
19 The Radon-Nikodým Theorem and

other applications of martingales

Solutions to Problems 19.1–19.18

Problem 19.1 This problem is intimately linked with problem 19.7.

Without loss of generality we assume that µ and ν are finite measures,
the case for σ-finite µ and arbitrary ν is exactly as in the proof of
Theorem 19.2.

Let (Aj)j be as described in the problem and define the finite σ-algebras
An := σ(A1, . . . , An). Using the hint we can achieve that

An = σ
(
Cn

1 , . . . , C
n
`(n)

)

with mutually disjoint Ck
j ’s and `(n) 6 2n + 1 and ·⋃j C

n
j = X. Then

the construction of Example 19.5 yields a countably-indexed martingale
since the σ-algebras Aj are increasing.

This means, that the countable version of the martingale convergence
theorem is indeed enough for the proof.

Problem 19.2 Using simply the Radon-Nikodým theorem, Theorem 19.2,
gives

∀ t ∃ pt(x) such that νt(dx) = pt(x) · µt(dx)

with a measurable function x 7→ pt(x); it is, however, far from being
clear that (t, x) 7→ pt(x) is jointly measurable.

A slight variation of the proof of Theorem 19.2 allows us to incorpo-
rate parameters provided the families of measures are measurable w.r.t.
these parameters. Following the hint we set (notation as in the proof
of 19.2)

pα(t, x) :=
∑
A∈α

νt(A)

µt(A)
IA(x)

with the agreement that 0
0

:= 0 (note that a
0

with a 6= 0 will not turn up
because of the absolute continuity of the measures!). Since t 7→ µt(A)
and t 7→ µt(A) are measurable, the above sum is measurable so that

(t, x) 7→ p(t, x)

1



2 Schilling: Measures, Integrals & Martingales

is a jointly measurable function. If we can show that

lim
α
pα(t, x) = p(t, x)

exists (say, in L1, t being fixed) then the limiting function is again
jointly measurable.

Using exactly the arguments of the proof of Theorem 19.2 with t fixed
we can confirm that this limit exists and defines a jointly measurable
function with the property that

νt(dx) = p(t, x) · νt(dx).

Because of the a.e. uniqueness of the Radon-Nikodým density the func-
tions p(t, x) and pt(x) coincide, for every t a.e. as functions of x; without
additional assumptions on the nature of the dependence on the param-
eter, the exceptional set may, though, depend on t!

Problem 19.3 We write u± for the positive resp. negative parts of u ∈
L1(A), i.e. u = u+ − u− and u± > 0. Fix such a function u and define

ν±(F ) :=

∫

F

u±(x)µ(dx), ∀F ∈ F.

Clearly, ν± are measures on the σ-algebra F. Moreover

∀N ∈ F, µ(N) = 0 =⇒ ν±(N) =

∫

N

u± dµ = 0

which means that ν± � µ. By the Radon-Nikodým theorem, Theorem
19.2 and its Corollary 19.6, we find (up to null-sets unique) positive
functions f± ∈ L1(F) such that

ν±(F ) =

∫

F

f± dµ ∀F ∈ F.

Thus, uF := f+ − f− ∈ L1(F) clearly satisfies

∫

F

uF dµ =

∫

F

u dµ ∀F ∈ F.

To see uniqueness, we assume that w ∈ L1(F) also satisfies

∫

F

w dµ =

∫

F

u dµ ∀F ∈ F.
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Since then ∫

F

uF dµ =

∫

F

w dµ ∀F ∈ F.

we can choose f := {w > uF} and find

0 =

∫

{w>uF}
(w − uF) dµ

which is only possible if µ({w > uF}) = 0. Similarly we conclude that
µ({w < uF}) = 0 from which we get w = uF almost everywhere.

Reformulation of the submartingale property.

Recall that (uj,Aj)j is a submartingale if, for every j, uj ∈ L1(Aj) and
if ∫

A

uj dµ 6
∫

A

uj+1 dµ ∀A ∈ Aj, ∀ j.

We claim that this is equivalent to saying

uj 6 u
Aj

j+1 almost everywhere, ∀ j.

The direction ‘⇒’ is clear. To see ‘⇐’ we fix j and observe that, since

∫

A

uj dµ 6
∫

A

uj+1 dµ =

∫

A

u
Aj
j+1 dµ ∀A ∈ Aj,

we get, in particular, for A := {uAj

j+1 < uj} ∈ Aj,

0 6
∫

{uAj
j+1<uj}

(u
Aj
j+1 − uj) dµ

which is only possible if µ({uAj

j+1 < uj}) = 0.

Problem 19.4 The assumption ν 6 µ immediately implies ν � µ. Indeed,

µ(N) = 0 =⇒ 0 6 ν(N) 6 µ(N) = 0 =⇒ ν(N) = 0.

Using the Radon-Nikodým theorem, Theorem 19.2 we conclude that
there exists a measurable function f ∈ M+(A) such that ν = f · µ.
Assume that f > 1 on a set of positive µ-measure. Without loss of
generality we may assume that the set has finite measure, otherwise
we would consider the intersection Ak ∩{f > 1} with some exhausting
sequence Ak ↑ X and µ(Ak) <∞.
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Then, for sufficiently small ε > 0 we know that µ({f > 1 + ε}) > 0 and
so

ν({f > 1 + ε}) =

∫

{f>1+ε}
f dµ

> (1 + ε)

∫

{f>1+ε}
dµ

> (1 + ε)µ({f > 1 + ε})
> µ({f > 1 + ε})

which is impossible.

Problem 19.5 Because of our assumption both µ � ν and ν � µ which
means that we know

ν = fµ and µ = gν

for positive measurable functions f, g which are a.e. unique. Moreover,

ν = fµ = f · gν
so that f · g is almost everywhere equal to 1 and the claim follows.

Because of Corollary 19.6 it is clear that f, g < ∞ a.e. and, by the
same argument, f, g > 0 a.e.

Note that we do not have to specify w.r.t. which measure we understand
the ‘a.e.’ since their null sets coincide anyway.

Problem 19.6 Take Lebesgue measure λ := λ1 on (R,B(R)) and the func-
tion f(x) := x+∞ · 1[0,1]c(x). Then f · λ is certainly not σ-finite.

Problem 19.7 Since both µ and ν are σ-finite, we can restrict ourselves,
using the technique of the Proof of Theorem 19.2 to the case where
µ and ν are finite. All we have to do is to pick an exhaustion (K`)`,
K` ↑ X such that µ(K`), µ(K`) <∞ and to consider the measures 1K`µ
and 1K`ν which clearly inherit the absolute continuity from µ and ν.

Using the Radon-Nikodým theorem (Theorem 19.2) we get that

µj � νj =⇒ µj = uj · νj
with an Aj-measurable positive density uj. Moreover, since µ is a finite
measure,

∫

X

uj dν =

∫

X

uj dνj =

∫

X

dµj = µj(X) <∞
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so that all the (uj)j are ν-integrable. Using exactly the same argu-
ment as at the beginning of the proof of Theorem 19.2 (ii)⇒(i), we get
that (uj)j is even uniformly ν-integrable. Finally, (uj)j is a martingale
(given the measure ν), since for j, j + 1 and A ∈ Aj we have

∫

A

uj+1 dν =

∫

A

uj+1 dνj+1

=

∫

A

dµj+1 (uj+1 · νj+1 = µj+1)

=

∫

A

dµj (A ∈ Aj)

=

∫

A

uj dνj (µj = uj · νj)

=

∫

A

uj dν

and we conclude that uj → u∞ a.e. and in L1(ν) for some limiting func-
tion u∞ which is still L1(ν) and also A∞ := σ(

⋃
j∈NAj)-measurable.

Since, by assumption, A∞ = A, this argument shows also that

µ = u∞ · ν
and it reveals that

u∞ =
dµ

dν
= lim

j

dµj
dνj

.

Problem 19.8 This problem is somewhat ill-posed. We should first em-
bed it into a suitable context, say, on the measurable space (R,B(R)).
Denote by λ = λ1 one-dimensional Lebesgue measure. Then

µ = 1[0,2]λ and ν = 1[1,3]λ

and from this it is clear that

ν = 1[1,2]ν + 1(2,3]ν = 1[1,2]λ+ 1(2,3]λ

and from this we read off that

1[1,2]ν � µ

while
1(2,3]ν⊥µ.

It is interesting to note how ‘big’ the null-set of ambiguity for the
Lebesgue decomposition is—it is actually R \ [0, 3] a, from a Lebesgue
(i.e. λ) point of view, huge and infinite set, but from a µ-ν-perspective
a negligible, name null, set.
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Problem 19.9 Since we deal with a bounded measure we can use F (x) :=
µ(−∞, x) rather than the more cumbersome definition for F employed
in Problem 7.9 (which is good for locally finite measures!).

With respect to one-dimensional Lebesgue measure λ we can decom-
pose µ according to Theorem 19.9 into

µ = µ◦ + µ⊥ where µ◦ � λ, µ⊥⊥λ.
Now define µ2 := µ◦ and F2 := µ◦(−∞, x). We have to prove property
(2). For this we observe that µ◦ is a finite measure (since µ◦ 6 µ and
that, therefore, µ◦ = f · λ with a function f ∈ L1(λ). Thus, for every
R > 0

F (yj)− F (xj) = µ◦(xj, yj)

=

∫

(xj ,yj)

f(t)λ(dt)

6 R

∫

(xj ,yj)

λ(dt) + λ
({f > R} ∩ (xj, yj)

)

6 R

∫

(xj ,yj)

λ(dt) +
1

R

∫

(xj ,yj)

f dλ

where we used the Markov inequality, cf. Proposition 10.12, in the last
step. Summing over j = 1, 2, . . . , N gives

N∑
j=1

|F2(yj)− F2(xj)| 6 R · δ +
1

R

∫
f dλ

since ·⋃j(xj, yj) ⊂ R. Now we choose for given ε > 0

first R :=

∫
f dλ

ε
and then δ :=

ε

R
=

ε2∫
f dλ

to confirm that
N∑
j=1

|F2(yj)− F2(xj)| 6 2ε

this settles (2).

Now consider the measure µ⊥. Its distribution function F⊥(x) :=
µ⊥(−∞, x) is increasing, left-continuous but not necessarily continu-
ous. Such a function has, by Lemma 13.12 at most countably many
discontinuities (jumps), which we denote by J . Thus, we can write

µ⊥ = µ1 + µ3
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with the jump (or saltus) ∆F (y) := F (y+)− F (y−) if y ∈ J .

µ1 :=
∑
y∈J

∆F (y) · δy, and µ3 := µ⊥ − µ1;

µ1 is clearly a measure (the sum being countable) with µ1 6 µ⊥ and so
is, therefore, µ2 (since the defining difference is always positive). The
corresponding distribution functions are

F1(x) :=
∑

y∈J,y<x
∆F (y)

(called the jump or saltus function) and

F2(x) := F⊥(x)− F1(x).

It is clear that F2 is increasing and, more importantly, continuous so
that the problem is solved.

It is interesting to note that our problem shows that we can decompose
every left- or right-continuous monotone function into an absolutely
continuous and singular part and the singular part again into a contin-
uous and discontinuous part:

g = gac + gsc + gsd

where

g —is a monotone left- or right-continuous function;

gac —is a monotone absolutely continuous (and in particular contin-
uous) function;

gsc —is a monotone continuous but singular function;

gsd —is a monotone discontinuous (even: pure jump), but neverthe-
less left- or right-continuous, and singular function.

Problem 19.10 (i) In the following picture F1 is represented by a black
line, F2 by a grey line and F3 is a dotted black line.
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6

-

1
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1
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1
4

1
3

2
3

1

(ii),(iii) The construction of the Fk’s also shows that

|Fk(x)− Fk+1(x)| 6 1

2k+1

since we modify Fk only on a set J `k+1 by replacing a diagonal line
by a combination of diagonal-flat-diagonal and all this happens
only within a range of 2−k units. Since the flat bit is in the middle,
we get that the maximal deviation between Fk and Fk+1 is at most
1
2
· 2−k. Just look at the pictures!

Thus the convergence of Fk → F is uniform, i.e. it preserves conti-
nuity and F is continuous as all the Fk’s are. That F is increasing
is already inherited from the pointwise limit of the Fk’s:

x < y =⇒ ∀ k : Fk(x) 6 Fk(y)

=⇒ F (x) = lim
k
Fk(x) 6 lim

k
Fk(y) = F (y).
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(iv) Let C denote the Cantor set. Then for x ∈ [0, 1] \ C we find k
and ` such that x ∈ J `k (which is an open set!) and, since on those
pieces Fk and F do not differ any more

Fk(x) = F (x) =⇒ F ′(x) = F ′k(x) = 0

where we used that Fk|J `k is constant. Since λ(C) = 0 (see Prob-
lem 7.10) we have λ([0, 1] \ C) = 1 so that F ′ exists a.e. and
satisfies F ′ = 0 a.e.

(v) We have J `k = (a`, b`) (we suppress the dependence of a`, b` on k
with, because of our ordering of the middle-thirds sets (see the
problem):

a1 < b1 < a2 < · · · < a2k−1 < b2k−1

and

2k−1∑

`=1

[
F (b`)− F (a`)

]
= F (b2k−1)− F (a1)

k→∞−−−→ F (1)− F (0) = 1

while (with the convention that a0 := 0)

2k−1∑

`=1

(a` − b`−1)
k→∞−−−→ 0.

This leads to a contradiction since, because of the first equality,
the sum

2k−1∑

`=1

[
F (a`)− F (b`−1)

]

will never become small.

Problem 19.11 We can assume that V Xj < ∞, otherwise the inequality
would be trivial.

Note that the random variables Xj − EXj, j = 1, 2, . . . , n are still
independent and, of course, centered (= mean-zero). Thus, by Example
17.3(x) we get that

Mk :=
k∑
j=1

(Xj − EXj) is a martingale

and, because of Example 17.3(v), (|Mk|)k is a submartingale. Applying
(19.12) in this situation proves the claimed inequality since

VMn = E(M2
n) (since EMn = 0)
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=
n∑
j=1

E(X2
j )

where we used, for the last equality, what probabilists call Theorem of
Bienaymé for the independent random variables Xj:

E(M2
n) =

n∑

j,k=1

E
[
(Xj − EXj)(Xk − EXk)

]

=
n∑

j=k=1

E
[
(Xj − EXj)

2
]

+
∑

j 6=k
E
[
(Xj − EXj)

]
E
[
(Xk − EXk)

]

(by independence)

=
n∑

j=k=1

E
[
(Xj − EXj)

2
]

=
n∑
j=1

E
[
M2

j

]

=
n∑
j=1

VMj.

Problem 19.12 (i) As in the proof of Theorem 19.12 we find
∫
up dµ

(13.8)
= p

∫ ∞
0

sp−1 µ ({u > s}) ds

6 p

∫ ∞
0

sp−2

(∫
1{u>s}(x)w(x)µ(dx)

)
ds

= p

∫ (∫ ∞
0

1[0,u(x)](s)s
p−2 ds

)
w(x)µ(dx)

= p

∫
u(x)p−1

p− 1
w(x)µ(dx)

=
p

p− 1

∫
up−1w dµ

Note that this inequality is meant in [0,+∞], i.e. we allow the
cases a 6 +∞ and +∞ 6 +∞.

(ii) Pick conjugate numbers p, q ∈ (1,∞), i.e. q = p
p−1

. Then we can

rewrite the result of (i) and then apply Hölder’s inequality to get

‖u‖pp 6
p

p− 1

∫
up−1w dµ
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6 p

p− 1

(∫
u(p−1)q dµ

)1/q(∫
wp dµ

)1/p

=
p

p− 1

(∫
up dµ

)1−1/p

‖w‖p

=
p

p− 1
‖u‖p−1

p · ‖w‖p

and the claim follows upon dividing both sides by ‖u‖p−1
p . (Here

we use the finiteness of this expression, i.e. the assumption u ∈
Lp).

Problem 19.13 Only the first inequality needs proof. Note that

max
16j6N

∫
|uj|p dµ 6

∫
max

16j6N
|uj|p dµ =

∫
u∗N dµ

from which the claim easily follows.

Problem 19.14 Let (Ak)k ⊂ A0 be an exhausting sequence, i.e. Ak ↑ X
and µ(Ak) <∞. Since (uj)j is L1-bounded, we know that

sup
j
‖uj‖p 6 c <∞

and we find, using Hölder’s inequality with 1
p

+ 1
q

= 1

∫
|1Akuj| dµ 6

(
µ(Ak)

)1/q · ‖uj‖p 6 c
(
µ(Ak)

)1/q

uniformly for all j ∈ N. This means that the martingale (1Akuj)j (see
the solution to Problem 18.8) is L1-bounded and we get, as in Problem
18.8 that for some unique function u

lim
j

1Akuj = 1Aku ∀ k

a.e., hence uj
j→∞−−−→ u a.e. Using Fatou’s Lemma we get

∫
|u|p dµ =

∫
lim inf

j
|uj|p dµ

6 lim inf

∫
|uj|p dµ

6 sup
j

∫
|uj|p dµ < ∞
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which means that u ∈ Lp.
For each k ∈ N the martingale (1Akuj)j is also uniformly integrable:
using Hölder’s and Markov’s inequalities we arrive at

∫

{1Ak |uj |>1AkR}
1Ak |uj| dµ 6

∫

{|uj |>R}
1Ak |uj| dµ

6
(
µ{|uj| > R})1/q‖uj‖p

6
(

1

Rp
‖uj‖pp

)1/q

‖uj‖p

6 cp/q+1

Rp/q

and the latter tends, uniformly for all j, to zero as R → ∞. Since
1Ak ·R is integrable, the claim follows.

Thus, Theorem 18.6 applies and shows that for u∞ := u and every k
the family (uj1Ak)j∈N∪{∞} is a martingale. Because of Example 17.3(vi)
(|uj|p1Ak)j∈N∪{∞} is a submartingale and, therefore, for all k ∈ N
∫
|1Akuj|p dµ 6

∫
|1Akuj+1|p dµ 6

∫
|1Aku∞|p dµ =

∫
|1Aku|p dµ,

Since, by Fatou’s lemma
∫
|1Aku|p dµ =

∫
lim inf

j
|1Akuj|p dµ 6 lim inf

j

∫
|1Akuj|p dµ

we see that∫
|1Aku|p dµ = lim

j

∫
|1Akuj|p dµ = sup

j

∫
|1Akuj|p dµ.

Since suprema interchange, we get
∫
|u|p dµ = sup

k

∫
|1Aku|p dµ

= sup
k

sup
j

∫
|1Akuj|p dµ

= sup
j

sup
k

∫
|1Akuj|p dµ

= sup
j

∫
|uj|p dµ

and Riesz’s convergence theorem, Theorem 12.10, finally proves that
uj → u in Lp.
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Problem 19.15 Since fk is a martingale and since

∫
|fk| dµ 6

∑

z∈2−kZZn

1

λn(Qk(z))

∫

Qk(z)

|f | dλn
∫

1Qk(z) dλ
n

=
∑

z∈2−kZZn

∫

Qk(z)

|f | dλn

=

∫
|f | dλn <∞

we get from the martingale convergence theorem 18.2 that

f∞ := lim
k
fk

exists almost everywhere and that f∞ ∈ L1(B). The above calculation

shows, on top of that, that for any set Q ∈ A
[0]
k

∫

Q

fk dλ
n =

∫

Q

f dλn

and ∫

Q

|fk| dλn 6
∫

Q

|f | dλn

which means that, using Fatou’s Lemma,

∫

Q

|f∞| dλn 6 lim inf
k

∫

Q

|fk| dλn 6
∫

Q

|f | dλn

for all Q ∈ A
[0]
k and any k. Since S =

⋃
k A

[0]
k is a semi-ring and since

on both sides of the above inequality we have measures, this inequality
extends to B = σ(S) (cf. Lemma 15.6) and we get

∫

B

|f∞| dλn 6
∫

B

|f | dλn.

Since f∞ and f are B-measurable, we can take B = {|f∞| > |f |} and
we get that f = f∞ almost everywhere. This shows that (fk)k∈N∪{∞}
is a martingale.

Thus all conditions of Theorem 18.6 are satisfied and we conclude that
(fk)k is uniformly integrable.
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Problem 19.16 As one would expect, the derivative at x turns out to be
u(x). This is seen as follows (without loss of generality we can assume
that y > x):

∣∣∣∣
1

x− y
(∫

[a,x]

u(t) dt−
∫

[a,x]

u(t) dt

)
− u(x)

∣∣∣∣

=

∣∣∣∣
1

x− y
∫

[x,y]

(
u(t)− u(x)

)
dt

∣∣∣∣

6 1

|x− y|
∫

[x,y]

∣∣u(t)− u(x)
∣∣ dt

6 1

|x− y| |x− y| sup
t∈[x,y]

∣∣u(t)− u(x)
∣∣

= sup
t∈[x,y]

∣∣u(t)− u(x)
∣∣

and the last expression tends to 0 as |x − y| → 0 since u is uniformly
continuous on compact sets.

If u is not continuous but merely of class L1, we have to refer to
Lebesgue’s differentiation theorem, Theorem 19.20, in particular for-
mula (19.21) which reads in our case

u(x) = lim
r→0

1

2r

∫

(x−r,x+r)

u(t) dt

for Lebesgue almost every x ∈ (a, b).

Problem 19.17 We follow the hint: first we remark that by Lemma 13.12
we know that f has at most countably many discontinuities. Since it
is monotone, we also know that F (t) := f(t+) = lims>t,s→t f(s) exists
and is finite for every t and that {f 6= F} is at most countable (since
it is contained in the set of discontinuities of f), hence a Lebesgue null
set.

If f is right-continuous, µ(a, b] := f(b) − f(a) extends uniquely to a
measure on the Borel-sets and this measure is locally finite and σ-finite.
If we apply Theorem 19.9 to µ and λ = λ1 we can write µ = µ◦ + µ⊥

with µ◦ � λ and µ⊥⊥λ. By Corollary 19.22 Dµ⊥ = 0 a.e. and Dµ◦

exists a.e. and we get a.e.

Dµ(x) = lim
r→0

µ(x− r, x+ r)

2r
= lim

r→0

µ◦(x− r, x+ r)

2r
+ 0
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and we can set f ′(x) = Dµ(x) which is a.e. defined. Where it is not
defined, we put it equal to 0.

Now we get

f(b)− f(a) = µ(a, b]

> µ(a, b)

=

∫

(a,b)

dµ

>
∫

(a,b)

dµ◦

=

∫

(a,b)

Dµ(x)λ(dx)

=

∫

(a,b)

f ′(x)λ(dx).

The above estimates show that we get equality if f is continuous and
also absolutely continuous w.r.t. Lebesgue measure.

Problem 19.18 Without loss of generality we may assume that fj(a) =
0, otherwise we would consider the (still increasing) functions x 7→
fj(x)− fj(a) resp. their sum x 7→ s(x)− s(a). The derivatives are not
influenced by this operation. As indicated in the hint call sn(x) :=
f1(x) + · · ·+ fn(x) the nth partial sum. Clearly, s, sn are increasing

sn(x+ h)− sn(x)

h
6 sn+1(x+ h)− sn+1(x)

h
6 s(x+ h)− s(x)

h
.

and possess, because of Problem 19.17, almost everywhere positive
derivatives:

s′n(x) 6 s′n+1(x) 6 · · · s′(x), ∀ x 6∈ E
Note that the exceptional null-sets depend originally on the function
sn etc. but we can consider their (countable!!) union and get thus a
universal exceptional null set E. This shows that the formally differ-
entiated series

∞∑
j=1

f ′j(x) converges for all x 6∈ E.

Since the sequence of partial sums is increasing, it will be enough to
check that

s′(x)− s′nk(x)
k→∞−−−→ 0 ∀x 6∈ E.
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Since, by assumption the sequence sk(x)→ s(x) we can choose a sub-
sequence nk in such a way that

s(b)− snk(b) < 2−k ∀ k ∈ N.

Since
0 6 s(x)− snk(x) 6 s(b)− snk(b)

the series

∞∑

k=1

(s(x)− snk(x)) 6
∞∑

k=1

2−k <∞ ∀ x ∈ [a, b].

By the first part of the present proof, we can differentiate this series
term-by-term and get that

∞∑

k=1

(s′(x)− s′nk(x)) converges ∀x ∈ (a, b) \ E

and, in particular, s′(x) − s′nk(x)
k→∞−−−→ 0 for all x ∈ (a, b) \ E which

was to be proved.



20 Inner Product Spaces

Solutions to Problems 20.1–20.6

Problem 20.1 If we set µ = δ1 + · · ·+ δn, X = {1, 2, . . . , n}, A = P(X) or
µ =

∑
j∈N δj, X = N, A = P(X), respectively, we can deduce 20.5(i)

and (ii) from 20.5(iii).

Let us, therefore, only verify (iii). Without loss of generality (see
Scholium 20.1 and also the complexification of a real inner product
space in Problem 20.3) we can consider the real case where L2 = L2

R.

• L2 is a vector space — this was done in Remark 12.5.

• 〈u, v〉 is finite on L2×L2 — this is the Cauchy-Schwarz inequality
12.3.

• 〈u, v〉 is bilinear — this is due to the linearity of the integral.

• 〈u, v〉 is symmetric — this is obvious.

• 〈v, v〉 is definite, and ‖u‖2 is a Norm — cf. Remark 12.5.

Problem 20.2 (i) We prove it for the complex case—the real case is sim-
pler. Observe that

〈u± w, u± w〉 = 〈u, u〉 ± 〈u,w〉 ± 〈w, u〉+ 〈w,w〉
= 〈u, u〉 ± 〈u,w〉 ± 〈u,w〉+ 〈w,w〉
= 〈u, u〉 ± 2Re 〈u,w〉+ 〈w,w〉.

Thus,

〈u+ w, u+ w〉+ 〈u− w, u− w〉 = 2〈u, u〉+ 2〈w,w〉.

Since ‖v‖2 = 〈v, v〉 we are done.

(ii) (SP1): Obviously,

0 < (u, u) = 1
4
‖2v‖2 = ‖v‖2 =⇒ v 6= 0.

(SP1): is clear.

(iii) Using at the point (*) below the parallelogram identity, we have

4(u+ v, w) = 2(u+ v, 2w)

17
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= 1
2

(‖u+ v + 2w‖2 − ‖u+ v − 2w‖2
)

= 1
2

(‖(u+ w) + (v + w)‖2 − ‖(u− w) + (v − w)‖2
)

∗
= 1

2

[
2
(‖u+ w‖2 + ‖v + w‖2 − ‖u− w‖2 − ‖v − w‖2

)]

= 4(u,w) + 4(v, w)

and the claim follows.

(iv) We show (qv, w) = q(v, w) for all q ∈ Q. If q = n ∈ N0, we iterate
(iii) n times and have

(nv, w) = n(v, w) ∀n ∈ N0 (*)

(the case n = 0 is obvious). By the same argument, we get for
m ∈ N

(v, w) =
(
m 1

m
v, w

)
= m

(
1
m
v, w

)

which means that

(
1
m
v, w

)
= 1

m
(v, w) ∀m ∈ N. (**)

Combining (*) and (**) then yields ( n
m
v, w) = n

m
(v, w). Thus,

(pu+ qv, w) = p(u,w) + q(v, w) ∀ p, q ∈ Q.

(v) By the lower triangle inequality for norms we get for any s, t ∈ R
∣∣‖tv ± w‖ − ‖sv ± w‖

∣∣ 6 ‖(tv ± w)− (sv ± w)‖
= ‖(t− s)v‖
= |t− s| · ‖v‖.

This means that the maps t 7→ tv ± w are continuous and so is
t 7→ (tv, w) as the sum of two continuous maps. If t ∈ R is
arbitrary, we pick a sequence (qj)j∈N ⊂ Q such that limj qj = t.
Then

(tv, w) = lim
j

(qjv, w) = lim
j
qj(qv, w) = t(v, w)

so that

(su+ tv, w) = (su, w) + (tv, w) = s(u,w) + t(v, w).

Problem 20.3 This is actually a problem on complexification of inner prod-
uct spaces... .
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Since v and iw are vectors in V ⊕ iV and since ‖v‖ = ‖ ± iv‖, we get

(v, iw)R = 1
4

(‖v + iw‖2 − ‖v − iw‖2
)

= 1
4

(‖i(w − iv)‖2 − ‖(−i)(w + iv)‖2
)

= 1
4

(‖w − iv‖2 − ‖w + iv‖2
)

= (w,−iv)R

= −(w, iv)R.

(*)

In particular,

(v, iv) = −(v, iv) =⇒ (v, iv) = 0 ∀v,
and we get

(v, v)C = (v, v)R > 0 =⇒ v = 0.

Moreover, using (*) we see that

(v, w)C = (v, w)R + i(v, iw)R
∗
= (w, v)R − i(w, iv)R

= (w, v)R + ī · (w, iv)R

= (w, v)R + i(w, iv)R

= (w, v)C.

Finally, for real α, β ∈ R the linearity property of the real scalar prod-
uct shows that

(αu+ βv, w)C = α(u,w)R + β(v, w)R + iα(u, iw)R + iβ(v, iw)R

= α(u,w)C + β(v, w)C.

Therefore to get the general case where α, β ∈ C we only have to
consider the purely imaginary case:

(iv, w)C = (iv, w)R + i(iv, iw)R
∗
= −(v, iw)R − i(v,−w)R

= −(v, iw)R + i(v, w)R

= i
(
i(v, iw)R + (v, w)R

)

= i(v, w)C,

where we used twice the identity (*). This shows complex linearity in
the first coordinate, while skew-linearity follows from the conjugation
rule (v, w)C = (w, v)C.
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Problem 20.4 The parallelogram law (stated for L1) would say:

(∫ 1

0
|u+w| dx

)2

+
(∫ 1

0
|u−w| dx

)2

= 2
(∫ 1

0
|u| dx

)2

+ 2
(∫ 1

0
|w| dx

)2

.

If u ± w, u, w have always only ONE sign (i.e. +ve or −ve), we could
leave the modulus signs |•| away, and the equality would be correct!
To show that there is no equality, we should therefore choose functions
where we have some sign change. We try:

u(x) = 1/2, w(x) = x

(note: u− w does change its sign!) and get

∫ 1

0

|u+ w| dx =

∫ 1

0

(1
2

+ x) dx = [1
2
(x+ x2)]10 = 1

∫ 1

0

|u− w| dx =

∫ 1/2

0

(1
2
− x) dx+

∫ 1

1/2

(x− 1
2
) dx

= [1
2
(x− x2)]

1/2
0 + [1

2
(x2 − x)]11/2

= 1
4
− 1

8
− 1

8
+ 1

4
= 1

4∫ 1

0

|u| dx =

∫ 1

0

1
2
dx = 1

2

∫ 1

0

|w| dx =

∫ 1

0

x dx = [1
2
x2]10 = 1

2

This shows that

12 + (1
4
)2 = 17

16
6= 1 = 2(1

2
)2 + 2(1

2
)2.

We conclude, in particular, that L1 cannot be a Hilbert space (since in
any Hilbert space the Parallelogram law is true....).

Problem 20.5 (i) If k = 0 we have θ = 1 and everything is obvious. If k 6=
0, we use the summation formula for the geometric progression to
get

S :=
1

n

n∑
j=1

θjk =
1

n

n∑
j=1

(
θk
)j

=
θ

n

1− (θk)n

1− θk

but (θk)n = exp(2π i
n
·k ·n) = exp(2πik) = 1. Thus S = 0 and the

claim follows.
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(ii) Note that θj = θ−j so that

‖v + θjw‖2 = 〈v + θjw, v + θjw〉
= 〈v, v〉+ 〈v, θjw〉+ 〈θjw, v〉+ 〈θjw, θjw〉
= 〈v, v〉+ θ−j〈v, w〉+ θj〈w, v〉+ θjθ−j〈w,w〉
= 〈v, v〉+ θ−j〈v, w〉+ θj〈w, v〉+ 〈w,w〉.

Therefore,

1

n

n∑
j=1

θj‖v + θjw‖2

=
1

n

n∑
j=1

θj〈v, v〉+
1

n

n∑
j=1

〈v, w〉+
1

n

n∑
j=1

θ2j〈w, v〉+
1

n

n∑
j=1

θj〈w,w〉

= 0 + 〈v, w〉+ 0 + 0

where we used the result from part (i) of the exercise.

(iii) Since the function φ 7→ eiφ‖v+eiφw‖2 is bounded and continuous,
the integral exists as a (proper) Riemann integral, and we can
use any Riemann sum to approximate the integral, see 11.6–11.10
in Chapter 11 or Corollary E.6 and Theorem E.8 of Appendix E.
Before we do that, we change variables according to ψ = (φ+π)/2π
so that dψ = dφ/2π and

1

2π

∫

(−π,π]

eiφ
∥∥v + eiφw

∥∥2
dφ = −

∫

(0,1]

e2πiψ
∥∥v − e2πiψw

∥∥2
dψ.

Now using equidistant Riemann sums with step 1/n and nodes

θjn = e2πi· 1
n
·j, j = 1, 2, . . . , n yields, because of part (ii) of the

problem,

−
∫

(0,1]

e2πiψ
∥∥v − e2πiψw

∥∥2
dψ = − lim

n→∞
1

n

n∑
j=1

θjn‖v − θjnw‖2

= − lim
n→∞
〈v,−w〉

= 〈v, w〉.

Problem 20.6 We assume that V is a C-inner product space. Then,

‖v + w‖2 = 〈v + w, v + w〉
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= 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉
= ‖v‖2 + 〈v, w〉+ 〈v, w〉+ ‖w‖2

= ‖v‖2 + 2Re 〈v, w〉+ ‖w‖2.

Thus

‖v + w‖2 = ‖v‖2 + ‖w‖2 ⇐⇒ Re 〈v, w〉 = 0 ⇐⇒ v⊥w.


