3σ-Algebras.
 Solutions to Problems 3.1-3.12

Problem 3.1 (i) It is clearly enough to show that $A, B \in \mathcal{A} \Longrightarrow A \cap B \in$ \mathcal{A}, because the case of N sets follows from this by induction, the induction step being

$$
\underbrace{A_{1} \cap \ldots \cap A_{N}}_{=: B \in \mathcal{A}} \cap A_{N+1}=B \cap A_{N+1} \in \mathcal{A} .
$$

Let $A, B \in \mathcal{A}$. Then, by $\left(\Sigma_{2}\right)$ also $A^{c}, B^{c} \in \mathcal{A}$ and, by $\left(\Sigma_{3}\right)$ and $\left(\Sigma_{2}\right)$

$$
A \cap B=\left(A^{c} \cup B^{c}\right)^{c}=\left(A^{c} \cup B^{c} \cup \emptyset \cup \emptyset \cup \ldots\right)^{c} \in \mathcal{A} .
$$

Alternative: Of course, the last argument also goes through for N sets:

$$
\begin{aligned}
A_{1} \cap A_{2} \cap \ldots \cap A_{N} & =\left(A_{1}^{c} \cup A_{2}^{c} \cup \ldots \cup A_{N}^{c}\right)^{c} \\
& =\left(A_{1}^{c} \cup \ldots \cup A_{N}^{c} \cup \emptyset \cup \emptyset \cup \ldots\right)^{c} \in \mathcal{A} .
\end{aligned}
$$

(ii) By $\left(\Sigma_{2}\right)$ we have $A \in \mathcal{A} \Longrightarrow A^{c} \in \mathcal{A}$. Use A^{c} instead of A and observe that $\left(A^{c}\right)^{c}=A$ to see the claim.
(iii) Clearly $A^{c}, B^{c} \in \mathcal{A}$ and so, by part (i), $A \backslash B=A \cap B^{c} \in \mathcal{A}$ as well as $A \triangle B=(A \backslash B) \cup(B \backslash A) \in \mathcal{A}$.

Problem 3.2 (iv) Let us assume that $B \neq \emptyset$ and $B \neq X$. Then $B^{c} \notin$ $\{\emptyset, B, X\}$. Since with B also B^{c} must be contained in a σ-algebra, the family $\{\emptyset, B, X\}$ cannot be one.
(vi) Set $\mathcal{A}_{E}:=\{E \cap A: A \in \mathcal{A}\}$. The key observation is that all set operations in \mathcal{A}_{E} are now relative to E and not to X. This concerns mainly the complementation of sets! Let us check $\left(\Sigma_{1}\right)-$ $\left(\Sigma_{3}\right)$.
Clearly $\emptyset=E \cap \emptyset \in \mathcal{A}_{E}$. If $B \in \mathcal{A}$, then $B=E \cap A$ for some $A \in \mathcal{A}$ and the complement of B relative to E is $E \backslash B=E \cap B^{c}=$ $E \cap(E \cap A)^{c}=E \cap\left(E^{c} \cup A^{c}\right)=E \cap A^{c} \in \mathcal{A}_{E}$ as $A^{c} \in \mathcal{A}$. Finally, let $\left(B_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{A}_{E}$. Then there are $\left(A_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{A}$ such that $B_{j}=E \cap A_{j}$. Since $A=\bigcup_{j \in \mathbb{N}} A_{j} \in \mathcal{A}$ we get $\bigcup_{j \in \mathbb{N}} B_{j}=$ $\bigcup_{j \in \mathbb{N}}\left(E \cap A_{j}\right)=E \cap \bigcup_{j \in \mathbb{N}} A_{j}=E \cap A \in \mathcal{A}_{E}$.
(vii) Note that f^{-1} interchanges with all set operations. Let $A, A_{j}, j \in$ \mathbb{N} be sets in \mathcal{A}. We know that then $A=f^{-1}\left(A^{\prime}\right), A_{j}=f^{-1}\left(A_{j}^{\prime}\right)$ for suitable $A, A_{j}^{\prime} \in \mathcal{A}^{\prime}$. Since \mathcal{A}^{\prime} is, by assumption a σ-algebra, we have

$$
\begin{aligned}
\emptyset & =f^{-1}(\emptyset) \in \mathcal{A} & & \text { as } \quad \emptyset \in \mathcal{A}^{\prime} \\
A^{c} & =\left(f^{-1}\left(A^{\prime}\right)\right)^{c}=f^{-1}\left(A^{\prime c}\right) \in \mathcal{A} & & \text { as } \quad A^{\prime c} \in \mathcal{A}^{\prime} \\
\bigcup_{j \in \mathbb{N}} A_{j} & =\bigcup_{j \in \mathbb{N}} f^{-1}\left(A_{j}^{\prime}\right)=f^{-1}\left(\bigcup_{j \in \mathbb{N}} A_{j}^{\prime}\right) \in \mathcal{A} & & \text { as } \quad \bigcup_{j \in \mathbb{N}} A_{j}^{\prime} \in \mathcal{A}^{\prime}
\end{aligned}
$$

which proves $\left(\Sigma_{1}\right)-\left(\Sigma_{3}\right)$ for \mathcal{A}.
Problem 3.3 (i) Since \mathcal{G} is a σ-algebra, \mathcal{G} 'competes' in the intersection of all σ-algebras $\mathcal{C} \supset \mathcal{G}$ appearing in the definition of \mathcal{A} in the proof of Theorem 3.4(ii). Thus, $\mathcal{G} \supset \sigma(\mathcal{G})$ while $\mathcal{G} \subset \sigma(\mathcal{G})$ is always true.
(ii) Without loss of generality we can assume that $\emptyset \neq A \neq X$ since this would simplify the problem. Clearly $\left\{\emptyset, A, A^{c}, X\right\}$ is a σ algebra containing A and no element can be removed without losing this property. Thus $\left\{\emptyset, A, A^{c}, X\right\}$ is minimal and, therefore, $=\sigma(\{A\})$.
(iii) Assume that $\mathcal{F} \subset \mathcal{G}$. Then we have $\mathcal{F} \subset \mathcal{G} \subset \sigma(\mathcal{G})$. Now $\mathcal{C}:=\sigma(\mathcal{G})$ is a potential 'competitor' in the intersection appearing in the proof of Theorem 3.4(ii), and as such $\mathcal{C} \supset \sigma(\mathcal{F})$, i.e. $\sigma(\mathcal{G}) \supset \sigma(\mathcal{F})$.

Problem 3.4 (i) $\left\{\emptyset,\left(0, \frac{1}{2}\right),\{0\} \cup\left[\frac{1}{2}, 1\right],[0,1]\right\}$. We have 2 atoms (see the explanations below): $\left(0, \frac{1}{2}\right),\left(0, \frac{1}{2}\right)^{c}$.
(ii) $\left\{\emptyset,\left[0, \frac{1}{4}\right),\left[\frac{1}{4}, \frac{3}{4}\right],\left(\frac{3}{4}, 1\right],\left[0, \frac{3}{4}\right],\left[\frac{1}{4}, 1\right],\left[0, \frac{1}{4}\right) \cup\left(\frac{3}{4}, 1\right],[0,1]\right\}$. We have 3 atoms (see below): $\left[0, \frac{1}{4}\right),\left[\frac{1}{4}, \frac{3}{4}\right],\left(\frac{3}{4}, 1\right]$.
(iii) -same solution as (ii) -

Parts (ii) and (iii) are quite tedious to do and they illustrate how difficult it can be to find a σ-algebra containing two distinct sets.... imagine how to deal with something that is generated by 10,20 , or infinitely many sets. Instead of giving a particular answer, let us describe the method to find $\sigma(\{A, B\})$ practically, and then we are going to prove it.

1. Start with trivial sets and given sets: \emptyset, X, A, B.
2. now add their complements: A^{c}, B^{c}
3. now add their unions and intersections and differences: $A \cup B, A \cap$ $B, A \backslash B, B \backslash A$
4. now add the complements of the sets in 3.: $A^{c} \cap B^{c}, A^{c} \cup B^{c},(A \backslash$ $B)^{c},(B \backslash A)^{c}$
5. finally, add unions of differences and their complements: $(A \backslash B) \cup$ $(B \backslash A),(A \backslash B)^{c} \cap(B \backslash A)^{c}$.

All in all one should have 16 sets (some of them could be empty or X or appear several times, depending on how much A differs from $B)$. That's it, but the trouble is: is this construction correct? Here is a somewhat more systematic procedure:

Definition: An atom of a σ-algebra \mathcal{A} is a non-void set $\emptyset \neq A \in \mathcal{A}$ that contains no other set of \mathcal{A}.

Since \mathcal{A} is stable under intersections, it is also clear that all atoms are disjoint sets! Now we can make up every set from \mathcal{A} as union (finite or countable) of such atoms. The task at hand is to find atoms if A, B are given. This is easy: the atoms of our future σ-algebra must be: $A \backslash B, B \backslash A, A \cap B,(A \cup B)^{c}$. (Test it: if you make a picture, this is a tesselation of our space X using disjoint sets and we can get back A, B as union! It is also minimal, since these sets must appear in $\sigma(\{A, B\})$ anyway.) The crucial point is now:

Theorem. If \mathcal{A} is a σ-algebra with N atoms (finitely many!), then \mathcal{A} consists of exactly 2^{N} elements.

Proof. The question is how many different unions we can make out of N sets. Simple answer: we find $\binom{N}{j}, 0 \leqslant j \leqslant N$ different unions involving exactly j sets ($j=0$ will, of course, produce the empty set) and they are all different as the atoms were disjoint. Thus, we get $\sum_{j=0}^{N}\binom{N}{j}=(1+1)^{N}=2^{N}$ different sets.
It is clear that they constitute a σ-algebra.
This answers the above question. The number of atoms depends obviously on the relative position of A, B : do they intersect, are they disjoint etc. Have fun with the exercises and do not try to find σ algebras generated by three or more sets..... (By the way: can you think of a situation in $[0,1]$ with two subsets given and exactly four atoms? Can there be more?)

Problem 3.5 (i) See the solution to Problem 3.4.
(ii) If $A_{1}, \ldots, A_{N} \subset X$ are given, there are at most 2^{N} atoms. This can be seen by induction. If $N=1$, then there are $\#\left\{A, A^{c}\right\}=2$ atoms. If we add a further set A_{N+1}, then the worst case would be that A_{N+1} intersects with each of the 2^{N} atoms, thus splitting each atom into two sets which amounts to saying that there are $2 \cdot 2^{N}=2^{N+1}$ atoms.

Problem 3.6 $\quad \mathcal{O}_{1}$ Since \emptyset contains no element, every element $x \in \emptyset$ admits certainly some neighbourhood $B_{\delta}(x)$ and so $\emptyset \in \mathcal{O}$. Since for all $x \in \mathbb{R}^{n}$ also $B_{\delta}(x) \subset \mathbb{R}^{n}, \mathbb{R}^{n}$ is clearly open.
\mathcal{O}_{2} Let $U, V \in \mathcal{O}$. If $U \cap V=\emptyset$, we are done. Else, we find some $x \in U \cap V$. Since U, V are open, we find some $\delta_{1}, \delta_{2}>0$ such that $B_{\delta_{1}}(x) \subset U$ and $B_{\delta_{2}}(x) \subset V$. But then we can take $h:=$ $\min \left\{\delta_{1}, \delta_{2}\right\}>0$ and find

$$
B_{h}(x) \subset B_{\delta_{1}}(x) \cap B_{\delta_{2}}(x) \subset U \cap V,
$$

i.e. $U \cap V \in \mathcal{O}$. For finitely many, say N, sets, the same argument works. Notice that already for countably many sets we will get a problem as the radius $h:=\min \left\{\delta_{j}: j \in \mathbb{N}\right\}$ is not necessarily any longer >0.
\mathcal{O}_{2} Let I be any (finite, countable, not countable) index set and $\left(U_{i}\right)_{i \in I} \subset \mathcal{O}$ be a family of open sets. Set $U:=\bigcup_{i \in I} U_{i}$. For $x \in U$ we find some $j \in I$ with $x \in U_{j}$, and since U_{j} was open, we find some $\delta_{j}>0$ such that $B_{\delta_{j}}(x) \subset U_{j}$. But then, trivially, $B_{\delta_{j}}(x) \subset U_{j} \subset \bigcup_{i \in I} U_{i}=U$ proving that U is open.
The family \mathcal{O}^{n} cannot be a σ-algebra since the complement of an open set $U \neq \emptyset, \neq \mathbb{R}^{n}$ is closed.

Problem 3.7 Let $X=\mathbb{R}$ and set $U_{k}:=\left(-\frac{1}{k}, \frac{1}{k}\right)$ which is an open set. Then $\bigcap_{k \in \mathbb{N}} U_{k}=\{0\}$ but a singleton like $\{0\}$ is closed and not open.

Problem 3.8 We know already that the Borel sets $\mathcal{B}=\mathcal{B}(\mathbb{R})$ are generated by any of the following systems:

$$
\begin{gathered}
\{[a, b): a, b \in \mathbb{Q}\}, \quad\{[a, b): a, b \in \mathbb{R}\}, \\
\{(a, b): a, b \in \mathbb{Q}\}, \quad\{(a, b): a, b \in \mathbb{R}\}, \quad \mathcal{O}^{1}, \text { or } \mathcal{C}^{1}
\end{gathered}
$$

Here is just an example how to solve the problem. Let $b>a$. Since $(-\infty, b) \backslash(-\infty, a)=[a, b)$ we get that

$$
\{[a, b): a, b \in \mathbb{Q}\} \subset \sigma(\{(-\infty, c): c \in \mathbb{Q}\})
$$

$$
\Longrightarrow \mathcal{B}=\sigma(\{[a, b): a, b \in \mathbb{Q}\}) \subset \sigma(\{(-\infty, c): c \in \mathbb{Q}\}) .
$$

On the other hand we find that $(-\infty, a)=\bigcup_{k \in \mathbb{N}}[-k, a)$ proving that

$$
\begin{gathered}
\{(-\infty, a): a \in \mathbb{Q}\} \subset \sigma(\{[c, d): c, d \in \mathbb{Q}\})=\mathcal{B} \\
\Longrightarrow \sigma(\{(-\infty, a): a \in \mathbb{Q}\}) \subset \mathcal{B}
\end{gathered}
$$

and we get equality.
The other cases are similar.
Problem 3.9 Let $\mathbb{B}:=\left\{B_{r}(x): x \in \mathbb{R}^{n}, r>0\right\}$ and let $\mathbb{B}^{\prime}:=\left\{B_{r}(x):\right.$ $\left.x \in \mathbb{Q}^{n}, r \in \mathbb{Q}^{+}\right\}$. Clearly,

$$
\begin{aligned}
& \mathbb{B}^{\prime} \subset \mathbb{B} \subset \mathcal{O}^{n} \\
& \Longrightarrow \sigma\left(\mathbb{B}^{\prime}\right) \subset \sigma(\mathbb{B}) \\
& \subset \sigma\left(\mathcal{O}^{n}\right)=\mathcal{B}\left(\mathbb{R}^{n}\right) .
\end{aligned}
$$

On the other hand, any open set $U \in \mathcal{O}^{n}$ can be represented by

$$
\begin{equation*}
U=\bigcup_{B \in \mathbb{B}^{\prime}, B \subset U} B . \tag{*}
\end{equation*}
$$

Indeed, $U \supset \bigcup_{B \in \mathbb{B}^{\prime}, B \subset U} B$ follows by the very definition of the union. Conversely, if $x \in U$ we use the fact that U is open, i.e. there is some $B_{\epsilon}(x) \subset U$. Without loss of generality we can assume that ϵ is rational, otherwise we replace it by some smaller rational ϵ. Since \mathbb{Q}^{n} is dense in \mathbb{R}^{n} we can find some $q \in \mathbb{Q}^{n}$ with $|x-q|<\epsilon / 3$ and it is clear that $B_{\epsilon / 3}(q) \subset B_{\epsilon}(x) \subset U$. This shows that $U \subset \bigcup_{B \in \mathbb{B}^{\prime}, B \subset U} B$.
Since $\# \mathbb{B}^{\prime}=\#\left(\mathbb{Q}^{n} \times \mathbb{Q}\right)=\# \mathbb{N}$, formula $(*)$ entails that

$$
\mathcal{O}^{n} \subset \sigma\left(\mathbb{B}^{\prime}\right) \Longrightarrow \sigma\left(\mathcal{O}^{n}\right)=\sigma(\mathbb{B})
$$

and we are done.
Problem 3.10 (i) \mathcal{O}_{1} : We have $\emptyset=\emptyset \cap A \in \mathcal{O}_{A}, A=X \cap A \in \mathcal{O}_{A}$. \mathcal{O}_{1} : Let $U^{\prime}=U \cap A \in \mathcal{O}_{A}, V^{\prime}=V \cap A \in \mathcal{O}_{A}$ with $U, V \in \mathcal{O}$. Then $U^{\prime} \cap V^{\prime}=(U \cap V) \cap A \in \mathcal{O}_{A}$ since $U \cap V \in \mathcal{O}$. \mathcal{O}_{2} : Let $U_{i}^{\prime}=U_{i} \cap A \in \mathcal{O}_{A}$ with $U_{i} \in \mathcal{O}$. Then $\bigcup_{i} U_{i}^{\prime}=\left(\bigcup_{i} U_{i}\right) \cap A \in$ \mathcal{O}_{A} since $\bigcup_{i} U_{i} \in \mathcal{O}$.
(ii) We use for a set A and a family $\mathcal{F} \subset \mathcal{P}(X)$ the shorthand $A \cap \mathcal{F}:=$ $\{A \cap F: F \in \mathcal{F}\}$.

Clearly, $A \cap \mathcal{O} \subset A \cap \sigma(\mathcal{O})=A \cap \mathcal{B}(X)$. Since the latter is a σ-algebra, we have

$$
\sigma(A \cap \mathcal{O}) \subset A \cap \mathcal{B}(X) \text { i.e. } \mathcal{B}(A) \subset A \cap \mathcal{B}(X) .
$$

For the converse inclusion we define the family

$$
\Sigma:=\{B \subset X: A \cap B \in \sigma(A \cap \mathcal{O})\} .
$$

It is not hard to see that Σ is a σ-algebra and that $\mathcal{O} \subset \Sigma$. Thus $\mathcal{B}(X)=\sigma(\mathcal{O}) \subset \Sigma$ which means that

$$
A \cap \mathcal{B}(X) \subset \sigma(A \cap \mathcal{O})
$$

Notice that this argument does not really need that $A \in \mathcal{B}(X)$. If, however, $A \in \mathcal{B}(X)$ we have in addition to $A \cap \mathcal{B}(X)=\mathcal{B}(A)$ that

$$
\mathcal{B}(A)=\{B \subset A: B \in \mathcal{B}(X)\}
$$

Problem 3.11 (i) As in the proof of Theorem 3.4 we set

$$
\begin{equation*}
\mathfrak{m}(\mathcal{E}):=\bigcap_{\substack{\mathcal{M} \text { monotone class } \\ \mathcal{M} \supset \mathcal{E}}} \mathcal{M} . \tag{*}
\end{equation*}
$$

Since the intersection $\mathcal{M}=\bigcap_{i \in I} \mathcal{M}_{i}$ of arbitrarily many monotone classes $\mathcal{M}_{i}, i \in I$, is again a monotone class [indeed: if $\left(A_{j}\right)_{j \in \mathbb{N}} \subset$ \mathcal{M}, then $\left(A_{j}\right)_{j \in \mathbb{N}}$ is in every \mathcal{M}_{i} and so are $\bigcup_{j} A_{j}, \bigcap_{j} A_{j} ;$ thus $\left.\bigcup_{j} A_{j}, \bigcap_{j} A_{j} \in \mathcal{M}\right]$ and $(*)$ is evidently the smallest monotone class containing some given family \mathcal{E}.
(ii) Since \mathcal{E} is stable under complementation and contains the empty set we know that $X \in \mathcal{E}$. Thus, $\emptyset \in \Sigma$ and, by the very definition, Σ is stable under taking complements of its elements. If $\left(S_{j}\right)_{j \in \mathbb{N}} \subset$ Σ, then $\left(S_{j}^{c}\right)_{j \in \mathbb{N}} \subset \sigma$ and

$$
\bigcup_{j} S_{j} \in \mathfrak{m}(\mathcal{E}), \quad\left(\bigcup_{j} S_{j}\right)^{c}=\bigcap_{j} S_{j}^{c} \in \mathfrak{m}(\mathcal{E})
$$

which means that $\bigcup_{j} S_{j} \in \Sigma$.
(iii) $\mathcal{E} \subset \Sigma$: if $E \in \mathcal{E}$, then $E \in \mathfrak{m}(\mathcal{E})$. Moreover, as \mathcal{E} is stable under complementation, $E^{c} \in \mathfrak{m}(\mathcal{E})$ for all $E \in \mathcal{E}$, i.e. $\mathcal{E} \subset \Sigma$.
$\Sigma \subset \mathfrak{m}(\mathcal{E})$: obvious from the definition of Σ.
$\mathfrak{m}(\mathcal{E}) \subset \sigma(\mathcal{E})$: every σ-algebra is also a monotone class and the inclusion follows from the minimality of $\mathfrak{m}(\mathcal{E})$.
Finally apply the σ-hull to the chain $\mathcal{E} \subset \Sigma \subset \mathfrak{m}(\mathcal{E}) \subset \sigma(\mathcal{E})$ and conclude that $m(\mathcal{E}) \subset \sigma(\mathcal{E})$.

Problem 3.12 (i) Since \mathcal{M} is a monotone class, this follows from Problem 3.11.
(ii) Let $F \subset \mathbb{R}^{n}$ be any closed set. Then $U_{n}:=F+B_{1 / n}(0):=\{x+y$: $\left.x \in F, y \in B_{1 / n}(0)\right\}$ is an open set and $\bigcap_{n \in \mathbb{N}} U_{n}=F$. Indeed,

$$
U_{n}=\bigcup_{x \in F} B_{1 / n}(x)=\left\{z \in \mathbb{R}^{n}:|x-z|<\frac{1}{n} \text { for some } x \in F\right\}
$$

which shows that U_{n} is open, $F \subset U_{n}$ and $F \subset \bigcap_{n} U_{n}$. On the other hand, if $z \in U_{n}$ for all $n \in \mathbb{N}$, then there is a sequence of points $x_{n} \in F$ with the property $\left|z-x_{n}\right|<\frac{1}{n} \xrightarrow{n \rightarrow \infty} 0$. Since F is closed, $z=\lim _{n} x_{n} \in F$ and we get $F=\bigcap_{n} U_{n}$.
Since \mathcal{M} is closed under countable intersections, $F \in \mathcal{M}$ for any closed set F.
(iii) Identical to Problem 3.11(ii).
(iv) Use Problem 3.11(iv).

4 Measures.
 Solutions to Problems 4.1-4.15

Problem 4.1 (i) We have to show that for a measure μ and finitely many, pairwise disjoint sets $A_{1}, A_{2}, \ldots, A_{N} \in \mathcal{A}$ we have

$$
\mu\left(A_{1} \uplus A_{2} \uplus \ldots \uplus A_{N}\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}\right)+\ldots+\mu\left(A_{N}\right) .
$$

We use induction in $N \in \mathbb{N}$. The hypothesis is clear, for the start ($N=2$) see Proposition 4.3(i). Induction step: take $N+1$ disjoint sets $A_{1}, \ldots, A_{N+1} \in \mathcal{A}$, set $B:=A_{1} \cup \ldots \cup A_{N} \in \mathcal{A}$ and use the induction start and the hypothesis to conclude

$$
\begin{aligned}
\mu\left(A_{1} \uplus \ldots \uplus A_{N} \uplus A_{N+1}\right) & =\mu\left(B \uplus A_{N+1}\right) \\
& =\mu(B)+\mu\left(A_{N+1}\right) \\
& =\mu\left(A_{1}\right)+\ldots+\mu\left(A_{N}\right)+\mu\left(A_{N+1}\right) .
\end{aligned}
$$

(iv) To get an idea what is going on we consider first the case of three sets A, B, C. Applying the formula for strong additivity thrice we get

$$
\begin{aligned}
\mu(A \cup B \cup C)= & \mu(A \cup(B \cup C)) \\
= & \mu(A)+\mu(B \cup C)-\mu(\underbrace{A \cap(B \cup C)}_{=(A \cap B) \cup(A \cap C)}) \\
= & \mu(A)+\mu(B)+\mu(C)-\mu(B \cap C)-\mu(A \cap B) \\
& -\mu(A \cap C)+\mu(A \cap B \cap C) .
\end{aligned}
$$

As an educated guess it seems reasonable to suggest that

$$
\mu\left(A_{1} \cup \ldots \cup A_{n}\right)=\sum_{k=1}^{n}(-1)^{k+1} \sum_{\substack{\sigma \subset\{1, \ldots, n\} \\ \# \sigma=k}} \mu\left(\bigcap_{j \in \sigma} A_{j}\right) .
$$

We prove this formula by induction. The induction start is just the formula from Proposition 4.3(iv), the hypothesis is given above. For the induction step we observe that

$$
\begin{align*}
\sum_{\substack{\sigma \subset\{1, \ldots, n+1\} \\
\# \sigma=k}} & =\sum_{\substack{\sigma \subset\{1, \ldots, n+n+1\} \\
\# \sigma=k, n+1 \notin \sigma}}+\sum_{\substack{\sigma \subset\{1, \ldots, n, n+1\} \\
\# \sigma=k, n+1 \in \sigma}} \\
& =\sum_{\substack{\sigma \subset\{1, \ldots, n\} \\
\# \sigma=k}}+\sum_{\substack{\sigma^{\prime} \subset\{1, \ldots, n\} \\
\# \sigma^{\prime}=k-1, \sigma=\sigma^{\prime} \cup\{n+1\}}} \tag{*}
\end{align*}
$$

Having this in mind we get for $B:=A_{1} \cup \ldots \cup A_{n}$ and A_{n+1} using strong additivity and the induction hypothesis (for A_{1}, \ldots, A_{n} resp. $\left.A_{1} \cap A_{n+1}, \ldots, A_{n} \cap A_{n+1}\right)$

$$
\begin{aligned}
\mu\left(B \cup A_{n+1}\right)= & \mu(B)+\mu\left(A_{n+1}\right)-\mu\left(B \cap A_{n+1}\right) \\
= & \mu(B)+\mu\left(A_{n+1}\right)-\mu\left(\bigcup_{j=1}^{n}\left(A_{j} \cap A_{n+1}\right)\right) \\
= & \sum_{k=1}^{n}(-1)^{k+1} \sum_{\substack{\sigma \subset\{1, \ldots, n\} \\
\# \sigma=k}} \mu\left(\cap_{j \in \sigma}^{\cap} A_{j}\right)+\mu\left(A_{n+1}\right) \\
& +\sum_{k=1}^{n}(-1)^{k+1} \sum_{\substack{\sigma \subset\{1, \ldots, n\} \\
\# \sigma=k}} \mu\left(A_{n+1} \bigcap_{j \in \sigma} A_{j}\right) .
\end{aligned}
$$

Because of $(*)$ the last line coincides with

$$
\sum_{k=1}^{n+1}(-1)^{k+1} \sum_{\substack{\sigma \subset\{1, \ldots, n, n+1\} \\ \# \sigma=k}} \mu\left(\bigcap_{j \in \sigma} A_{j}\right)
$$

and the induction is complete.
(v) We have to show that for a measure μ and finitely many sets $B_{1}, B_{2}, \ldots, B_{N} \in \mathcal{A}$ we have

$$
\mu\left(B_{1} \cup B_{2} \cup \ldots \cup B_{N}\right) \leqslant \mu\left(B_{1}\right)+\mu\left(B_{2}\right)+\ldots+\mu\left(B_{N}\right)
$$

We use induction in $N \in \mathbb{N}$. The hypothesis is clear, for the start ($N=2$) see Proposition 4.3(v). Induction step: take $N+1$ sets $B_{1}, \ldots, B_{N+1} \in \mathcal{A}$, set $C:=B_{1} \cup \ldots \cup B_{N} \in \mathcal{A}$ and use the induction start and the hypothesis to conclude

$$
\begin{aligned}
\mu\left(B_{1} \cup \ldots \cup B_{N} \cup B_{N+1}\right) & =\mu\left(C \cup B_{N+1}\right) \\
& \leqslant \mu(C)+\mu\left(B_{N+1}\right) \\
& \leqslant \mu\left(B_{1}\right)+\ldots+\mu\left(B_{N}\right)+\mu\left(B_{N+1}\right) .
\end{aligned}
$$

Problem 4.2 (i) The Dirac measure is defined on an arbitrary measurable space (X, \mathcal{A}) by $\delta_{x}(A):=\left\{\begin{array}{ll}0, & \text { if } x \notin A \\ 1, & \text { if } x \in A\end{array} \quad\right.$, where $A \in \mathcal{A}$ and $x \in X$ is a fixed point.
$\underline{\left(M_{1}\right)}$ Since \emptyset contains no points, $x \notin \emptyset$ and so $\delta_{x}(\emptyset)=0$.
$\underline{\left(M_{2}\right)}$ Let $\left(A_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{A}$ a sequence of pairwise disjoint measurable sets. If $x \in \bigcup_{j \in \mathbb{N}} A_{j}$, there is exactly one j_{0} with $x \in A_{j_{0}}$, hence

$$
\begin{aligned}
\delta_{x}\left(\bigcup_{j \in \mathbb{N}} A_{j}\right)=1 & =1+0+0+\ldots \\
& =\delta_{x}\left(A_{j_{0}}\right)+\sum_{j \neq j_{0}} \delta_{x}\left(A_{j}\right) \\
& =\sum_{j \in \mathbb{N}} \delta_{x}\left(A_{j}\right) .
\end{aligned}
$$

If $x \notin \bigcup_{j \in \mathbb{N}} A_{j}$, then $x \notin A_{j}$ for every $j \in \mathbb{N}$, hence

$$
\delta_{x}\left(\bigcup_{j \in \mathbb{N}} A_{j}\right)=0=0+0+0+\ldots=\sum_{j \in \mathbb{N}} \delta_{x}\left(A_{j}\right) .
$$

(ii) The measure γ is defined on $(\mathbb{R}, \mathcal{A})$ by $\gamma(A):=\left\{\begin{array}{l}0, \text { if } \# A \leqslant \# \mathbb{N} \\ 1, \text { if } \# A^{c} \leqslant \# \mathbb{N}\end{array}\right.$ where $\mathcal{A}:=\left\{A \subset \mathbb{R}: \# A \leqslant \# \mathbb{N}\right.$ or $\left.\# A^{c} \leqslant \# \mathbb{N}\right\}$. (Note that $\# A \leqslant \# \mathbb{N}$ if, and only if, $\# A^{c}=\# \mathbb{R} \backslash A>\# \mathbb{N}$.)
$\left(M_{1}\right)$ Since \emptyset contains no elements, it is certainly countable and so $\gamma(\emptyset)=0$.
$\left(M_{2}\right)$ Let $\left(A_{j}\right)_{j \in \mathbb{N}}$ be pairwise disjoint \mathcal{A}-sets. If all of them are countable, then $A:=\bigcup_{j \in \mathbb{N}}$ is countable and we get

$$
\gamma\left(\bigcup_{j \in \mathbb{N}} A_{j}\right)=\gamma(A)=0=\sum_{j \in \mathbb{N}} \gamma\left(A_{j}\right) .
$$

If at least one A_{j} is not countable, say for $j=j_{0}$, then $A \supset A_{j_{0}}$ is not countable and therefore $\gamma(A)=\gamma\left(A_{j_{0}}\right)=1$. Assume we could find some other $j_{1} \neq j_{0}$ such that $A_{j_{0}}, A_{j_{1}}$ are not countable. Since $A_{j_{0}}, A_{j_{1}} \in \mathcal{A}$ we know that their complements $A_{j_{0}}^{c}, A_{j_{1}}^{c}$ are countable, hence $A_{j_{0}}^{c} \cup A_{j_{1}}^{c}$ is countable and, at the same time, $\in \mathcal{A}$. Because of this, $\left(A_{j_{0}}^{c} \cup A_{j_{1}}^{c}\right)^{c}=A_{j_{0}} \cap A_{j_{1}}=\emptyset$ cannot be countable, which is absurd! Therefore there is at most one index $j_{0} \in \mathbb{N}$ such that $A_{j_{0}}$ is uncountable and we get then

$$
\gamma\left(\bigcup_{j \in \mathbb{N}} A_{j}\right)=\gamma(A)=1=1+0+0+\ldots=\gamma\left(A_{j_{0}}\right)+\sum_{j \neq j_{0}} \gamma\left(A_{j}\right) .
$$

(iii) We have an arbitrary measurable space (X, \mathcal{A}) and the measure $|A|=\left\{\begin{array}{ll}\# A, & \text { if } A \text { is finite } \\ \infty, & \text { else }\end{array}\right.$.
$\left(M_{1}\right)$ Since \emptyset contains no elements, $\# \emptyset=0$ and $|\emptyset|=0$.
$\left(M_{2}\right)$ Let $\left(A_{j}\right)_{j \in \mathbb{N}}$ be a sequence of pairwise disjoint sets in \mathcal{A}.
 are non-empty, then $A=\bigcup_{j \in \mathbb{N}} A_{j}$ is effectively a finite union of k finite sets and it is clear that

$$
|A|=\left|A_{1}\right|+\ldots+\left|A_{k}\right|+|\emptyset|+|\emptyset|+\ldots=\sum_{j \in \mathbb{N}}\left|A_{j}\right| .
$$

Case 2: All A_{j} are finite and infinitely many are non-void. Then their union $A=\bigcup_{j \in \mathbb{N}} A_{j}$ is an infinite set and we get

$$
|A|=\infty=\sum_{j \in \mathbb{N}}\left|A_{j}\right| .
$$

Case 3: At least one A_{j} is infinite, and so is then the union $A=$ $\bigcup_{j \in \mathbb{N}} A_{j}$. Thus,

$$
|A|=\infty=\sum_{j \in \mathbb{N}}\left|A_{j}\right| .
$$

(iv) On a countable set $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots\right\}$ we define for a sequence $\left(p_{j}\right)_{j \in \mathbb{N}} \subset[0,1]$ with $\sum_{j \in \mathbb{N}} p_{j}=1$ the set-function

$$
P(A)=\sum_{j: \omega_{j} \in A} p_{j}=\sum_{j \in \mathbb{N}} p_{j} \delta_{\omega_{j}}(A), \quad A \subset \Omega .
$$

$\underline{\left(M_{1}\right)} P(\emptyset)=0$ is obvious.
$\left(M_{2}\right)$ Let $\left(A_{k}\right)_{k \in \mathbb{N}}$ be pairwise disjoint subsets of Ω. Then

$$
\begin{aligned}
\sum_{k \in \mathbb{N}} P\left(A_{k}\right) & =\sum_{k \in \mathbb{N}} \sum_{j \in \mathbb{N}} p_{j} \delta_{\omega_{j}}\left(A_{k}\right) \\
& =\sum_{j \in \mathbb{N}} \sum_{k \in \mathbb{N}} p_{j} \delta_{\omega_{j}}\left(A_{k}\right) \\
& =\sum_{j \in \mathbb{N}} p_{j}\left(\sum_{k \in \mathbb{N}} \delta_{\omega_{j}}\left(A_{k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j \in \mathbb{N}} p_{j} \delta_{\omega_{j}}\left(\cup \cup_{k}\right) \\
& =P\left(\cup_{k} A_{k}\right) .
\end{aligned}
$$

The change in the order of summation needs justification; one possibility is the argument used in the solution of Problem 4.6(ii). (Note that the reordering theorem for absolutely convergent series is not immediately applicable since we deal with a double series!)
(v) This is obvious.

Problem $4.3 \quad$ - On $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ the function γ is not be a measure, since we can take the sets $A=(1, \infty), B=(-\infty,-1)$ which are disjoint, not countable and both have non-countable complements. Hence, $\gamma(A)=\gamma(B)=1$. On the other hand, $A \uplus B$ is non-countable and has non-countable complement, $[-1,1]$. So, $\gamma(A \cup B)=1$. This contradicts the additivity: $\gamma(A \cup B)=1 \neq 2=\gamma(A)+$ $\gamma(B)$. Notice that the choice of the σ-algebra \mathcal{A} avoids exactly this situation. \mathcal{B} is the wrong σ-algebra for γ.

- On \mathbb{Q} (and, actually, any possible σ-algebra thereon) the problem is totally different: if A is countable, then $A^{c}=\mathbb{Q} \backslash A$ is also countable and vice versa. This means that $\gamma(A)$ is, according to the definition, both 1 and 0 which is, of course, impossible. This is to say: γ is not well-defined. γ makes only sense on a noncountable set X.

Problem 4.4 (i) If $\mathcal{A}=\{\emptyset, \mathbb{R}\}$, then μ is a measure.
But as soon as \mathcal{A} contains one set A which is trivial (i.e. either \emptyset or X), we have actually $A^{c} \in \mathcal{A}$ which is also non-trivial. Thus,

$$
1=\mu(X)=\mu\left(A \cup A^{c}\right) \neq \mu(A)+\mu\left(A^{c}\right)=1+1=2
$$

and μ cannot be a measure.
(ii) If we equip \mathbb{R} with a σ-algebra which contains sets such that both A and A^{c} can be infinite (the Borel σ-algebra would be such an example: $\left.A=(-\infty, 0) \Longrightarrow A^{c}=[0, \infty)\right)$, then ν is not welldefined. The only type of sets where ν is well-defined is, thus,

$$
\mathcal{A}:=\left\{A \subset \mathbb{R}: \# A<\infty \text { or } \# A^{c}<\infty\right\}
$$

But this is no σ-algebra as the following example shows: $A_{j}:=$ $\{j\} \in \mathcal{A}, j \in \mathbb{N}$, are pairwise disjoint sets but $\bigcup_{j \in \mathbb{N}} A_{j}=\mathbb{N}$ is
not finite and its complement is $\mathbb{R} \backslash \mathbb{N}$ not finite either! Thus, $\mathbb{N} \notin \mathcal{A}$, showing that \mathcal{A} cannot be a σ-algebra. We conclude that ν can never be a measure if the σ-algebra contains infinitely many sets. If we are happy with finitely many sets only, then here is an example that makes ν into a measure $\mathcal{A}=\{\emptyset,\{69\}, \mathbb{R} \backslash\{69\}, \mathbb{R}\}$ and similar families are possible, but the point is that they all contain only finitely many members.

Problem 4.5 Denote by λ one-dimensional Lebesgue measure and consider the Borel sets $B_{k}:=(k, \infty)$. Clearly $\bigcap_{k} B_{k}=\emptyset, k \in \mathbb{N}$, so that $B_{k} \downarrow \emptyset$. On the other hand,

$$
\lambda\left(B_{k}\right)=\infty \Longrightarrow \inf _{k} \lambda\left(B_{k}\right)=\infty \neq 0=\lambda(\emptyset)
$$

which shows that the finiteness condition in Theorem 4.4 (iii') and (iii") is essential.

Problem 4.6 (i) Clearly, $\rho:=a \mu+b \nu: \mathcal{A} \rightarrow[0, \infty]$ (since $a, b \geqslant 0$!). We check $\left(M_{1}\right),\left(M_{2}\right)$.
$\left(M_{1}\right)$ Clearly, $\rho(\emptyset)=a \mu(\emptyset)+b \nu(\emptyset)=a \cdot 0+b \cdot 0=0$.
$\left(M_{2}\right)$ Let $\left(A_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{A}$ be mutually disjoint sets. Then we can use the σ-additivity of μ, ν to get

$$
\begin{aligned}
\rho\left(\bigcup_{j \in \mathbb{N}} A_{j}\right) & =a \mu\left(\bigcup_{j \in \mathbb{N}} A_{j}\right)+b \nu\left(\bigcup_{j \in \mathbb{N}} A_{j}\right) \\
& =a \sum_{j \in \mathbb{N}} \mu\left(A_{j}\right)+b \sum_{j \in \mathbb{N}} \nu\left(A_{j}\right) \\
& =\sum_{j \in \mathbb{N}}\left(a \mu\left(A_{j}\right)+b \mu\left(A_{j}\right)\right) \\
& =\sum_{j \in \mathbb{N}} \rho\left(A_{j}\right) .
\end{aligned}
$$

Since all quantities involved are positive and since we allow the value $+\infty$ to be attained, there are no convergence problems.
(ii) Since all α_{j} are positive, the sum $\sum_{j \in \mathbb{N}} \alpha_{j} \mu_{j}(A)$ is a sum of positive quantities and, allowing the value $+\infty$ to be attained, there is no convergence problem. Thus, $\mu: \mathcal{A} \rightarrow[0, \infty]$ is well-defined. Before we check $\left(M_{1}\right),\left(M_{2}\right)$ we prove the following

Lemma. Let $\beta_{i j}, i, j \in \mathbb{N}$, be real numbers. Then

$$
\sup _{i \in \mathbb{N}} \sup _{j \in \mathbb{N}} \beta_{i j}=\sup _{j \in \mathbb{N}} \sup _{i \in \mathbb{N}} \beta_{i j} .
$$

Proof. Observe that we have $\beta_{m n} \leqslant \sup _{j \in \mathbb{N}} \sup _{i \in \mathbb{N}} \beta_{i j}$ for all $m, n \in$ \mathbb{N}. The right-hand side is independent of m and n and we may take the sup over all n

$$
\sup _{n \in \mathbb{N}} \beta_{m n} \leqslant \sup _{j \in \mathbb{N}} \sup _{i \in \mathbb{N}} \beta_{i j} \quad \forall m \in \mathbb{N}
$$

and then, with the same argument, take the sup over all m

$$
\sup _{m \in \mathbb{N}} \sup _{n \in \mathbb{N}} \beta_{m n} \leqslant \sup _{j \in \mathbb{N}} \sup _{i \in \mathbb{N}} \beta_{i j} \quad \forall m \in \mathbb{N} .
$$

The opposite inequality, ' \geqslant ', follows from the same argument with i and j interchanged.
$\underline{\left(M_{1}\right)}$ We have $\mu(\emptyset)=\sum_{j \in \mathbb{N}} \alpha_{j} \mu_{j}(\emptyset)=\sum_{j \in \mathbb{N}} \alpha_{j} \cdot 0=0$.
$\left(M_{2}\right)$ Take pairwise disjoint sets $\left(A_{i}\right)_{i \in \mathbb{N}} \subset \mathcal{A}$. Then we can use the σ-additivity of each of the μ_{j} 's to get

$$
\begin{aligned}
\mu\left(\bigcup_{i \in \mathbb{N}} A_{i}\right) & =\sum_{j \in \mathbb{N}} \alpha_{j} \mu_{j}\left(\bigcup_{i \in \mathbb{N}} A_{i}\right) \\
& =\lim _{N \rightarrow \infty} \sum_{j=1}^{N} \alpha_{j} \sum_{i \in \mathbb{N}} \mu_{j}\left(A_{i}\right) \\
& =\lim _{N \rightarrow \infty} \sum_{j=1}^{N} \alpha_{j} \lim _{M \rightarrow \infty} \sum_{i=1}^{M} \mu_{j}\left(A_{i}\right) \\
& =\lim _{N \rightarrow \infty} \lim _{M \rightarrow \infty} \sum_{j=1}^{N} \sum_{i=1}^{M} \alpha_{j} \mu_{j}\left(A_{i}\right) \\
& =\sup _{N \in \mathbb{N}} \sup _{M \in \mathbb{N}} \sum_{j=1}^{N} \sum_{i=1}^{M} \alpha_{j} \mu_{j}\left(A_{i}\right)
\end{aligned}
$$

where we used that the limits are increasing limits, hence suprema. By our lemma:

$$
\mu\left(\bigcup_{i \in \mathbb{N}} A_{i}\right)=\sup _{M \in \mathbb{N}} \sup _{N \in \mathbb{N}} \sum_{i=1}^{M} \sum_{j=1}^{N} \alpha_{j} \mu_{j}\left(A_{i}\right)
$$

$$
\begin{aligned}
& =\lim _{M \rightarrow \infty} \lim _{N \rightarrow \infty} \sum_{i=1}^{M} \sum_{j=1}^{N} \alpha_{j} \mu_{j}\left(A_{i}\right) \\
& =\lim _{M \rightarrow \infty} \sum_{i=1}^{M} \sum_{j \in \mathbb{N}} \alpha_{j} \mu_{j}\left(A_{i}\right) \\
& =\lim _{M \rightarrow \infty} \sum_{i=1}^{M} \mu\left(A_{i}\right) \\
& =\sum_{i \in \mathbb{N}} \mu\left(A_{i}\right) .
\end{aligned}
$$

Problem 4.7 Set $\nu(A):=\mu(A \cap F)$. We know, by assumption, that μ is a measure on (X, \mathcal{A}). We have to show that ν is a measure on (X, \mathcal{A}). Since $F \in \mathcal{A}$, we have $F \cap A \in \mathcal{A}$ for all $A \in \mathcal{A}$, so ν is well-defined. Moreover, it is clear that $\nu(A) \in[0, \infty]$. Thus, we only have to check
$\left(M_{1}\right) \nu(\emptyset)=\mu(\emptyset \cap F)=\mu(\emptyset)=0$.
$\left(M_{2}\right)$ Let $\left(A_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{A}$ be a sequence of pairwise disjoint sets. Then also $\left.\overline{\left(A_{j} \cap F\right.}\right)_{j \in \mathbb{N}} \subset \mathcal{A}$ are pairwise disjoint and we can use the σ-additivity of μ to get

$$
\begin{aligned}
\nu\left(\bigcup_{j \in \mathbb{N}} A_{j}\right)=\mu\left(F \cap \bigcup_{j \in \mathbb{N}} A_{j}\right) & =\mu\left(\bigcup_{j \in \mathbb{N}}\left(F \cap A_{j}\right)\right) \\
& =\sum_{j \in \mathbb{N}} \mu\left(F \cap A_{j}\right) \\
& =\sum_{j \in \mathbb{N}} \nu\left(A_{j}\right) .
\end{aligned}
$$

Problem 4.8 Since P is a probability measure, $P\left(A_{j}^{c}\right)=1-P\left(A_{j}\right)=0$. By σ-subadditivity,

$$
P\left(\bigcup_{j \in \mathbb{N}} A_{j}^{c}\right) \leqslant \sum_{j \in \mathbb{N}} P\left(A_{j}^{c}\right),=0
$$

and we conclude that

$$
P\left(\bigcap_{j \in \mathbb{N}} A_{j}\right)=1-P\left(\left[\bigcap_{j \in \mathbb{N}} A_{j}\right]^{c}\right)=1-P\left(\bigcup_{j \in \mathbb{N}} A_{j}^{c}\right)=1-0=0 .
$$

Problem 4.9 Note that

$$
\bigcup_{j} A_{j} \backslash \bigcup_{k} B_{k}=\bigcup_{j}(A_{j} \backslash \underbrace{\bigcup_{k} B_{k}}_{\supset B_{j} \forall j}) \subset \bigcup_{j}\left(A_{j} \backslash B_{j}\right)
$$

Since $\bigcup_{j} B_{j} \subset \bigcup_{j} A_{j}$ we get from σ-subadditivity

$$
\begin{aligned}
\mu\left(\bigcup_{j} A_{j}\right)-\mu\left(\bigcup_{j} B_{j}\right) & =\mu\left(\bigcup_{j} A_{j} \backslash \bigcup_{k} B_{k}\right) \\
& \leqslant \mu\left(\bigcup_{j}\left(A_{j} \backslash B_{j}\right)\right) \\
& \leqslant \sum_{j} \mu\left(A_{j} \backslash B_{j}\right) .
\end{aligned}
$$

Problem 4.10 (i) We have $\emptyset \in \mathcal{A}$ and $\mu(\emptyset)=0$, thus $\emptyset \in \mathcal{N}_{\mu}$.
(ii) Since $M \in \mathcal{A}$ (this is essential in order to apply μ to M !) we can use the monotonicity of measures to get $0 \leqslant \mu(M) \leqslant \mu(N)=0$, i.e. $\mu(M)=0$ and $M \in \mathcal{N}_{\mu}$ follows.
(iii) Since all $N_{j} \in \mathcal{A}$, we get $N:=\bigcup_{j \in \mathbb{N}} N_{j} \in \mathcal{A}$. By the σ-subadditivity of a measure we find

$$
0 \leqslant \mu(N)=\mu\left(\bigcup_{j \in \mathbb{N}} N_{j}\right) \leqslant \sum_{j \in \mathbb{N}} \mu\left(N_{j}\right)=0
$$

hence $\mu(N)=0$ and so $N \in \mathcal{N}_{\mu}$.
Problem 4.11 (i) The one-dimensional Borel sets $\mathcal{B}:=\mathcal{B}^{1}$ are defined as the smallest σ-algebra containing the open sets. Pick $x \in \mathbb{R}$ and observe that the open intervals $\left(x-\frac{1}{k}, x+\frac{1}{k}\right), k \in \mathbb{N}$, are all open sets and therefore $\left(x-\frac{1}{k}, x+\frac{1}{k}\right) \in \mathcal{B}$. Since a σ-algebra is stable under countable intersections we get $\{x\}=\bigcap_{k \in \mathbb{N}}\left(x-\frac{1}{k}, x+\frac{1}{k}\right) \in \mathcal{B}$. Using the monotonicity of measures and the definition of Lebesgue measure we find
$0 \leqslant \lambda(\{x\}) \leqslant \lambda\left(\left(x-\frac{1}{k}, x+\frac{1}{k}\right)\right)=\left(x+\frac{1}{k}\right)-\left(x-\frac{1}{k}\right)=\frac{2}{k} \xrightarrow{k \rightarrow \infty} 0$.
[Following the hint leads to a similar proof with $\left[x-\frac{1}{k}, x+\frac{1}{k}\right)$ instead of $\left(x-\frac{1}{k}, x+\frac{1}{k}\right)$.]
(ii) a) Since \mathbb{Q} is countable, we find an enumeration $\left\{q_{1}, q_{2}, q_{3}, \ldots\right\}$ and we get trivially $\mathbb{Q}=\bigcup_{j \in \mathbb{N}}\left\{q_{j}\right\}$ which is a disjoint union. (This shows, by the way, that $\mathbb{Q} \in \mathcal{B}$ as $\left\{q_{j}\right\} \in \mathcal{B}$.) Therefore, using part (i) of the problem and the σ-additivity of measures,

$$
\lambda(\mathbb{Q})=\lambda\left(\bigcup_{j \in \mathbb{N}}\left\{q_{j}\right\}\right)=\sum_{j \in \mathbb{N}} \lambda\left(\left\{q_{j}\right\}\right)=\sum_{j \in \mathbb{N}} 0=0 .
$$

b) Take again an enumeration $\mathbb{Q}=\left\{q_{1}, q_{2}, q_{3}, \ldots\right\}$, fix $\epsilon>0$ and define $C(\epsilon)$ as stated in the problem. Then we have $C(\epsilon) \in \mathcal{B}$ and $\mathbb{Q} \subset C(\epsilon)$. Using the monotonicity and σ-subadditivity of λ we get

$$
\begin{aligned}
0 \leqslant \lambda(\mathbb{Q}) & \leqslant \lambda(C(\epsilon)) \\
& =\lambda\left(\bigcup_{k \in \mathbb{N}}\left[q_{k}-\epsilon 2^{-k}, q_{k}+\epsilon 2^{-k}\right)\right) \\
& \leqslant \sum_{k \in \mathbb{N}} \lambda\left(\left[q_{k}-\epsilon 2^{-k}, q_{k}+\epsilon 2^{-k}\right)\right) \\
& =\sum_{k \in \mathbb{N}} 2 \cdot \epsilon \cdot 2^{-k} \\
& =2 \epsilon \frac{\frac{1}{2}}{1-\frac{1}{2}}=2 \epsilon .
\end{aligned}
$$

As $\epsilon>0$ was arbitrary, we can make $\epsilon \rightarrow 0$ and the claim follows.
(iii) Since $\bigcup_{0 \leqslant x \leqslant 1}\{x\}$ is a disjoint union, only the countability assumption is violated. Let's see what happens if we could use ' σ-additivity' for such non-countable unions:

$$
0=\sum_{0 \leqslant x \leqslant 1} 0=\sum_{0 \leqslant x \leqslant 1} \lambda(\{x\})=\lambda\left(\bigcup_{0 \leqslant x \leqslant 1}\{x\}\right)=\lambda([0,1])=1
$$

which is impossible.
Problem 4.12 Without loss of generality we may assume that $a \neq b$; set $\mu:=\delta_{a}+\delta_{b}$. Then $\mu(B)=0$ if, and only if, $a \notin B$ and $b \notin B$. Since $\{a\},\{b\}$ and $\{a, b\}$ are Borel sets, all null sets of μ are given by

$$
\mathcal{N}_{\mu}=\{B \backslash\{a, b\}: B \in \mathcal{B}(\mathbb{R})\} .
$$

(This shows that, in some sense, null sets can be fairly large!).

Problem 4.13 Let us write \mathfrak{N} for the family of all (proper and improper) subsets of μ null sets. We note that sets in \mathfrak{N} can be measurable (that is: $N \in \mathcal{A}$) but need not be measurable.
(i) Since $\emptyset \in \mathfrak{N}$, we find that $A=A \cup \emptyset \in \mathcal{A}^{*}$ for every $A \in \mathcal{A}$; thus, $\mathcal{A} \subset \mathcal{A}^{*}$. Let us check that \mathcal{A}^{*} is a σ-algebra.
$\left(\Sigma_{1}\right)$ Since $\emptyset \in \mathcal{A} \subset \mathcal{A}^{*}$, we have $\emptyset \in \mathcal{A}^{*}$.
$\left(\Sigma_{2}\right)$ Let $A^{*} \in \mathcal{A}^{*}$. Then $A^{*}=A \cup N$ for $A \in \mathcal{A}$ and $N \in \mathfrak{N}$. By definition, $N \subset M \in \mathcal{A}$ where $\mu(M)=0$. Now

$$
\begin{aligned}
A^{* c}=(A \cup N)^{c} & =A^{c} \cap N^{c} \\
& =A^{c} \cap N^{c} \cap\left(M^{c} \cup M\right) \\
& =\left(A^{c} \cap N^{c} \cap M^{c}\right) \cup\left(A^{c} \cap N^{c} \cap M\right) \\
& =\left(A^{c} \cap M^{c}\right) \cup\left(A^{c} \cap N^{c} \cap M\right)
\end{aligned}
$$

where we used that $N \subset M$, hence $M^{c} \subset N^{c}$, hence $M^{c} \cap N^{c}=$ M^{c}. But now we see that $A^{c} \cap M^{c} \in \mathcal{A}$ and $A^{c} \cap N^{c} \cap M \in \mathfrak{N}$ since $A^{c} \cap N^{c} \cap M \subset M$ and $M \in \mathcal{A}$ is a μ null set: $\mu(M)=0$.
$\left(\Sigma_{3}\right) \operatorname{Let}\left(A_{j}^{*}\right)_{j \in \mathbb{N}}$ be a sequence of \mathcal{A}^{*}-sets. From its very definition we know that each $A_{j}^{*}=A_{j} \cup N_{j}$ for some (not necessarily unique!) $A_{j} \in \mathcal{A}$ and $N_{j} \in \mathfrak{N}$. So,

$$
\bigcup_{j \in \mathbb{N}} A_{j}^{*}=\bigcup_{j \in \mathbb{N}}\left(A_{j} \cup N_{j}\right)=\left(\bigcup_{j \in \mathbb{N}} A_{j}\right) \cup\left(\bigcup_{j \in \mathbb{N}} N_{j}\right)=: A \cup N .
$$

Since \mathcal{A} is a σ-algebra, $A \in \mathcal{A}$. All we have to show is that N_{j} is in \mathfrak{N}. Since each N_{j} is a subset of a (measurable!) null set, say, $M_{j} \in \mathcal{A}$, we find that $N=\bigcup_{j \in \mathbb{N}} N_{j} \subset \bigcup_{j \in \mathbb{N}} M_{j}=M \in \mathcal{A}$ and all we have to show is that $\mu(M)=0$. But this follows from σ-subadditivity,

$$
0 \leqslant \mu(M)=\mu\left(\bigcup_{j \in \mathbb{N}} M_{j}\right) \leqslant \sum_{j \in \mathbb{N}} \mu\left(M_{j}\right)=0
$$

Thus, $A \cup N \in \mathcal{A}^{*}$.
(ii) As already mentioned in part (i), $A^{*} \in \mathcal{A}^{*}$ could have more than one representation, e.g. $A \cup N=A^{*}=B \cup M$ with $A, B \in \mathcal{A}$ and $N, M \in \mathfrak{N}$. If we can show that $\mu(A)=\mu(B)$ then the definition of $\bar{\mu}$ is independent of the representation of A^{*}. Since M, N are not
necessarily measurable but, by definition, subsets of (measurable) null sets $M^{\prime}, N^{\prime} \in \mathcal{A}$ we find

$$
\begin{aligned}
& A \subset A \cup N=B \cup M \subset B \cup M^{\prime}, \\
& B \subset B \cup M=A \cup N \subset A \cup N^{\prime}
\end{aligned}
$$

and since $A, B, B \cup M^{\prime}, A \cup N^{\prime} \in \mathcal{A}$, we get from monotonicity and subadditivity of measures

$$
\begin{aligned}
\mu(A) \leqslant \mu\left(B \cup M^{\prime}\right) \leqslant \mu(B)+\mu\left(M^{\prime}\right) & =\mu(B) \\
\mu(B) \leqslant \mu\left(A \cup N^{\prime}\right) \leqslant \mu(A)+\mu\left(N^{\prime}\right) & =\mu(A)
\end{aligned}
$$

which shows $\mu(A)=\mu(B)$.
(iii) We check $\left(M_{1}\right)$ and $\left(M_{2}\right)$
$\left(M_{1}\right)$ Since $\emptyset=\emptyset \cup \emptyset \in \mathcal{A}^{*}, \emptyset \in \mathcal{A}, \emptyset \in \mathfrak{N}$, we have $\bar{\mu}(\emptyset)=\mu(\emptyset)=0$.
$\left(M_{2}\right) \operatorname{Let}\left(A_{j}^{*}\right)_{j \in \mathbb{N}} \subset \mathcal{A}^{*}$ be a sequence of pairwise disjoint sets. Then $A_{j}^{*}=A_{j} \cup N_{j}$ for some $A_{j} \in \mathcal{A}$ and $N_{j} \in \mathfrak{N}$. These sets are also mutually disjoint, and with the arguments in (i) we see that $A^{*}=A \cup N$ where $A^{*} \in \mathcal{A}^{*}, A \in \mathcal{A}, N \in \mathfrak{N}$ stand for the unions of A_{j}^{*}, A_{j} and N_{j}, respectively. Since $\bar{\mu}$ does not depend on the special representation of \mathcal{A}^{*}-sets, we get

$$
\begin{aligned}
\bar{\mu}\left(\bigcup_{j \in \mathbb{N}} A_{j}^{*}\right)=\bar{\mu}\left(A^{*}\right)=\mu(A) & =\mu\left(\bigcup_{j \in \mathbb{N}} A_{j}\right) \\
& =\sum_{j \in \mathbb{N}} \mu\left(A_{j}\right) \\
& =\sum_{j \in \mathbb{N}} \bar{\mu}\left(A_{j}^{*}\right)
\end{aligned}
$$

showing that $\bar{\mu}$ is σ-additive.
(iv) Let M^{*} be a $\bar{\mu}$ null set, i.e. $M^{*} \in \mathcal{A}^{*}$ and $\bar{\mu}\left(M^{*}\right)=0$. Take any $B \subset M^{*}$. We have to show that $B \in \mathcal{A}^{*}$ and $\bar{\mu}(B)=0$. The latter is clear from the monotonicity of $\bar{\mu}$ once we have shown that $B \in \mathcal{A}^{*}$ which means, once we know that we may plug B into $\bar{\mu}$. Now, $B \subset M^{*}$ and $M^{*}=M \cup N$ for some $M \in \mathcal{A}$ and $N \in \mathfrak{N}$. As $\bar{\mu}\left(M^{*}\right)=0$ we also know that $\mu(M)=0$. Moreover, we know from the definition of \mathfrak{N} that $N \subset N^{\prime}$ for some $N^{\prime} \in \mathcal{A}$ with $\mu\left(N^{\prime}\right)=0$. This entails

$$
B \subset M^{*}=M \cup N \subset M \cup N^{\prime} \in \mathcal{A}
$$

and $\mu\left(M \cup N^{\prime}\right) \leqslant \mu(M)+\mu\left(N^{\prime}\right)=0$.
Hence $B \in \mathfrak{N}$ as well as $B=\emptyset \cup B \in \mathcal{A}^{*}$. In particular, $\bar{\mu}(B)=$ $\mu(\emptyset)=0$.
(v) Set $\mathcal{C}=\left\{A^{*} \subset X: \exists A, B \in \mathcal{A}, \quad A \subset A^{*} A \subset B, \quad \mu(B \backslash A)=0\right\}$. We have to show that $\mathcal{A}^{*}=\mathcal{C}$.
Take $A^{*} \in \mathcal{A}^{*}$. Then $A^{*}=A \cup N$ with $A \in \mathcal{A}, N \in \mathfrak{N}$ and choose $N^{\prime} \in \mathcal{A}, N \subset N^{\prime}$ and $\mu\left(N^{\prime}\right)=0$. This shows that

$$
A \subset A^{*}=A \cup N \subset A \cup N^{\prime}=: B \in \mathcal{A}
$$

and that $\mu(B \backslash A)=\mu\left(\left(A \cup N^{\prime}\right) \backslash A\right) \leqslant \mu\left(N^{\prime}\right)=0$. (Note that $\left(A \cup N^{\prime}\right) \backslash A=\left(A \cup N^{\prime}\right) \cap A^{c}=N^{\prime} \cap A^{c} \subset N^{\prime}$ and that equality need not hold!).
Conversely, take $A^{*} \in \mathcal{C}$. Then, by definition, $A \subset A^{*} \subset B$ with $A, B \in \mathcal{A}$ and $\mu(B \backslash A)=0$. Therefore, $N:=B \backslash A$ is a null set and we see that $A^{*} \backslash A \subset B \backslash A$, i.e. $A^{*} \backslash A \in \mathfrak{N}$. So, $A^{*}=A \cup\left(A^{*} \backslash A\right)$ where $A \in \mathcal{A}$ and $A^{*} \backslash A \in \mathfrak{N}$ showing that $A^{*} \in \mathcal{A}^{*}$.

Problem 4.14 (i) Since \mathcal{B} is a σ-algebra, it is closed under countable (disjoint) unions of its elements, thus ν inherits the properties $\left(M_{1}\right),\left(M_{2}\right)$ directly from μ.
(ii) Yes [yes], since the full space $X \in \mathcal{B}$ so that $\mu(X)=\nu(X)$ is finite [resp. = 1].
(iii) No, σ-finiteness is also a property of the σ-algebra. Take, for example, Lebesgue measure λ on the Borel sets (this is σ-finite) and consider the σ-algebra $\mathcal{C}:=\{\emptyset,(-\infty, 0),[0, \infty), \mathbb{R}\}$. Then $\left.\lambda\right|_{e}$ is not σ-finite since there is no increasing sequence of \mathfrak{C}-sets having finite measure.

Problem 4.15 By definition, μ is σ-finite if there is an increasing sequence $\left(B_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{A}$ such that $B_{j} \uparrow X$ and $\mu\left(B_{j}\right)<\infty$. Clearly, $E_{j}:=B_{j}$ satisfies the condition in the statement of the problem.
Conversely, let $\left(E_{j}\right)_{j \in \mathbb{N}}$ be as stated in the problem. Then $B_{n}:=E_{1} \cup$ $\ldots \cup E_{n}$ is measurable, $B_{n} \uparrow X$ and, by subadditivity,

$$
\mu\left(B_{n}\right)=\mu\left(E_{1} \cup \ldots \cup E_{n}\right) \leqslant \sum_{j=1}^{n} \mu\left(E_{j}\right)<\infty .
$$

Remark: A small change in the above argument allows to take pairwise disjoint sets E_{j}.

