
3 σ-Algebras.

Solutions to Problems 3.1–3.12

Problem 3.1 (i) It is clearly enough to show that A,B ∈ A =⇒ A∩B ∈
A, because the case of N sets follows from this by induction, the
induction step being

A1 ∩ . . . ∩ AN︸ ︷︷ ︸
=:B∈A

∩AN+1 = B ∩ AN+1 ∈ A.

Let A,B ∈ A. Then, by (Σ2) also Ac, Bc ∈ A and, by (Σ3) and
(Σ2)

A ∩B = (Ac ∪Bc)c = (Ac ∪Bc ∪ ∅ ∪ ∅ ∪ . . .)c ∈ A.

Alternative: Of course, the last argument also goes through for N
sets:

A1 ∩ A2 ∩ . . . ∩ AN = (Ac1 ∪ Ac2 ∪ . . . ∪ AcN)c

= (Ac1 ∪ . . . ∪ AcN ∪ ∅ ∪ ∅ ∪ . . .)c ∈ A.

(ii) By (Σ2) we have A ∈ A =⇒ Ac ∈ A. Use Ac instead of A and
observe that (Ac)c = A to see the claim.

(iii) Clearly Ac, Bc ∈ A and so, by part (i), A \ B = A ∩ Bc ∈ A as
well as A4B = (A \B) ∪ (B \ A) ∈ A.

Problem 3.2 (iv) Let us assume that B 6= ∅ and B 6= X. Then Bc 6∈
{∅, B,X}. Since with B also Bc must be contained in a σ-algebra,
the family {∅, B,X} cannot be one.

(vi) Set AE := {E ∩ A : A ∈ A}. The key observation is that all
set operations in AE are now relative to E and not to X. This
concerns mainly the complementation of sets! Let us check (Σ1)–
(Σ3).

Clearly ∅ = E ∩ ∅ ∈ AE. If B ∈ A, then B = E ∩ A for some
A ∈ A and the complement of B relative to E is E \B = E∩Bc =
E ∩ (E ∩ A)c = E ∩ (Ec ∪ Ac) = E ∩ Ac ∈ AE as Ac ∈ A.
Finally, let (Bj)j∈N ⊂ AE. Then there are (Aj)j∈N ⊂ A such
that Bj = E ∩ Aj. Since A =

⋃
j∈NAj ∈ A we get

⋃
j∈NBj =⋃

j∈N(E ∩ Aj) = E ∩⋃j∈NAj = E ∩ A ∈ AE.

1
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(vii) Note that f−1 interchanges with all set operations. Let A,Aj, j ∈
N be sets in A. We know that then A = f−1(A′), Aj = f−1(A′j)
for suitable A,A′j ∈ A′. Since A′ is, by assumption a σ-algebra,
we have

∅ = f−1(∅) ∈ A as ∅ ∈ A′

Ac =
(
f−1(A′)

)c
= f−1(A′c) ∈ A as A′c ∈ A′

⋃

j∈N
Aj =

⋃

j∈N
f−1(A′j) = f−1

(⋃

j∈N
A′j

)
∈ A as

⋃

j∈N
A′j ∈ A′

which proves (Σ1)–(Σ3) for A.

Problem 3.3 (i) Since G is a σ-algebra, G ‘competes’ in the intersection of
all σ-algebras C ⊃ G appearing in the definition of A in the proof
of Theorem 3.4(ii). Thus, G ⊃ σ(G) while G ⊂ σ(G) is always true.

(ii) Without loss of generality we can assume that ∅ 6= A 6= X since
this would simplify the problem. Clearly {∅, A,Ac, X} is a σ-
algebra containing A and no element can be removed without
losing this property. Thus {∅, A,Ac, X} is minimal and, therefore,
= σ({A}).

(iii) Assume that F ⊂ G. Then we have F ⊂ G ⊂ σ(G). Now C := σ(G)
is a potential ‘competitor’ in the intersection appearing in the
proof of Theorem 3.4(ii), and as such C ⊃ σ(F), i.e. σ(G) ⊃ σ(F).

Problem 3.4 (i) {∅, (0, 1
2
), {0} ∪ [1

2
, 1], [0, 1]}. We have 2 atoms (see the

explanations below): (0, 1
2
), (0, 1

2
)c.

(ii) {∅, [0, 1
4
), [1

4
, 3

4
], (3

4
, 1], [0, 3

4
], [1

4
, 1], [0, 1

4
) ∪ (3

4
, 1], [0, 1]}. We have 3

atoms (see below): [0, 1
4
), [1

4
, 3

4
], (3

4
, 1].

(iii) —same solution as (ii)—

Parts (ii) and (iii) are quite tedious to do and they illustrate how diffi-
cult it can be to find a σ-algebra containing two distinct sets.... imagine
how to deal with something that is generated by 10, 20, or infinitely
many sets. Instead of giving a particular answer, let us describe the
method to find σ({A,B}) practically, and then we are going to prove
it.

1. Start with trivial sets and given sets: ∅, X,A,B.

2. now add their complements: Ac, Bc
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3. now add their unions and intersections and differences: A∪B,A∩
B,A \B,B \ A

4. now add the complements of the sets in 3.: Ac ∩Bc, Ac ∪Bc, (A \
B)c, (B \ A)c

5. finally, add unions of differences and their complements: (A\B)∪
(B \ A), (A \B)c ∩ (B \ A)c.

All in all one should have 16 sets (some of them could be empty or
X or appear several times, depending on how much A differs from B).
That’s it, but the trouble is: is this construction correct? Here is a
somewhat more systematic procedure:

Definition: An atom of a σ-algebra A is a non-void set ∅ 6= A ∈ A

that contains no other set of A.

Since A is stable under intersections, it is also clear that all atoms are
disjoint sets! Now we can make up every set from A as union (finite
or countable) of such atoms. The task at hand is to find atoms if A,B
are given. This is easy: the atoms of our future σ-algebra must be:
A \B, B \A, A∩B, (A∪B)c. (Test it: if you make a picture, this is a
tesselation of our space X using disjoint sets and we can get back A,B
as union! It is also minimal, since these sets must appear in σ({A,B})
anyway.) The crucial point is now:

Theorem. If A is a σ-algebra with N atoms (finitely many!), then A

consists of exactly 2N elements.

Proof. The question is how many different unions we can make out
of N sets. Simple answer: we find

(
N
j

)
, 0 6 j 6 N different unions

involving exactly j sets (j = 0 will, of course, produce the empty set)
and they are all different as the atoms were disjoint. Thus, we get∑N

j=0

(
N
j

)
= (1 + 1)N = 2N different sets.

It is clear that they constitute a σ-algebra.

This answers the above question. The number of atoms depends ob-
viously on the relative position of A,B: do they intersect, are they
disjoint etc. Have fun with the exercises and do not try to find σ-
algebras generated by three or more sets..... (By the way: can you
think of a situation in [0, 1] with two subsets given and exactly four
atoms? Can there be more?)
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Problem 3.5 (i) See the solution to Problem 3.4.

(ii) If A1, . . . , AN ⊂ X are given, there are at most 2N atoms. This
can be seen by induction. If N = 1, then there are #{A,Ac} = 2
atoms. If we add a further set AN+1, then the worst case would
be that AN+1 intersects with each of the 2N atoms, thus splitting
each atom into two sets which amounts to saying that there are
2 · 2N = 2N+1 atoms.

Problem 3.6 O1 Since ∅ contains no element, every element x ∈ ∅ admits
certainly some neighbourhood Bδ(x) and so ∅ ∈ O. Since for all
x ∈ Rn also Bδ(x) ⊂ Rn, Rn is clearly open.

O2 Let U, V ∈ O. If U ∩ V = ∅, we are done. Else, we find some
x ∈ U ∩ V . Since U, V are open, we find some δ1, δ2 > 0 such
that Bδ1(x) ⊂ U and Bδ2(x) ⊂ V . But then we can take h :=
min{δ1, δ2} > 0 and find

Bh(x) ⊂ Bδ1(x) ∩Bδ2(x) ⊂ U ∩ V,
i.e. U ∩V ∈ O. For finitely many, say N , sets, the same argument
works. Notice that already for countably many sets we will get a
problem as the radius h := min{δj : j ∈ N} is not necessarily any
longer > 0.

O2 Let I be any (finite, countable, not countable) index set and
(Ui)i∈I ⊂ O be a family of open sets. Set U :=

⋃
i∈I Ui. For

x ∈ U we find some j ∈ I with x ∈ Uj, and since Uj was open,
we find some δj > 0 such that Bδj(x) ⊂ Uj. But then, trivially,
Bδj(x) ⊂ Uj ⊂

⋃
i∈I Ui = U proving that U is open.

The family On cannot be a σ-algebra since the complement of an open
set U 6= ∅, 6= Rn is closed.

Problem 3.7 Let X = R and set Uk := (− 1
k
, 1
k
) which is an open set. Then⋂

k∈N Uk = {0} but a singleton like {0} is closed and not open.

Problem 3.8 We know already that the Borel sets B = B(R) are generated
by any of the following systems:

{[a, b) : a, b ∈ Q}, {[a, b) : a, b ∈ R},
{(a, b) : a, b ∈ Q}, {(a, b) : a, b ∈ R}, O1, or C1

Here is just an example how to solve the problem. Let b > a. Since
(−∞, b) \ (−∞, a) = [a, b) we get that

{[a, b) : a, b ∈ Q} ⊂ σ({(−∞, c) : c ∈ Q})
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=⇒ B = σ({[a, b) : a, b ∈ Q}) ⊂ σ({(−∞, c) : c ∈ Q}).

On the other hand we find that (−∞, a) =
⋃
k∈N[−k, a) proving that

{(−∞, a) : a ∈ Q} ⊂ σ({[c, d) : c, d ∈ Q}) = B

=⇒ σ({(−∞, a) : a ∈ Q}) ⊂ B

and we get equality.

The other cases are similar.

Problem 3.9 Let B := {Br(x) : x ∈ Rn, r > 0} and let B′ := {Br(x) :
x ∈ Qn, r ∈ Q+}. Clearly,

B′ ⊂ B ⊂ On

=⇒ σ(B′) ⊂ σ(B) ⊂ σ(On) = B(Rn).

On the other hand, any open set U ∈ On can be represented by

U =
⋃

B∈B′, B⊂U
B. (∗)

Indeed, U ⊃ ⋃B∈B′, B⊂U B follows by the very definition of the union.
Conversely, if x ∈ U we use the fact that U is open, i.e. there is some
Bε(x) ⊂ U . Without loss of generality we can assume that ε is rational,
otherwise we replace it by some smaller rational ε. Since Qn is dense
in Rn we can find some q ∈ Qn with |x − q| < ε/3 and it is clear that
Bε/3(q) ⊂ Bε(x) ⊂ U . This shows that U ⊂ ⋃B∈B′, B⊂U B.

Since #B′ = #(Qn ×Q) = #N, formula (∗) entails that

On ⊂ σ(B′) =⇒ σ(On) = σ(B)

and we are done.

Problem 3.10 (i) O1: We have ∅ = ∅ ∩ A ∈ OA, A = X ∩ A ∈ OA.

O1: Let U ′ = U ∩A ∈ OA, V ′ = V ∩A ∈ OA with U, V ∈ O. Then
U ′ ∩ V ′ = (U ∩ V ) ∩ A ∈ OA since U ∩ V ∈ O.

O2: Let U ′i = Ui∩A ∈ OA with Ui ∈ O. Then
⋃
i U
′
i = (

⋃
i Ui)∩A ∈

OA since
⋃
i Ui ∈ O.

(ii) We use for a set A and a family F ⊂ P(X) the shorthand A∩F :=
{A ∩ F : F ∈ F}.
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Clearly, A ∩ O ⊂ A ∩ σ(O) = A ∩ B(X). Since the latter is a
σ-algebra, we have

σ(A ∩ O) ⊂ A ∩B(X) i.e. B(A) ⊂ A ∩B(X).

For the converse inclusion we define the family

Σ := {B ⊂ X : A ∩B ∈ σ(A ∩ O)}.
It is not hard to see that Σ is a σ-algebra and that O ⊂ Σ. Thus
B(X) = σ(O) ⊂ Σ which means that

A ∩B(X) ⊂ σ(A ∩ O).

Notice that this argument does not really need that A ∈ B(X).
If, however, A ∈ B(X) we have in addition to A ∩ B(X) = B(A)
that

B(A) = {B ⊂ A : B ∈ B(X)}
Problem 3.11 (i) As in the proof of Theorem 3.4 we set

m(E) :=
⋂

M monotone class
M ⊃E

M. (∗)

Since the intersection M =
⋂
i∈I Mi of arbitrarily many monotone

classes Mi, i ∈ I, is again a monotone class [indeed: if (Aj)j∈N ⊂
M, then (Aj)j∈N is in every Mi and so are

⋃
j Aj,

⋂
j Aj; thus⋃

j Aj,
⋂
j Aj ∈ M] and (∗) is evidently the smallest monotone

class containing some given family E.

(ii) Since E is stable under complementation and contains the empty
set we know that X ∈ E. Thus, ∅ ∈ Σ and, by the very definition,
Σ is stable under taking complements of its elements. If (Sj)j∈N ⊂
Σ, then (Scj )j∈N ⊂ σ and

⋃
j

Sj ∈ m(E),

(⋃
j

Sj

)c
=
⋂
j

Scj ∈ m(E)

which means that
⋃
j Sj ∈ Σ.

(iii) E ⊂ Σ: if E ∈ E, then E ∈ m(E). Moreover, as E is stable under
complementation, Ec ∈ m(E) for all E ∈ E, i.e. E ⊂ Σ.

Σ ⊂ m(E): obvious from the definition of Σ.

m(E) ⊂ σ(E): every σ-algebra is also a monotone class and the
inclusion follows from the minimality of m(E).

Finally apply the σ-hull to the chain E ⊂ Σ ⊂ m(E) ⊂ σ(E) and
conclude that m(E) ⊂ σ(E).
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Problem 3.12 (i) Since M is a monotone class, this follows from Problem
3.11.

(ii) Let F ⊂ Rn be any closed set. Then Un := F +B1/n(0) := {x+y :
x ∈ F, y ∈ B1/n(0)} is an open set and

⋂
n∈N Un = F . Indeed,

Un =
⋃
x∈F

B1/n(x) =
{
z ∈ Rn : |x− z| < 1

n
for some x ∈ F}

which shows that Un is open, F ⊂ Un and F ⊂ ⋂n Un. On the
other hand, if z ∈ Un for all n ∈ N, then there is a sequence of
points xn ∈ F with the property |z − xn| < 1

n

n→∞−−−→ 0. Since F is
closed, z = limn xn ∈ F and we get F =

⋂
n Un.

Since M is closed under countable intersections, F ∈ M for any
closed set F .

(iii) Identical to Problem 3.11(ii).

(iv) Use Problem 3.11(iv).



4 Measures.

Solutions to Problems 4.1–4.15

Problem 4.1 (i) We have to show that for a measure µ and finitely many,
pairwise disjoint sets A1, A2, . . . , AN ∈ A we have

µ(A1 ·∪A2 ·∪ . . . ·∪AN) = µ(A1) + µ(A2) + . . .+ µ(AN).

We use induction in N ∈ N. The hypothesis is clear, for the start
(N = 2) see Proposition 4.3(i). Induction step: take N+1 disjoint
sets A1, . . . , AN+1 ∈ A, set B := A1 ·∪ . . . ·∪AN ∈ A and use the
induction start and the hypothesis to conclude

µ(A1 ·∪ . . . ·∪AN ·∪AN+1) = µ(B ·∪AN+1)

= µ(B) + µ(AN+1)

= µ(A1) + . . .+ µ(AN) + µ(AN+1).

(iv) To get an idea what is going on we consider first the case of three
sets A,B,C. Applying the formula for strong additivity thrice we
get

µ(A ∪B ∪ C) = µ(A ∪ (B ∪ C))

= µ(A) + µ(B ∪ C)− µ(A ∩ (B ∪ C)︸ ︷︷ ︸
= (A∩B)∪(A∩C)

)

= µ(A) + µ(B) + µ(C)− µ(B ∩ C)− µ(A ∩B)

− µ(A ∩ C) + µ(A ∩B ∩ C).

As an educated guess it seems reasonable to suggest that

µ(A1 ∪ . . . ∪ An) =
n∑

k=1

(−1)k+1
∑

σ⊂{1,...,n}
#σ=k

µ
( ∩
j∈σ

Aj
)
.

We prove this formula by induction. The induction start is just the
formula from Proposition 4.3(iv), the hypothesis is given above.
For the induction step we observe that

∑

σ⊂{1,...,n+1}
#σ=k

=
∑

σ⊂{1,...,n,n+1}
#σ=k, n+16∈σ

+
∑

σ⊂{1,...,n,n+1}
#σ=k, n+1∈σ

=
∑

σ⊂{1,...,n}
#σ=k

+
∑

σ′⊂{1,...,n}
#σ′=k−1, σ:=σ′∪{n+1}

(∗)

8
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Having this in mind we get for B := A1 ∪ . . . ∪ An and An+1 us-
ing strong additivity and the induction hypothesis (for A1, . . . , An
resp. A1 ∩ An+1, . . . , An ∩ An+1)

µ(B ∪ An+1) = µ(B) + µ(An+1)− µ(B ∩ An+1)

= µ(B) + µ(An+1)− µ( n∪
j=1

(Aj ∩ An+1)
)

=
n∑

k=1

(−1)k+1
∑

σ⊂{1,...,n}
#σ=k

µ
( ∩
j∈σ

Aj
)

+ µ(An+1)

+
n∑

k=1

(−1)k+1
∑

σ⊂{1,...,n}
#σ=k

µ
(
An+1 ∩

j∈σ
Aj
)
.

Because of (∗) the last line coincides with

n+1∑

k=1

(−1)k+1
∑

σ⊂{1,...,n,n+1}
#σ=k

µ
( ∩
j∈σ

Aj
)

and the induction is complete.

(v) We have to show that for a measure µ and finitely many sets
B1, B2, . . . , BN ∈ A we have

µ(B1 ∪B2 ∪ . . . ∪BN) 6 µ(B1) + µ(B2) + . . .+ µ(BN).

We use induction in N ∈ N. The hypothesis is clear, for the
start (N = 2) see Proposition 4.3(v). Induction step: take N + 1
sets B1, . . . , BN+1 ∈ A, set C := B1 ∪ . . . ∪ BN ∈ A and use the
induction start and the hypothesis to conclude

µ(B1 ∪ . . . ∪BN ∪BN+1) = µ(C ∪BN+1)

6 µ(C) + µ(BN+1)

6 µ(B1) + . . .+ µ(BN) + µ(BN+1).

Problem 4.2 (i) The Dirac measure is defined on an arbitrary measurable

space (X,A) by δx(A) :=

{
0, if x 6∈ A
1, if x ∈ A , where A ∈ A and

x ∈ X is a fixed point.

(M1) Since ∅ contains no points, x 6∈ ∅ and so δx(∅) = 0.
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(M2) Let (Aj)j∈N ⊂ A a sequence of pairwise disjoint measurable
sets. If x ∈ ⋃j∈NAj, there is exactly one j0 with x ∈ Aj0 , hence

δx

(⋃

j∈N
Aj

)
= 1 = 1 + 0 + 0 + . . .

= δx(Aj0) +
∑

j 6=j0
δx(Aj)

=
∑

j∈N
δx(Aj).

If x 6∈ ⋃j∈NAj, then x 6∈ Aj for every j ∈ N, hence

δx

(⋃

j∈N
Aj

)
= 0 = 0 + 0 + 0 + . . . =

∑

j∈N
δx(Aj).

(ii) The measure γ is defined on (R,A) by γ(A) :=

{
0, if #A 6 #N
1, if #Ac 6 #N

where A := {A ⊂ R : #A 6 #N or #Ac 6 #N}. (Note that
#A 6 #N if, and only if, #Ac = #R \ A > #N.)

(M1) Since ∅ contains no elements, it is certainly countable and
so γ(∅) = 0.

(M2) Let (Aj)j∈N be pairwise disjoint A-sets. If all of them are
countable, then A :=

⋃
j∈N is countable and we get

γ

(⋃

j∈N
Aj

)
= γ(A) = 0 =

∑

j∈N
γ(Aj).

If at least one Aj is not countable, say for j = j0, then A ⊃ Aj0
is not countable and therefore γ(A) = γ(Aj0) = 1. Assume we
could find some other j1 6= j0 such that Aj0 , Aj1 are not countable.
Since Aj0 , Aj1 ∈ A we know that their complements Acj0 , A

c
j1

are
countable, hence Acj0 ∪ Acj1 is countable and, at the same time,
∈ A. Because of this, (Acj0 ∪ Acj1)c = Aj0 ∩ Aj1 = ∅ cannot be
countable, which is absurd! Therefore there is at most one index
j0 ∈ N such that Aj0 is uncountable and we get then

γ

(⋃

j∈N
Aj

)
= γ(A) = 1 = 1 + 0 + 0 + . . . = γ(Aj0) +

∑

j 6=j0
γ(Aj).
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(iii) We have an arbitrary measurable space (X,A) and the measure

|A| =
{

#A, if A is finite

∞, else
.

(M1) Since ∅ contains no elements, #∅ = 0 and |∅| = 0.

(M2) Let (Aj)j∈N be a sequence of pairwise disjoint sets in A.
Case 1: All Aj are finite and only finitely many, say the first k,
are non-empty, then A =

⋃
j∈NAj is effectively a finite union of k

finite sets and it is clear that

|A| = |A1|+ . . .+ |Ak|+ |∅|+ |∅|+ . . . =
∑

j∈N
|Aj|.

Case 2: All Aj are finite and infinitely many are non-void. Then
their union A =

⋃
j∈NAj is an infinite set and we get

|A| =∞ =
∑

j∈N
|Aj|.

Case 3: At least one Aj is infinite, and so is then the union A =⋃
j∈NAj. Thus,

|A| =∞ =
∑

j∈N
|Aj|.

(iv) On a countable set Ω = {ω1, ω2, . . .} we define for a sequence
(pj)j∈N ⊂ [0, 1] with

∑
j∈N pj = 1 the set-function

P (A) =
∑

j : ωj∈A
pj =

∑

j∈N
pj δωj(A), A ⊂ Ω.

(M1) P (∅) = 0 is obvious.

(M2) Let (Ak)k∈N be pairwise disjoint subsets of Ω. Then

∑

k∈N
P (Ak) =

∑

k∈N

∑

j∈N
pj δωj(Ak)

=
∑

j∈N

∑

k∈N
pj δωj(Ak)

=
∑

j∈N
pj

(∑

k∈N
δωj(Ak)

)
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=
∑

j∈N
pjδωj

(∪
k
Ak
)

= P
(∪
k
Ak
)
.

The change in the order of summation needs justification; one
possibility is the argument used in the solution of Problem 4.6(ii).
(Note that the reordering theorem for absolutely convergent series
is not immediately applicable since we deal with a double series!)

(v) This is obvious.

Problem 4.3 • On (R,B(R)) the function γ is not be a measure, since we
can take the sets A = (1,∞), B = (−∞,−1) which are disjoint,
not countable and both have non-countable complements. Hence,
γ(A) = γ(B) = 1. On the other hand, A ·∪B is non-countable
and has non-countable complement, [−1, 1]. So, γ(A ·∪B) = 1.
This contradicts the additivity: γ(A ·∪B) = 1 6= 2 = γ(A) +
γ(B). Notice that the choice of the σ-algebra A avoids exactly this
situation. B is the wrong σ-algebra for γ.

• On Q (and, actually, any possible σ-algebra thereon) the problem
is totally different: if A is countable, then Ac = Q \ A is also
countable and vice versa. This means that γ(A) is, according to
the definition, both 1 and 0 which is, of course, impossible. This
is to say: γ is not well-defined. γ makes only sense on a non-
countable set X.

Problem 4.4 (i) If A = {∅,R}, then µ is a measure.

But as soon as A contains one set A which is trivial (i.e. either ∅
or X), we have actually Ac ∈ A which is also non-trivial. Thus,

1 = µ(X) = µ(A ·∪Ac) 6= µ(A) + µ(Ac) = 1 + 1 = 2

and µ cannot be a measure.

(ii) If we equip R with a σ-algebra which contains sets such that both
A and Ac can be infinite (the Borel σ-algebra would be such an
example: A = (−∞, 0) =⇒ Ac = [0,∞)), then ν is not well-
defined. The only type of sets where ν is well-defined is, thus,

A := {A ⊂ R : #A <∞ or #Ac <∞}.

But this is no σ-algebra as the following example shows: Aj :=
{j} ∈ A, j ∈ N, are pairwise disjoint sets but

⋃
j∈NAj = N is
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not finite and its complement is R \ N not finite either! Thus,
N 6∈ A, showing that A cannot be a σ-algebra. We conclude that
ν can never be a measure if the σ-algebra contains infinitely many
sets. If we are happy with finitely many sets only, then here is an
example that makes ν into a measure A = {∅, {69},R \ {69},R}
and similar families are possible, but the point is that they all
contain only finitely many members.

Problem 4.5 Denote by λ one-dimensional Lebesgue measure and consider
the Borel sets Bk := (k,∞). Clearly

⋂
k Bk = ∅, k ∈ N, so that Bk ↓ ∅.

On the other hand,

λ(Bk) =∞ =⇒ inf
k
λ(Bk) =∞ 6= 0 = λ(∅)

which shows that the finiteness condition in Theorem 4.4 (iii′) and (iii′′)
is essential.

Problem 4.6 (i) Clearly, ρ := aµ + bν : A→ [0,∞] (since a, b > 0!). We
check (M1), (M2).

(M1) Clearly, ρ(∅) = aµ(∅) + bν(∅) = a · 0 + b · 0 = 0.

(M2) Let (Aj)j∈N ⊂ A be mutually disjoint sets. Then we can use
the σ-additivity of µ, ν to get

ρ

(⋃

j∈N
Aj

)
= aµ

(⋃

j∈N
Aj

)
+ bν

(⋃

j∈N
Aj

)

= a
∑

j∈N
µ(Aj) + b

∑

j∈N
ν(Aj)

=
∑

j∈N

(
aµ(Aj) + bµ(Aj)

)

=
∑

j∈N
ρ(Aj).

Since all quantities involved are positive and since we allow the
value +∞ to be attained, there are no convergence problems.

(ii) Since all αj are positive, the sum
∑

j∈N αjµj(A) is a sum of positive
quantities and, allowing the value +∞ to be attained, there is no
convergence problem. Thus, µ : A→ [0,∞] is well-defined. Before
we check (M1), (M2) we prove the following
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Lemma. Let βij, i, j ∈ N, be real numbers. Then

sup
i∈N

sup
j∈N

βij = sup
j∈N

sup
i∈N

βij.

Proof. Observe that we have βmn 6 supj∈N supi∈N βij for all m,n ∈
N. The right-hand side is independent of m and n and we may
take the sup over all n

sup
n∈N

βmn 6 sup
j∈N

sup
i∈N

βij ∀m ∈ N

and then, with the same argument, take the sup over all m

sup
m∈N

sup
n∈N

βmn 6 sup
j∈N

sup
i∈N

βij ∀m ∈ N.

The opposite inequality, ‘>’, follows from the same argument with
i and j interchanged.

(M1) We have µ(∅) =
∑

j∈N αjµj(∅) =
∑

j∈N αj · 0 = 0.

(M2) Take pairwise disjoint sets (Ai)i∈N ⊂ A. Then we can use
the σ-additivity of each of the µj’s to get

µ

(⋃

i∈N
Ai

)
=
∑

j∈N
αjµj

(⋃

i∈N
Ai

)

= lim
N→∞

N∑
j=1

αj
∑

i∈N
µj (Ai)

= lim
N→∞

N∑
j=1

αj lim
M→∞

M∑
i=1

µj (Ai)

= lim
N→∞

lim
M→∞

N∑
j=1

M∑
i=1

αjµj (Ai)

= sup
N∈N

sup
M∈N

N∑
j=1

M∑
i=1

αjµj (Ai)

where we used that the limits are increasing limits, hence suprema.
By our lemma:

µ

(⋃

i∈N
Ai

)
= sup

M∈N
sup
N∈N

M∑
i=1

N∑
j=1

αjµj (Ai)
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= lim
M→∞

lim
N→∞

M∑
i=1

N∑
j=1

αjµj (Ai)

= lim
M→∞

M∑
i=1

∑

j∈N
αjµj (Ai)

= lim
M→∞

M∑
i=1

µ (Ai)

=
∑

i∈N
µ (Ai) .

Problem 4.7 Set ν(A) := µ(A ∩ F ). We know, by assumption, that µ is a
measure on (X,A). We have to show that ν is a measure on (X,A).
Since F ∈ A, we have F ∩ A ∈ A for all A ∈ A, so ν is well-defined.
Moreover, it is clear that ν(A) ∈ [0,∞]. Thus, we only have to check

(M1) ν(∅) = µ(∅ ∩ F ) = µ(∅) = 0.

(M2) Let (Aj)j∈N ⊂ A be a sequence of pairwise disjoint sets. Then also
(Aj ∩ F )j∈N ⊂ A are pairwise disjoint and we can use the σ-additivity
of µ to get

ν

(⋃

j∈N
Aj

)
= µ

(
F ∩

⋃

j∈N
Aj

)
= µ

(⋃

j∈N
(F ∩ Aj)

)

=
∑

j∈N
µ(F ∩ Aj)

=
∑

j∈N
ν(Aj).

Problem 4.8 Since P is a probability measure, P (Acj) = 1 − P (Aj) = 0.
By σ-subadditivity,

P

(⋃

j∈N
Acj

)
6
∑

j∈N
P (Acj),= 0

and we conclude that

P

(⋂

j∈N
Aj

)
= 1− P

([⋂

j∈N
Aj

]c)
= 1− P

(⋃

j∈N
Acj

)
= 1− 0 = 0.
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Problem 4.9 Note that

⋃
j

Aj \
⋃

k

Bk =
⋃
j

(
Aj \

⋃

k

Bk

︸ ︷︷ ︸
⊃Bj ∀ j

)
⊂
⋃
j

(
Aj \Bj

)

Since
⋃
j Bj ⊂

⋃
j Aj we get from σ-subadditivity

µ

(⋃
j

Aj

)
− µ

(⋃
j

Bj

)
= µ

(⋃
j

Aj \
⋃

k

Bk

)

6 µ

(⋃
j

(
Aj \Bj

))

6
∑
j

µ(Aj \Bj).

Problem 4.10 (i) We have ∅ ∈ A and µ(∅) = 0, thus ∅ ∈ Nµ.

(ii) Since M ∈ A (this is essential in order to apply µ to M !) we can
use the monotonicity of measures to get 0 6 µ(M) 6 µ(N) = 0,
i.e. µ(M) = 0 and M ∈ Nµ follows.

(iii) Since all Nj ∈ A, we get N :=
⋃
j∈NNj ∈ A. By the σ-subadditi-

vity of a measure we find

0 6 µ(N) = µ

(⋃

j∈N
Nj

)
6
∑

j∈N
µ(Nj) = 0,

hence µ(N) = 0 and so N ∈ Nµ.

Problem 4.11 (i) The one-dimensional Borel sets B := B1 are defined as
the smallest σ-algebra containing the open sets. Pick x ∈ R and
observe that the open intervals (x− 1

k
, x+ 1

k
), k ∈ N, are all open

sets and therefore (x− 1
k
, x + 1

k
) ∈ B. Since a σ-algebra is stable

under countable intersections we get {x} =
⋂
k∈N(x− 1

k
, x+ 1

k
) ∈ B.

Using the monotonicity of measures and the definition of Lebesgue
measure we find

0 6 λ({x}) 6 λ((x− 1
k
, x+ 1

k
)) = (x+ 1

k
)− (x− 1

k
) = 2

k

k→∞−−−→ 0.

[Following the hint leads to a similar proof with [x − 1
k
, x + 1

k
)

instead of (x− 1
k
, x+ 1

k
).]
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(ii) a) Since Q is countable, we find an enumeration {q1, q2, q3, . . .}
and we get trivially Q =

⋃
j∈N{qj} which is a disjoint union.

(This shows, by the way, that Q ∈ B as {qj} ∈ B.) Therefore,
using part (i) of the problem and the σ-additivity of measures,

λ(Q) = λ

(⋃

j∈N
{qj}

)
=
∑

j∈N
λ({qj}) =

∑

j∈N
0 = 0.

b) Take again an enumeration Q = {q1, q2, q3, . . .}, fix ε > 0 and
define C(ε) as stated in the problem. Then we have C(ε) ∈ B

and Q ⊂ C(ε). Using the monotonicity and σ-subadditivity
of λ we get

0 6 λ(Q) 6 λ
(
C(ε)

)

= λ

( ⋃

k∈N
[qk − ε2−k, qk + ε2−k)

)

6
∑

k∈N
λ
(
[qk − ε2−k, qk + ε2−k)

)

=
∑

k∈N
2 · ε · 2−k

= 2ε
1
2

1− 1
2

= 2ε.

As ε > 0 was arbitrary, we can make ε → 0 and the claim
follows.

(iii) Since
⋃

06x61{x} is a disjoint union, only the countability as-
sumption is violated. Let’s see what happens if we could use
‘σ-additivity’ for such non-countable unions:

0 =
∑

06x61

0 =
∑

06x61

λ({x}) = λ

( ⋃
06x61

{x}
)

= λ([0, 1]) = 1

which is impossible.

Problem 4.12 Without loss of generality we may assume that a 6= b; set
µ := δa + δb. Then µ(B) = 0 if, and only if, a 6∈ B and b 6∈ B. Since
{a}, {b} and {a, b} are Borel sets, all null sets of µ are given by

Nµ =
{
B \ {a, b} : B ∈ B(R)

}
.

(This shows that, in some sense, null sets can be fairly large!).
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Problem 4.13 Let us write N for the family of all (proper and improper)
subsets of µ null sets. We note that sets in N can be measurable (that
is: N ∈ A) but need not be measurable.

(i) Since ∅ ∈ N, we find that A = A ∪ ∅ ∈ A∗ for every A ∈ A; thus,
A ⊂ A∗. Let us check that A∗ is a σ-algebra.

(Σ1) Since ∅ ∈ A ⊂ A∗, we have ∅ ∈ A∗.

(Σ2) Let A∗ ∈ A∗. Then A∗ = A ∪ N for A ∈ A and N ∈ N. By
definition, N ⊂M ∈ A where µ(M) = 0. Now

A∗c = (A ∪N)c = Ac ∩N c

= Ac ∩N c ∩ (M c ∪M)

= (Ac ∩N c ∩M c) ∪ (Ac ∩N c ∩M)

= (Ac ∩M c) ∪ (Ac ∩N c ∩M)

where we used thatN ⊂M , henceM c ⊂ N c, henceM c∩N c =
M c. But now we see that Ac∩M c ∈ A and Ac∩N c∩M ∈ N

since Ac∩N c∩M ⊂M and M ∈ A is a µ null set: µ(M) = 0.

(Σ3) Let (A∗j)j∈N be a sequence of A∗-sets. From its very definition
we know that each A∗j = Aj ∪ Nj for some (not necessarily
unique!) Aj ∈ A and Nj ∈ N. So,

⋃

j∈N
A∗j =

⋃

j∈N
(Aj ∪Nj) =

(⋃

j∈N
Aj

)
∪
(⋃

j∈N
Nj

)
=: A ∪N.

Since A is a σ-algebra, A ∈ A. All we have to show is that Nj

is in N. Since each Nj is a subset of a (measurable!) null set,
say, Mj ∈ A, we find that N =

⋃
j∈NNj ⊂

⋃
j∈NMj = M ∈ A

and all we have to show is that µ(M) = 0. But this follows
from σ-subadditivity,

0 6 µ(M) = µ

(⋃

j∈N
Mj

)
6
∑

j∈N
µ(Mj) = 0.

Thus, A ∪N ∈ A∗.

(ii) As already mentioned in part (i), A∗ ∈ A∗ could have more than
one representation, e.g. A∪N = A∗ = B ∪M with A,B ∈ A and
N,M ∈ N. If we can show that µ(A) = µ(B) then the definition
of µ̄ is independent of the representation of A∗. Since M,N are not
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necessarily measurable but, by definition, subsets of (measurable)
null sets M ′, N ′ ∈ A we find

A ⊂ A ∪N = B ∪M ⊂ B ∪M ′,

B ⊂ B ∪M = A ∪N ⊂ A ∪N ′

and since A,B,B ∪M ′, A ∪ N ′ ∈ A, we get from monotonicity
and subadditivity of measures

µ(A) 6 µ(B ∪M ′) 6 µ(B) + µ(M ′) = µ(B),

µ(B) 6 µ(A ∪N ′) 6 µ(A) + µ(N ′) = µ(A)

which shows µ(A) = µ(B).

(iii) We check (M1) and (M2)

(M1) Since ∅ = ∅∪∅ ∈ A∗, ∅ ∈ A, ∅ ∈ N, we have µ̄(∅) = µ(∅) = 0.

(M2) Let (A∗j)j∈N ⊂ A∗ be a sequence of pairwise disjoint sets. Then
A∗j = Aj ∪ Nj for some Aj ∈ A and Nj ∈ N. These sets are
also mutually disjoint, and with the arguments in (i) we see
that A∗ = A ∪ N where A∗ ∈ A∗, A ∈ A, N ∈ N stand for
the unions of A∗j , Aj and Nj, respectively. Since µ̄ does not
depend on the special representation of A∗-sets, we get

µ̄

(⋃

j∈N
A∗j

)
= µ̄(A∗) = µ(A) = µ

(⋃

j∈N
Aj

)

=
∑

j∈N
µ(Aj)

=
∑

j∈N
µ̄(A∗j)

showing that µ̄ is σ-additive.

(iv) Let M∗ be a µ̄ null set, i.e. M∗ ∈ A∗ and µ̄(M∗) = 0. Take
any B ⊂ M∗. We have to show that B ∈ A∗ and µ̄(B) = 0. The
latter is clear from the monotonicity of µ̄ once we have shown that
B ∈ A∗ which means, once we know that we may plug B into µ̄.

Now, B ⊂M∗ and M∗ = M ∪N for some M ∈ A and N ∈ N. As
µ̄(M∗) = 0 we also know that µ(M) = 0. Moreover, we know from
the definition of N that N ⊂ N ′ for some N ′ ∈ A with µ(N ′) = 0.
This entails

B ⊂M∗ = M ∪N ⊂M ∪N ′ ∈ A
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and µ(M ∪N ′) 6 µ(M) + µ(N ′) = 0.

Hence B ∈ N as well as B = ∅ ∪ B ∈ A∗. In particular, µ̄(B) =
µ(∅) = 0.

(v) Set C = {A∗ ⊂ X : ∃A,B ∈ A, A ⊂ A∗A ⊂ B, µ(B\A) = 0}.
We have to show that A∗ = C.

Take A∗ ∈ A∗. Then A∗ = A∪N with A ∈ A, N ∈ N and choose
N ′ ∈ A, N ⊂ N ′ and µ(N ′) = 0. This shows that

A ⊂ A∗ = A ∪N ⊂ A ∪N ′ =: B ∈ A

and that µ(B \ A) = µ((A ∪ N ′) \ A) 6 µ(N ′) = 0. (Note that
(A ∪ N ′) \ A = (A ∪ N ′) ∩ Ac = N ′ ∩ Ac ⊂ N ′ and that equality
need not hold!).

Conversely, take A∗ ∈ C. Then, by definition, A ⊂ A∗ ⊂ B with
A,B ∈ A and µ(B\A) = 0. Therefore, N := B\A is a null set and
we see that A∗ \A ⊂ B \A, i.e. A∗ \A ∈ N. So, A∗ = A∪ (A∗ \A)
where A ∈ A and A∗ \ A ∈ N showing that A∗ ∈ A∗.

Problem 4.14 (i) Since B is a σ-algebra, it is closed under countable
(disjoint) unions of its elements, thus ν inherits the properties
(M1), (M2) directly from µ.

(ii) Yes [yes], since the full space X ∈ B so that µ(X) = ν(X) is finite
[resp. = 1].

(iii) No, σ-finiteness is also a property of the σ-algebra. Take, for
example, Lebesgue measure λ on the Borel sets (this is σ-finite)
and consider the σ-algebra C := {∅, (−∞, 0), [0,∞),R}. Then λ

∣∣
C

is not σ-finite since there is no increasing sequence of C-sets having
finite measure.

Problem 4.15 By definition, µ is σ-finite if there is an increasing sequence
(Bj)j∈N ⊂ A such that Bj ↑ X and µ(Bj) < ∞. Clearly, Ej := Bj

satisfies the condition in the statement of the problem.

Conversely, let (Ej)j∈N be as stated in the problem. Then Bn := E1 ∪
. . . ∪ En is measurable, Bn ↑ X and, by subadditivity,

µ(Bn) = µ(E1 ∪ . . . ∪ En) 6
n∑
j=1

µ(Ej) <∞.

Remark: A small change in the above argument allows to take pair-
wise disjoint sets Ej.


