3 o-Algebras.
Solutions to Problems 3.1-3.12

Problem 3.1 (i) It is clearly enough to show that A, B € A = ANB €

A, because the case of N sets follows from this by induction, the
induction step being

AN, .NANNAN = BN Ay € A.
N—————

=:BeA
Let A,B € A. Then, by (3,) also A°, B¢ € A and, by (¥3) and
(22)
ANB=(A°UB)°=(A°UB°UDUPU...)° € A.

Alternative: Of course, the last argument also goes through for NV
sets:

AiNAnN...NAy = (AJUASU...UAY)®
=(AJU...UAZUDUDU..) € A.

By (33) we have A e A = A° € A. Use A° instead of A and
observe that (A°)° = A to see the claim.
Clearly A€, B¢ € A and so, by part (i), A\ B=ANB° € A as
wellas AAB = (A\B)U(B\ A) € A.

Problem 3.2 (iv) Let us assume that B # () and B # X. Then B¢ ¢

(vi)

{0, B, X}. Since with B also B must be contained in a o-algebra,
the family {0, B, X'} cannot be one.

Set Ap :={ENA : A€ A}. The key observation is that all
set operations in Ag are now relative to £ and not to X. This
concerns mainly the complementation of sets! Let us check ()
(Xs3).

Clearly ) = EN( € Ag. If B € A, then B = E N A for some
A € A and the complement of B relative to F is E\B = ENB°® =
ENn(ENA)F = EN(E°UAY) = ENA® € Ag as A° € A.
Finally, let (Bj)jen C Ag. Then there are (A4;)jen C A such
that B; = ENA;j. Since A = J;yA4; € A we get U,y By =
U]EN(EHAJ») = EﬂUjeNAj =FNAE€Ag.

1
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Note that f~! interchanges with all set operations. Let A, A;,j €
N be sets in A. We know that then A = f~1(A"), A; = f~1(A))
for suitable A, A} € A’. Since A’ is, by assumption a o-algebra,
we have

D=Ff10ecA as e A
A= (fHA)) =1 A)eA as A°ecA
Ua=Ur'@y=r" (UA;) €A as | JAjeA

JEN JEN JEN JEN

which proves (3;)—(23) for A.

3.3 (i) Since §is a o-algebra, G ‘competes’ in the intersection of
all o-algebras € D G appearing in the definition of A in the proof
of Theorem 3.4(ii). Thus, § D ¢(G) while § C ¢(9) is always true.

Without loss of generality we can assume that () # A # X since
this would simplify the problem. Clearly {0, A, A°, X} is a o-
algebra containing A and no element can be removed without
losing this property. Thus {(}, A, A¢, X'} is minimal and, therefore,
= o({4}).

Assume that F C §. Then we have ¥ C § C 0(9). Now C := ¢(9)
is a potential ‘competitor’ in the intersection appearing in the
proof of Theorem 3.4(ii), and as such € D o(F), i.e. 0(G) D o(F).

10,10, 1,13, 4. (410,10, 21, 13,11, 0. 1) U (3,11, [0, 1]}, We have 3
atoms (see below): [0, 1), [1,3] (2,1].

—same solution as (ii)—

Parts (ii) and (iii) are quite tedious to do and they illustrate how diffi-
cult it can be to find a g-algebra containing two distinct sets.... imagine

how

to deal with something that is generated by 10, 20, or infinitely

many sets. Instead of giving a particular answer, let us describe the
method to find o({A, B}) practically, and then we are going to prove

1t.

1.
2.

Start with trivial sets and given sets: (), X, A, B.

now add their complements: A€, B
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3. now add their unions and intersections and differences: AUB, AN
B,A\ B,B\ A

4. now add the complements of the sets in 3.: A°N B¢, A°U B¢, (A\
B)%, (B\ A)

5. finally, add unions of differences and their complements: (A\ B)U
(B\A), (A\B)*n(B\ A).

All in all one should have 16 sets (some of them could be empty or
X or appear several times, depending on how much A differs from B).
That’s it, but the trouble is: is this construction correct? Here is a
somewhat more systematic procedure:

Definition: An atom of a o-algebra A is a non-void set ) # A € A
that contains no other set of A.

Since A is stable under intersections, it is also clear that all atoms are
disjoint sets! Now we can make up every set from A as union (finite
or countable) of such atoms. The task at hand is to find atoms if A, B
are given. This is easy: the atoms of our future g-algebra must be:
A\ B, B\ A, AN B, (AU B)*. (Test it: if you make a picture, this is a
tesselation of our space X using disjoint sets and we can get back A, B
as union! Tt is also minimal, since these sets must appear in o({A, B})
anyway.) The crucial point is now:

Theorem. If A is a o-algebra with N atoms (finitely many!), then A
consists of exactly 2V elements.

Proof. The question is how many different unions we can make out
of N sets. Simple answer: we find (];7 ), 0 < 75 < N different unions
involving exactly j sets (j = 0 will, of course, produce the empty set)

and they are all different as the atoms were disjoint. Thus, we get

Z;V:o (];7) = (1+ 1) = 2% different sets.

It is clear that they constitute a o-algebra. |

This answers the above question. The number of atoms depends ob-
viously on the relative position of A, B: do they intersect, are they
disjoint etc. Have fun with the exercises and do not try to find o-
algebras generated by three or more sets..... (By the way: can you
think of a situation in [0, 1] with two subsets given and exactly four
atoms? Can there be more?)



4 Schilling: Measures, Integrals € Martingales

Problem 3.5 (i) See the solution to Problem 3.4.

(i) If Ay,..., Ay C X are given, there are at most 2V atoms. This
can be seen by induction. If N = 1, then there are #{A, A°} =2
atoms. If we add a further set Anyq, then the worst case would
be that Ay, intersects with each of the 2V atoms, thus splitting
each atom into two sets which amounts to saying that there are
2. 2N = 2N+1 atoms.

Problem 3.6 O, Since () contains no element, every element = € () admits
certainly some neighbourhood Bs(x) and so () € O. Since for all
x € R™ also Bs(z) C R™, R" is clearly open.

Oy Let U,V € 0. fUNV = (), we are done. Else, we find some
xr € UNV. Since U,V are open, we find some d;,05 > 0 such
that Bs, (x) C U and Bys,(z) C V. But then we can take h :=
min{d, d2} > 0 and find

Bh(‘r) - Bél(‘r) N 352(I’) cun V’

i,e. UNV € O. For finitely many, say N, sets, the same argument
works. Notice that already for countably many sets we will get a
problem as the radius h := min{d; : j € N} is not necessarily any
longer > 0.

Oy Let I be any (finite, countable, not countable) index set and
(Us)ier € O be a family of open sets. Set U := J,c;U;. For
x € U we find some j € I with 2 € Uj, and since U; was open,
we find some ; > 0 such that Bs,(x) C U;. But then, trivially,
Bs,(x) C Uj C U,;e; Us = U proving that U is open.
The family O™ cannot be a o-algebra since the complement of an open
set U # 0, # R™ is closed.

Problem 3.7 Let X =R and set Uy, := (—z, 1) which is an open set. Then
Nken Ur = {0} but a singleton like {0} is closed and not open.

Problem 3.8 We know already that the Borel sets B = B(R) are generated
by any of the following systems:

{la,b) : a,b € Q}, {[a,b) : a,b e R},
{(a,b) : a,b€Q}, {(a,b) : a,b € R}, O or €'

Here is just an example how to solve the problem. Let b > a. Since
(—00,b) \ (—o0,a) = [a,b) we get that

{la,b) : a,b € Q} C o({(—0o0,c) : c€Q})
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= B=o0({][a,b) : a,b€Q}) Co({(—00,¢) : c€Q}).

On the other hand we find that (—o0,a) = |J,cy[—Fk, a) proving that

{(=00,a) : a€Q} Co({[c,d) : c,deQ})=B
= o({(-00,a) : a€Q})CB

and we get equality.

The other cases are similar.

Problem 3.9 Let B := {B,(z) : z € R, r > 0} and let B’ := {B,(z) :
r € Q" reQt}. Clearly,

B'cBcCO"
= o(B) C o(B) C 0(O") = B(R").

On the other hand, any open set U € O™ can be represented by

v= |J B (%)

BeB’, BCU

Indeed, U D | Bew Bcu B follows by the very definition of the union.
Conversely, if x € U we use the fact that U is open, i.e. there is some
B.(z) C U. Without loss of generality we can assume that € is rational,
otherwise we replace it by some smaller rational €. Since Q" is dense
in R” we can find some ¢ € Q" with | — ¢| < ¢/3 and it is clear that
Be/3(q) C Be(x) C U. This shows that U C Upcp pcy B-

Since #B' = #(Q™ x Q) = #N, formula (*) entails that
0" co(B') = o(O") = o(B)
and we are done.

Problem 3.10 (i) O;: Wehave 0 =0 N A€ 0y, A=XNA€ Oy
O1: Let U =UNA€ 04,V =VNAe€ Oy withU,V € O. Then
UnNnV'=UnNV)NAeOssinceUNV € 0.
Oy: Let U = U;NA € O4 with U; € O. Then |, U] = (U, U;)NA €
04 since |, U; € O.
(ii) We use for a set A and a family F C P(X) the shorthand ANTF :=
{ANF : Feg}.
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Clearly, ANO C Ano(0) = AN B(X). Since the latter is a
o-algebra, we have

c(ANO) C ANB(X) ie. B(A) C ANnB(X).
For the converse inclusion we define the family
Y ={BCX :AnBed(ANO)}.

It is not hard to see that X is a g-algebra and that O C ¥. Thus
B(X) =0(0) C ¥ which means that

ANB(X) Co(ANO).

Notice that this argument does not really need that A € B(X).
If, however, A € B(X) we have in addition to AN B(X) = B(A)
that

B(A)={BCA: BeB(X)}

3.11 (i) As in the proof of Theorem 3.4 we set

m(&) = N M. (%)

M monotone class
MDE

Since the intersection M = (),.; M; of arbitrarily many monotone
classes M;, i € I, is again a monotone class [indeed: if (A;);en C
M, then (A;)jen is in every M; and so are |J; 4;, (; 4j; thus
U; 45:N; A; € M] and (x) is evidently the smallest monotone
class containing some given family €.

Since € is stable under complementation and contains the empty
set we know that X € €. Thus, () € ¥ and, by the very definition,
¥ is stable under taking complements of its elements. If (S}),;en C
3, then (S5)jen C o and

U@ema,(U@Y:ﬂgew&

which means that |J; 5; € X.

EC X if Feé&, then E € m(€). Moreover, as € is stable under
complementation, £¢ € m(&) for all £ € €, ie. € C X.

¥ C m(€): obvious from the definition of X.

m(€) C o(&): every o-algebra is also a monotone class and the
inclusion follows from the minimality of m(&).

Finally apply the o-hull to the chain € C ¥ C m(€) C ¢(€) and
conclude that m(€) C a(E).
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Problem 3.12 (i) Since M is a monotone class, this follows from Problem

(if)

(iii)
(iv)

3.11.

Let I C R" be any closed set. Then U,, := F +B1/,(0) :== {z+y :
v € F, ye€ Byy,(0)}is an open set and (), .y Un = F. Indeed,

U, = UBl/n(x):{zeR" t |z — 2| <1 for some z € F}

zeF

which shows that U, is open, F' C U, and F' C (), U,. On the
other hand, if z € U, for all n € N, then there is a sequence of
points z,, € F' with the property |z — z,| < % 272,0. Since Fis
closed, z = lim,, ,, € F and we get F' =, U,.
Since M is closed under countable intersections, F' € M for any
closed set F'.

Identical to Problem 3.11(ii).
Use Problem 3.11(iv).



4 Measures.
Solutions to Problems 4.1-4.15

Problem 4.1 (i) We have to show that for a measure p and finitely many,
pairwise disjoint sets Ay, As, ..., Ay € A we have

We use induction in N € N. The hypothesis is clear, for the start
(N = 2) see Proposition 4.3(i). Induction step: take N +1 disjoint
sets Ay,...,Ayy1 € A, set B := AjJ... Ay € A and use the
induction start and the hypothesis to conclude

(AW AN U AN) = w(BYUAN11)
= w(B) + p(An1)
= (A1) + ..+ p(An) + p(Ana).
(iv) To get an idea what is going on we consider first the case of three
sets A, B, C. Applying the formula for strong additivity thrice we
get
wWAUBUC) = pu(AU (BUC())
= pu(A) +u(BUC) — u(An(BUC))
N———
= (ANB)U(ANC)
= p(A) + u(B) + p(C) = (BN C) — p(AN B)
—uw(ANC)+pu(ANBNC).
As an educated guess it seems reasonable to suggest that

n

p(AUL L UA) =) (=R Y n Aj).
k=1 oC{lny
#Ho=k

We prove this formula by induction. The induction start is just the
formula from Proposition 4.3(iv), the hypothesis is given above.
For the induction step we observe that

2. = 2 )

occ{1,...,n+1} occ{l,...,n,n+1} oC{l,...,nn+1}

H#Ho=k #o=k, n+1&o #o=k, n+1€c
()
= 2+ X
oC{1,...,n} o’'c{1,...,n}

#o=k #o0'=k—1, o:=0’'U{n+1}
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Having this in mind we get for B := A; U...U A, and A, us-
ing strong additivity and the induction hypothesis (for Ay, ..., A,
resp. Al N An—l—l; ce ,An N An+l)

(B U Anir) = p(B) + (A1) — (BN Apia)
u(B) + p(Aur) = p( 0450 i)

n

(DR > u(n A + p(Ang)

k=1 oC{1,...,n} e
#Ho=k
+Z( 1)k+1 Z /«L(An—‘rl anAj).
k=1 oC{1,..,n}
H#Ho=k

Because of (x) the last line coincides with

n+1
DU w0 4)
k=1 oc{l,...n,n+1}

#Ho=k

and the induction is complete.

(v) We have to show that for a measure p and finitely many sets
By, B, ..., By € A we have

p(B1U By U...UBy) < u(Bi) + p(Ba) + ... + p(By).

We use induction in N € N. The hypothesis is clear, for the
start (IV = 2) see Proposition 4.3(v). Induction step: take N + 1
sets By,...,Byy1 € A, set C := By U...U By € A and use the
induction start and the hypothesis to conclude

,u(Bl U...u BN U BN—H) = M(C U BN+1)
< p(C) + p(By1)
S u(Bi) + ...+ p(Br) + p(By+a)-

Problem 4.2 (i) The Dirac measure is defined on an arbitrary measurable
0, ifxgA

space (X, A) by 6,(A4) = 1, ifzeAd

, where A € A and

—

x € X is a fixed point.
(M) Since ) contains no points, x & ) and so d,(@) = 0.
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(Ms) Let (A;)jen C A a sequence of pairwise disjoint measurable
sets. If v € |, A;, there is exactly one j, with = € A;, hence

Jo>

jEN

5, (UAj> =1=14+0+0+...

= 0:(Aj) + Y da(4))

J#Jo

If v & U;cn Ajy then @ € A; for every j € N, hence

8s (UAj) =0=040+0+...=) d&(4)).

JEN

The measure v is defined on (R, A) by v(A4) =

where A .= {A C R : #A4 < #N or #A° < #N}. (Note that
#A < #Nif, and only if, #A° = #R \ A > #N.)

(M) Since () contains no elements, it is certainly countable and

so v(0) = 0.
(Ms) Let (A;)jen be pairwise disjoint A-sets. If all of them are

countable, then A := [ en 18 countable and we get

gl (U Aj) =7(A) = 0= (4).

JeN JeEN

If at least one A; is not countable, say for j = jo, then A D A,
is not countable and therefore v(A4) = v(A4,,) = 1. Assume we
could find some other j; # jy such that A;,, A;, are not countable.
Since Aj,, Aj, € A we know that their complements A%, A5 are
countable, hence Af U Af is countable and, at the same time,
€ A. Because of this, (A5 U A5 )¢ = Aj, N Aj, = () cannot be
countable, which is absurd! Therefore there is at most one index

Jo € N such that A, is uncountable and we get then

V(UAJ) =Y(A) =1=1+0+0+...=7(4;) + > _(4)).

JEN J#Jo
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(iii)

We have an arbitrary measurable space (X, .A) and the measure

#A, if Ais finite
Al = {

oo, else

(M) Since ) contains no elements, #( = 0 and || = 0.

(M) Let (Aj)jen be a sequence of pairwise disjoint sets in A.
Case 1: All A; are finite and only finitely many, say the first &,
are non-empty, then A = ien Aj s effectively a finite union of &
finite sets and it is clear that

|A|:|A1|+...+|Ak|+|®\+|@|+...:Z|Aj|.

JeN

Case 2: All A; are finite and infinitely many are non-void. Then
their union A = (J;cy 4; is an infinite set and we get

Al =00 =Y |4.
jEN
Case 3: At least one A; is infinite, and so is then the union A =
Ujen 4j- Thus,
Al =00 =>|4].
jeEN

On a countable set Q = {wy,ws,...} we define for a sequence
(pj)jen C [0,1] with >y p; = 1 the set-function

P(A)= > pi=) pid,(4), AcQ

j:ijA JEN

(My) P(0) =0 is obvious.

(M) Let (Ag)gen be pairwise disjoint subsets of 2. Then

Z P(A) = Z ij Ou; (A)

keN keN jeN

= Z ij 6wj (Ak:)

jeN keN

=S (X )

jeN keN
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= ijéwj ( % Ak)
JEN

:P(%Ak).

The change in the order of summation needs justification; one
possibility is the argument used in the solution of Problem 4.6(ii).
(Note that the reordering theorem for absolutely convergent series
is not immediately applicable since we deal with a double series!)

This is obvious.

Problem 4.3 e On (R, B(R)) the function ~ is not be a measure, since we

can take the sets A = (1,00), B = (—00, —1) which are disjoint,
not countable and both have non-countable complements. Hence,
7(A) = v(B) = 1. On the other hand, A B is non-countable
and has non-countable complement, [—1,1]. So, y(AWB) = 1.
This contradicts the additivity: y(AWB) = 1 # 2 = v(A) +
~v(B). Notice that the choice of the o-algebra A avoids exactly this
situation. B is the wrong o-algebra for ~.

On Q (and, actually, any possible o-algebra thereon) the problem
is totally different: if A is countable, then A = Q \ A is also
countable and vice versa. This means that v(A) is, according to
the definition, both 1 and 0 which is, of course, impossible. This
is to say: 7 is not well-defined. ~ makes only sense on a non-
countable set X.

Problem 4.4 (i) If A = {0,R}, then u is a measure.

But as soon as A contains one set A which is trivial (i.e. either ()
or X), we have actually A° € A which is also non-trivial. Thus,

1= p(X) =p(AUA?) # p(A) + p(A) =1+1=2

and p cannot be a measure.

If we equip R with a o-algebra which contains sets such that both
A and A€ can be infinite (the Borel o-algebra would be such an
example: A = (—00,0) = A° = [0,00)), then v is not well-
defined. The only type of sets where v is well-defined is, thus,

A={ACR : #A <00 or #A° < c0}.

But this is no o-algebra as the following example shows: A; :=
{j} € A, j € N, are pairwise disjoint sets but (J;cy4; = N is
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not finite and its complement is R \ N not finite either! Thus,
N & A, showing that A cannot be a o-algebra. We conclude that
v can never be a measure if the o-algebra contains infinitely many
sets. If we are happy with finitely many sets only, then here is an
example that makes v into a measure A = {0, {69}, R\ {69}, R}
and similar families are possible, but the point is that they all
contain only finitely many members.

Problem 4.5 Denote by A one-dimensional Lebesgue measure and consider
the Borel sets By, := (k, 00). Clearly (), Br =0, k € N, so that By | 0.
On the other hand,

AN Bg) =00 = i%fA(Bk) =00 # 0= \0)

which shows that the finiteness condition in Theorem 4.4 (iii’) and (iii”)
is essential.

Problem 4.6 (i) Clearly, p := ap + bv : A — [0, 00| (since a,b > 0!). We

check (M), (My).
(M) Clearly, p(0) = ap(D) +bv(0) =a-0+0b-0=0.

(Ms) Let (A;)jen C A be mutually disjoint sets. Then we can use
the o-additivity of u,v to get

o(Ua)=a(Ua)+w(Ua)

= GZM(AJ') + bz v(4;)
= Z (ap(A;) + bu(Ay))
= ZP(AJ')-

Since all quantities involved are positive and since we allow the
value +00 to be attained, there are no convergence problems.

Since all a; are positive, the sum » .y ;4 (A) is a sum of positive
quantities and, allowing the value 400 to be attained, there is no
convergence problem. Thus, p : A — [0, 00| is well-defined. Before
we check (M), (M) we prove the following
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Lemma. Let 3;;, i,j € N, be real numbers. Then

sup sup [3;; = sup sup ;.
ieN jeN jEN ieN

Proof. Observe that we have (3, < sup;en sup;en fij for allm,n €
N. The right-hand side is independent of m and n and we may
take the sup over all n

SUp By < supsup 3y Vm e N
neN jEN ieN

and then, with the same argument, take the sup over all m

sup sup B, < supsup fG;; vm € N.
meN neN JEN ieN

The opposite inequality, ‘>’, follows from the same argument with
v and j interchanged. |

% We have M(@) - ZjeN O[j:uj((m = ZjeN Qj - 0=0.

(M) Take pairwise disjoint sets (A;);en C A. Then we can use
the o-additivity of each of the p;’s to get

W B

S\ JEN €N
= lim o
N_)OOE : j E ::ua
ieN

=;i:r;o,21ajmm2w<f4>
J= i=

N M
= i, i DD e (4)

j—1 i=1

= sup sup ZZO[]/J,J

NeN MeN 4= i3

where we used that the limits are increasing limits, hence suprema.
By our lemma:

(UA)_supsupZZ%

e MeN NeN i = 4=}
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M N
= dm Jim 30> sy (4)

i=1 j=1

M
= A}Ilinoo Z Z i (Aq)
i=1 jeN

M

= lim ZM(Ai)

M—o0 4
=1

=Y n(4).

1€EN

Problem 4.7 Set v(A) := u(AN F). We know, by assumption, that p is a
measure on (X, A). We have to show that v is a measure on (X, A).
Since F' € A, we have FN A € A for all A € A, so v is well-defined.
Moreover, it is clear that v(A) € [0, 00]. Thus, we only have to check

(M) v(0) = p(@N F) = p(0) = 0.

M) Let (A;)jen C A be a sequence of pairwise disjoint sets. Then also
jli€

(Aj N F)jen C A are pairwise disjoint and we can use the o-additivity

of 1 to get
V<jeUNAj) = u(ijEL%Aj) = M<g‘(FmAj>)
=Y uFna)
ZZ}(A“

Problem 4.8 Since P is a probability measure, P(AS) = 1 — P(4;) = 0.
By o-subadditivity,

P( U A;) <) P(AS), =0
jEN jEN
and we conclude that

() -+ ([l - () 2o

JeEN jeN JeEN
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Problem 4.9 Note that

UAJ\UBk=U<Aj\UBk) cJM\B)
j k J ;k;; J

Since |J; B; C U; A;j we get from o-subadditivity
() y) (o)
J J J k
< M(U (A5\ Bj)>

J

< Z:U’(Aj \ B;).

Problem 4.10 (i) We have ) € A and u(0) = 0, thus ) € N,.

(ii) Since M € A (this is essential in order to apply u to M!) we can
use the monotonicity of measures to get 0 < u(M) < u(N) =0,
i.e. (M) =0and M € N, follows.

(iii) Since all N; € A, we get N :=J
vity of a measure we find

0<u) = UN) < Eutx) <o

jEN jEN

;en N € A. By the o-subadditi-

hence u(N) =0 and so N € N,.

Problem 4.11 (i) The one-dimensional Borel sets B := B! are defined as
the smallest o-algebra containing the open sets. Pick x € R and
observe that the open intervals (z — %, T+ %), k € N, are all open
sets and therefore (z — %, T+ %) € B. Since a o-algebra is stable
under countable intersections we get {z} = (", oy(z—1,2+1) € B.

Using the monotonicity of measures and the definition of Lebesgue
measure we find

0<A ) M- Lot ) =@+l —(@-1)=

el

[Following the hint leads to a similar proof with [z — ¢,z + )
instead of (z — ¢,z + 1).]
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(ii) a) Since Q is countable, we find an enumeration {q, g2, gs, - - .}
and we get trivially Q = J;cy{g;} which is a disjoint union.
(This shows, by the way, that Q € B as {¢;} € B.) Therefore,
using part (i) of the problem and the o-additivity of measures,

2@ =A(Uta) = Satah =00

b) Take again an enumeration Q = {q1, ¢2,¢s, ...}, fix € > 0 and
define C'(¢) as stated in the problem. Then we have C(e) € B
and Q C C(e). Using the monotonicity and o-subadditivity
of A we get

0 < AMQ) < A(C(e))

= A( Ulas — 2%, a5 + €2k))

keN
< Z Mlge — e27%, g1 +275))

keN
=> 2.e-27F

keN

1
=2 —2 T = 2€.
2

As € > 0 was arbitrary, we can make ¢ — 0 and the claim
follows.

(iii) Since Uyg,e112} is a disjoint union, only the countability as-
sumption is violated. Let’s see what happens if we could use
‘o-additivity’ for such non-countable unions:

0=> 0= > A({x})-k( U {x}) =[0,1]) =1
which is impossible.

Problem 4.12 Without loss of generality we may assume that a # b; set
p:= 04 + 0p. Then u(B) = 0 if, and only if, a ¢ B and b ¢ B. Since
{a},{b} and {a,b} are Borel sets, all null sets of u are given by

N, = {B\{a,b} : BeBR).

(This shows that, in some sense, null sets can be fairly large!).
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Problem 4.13 Let us write 91 for the family of all (proper and improper)
subsets of p null sets. We note that sets in 9 can be measurable (that
is: N € A) but need not be measurable.

(i) Since ) € N, we find that A = AU D € A* for every A € A; thus,
A C A*. Let us check that A* is a o-algebra.
(1) Since ) € A C A*, we have ) € A*.

(33) Let A* € A*. Then A* = AUN for A€ Aand N € M. By
definition, N C M € A where u(M) = 0. Now

A* = (AUN)*= A°N N°
= AN N°N (MU M)
=(A°NN°NM)YU(A°NN N M)
= (A°NM)YU(A°NN°NM)

where we used that N C M, hence M C N¢ hence M°“NN° =
Me¢. But now we see that A“NM° e Aand A“NN°NM &N
since AANN°NM C M and M € Aisa pnull set: p(M) = 0.
(23) Let (A7);jen be a sequence of A*-sets. From its very definition

we know that each A7 = A; U N; for some (not necessarily
unique!) A; € A and N; € M. So,

U4 =JAun;) = (UAj) U (UN]-) = AUN.

jEN jeN jeN jeN

Since A is a o-algebra, A € A. All we have to show is that N;
is in 9. Since each N; is a subset of a (measurable!) null set,
say, M; € A, we find that N =, . N; CU..nM; =M € A

jeN jeN Vi
and all we have to show is that u(M) = 0. But this follows

from o-subadditivity,

0 < p(M) :M(UM]) <D n(My) =0.

jEN jeN
Thus, AUN € A*.

(ii) As already mentioned in part (i), A* € A* could have more than
one representation, e.g. AUN = A* = BUM with A, B € A and
N, M € M. If we can show that u(A) = p(B) then the definition
of i1 is independent of the representation of A*. Since M, N are not
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necessarily measurable but, by definition, subsets of (measurable)
null sets M’', N € A we find

ACAUN=BUM Cc BUM’,
BCBUM=AUNCAUN'

and since A, B,BUM', AU N’" € A, we get from monotonicity
and subadditivity of measures

u(A) < W(BUM') < p(B) + p(M') = u(B),

1(B) < W(AUN') < p(A) + p(N') = p(A)

—~

which shows p(A) = u(B).
(iii) We check (M) and (Ms)
(M) Since ) =0UD € A*, 0 € A, ) € N, we have a(0) = p(@) = 0.
(M) Let (A})jen C A* be asequence of pairwise disjoint sets. Then
Az = Aj U N; for some A; € A and N; € M. These sets are
also mutually disjoint, and with the arguments in (i) we see
that A* = AU N where A* € A*, A € A, N € O stand for

the unions of A%, A; and Nj, respectively. Since i does not
depend on the special representation of A*-sets, we get

#(U) =) =ue (U )

jeN jeN

=> (4

jEN

= [(4y)

jeN

showing that p is o-additive.
(iv) Let M* be a g null set, i.e. M* € A* and p(M*) = 0. Take
any B C M*. We have to show that B € A* and ji(B) = 0. The

latter is clear from the monotonicity of i once we have shown that
B € A* which means, once we know that we may plug B into [.

Now, B C M* and M* = MUN for some M € Aand N € . As
a(M*) = 0 we also know that (M) = 0. Moreover, we know from
the definition of 9t that N C N’ for some N’ € A with u(N’) = 0.
This entails

BCM =MUNCMUN €A
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and p(MUN') < u(M)+ p(N')=0.

Hence B € M as well as B =0 U B € A*. In particular, i(B) =
p(0) =o0.

Set C={A*C X :3JA Be A, ACA*ACB, uB\A) =0}
We have to show that A* = C.

Take A* € A*. Then A* = AUN with A € A, N € 9 and choose
N' €A, N C N" and pu(N’) = 0. This shows that

ACA*=AUNCAUN =Be A

and that u(B\ A) = u((AUN')\ A) < u(N’') = 0. (Note that
(AUN)\A=(AUN')NA° = N' N A° C N’ and that equality
need not hold!).

Conversely, take A* € €. Then, by definition, A C A* C B with
A, B € Aand u(B\A) = 0. Therefore, N := B\ A is a null set and
we see that A*\ A C B\ A, ie. A*\AeMN. So, A*=AU(A*\ A)
where A € A and A*\ A € M showing that A* € A*.

4.14 (i) Since B is a o-algebra, it is closed under countable
(disjoint) unions of its elements, thus v inherits the properties
(M), (Ms) directly from p.

Yes [yes], since the full space X € B so that u(X) = v(X) is finite
[resp. = 1].

No, o-finiteness is also a property of the o-algebra. Take, for
example, Lebesgue measure A on the Borel sets (this is o-finite)
and consider the og-algebra € := {0, (—o0, 0), [0,00), R}. Then )\|C
is not o-finite since there is no increasing sequence of C-sets having
finite measure.

4.15 By definition, p is o-finite if there is an increasing sequence

(Bj)jen C A such that B; T X and u(B;) < oo. Clearly, E; := B;
satisfies the condition in the statement of the problem.

Conversely, let (E;);jen be as stated in the problem. Then B, := E; U
... U FE, is measurable, B,, T X and, by subadditivity,

w(By) = w(EyU.. . UE,) < ZM(EJ-) < 0.

Remark: A small change in the above argument allows to take pair-
wise disjoint sets F;.



