parameters provided the families of measures are measurable w.r.t.
these parameters. Following the hint we set (notation as in the proof

of 19.2)
L vi(A) "

with the agreement that % := 0 (note that § with a # 0 will not turn up
because of the absolute continuity of the measures!). Since t — p(A)
and t — py(A) are measurable, the above sum is measurable so that

(t,2) = p(t, )

1
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is a jointly measurable function. If we can show that
lim pa(t, ) = p(t, z)

exists (say, in L', ¢ being fixed) then the limiting function is again
jointly measurable.

Using exactly the arguments of the proof of Theorem 19.2 with t fixed
we can confirm that this limit exists and defines a jointly measurable
function with the property that

w(dz) = p(t, 7) - ().
Because of the a.e. uniqueness of the Radon-Nikodym density the func-
tions p(t, z) and p,(z) coincide, for every t a.e. as functions of z; without

additional assumptions on the nature of the dependence on the param-
eter, the exceptional set may, though, depend on ¢!

Problem 19.3 We write u® for the positive resp. negative parts of u €
LYA), ie. u=ut —u~ and v > 0. Fix such a function u and define

vE(F) ::/ui(x)u(dx), VFed.
F
Clearly, v* are measures on the o-algebra F. Moreover
VN edF, u(N)=0 = v*(N) :/ uFdp =0
N

which means that v* < p. By the Radon-Nikodym theorem, Theorem
19.2 and its Corollary 19.6, we find (up to null-sets unique) positive
functions f* € L!(F) such that

vE(F) = tdy vV 7.
(F) /Ffu Fe

Thus, uF = f+ — f~ € LYF) clearly satisfies

/u':du:/ud,u VFedT.
F F

To see uniqueness, we assume that w € L'(F) also satisfies

/wdu:/ud,u VE eJ.
F F
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Since then

/uFd,u:/wd,u VFeT.
F F

we can choose f := {w > u"} and find

0= / (w — uF) du
{w>uF}

which is only possible if u({w > u"}) = 0. Similarly we conclude that
p({w < uF}) =0 from which we get w = uF almost everywhere.

Reformulation of the submartingale property.

Recall that (uj,A;); is a submartingale if, for every j, u; € L'(A;) and
if

/ujdu < / ujprdp YA EA;, Y.
A A
We claim that this is equivalent to saying

u; < ufjl almost everywhere, V ;.

The direction ‘=" is clear. To see ‘=" we fix j and observe that, since

/ujdug/ujﬂdu:/ufjldu VA e A,
A A A

we get, in particular, for A := {ufjl <u;} €A,

Aj
Og/A, (uji — uy) dp
{uj-i1<uj}

which is only possible if ,u({u?jl <u;}) =0.
Problem 19.4 The assumption v < p immediately implies v < p. Indeed,
U(N)=0 = 0<v(N)<pu(N)=0 = v(N)=0.

Using the Radon-Nikodym theorem, Theorem 19.2 we conclude that
there exists a measurable function f € M*(A) such that v = f - p.
Assume that f > 1 on a set of positive p-measure. Without loss of
generality we may assume that the set has finite measure, otherwise
we would consider the intersection A N{f > 1} with some exhausting
sequence A T X and p(Ag) < oo.
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Then, for sufficiently small € > 0 we know that u({f > 1+¢€}) > 0 and
SO

V({f>1+e})=/ fdu

{(f>1+6)

> (1+ e)/ dp
(146}

> (1 +eu{f=1+¢€})
>p({f >1+¢€})

which is impossible.

Problem 19.5 Because of our assumption both y < v and v < u which
means that we know

v=fu and pu=gv
for positive measurable functions f, g which are a.e. unique. Moreover,
v=fu=r[-gv

so that f - g is almost everywhere equal to 1 and the claim follows.

Because of Corollary 19.6 it is clear that f,g < oo a.e. and, by the
same argument, f,g > 0 a.e.

Note that we do not have to specify w.r.t. which measure we understand

the ‘a.e.” since their null sets coincide anyway.

Problem 19.6 Take Lebesgue measure A := A! on (R, B(R)) and the func-
tion f(x) := x4 00 - L ye(z). Then f - A is certainly not o-finite.

Problem 19.7 Since both p and v are o-finite, we can restrict ourselves,
using the technique of the Proof of Theorem 19.2 to the case where
p and v are finite. All we have to do is to pick an exhaustion (K)y,
K, 7 X such that u(Ky), u(Ky) < oo and to consider the measures 15,1t
and 1x,v which clearly inherit the absolute continuity from p and v.

Using the Radon-Nikodym theorem (Theorem 19.2) we get that
pi LV = Hj =Uj-Vj

with an A j-measurable positive density u;. Moreover, since p is a finite

measure,
/ u;dv = / uj dv; :/ dp; = pi(X) < oo
b b be
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so that all the (u;); are v-integrable. Using exactly the same argu-
ment as at the beginning of the proof of Theorem 19.2 (ii)=(i), we get
that (u;); is even uniformly v-integrable. Finally, (u;); is a martingale
(given the measure v), since for j,j + 1 and A € A; we have

/Uj+1 dV:/Uj+1 dvj
A A

= /Adﬂj—s-l (Ujy1 - Vjg1 = Hjg1)
= /A dpu; (AeAy)

= /Auj dv; (kj = u; - v5)

:/Ujdl/
A

and we conclude that u; — us a.e. and in L' () for some limiting func-
tion us which is still L'(v) and also Ay 1= o({J,cyAj)-measurable.
Since, by assumption, A., = A, this argument shows also that

= Uso - V

and it reveals that
Uy = d_,u = lim dﬂ :
< dy i dyj

Problem 19.8 This problem is somewhat ill-posed. We should first em-
bed it into a suitable context, say, on the measurable space (R, B(R)).
Denote by A = A! one-dimensional Lebesgue measure. Then

p=1pgA and v =1p3A
and from this it is clear that
v=1pgV + 1ogv = LpgA + Loz
and from this we read off that
gy < p

while
1(2’3] VJ_[,L

It is interesting to note how ‘big’ the null-set of ambiguity for the
Lebesgue decomposition is—it is actually R\ [0, 3] a, from a Lebesgue
(i.e. A) point of view, huge and infinite set, but from a p-v-perspective
a negligible, name null, set.
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Problem 19.9 Since we deal with a bounded measure we can use F(x) :=

p(—00, x) rather than the more cumbersome definition for F' employed
in Problem 7.9 (which is good for locally finite measures!).

With respect to one-dimensional Lebesgue measure \ we can decom-
pose p according to Theorem 19.9 into

w=p°+pt where p° <N, ptlA

Now define o := p° and Fy := p°(—o0,z). We have to prove property
(2). For this we observe that p° is a finite measure (since p° < p and
that, therefore, u° = f - A\ with a function f € L'()\). Thus, for every
R>0

Fly;) = Fa;) = p*(x5, y5)
= [ st

< R/ Adt) + A({f = R} N (z;,5))
(5.95)

1
<R )\(dt) + —/ fdA
(z,y5)

(z5,95)
where we used the Markov inequality, cf. Proposition 10.12, in the last
step. Summing over j = 1,2,..., N gives

= 1
;IFQ(%) — Fy(a;)| SR-5+ E/f“

since (J;(%;,y;) C R. Now we choose for given € > 0

d\ 2
I and then §:= — = °

fi = =
st R ¢ R~ [fdx

to confirm that N
> 1Fa(y;) — Falay)| < 2
j=1

this settles (2).

Now consider the measure pt. Its distribution function Ft(z) :=
pt(—o0, ) is increasing, left-continuous but not necessarily continu-
ous. Such a function has, by Lemma 13.12 at most countably many
discontinuities (jumps), which we denote by J. Thus, we can write

= i+ 3
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with the jump (or saltus) AF(y) := F(y+) — F(y—) if y € J.

pri=Y AF(y) -6, and ps:=p" —pu;

yeJ

p1 is clearly a measure (the sum being countable) with u; < gt and so
is, therefore, ps (since the defining difference is always positive). The
corresponding distribution functions are

Fi(z):= ) AF(y)

yeJy<z

(called the jump or saltus function) and
Fy(z) := FX(z) — Fy(x).
It is clear that Fj is increasing and, more importantly, continuous so

that the problem is solved.

It is interesting to note that our problem shows that we can decompose
every left- or right-continuous monotone function into an absolutely
continuous and singular part and the singular part again into a contin-
uous and discontinuous part:

g = Gac +gsc +gsd

where

g —is a monotone left- or right-continuous function;

gac —18 a monotone absolutely continuous (and in particular contin-
uous) function;

Jse —is a monotone continuous but singular function;
gsa —is a monotone discontinuous (even: pure jump), but neverthe-

less left- or right-continuous, and singular function.

Problem 19.10 (i) In the following picture F} is represented by a black
line, F5 by a grey line and Fj is a dotted black line.
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The construction of the F}’s also shows that

(@) = Fon(2)] < 5557

since we modify Fj, only on a set J;, ; by replacing a diagonal line
by a combination of diagonal-flat-diagonal and all this happens
only within a range of 2% units. Since the flat bit is in the middle,

we get that the maximal deviation between F}, and Fj4 is at most
% -27% Just look at the pictures!

Thus the convergence of Fj, — F'is uniform, i.e. it preserves conti-
nuity and F' is continuous as all the F}’s are. That F' is increasing
is already inherited from the pointwise limit of the F}’s:

r<y = Yk : Fy(zr) < Fi(y)
— F(x) = lilgn Fi(z) < lilgan(y) = F(y).
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(iv)

Let C denote the Cantor set. Then for € [0,1] \ C we find k
and ¢ such that x € J{ (which is an open set!) and, since on those
pieces Fj and F' do not differ any more

Fy(x) = F(z) = F'(x)=F(z) =0

where we used that F|J} is constant. Since A\(C') = 0 (see Prob-
lem 7.10) we have A([0,1] \ C) = 1 so that F’ exists a.e. and
satisfies I/ =0 a.e.

We have Ji = (ay, b;) (we suppress the dependence of ay, by on k
with, because of our ordering of the middle-thirds sets (see the
problem):

a; < by <as < -+ < ag_q < byr_y

z_: [F(b€> - F(W)] = F(byr_y) — F(ay) LmicN F(1)—-F(0)=1

(=1

while (with the convention that ag := 0)

2k 1
Z (ag - bg_l) l~c—>—oo) 0.
=1

This leads to a contradiction since, because of the first equality,

the sum
2k 1

> [Flar) = F(be)]

=1
will never become small.

Problem 19.11 We can assume that V.X; < oo, otherwise the inequality
would be trivial.

Note that the random variables X; — EFX;, 7 = 1,2,...,n are still
independent and, of course, centered (= mean-zero). Thus, by Example
17.3(x) we get that

k
My = Z(Xj — FXj) is a martingale

j=1

and, because of Example 17.3(v), (| M|)x is a submartingale. Applying
(19.12) in this situation proves the claimed inequality since

VM, = E(M?) (since EM,, = 0)
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= ZE(X]?)

where we used, for the last equality, what probabilists call Theorem of
Bienaymé for the independent random variables X:

n

E(M;) = Z Bl(X; — EX;)(Xy — EXy)]

= 2 Bl = BX) + 3 B[(X; = EX;)|E[(X, - EX0)
j=k=1 J#k
(by independence)

I
NE
=
>

|

<

Problem 19.12 (i) As in the proof of Theorem 19.12 we find

/up dp (12:5) p/ s ({u>s)) ds
0

p /O ) S“( / 1{u>s}(x)w(x)u(dfc)) ds
=P / ( /0 ) Lio,uay (5)s" 7 d8>w(l’) p(dz)

= p [ i) pta)

p—1

N

- P P w dp
p—1
Note that this inequality is meant in [0, +oc], i.e. we allow the
cases a < +o0o and +oo < +o0.
(ii) Pick conjugate numbers p,q € (1,00), i.e. ¢ = p%l. Then we can
rewrite the result of (i) and then apply Hélder’s inequality to get

Jully < -2 [ty
p_
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D 1/q 1/p
< _(/u(pl)q dﬂ) (/wp dﬂ)
p—1
1-1/p
p
=2 ([wdn) T,

p _
= ]:IIUIlﬁ b [l

and the claim follows upon dividing both sides by ||u|[5~". (Here
we use the finiteness of this expression, i.e. the assumption u €

o).

Problem 19.13 Only the first inequality needs proof. Note that

1P du < 1P dy = *
1gljaggv/lw dp < | max |ul” dp /uNdu

from which the claim easily follows.

Problem 19.14 Let (A)r C Ap be an exhausting sequence, i.e. Ay T X
and p(Ax) < oo. Since (u;); is L'-bounded, we know that

sup |, < ¢ < o0
J

and we find, using Holder’s inequality with 110 + % =1

[ sl < (u40) 7 sl < e (ul40))

uniformly for all j € N. This means that the martingale (14,u;); (see
the solution to Problem 18.8) is L!-bounded and we get, as in Problem
18.8 that for some unique function u

li]m 1gu; =14u VEk
a.e., hence u; 7%, 4 ae. Using Fatou’s Lemma we get
/ |ul? dp = /limjinf |u [P dp
< liminf/ |lu;|P dp

gsup/\uﬂpdu < o0
J
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which means that v € LP.

For each k£ € N the martingale (14,u;); is also uniformly integrable:
using Holder’s and Markov’s inequalities we arrive at

/ Lo, lusl dp < / La,lujl dp
{1a,lu;|>14, R} {lu; >R}

1

< (sl > RY) sl
1 l/q

< (g ull) Tl

and the latter tends, uniformly for all j, to zero as R — oco. Since
1,4, - R is integrable, the claim follows.

Thus, Theorem 18.6 applies and shows that for u., := u and every k
the family (u;14, );jenufoo} is @ martingale. Because of Example 17.3(vi)
(Ju;[PLa,)jenufoo} is a submartingale and, therefore, for all k € N

Jrspan< [Rauardns [ Lol o= [ 1 i
Since, by Fatou’s lemma
/|1Aku|p du = /limjinf |La,u; P dp < limjinf/ | L, u;|P dp
we see that
/ |14, ul’ du = li;rn/ |14, 0P dp = Sl;p/ |14, u [P dp.

Since suprema interchange, we get

/|u|de:SUP/|1AkU|pdﬂ
k

:supsup/|1Akuj\pdu

ko J

:supsup/llAkuj\pdu
ik

=Sup/|ujlpdu

J

and Riesz’s convergence theorem, Theorem 12.10, finally proves that
u; — win LP.
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Problem 19.15 Since fj is a martingale and since

1 " n
/Ifkldu< > m/@wlfldA /1Qk<z>dA

2€2—kZZn

.S /Q()mcw

z€2—kZZn

- / 1" < 00
we get from the martingale convergence theorem 18.2 that
f o0 — h’gn f k

exists almost everywhere and that f., € L'(B). The above calculation
shows, on top of that, that for any set ) € ALO]

/kadA":/Qfd)\”
/Q\fk\wg/Qrf\dA”

which means that, using Fatou’s Lemma,

[ 1law <timint [ san, < [ |fan,
Q ko Jg Q

for all @ € ALO] and any k. Since 8§ = J, ALO] is a semi-ring and since
on both sides of the above inequality we have measures, this inequality
extends to B = o(8) (cf. Lemma 15.6) and we get

1w < [ v

Since fo and f are B-measurable, we can take B = {|f| > |f|} and
we get that f = fo almost everywhere. This shows that (fi)renu{oo}
is a martingale.

and

Thus all conditions of Theorem 18.6 are satisfied and we conclude that
(fx)r is uniformly integrable.
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Problem 19.16 As one would expect, the derivative at x turns out to be
u(z). This is seen as follows (without loss of generality we can assume

that y > z):
xiy (/{M] u(t) dt — /{m u(t) dt) — u(z)
: /[ (ult) - (@) dt‘

x—y
u(t) — u(z)| dt

1
- |.Z' - y| [x,y]
1
[z —y| sup |u(t) —u(z)
lz —yl te(z,y] ‘ ‘

= sup |u(t) — u(z)|
tefz,y]

and the last expression tends to 0 as |z — y| — 0 since w is uniformly
continuous on compact sets.

If u is not continuous but merely of class L!, we have to refer to
Lebesgue’s differentiation theorem, Theorem 19.20, in particular for-
mula (19.21) which reads in our case

1
u(z) = lim —/ u(t) dt
(z—r,z+1)

r—0 2r
for Lebesgue almost every x € (a,b).

Problem 19.17 We follow the hint: first we remark that by Lemma 13.12
we know that f has at most countably many discontinuities. Since it
is monotone, we also know that F(t) := f(t+) = limssr st f(s) exists
and is finite for every ¢ and that {f # F'} is at most countable (since
it is contained in the set of discontinuities of f), hence a Lebesgue null
set.

If f is right-continuous, pu(a,b] := f(b) — f(a) extends uniquely to a
measure on the Borel-sets and this measure is locally finite and o-finite.
If we apply Theorem 19.9 to  and A = A\! we can write u = pu° + pu*
with ©° < X and gL ). By Corollary 19.22 Dyt = 0 a.e. and Dp°
exists a.e. and we get a.e.
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and we can set f'(x) = Du(x) which is a.e. defined. Where it is not
defined, we put it equal to 0.

Now we get

> / dp’
(a.b)

= Dp(zx) N(dx)
(a,b)
= f'(x) Mdx).
(a,b)
The above estimates show that we get equality if f is continuous and
also absolutely continuous w.r.t. Lebesgue measure.

Problem 19.18 Without loss of generality we may assume that f;(a) =
0, otherwise we would consider the (still increasing) functions = —
fi(x) — fj(a) resp. their sum x — s(x) — s(a). The derivatives are not
influenced by this operation. As indicated in the hint call s,(z) =
fi(x) + -+ + fu(z) the nth partial sum. Clearly, s, s, are increasing

Sp(T + h) — sp(x) o Spr1(x + h) — spy1(x) o s(x+h) — s(x)

h = h h h
and possess, because of Problem 19.17, almost everywhere positive
derivatives:
(@) S s (@) S s(2), Vo g

Note that the exceptional null-sets depend originally on the function
sp etc. but we can consider their (countable!!) union and get thus a
universal exceptional null set F. This shows that the formally differ-
entiated series

Z fi(z) converges for all z ¢ E.

Jj=1

Since the sequence of partial sums is increasing, it will be enough to
check that

k—oo

s'(x) = s, () — 0 Vg L.
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Since, by assumption the sequence si(x) — s(x) we can choose a sub-
sequence ny in such a way that

s(b) — s, (b)) <27% VkeN,

Since
0 < 5(x) — s, () < 5(b) — 80, (D)
the series
D (s(x) = sn,(2) <D 27 <00 Va € a,b].
k=1 k=1

By the first part of the present proof, we can differentiate this series
term-by-term and get that

Z(s’(x) — s, (¢)) converges Vuz € (a,b)\ E

k—o0

and, in particular, s'(z) — s, (v) — 0 for all x € (a,b) \ £ which
was to be proved.



20 Inner Product Spaces
Solutions to Problems 20.1-20.6

Problem 20.1 If weset p =0, +---+3d,, X ={1,2,...,n}, A=P(X) or
f=>en0j X =N, A = P(X), respectively, we can deduce 20.5(i)
and (ii) from 20.5(iii).

Let us, therefore, only verify (iii). Without loss of generality (see
Scholium 20.1 and also the complexification of a real inner product
space in Problem 20.3) we can consider the real case where L? = L.

e [?is a vector space — this was done in Remark 12.5.

(u,v) is finite on L? x L? — this is the Cauchy-Schwarz inequality
12.3.

(u,v) is bilinear — this is due to the linearity of the integral.

(u,v) is symmetric — this is obvious.

(v,v) is definite, and ||u||2 is a Norm — cf. Remark 12.5.

Problem 20.2 (i) We prove it for the complex case—the real case is sim-
pler. Observe that

Thus,
(u+w,u+w)+ (u—w,u—w) =2(u,u) + 2(w,w).

Since ||v]|? = (v, v) we are done.
(ii) (SP): Obviously,
0 < (u,u) = 7 [20]* = [[o[|* = v#0.
(SPy): is clear.
(iii) Using at the point (*) below the parallelogram identity, we have
d(u+v,w) =2(u+v,2w)

17
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L(Jlu+ v+ 20]% = [Ju+v — 2uw]?)

3 (lw+w)+ v+ w)* = (u—w)+ (v - w)|)
: 21

2

I+

lu+wl* + o+ wl* = lu—w|* o - ’LUHZ)}
= 4(u, w) + 4(v, w)

and the claim follows.

(iv) We show (qu,w) = q(v,w) for all ¢ € Q. If ¢ = n € Ny, we iterate
(iii) n times and have

(nv, w) = n(v,w) Vn e N (*)

(the case n = 0 is obvious). By the same argument, we get for
m € N
(v,w) = (Mm=v,w) =m(Ev,w)

which means that
(Lo, w) =21 (v,w) Vm e N. (**)
Combining (*) and (**) then yields (7 v, w) = (v, w). Thus,
(pu + qu,w) = p(u, w) + q(v, w) Vp,q € Q.
(v) By the lower triangle inequality for norms we get for any s,¢ € R

|[[tv £ w|| — [|sv £ wl|]| < [[(tv £w) — (sv+w)]|
= [I(t = s)vll

— |t = |- lo]l.

This means that the maps t — tv &= w are continuous and so is
t — (tv,w) as the sum of two continuous maps. If ¢ € R is
arbitrary, we pick a sequence (g;)jen C Q such that lim; ¢; = ¢.
Then

(tv,w) = li;rn(qjv, w) = lijm ¢;(qu,w) = t(v, w)

so that

(su + tv,w) = (su,w) + (tv,w) = s(u, w) + t(v, w).

Problem 20.3 This is actually a problem on complexification of inner prod-
uct spaces... .



Chapter 20. Solutions 20.1-20.6. Last update: July 2, 2006 19

Since v and ‘w are vectors in V @ ¢V and since ||v|| = || £ ||, we get

(v.iw)e = & (o + iw] ~ o — iw]?)

= 1 (llitw — i) ~ | (~i) (w + i) )

=1 (lw —al* = fw +v|?) ()
= (wa _Z.U)R
= —(w, )g.
In particular,
(v,iv) = —(v,iv) = (v,iv) =0 Vo,

and we get
(v,v)c = (v,0)r >0 = v =0.

Moreover, using (*) we see that

Finally, for real a, 6 € R the linearity property of the real scalar prod-
uct shows that

(au + fv,w)c = a(u,w)r + B(v, w)r + ia(u,iw)g + i5(v,iw)g
= a(u,w)c + B(v,w)c.

Therefore to get the general case where o, € C we only have to
consider the purely imaginary case:

(iv, w)c = (iv, w)r + i(iv,iw) =

||
/'\
<

S
\_/

where we used twice the identity (*). This shows complex linearity in
the first coordinate, while skew-linearity follows from the conjugation
rule (v, w)c = (w,v)c.
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Problem 20.4 The parallelogram law (stated for L') would say:

(/01 |u+w!dx>2+</01 |u—w\dw>2:2</01 ]u|dx>2+2</01 |w\da:>2.

If u £+ w,u,w have always only ONE sign (i.e. +ve or —ve), we could
leave the modulus signs |+| away, and the equality would be correct!
To show that there is no equality, we should therefore choose functions
where we have some sign change. We try:

u(x) =1/2, w(z) =x

(note: u — w does change its sign!) and get

This shows that
1P (4 = 1= 2(3) + 200

We conclude, in particular, that L' cannot be a Hilbert space (since in
any Hilbert space the Parallelogram law is true....).

Problem 20.5 (i) If k = 0 we have § = 1 and everything is obvious. If k #
0, we use the summation formula for the geometric progression to

get
I~ 1< C01—(6F)"
. jk _ — A T S
S'_njzle n;w) n 1—0k

but (6%)" = exp(27L - k-n) = exp(27wik) = 1. Thus S = 0 and the
claim follows.
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(ii) Note that 67 = 0~7 so that

v+ 7wl|]* = (v + w, v + 7 w)
= (v,0) + (v, W) + (Fw,v) + (w, P w)
= (v,0) + 077 (v, w) + & {w,v) + 707 (w, w)
= (v,v) + 077 (v, w) + 6 (w, v) + (w, w).
Therefore,

1 e ‘
—g 03||U—|—0]w||2
n <

J=1

I 1 R R
=— 6’ (v,v) + — v,w) + — 6% (w, v) + — 67 (w, w
DRSNS LTRE DT

J=1

=04+ (v,w)+0+0

where we used the result from part (i) of the exercise.

(iii) Since the function ¢ — €*||v+ e*®w]|? is bounded and continuous,
the integral exists as a (proper) Riemann integral, and we can
use any Riemann sum to approximate the integral, see 11.6-11.10
in Chapter 11 or Corollary E.6 and Theorem E.8 of Appendix E.
Before we do that, we change variables according to ¢ = (¢+7)/2m
so that dip = d¢ /2w and

1

% (—7T,7T]

e'? ||v + eid’w”2 dp = —/ 2 Hv - eQm’lpwH2 di.
(0,1]

Now using equidistant Riemann sums with step 1/n and nodes
0 = 2™nid j = 1,2,...,n yields, because of part (ii) of the

problem,

, , 1 e— ,
— [ o — e w| dy = — lim = 6 |lv — Flw|
[ [P == tim 23

= — lim (v, —w)

n—oo

= (v, w).

Problem 20.6 We assume that V' is a C-inner product space. Then,

v 4+ wl||? = (v+w,v + w)
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= (v,v) + (v,w) + (w,v) + (w, w)
= [[oll* + (v, w) + (v, w) + [Jw]]?
= [[o]l* + 2Re (v, w) + [Jw]]*.

Thus

v +wl* = |lv]]* + |w|]]* <= Re(v,w) =0 <= vlw.



