5 Uniqueness of measures.
Solutions to Problems 5.1-5.10

Problem 5.1 Since X € D and since complements are again in D, we have
) =XceD.
If A,B € D are disjoint, we set 4; := A, Ay := B, A; =0 Vj > 3.
Then (A;)jen C D is a sequence of pairwise disjoint sets, and by (As)
we find that
AuB =) A; €D,
jEN
Since (£1) = (A3), (X2) = (Ag) and since (X3) = (Aj), it is clear

that every o-algebra is also a Dynkin system; that the converse is, in
general, wrong is seen in Problem 5.2.

Problem 5.2 Consider (Aj) only, as the other two conditions coincide:
(2;) = (4,), j = 1,2. We show that (X3) breaks down even for fi-
nite unions. If A, B € D are disjoint, it is clear that A, B and also
AW B contain an even number of elements. But if A, B have non-void
intersection, and if this intersection contains an odd number of ele-
ments, then A U B contains an odd number of elements. Here is a
trivial example:

A={1,2}eD, B={23,4,5}€D,

whereas

AUB=1{1,2,3,4,5) ¢ D.
This means that (As) holds, but (X3) fails.

Problem 5.3 Mind the misprint: A C B must be assumed and is missing
in the statement of the problem! We verify the hint first. Using de
Morgan’s laws we get

R\Q = R\(RNQ) = RN(RNQ)* = (R"U(RNQ))" = (R*U(RNQ))"

where the last equality follows since RN (RN Q) = 0.

Now we take A, B € D such that A C B. In particular AN B = A.
Taking this into account and setting () = A, R = B we get from the
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above relation
B\A=( B WA ) €D

ebD
N——
eD

where we repeatedly use (Aq) and (Ay).
Problem 5.4 (i) Since the o-algebra A is also a Dynkin system, it is
enough to prove 6(D) = D for any Dynkin system D. By def-
inition, §(D) is the smallest Dynkin system containing D, thus

D C §(D). On the other hand, D is itself a Dynkin system, thus,
because of minimality, D D 6(D).

(ii) Clearly, § C H C §(H). Since 6(H) is a Dynkin system containing
G, the minimality of 6(G) implies that 6(G) C d(H).

(iii) Since o(§) is a o-algebra, it is also a Dynkin system. Since § C
o(G) we conclude (again, by minimality) that 6(G) C o(9).

Problem 5.5 Clearly, §({A, B}) C 0({A, B}) is always true.

By Theorem 5.5, 6({A, B}) = ({4, B}) if {A, B} is N-stable, i.e. if
A= Bor A= B°orif at least one of A, B is X or ().

Let us exclude these cases. If AN B = (), then
6({A,B}) =0({A,B}) ={0,A,A°,B,B°, AUB, AN B*, X }.
If AN B # (), then
§({A,B}) = {0,A,A°, B, B, X}
while o({A, B}) is much larger containing, for example, A N B.

Problem 5.6 We prove the hint first. Let (Gj);en C G as stated in the
problem, i.e. satisfying (1) and (2), and define the sets Fiy := G1U. ..U
Gn. As G C A, it is clear that Fiy € A (but not necessarily in G...).
Moreover, it is clear that Fy T X.

We begin with a more general assertion: For any finite union of G-sets
Ay U...UAN we have p(A; U...UAyN) =v(A; U...UAy).

Proof. Induction Hypothesis: (A1 U...UAN) =v(A1U...UAy) for
some N € N and any choice of Ay,..., Ay € G.

Induction Start (N = 1): is obvious.
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Induction Step N ~» N 4 1: We have by the strong additivity of
measures and the N-stability of G that

(A UL UAN UAng)
=pn((AU...UAN) U Ax i)
= ,U,(Al U...u AN) + ILI/(ANJrl) - /L((Al U...u AN) N AN+1)

= ,U,(Al Uu...u AN) + M(AN+1) — /L((Al N AN+1) Uu...u (AN N AN+1))
G €G
€

= I/(Al U...uU AN) + V(AN—H) - V((Al N AN+1) U...uU (AN N AN—i—l))

=v(A4U...UAyUANn)

where we used the induction hypothesis twice, namely for the union of
the N G-sets Ay, ..., Ay as well as for the N G-sets AiNAny1,..., AN
Apny1. The induction is complete.

In particular we see that u(Fy) = v(Fy), v(Fy) < v(Gy) + ... +
v(Gy) < oo by subadditivity, and that (think!) u(GNFy) = v(GNFEy)
for any G' € G (just work out the intersection, similar to the step in the
induction....). This shows that on the N-stable system

G := {all finite unions of sets in G}

p and v coincide. Moreover, § C G C A so that, by assumption
A =0(9) Co(9) C o(A) C A, so that equality prevails in this chain
of inclusions. This means that G is a generator of A satisfying all the
assumptions of Theorem 5.7, and we have reduced everything to this

situation.

Problem 5.7 Intuition: in two dimensions we have rectangles. Take I, [’ €
d. Call the lower left corner of I a = (aj,az), the upper right corner
b = (b1, bs), and do the same for I’ using a’, b’. This defines a rectangle
uniquely. We are done, if I N I' = (. If not (draw a picture!) then we
get an overlap which can be described by taking the right-and-upper-
most of the two lower left corners a,a’ and the left-and-lower-most of
the two upper right corners b, b’. That does the trick.

Now rigorously: since I,I' € J, we have for suitable a;, b;, a}, b’s:

I= X [a;,b;) and I'= X [d},b)).

7
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We want to find I N I, or, equivalently the condition under which
xelINI'. Now
r=(21,...,0,) €I < zj €a;,b;) Vi=1,2,....n
<:>aj<mj<bj Vj:]_,Q,...,TZ

and the same holds for z € [’ (same x, but I'—mno typo). Clearly
a; < xj < b;, and, at the same time a; < z; < b holds exactly if

max(a;j,a;) < z; <min(b;, b)) Vj=1,2,....n

), min(b;, V).

777

/
J
/

n
— z € X [max(aj,d]

J=1

This shows that I NI’ is indeed a ‘rectangle’, i.e. in J. This could be
an empty set (which happens if I and I’ do not meet).

Problem 5.8 First we must make sure that ¢ - B is a Borel set if B € B.
We consider first rectangles I = [a,b)) € J where a,b € R". Clearly,
t - I = [ta,tb)) where ta,tb are just the scaled vectors. So, scaled
rectangles are again rectangles, and therefore Borel sets. Now fix ¢ > 0
and set

B,:={BeB" :t-BeB"}

It is not hard to see that B; is itself a o-algebra and that J C B; C B".
But then we get

Bn:O'(g) CO’(%t) :3,3 CBn,

showing that B; = B", i.e. scaled Borel sets are again Borel sets.

Now define a new measure p(B) := A\"*(t - B) for Borel sets B € B"
(which is, because of the above, well-defined). For rectangles [a, b)) we
get, in particular,

ula,b) = X"((¢ - [a,5) = X"[¢a.1b)

= [ ((tv)) = (tay))
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= t"\"[a, b))

which shows that p and " A" coincide on the N-stable generator J of B,
hence they’re the same everywhere. (Mind the small gap: we should
make the mental step that for any measure v a positive multiple, say,
c - v, is again a measure—this ensures that t"\" is a measure, and
we need this in order to apply Theorem 5.7. Mind also that we need
that p is finite on all rectangles (obvious!) and that we find rectangles
increasing to R", e.g. [—k, k) x ... x [—k, k) as in the proof of Theorem
5.8(ii).)

Problem 5.9 Define v(A) := po 67'(A). Obviously, v is again a finite
measure. Moreover, since 71(X) = X, we have

u(X)=rv(X) < oo and, by assumption, u(G)=v(G) VG eG§.

Thus, p = v on § := GU{X}. Since § is a N-stable generator of A
containing the (trivial) exhausting sequence X, X, X, ..., the assertion
follows from the uniqueness theorem for measures, Theorem 5.7.

Problem 5.10 The necessity of the condition is trivial since § C o(G) = B,
resp., H C o(H) = C.

Fix H € H and define
w(B):=P(BNH) and v(B):= P(B)P(H).

Obviously, p and v are finite measures on B having mass P(H) such
that p and v coincide on the N-stable generator § U {X} of B. Note
that this generator contains the exhausting sequence X, X, X, .... By
the uniqueness theorem for measures, Theorem 5.7, we conclude

i = v on the whole of B.
Now fix B € B and define
p(C):=P(BNC) and 7(C):= P(B)P(C).

Then the same argument as before shows that p = o on € and, since
B € B was arbitrary, the claim follows.



6 Existence of measures.
Solutions to Problems 6.1-6.11

Problem 6.1 We know already that B[0,00) is a o-algebra (it is a trace
o-algebra) and, by definition,

¥ ={BU(-B) : Be B[0,x)}

if we write —B :={—b : b € B[0,00)}.

Since the structure B U (—B) is stable under complementation and
countable unions it is clear that X is indeed a o-algebra.

One possibility to extend p defined on ¥ would be to take B € B(R)
and define Bt := BN [0,00) and B~ := BN (—00,0) and to set

v(B) = p(B* U (~B*) + u((~B")U B")

which is obviously a measure. We cannot expect uniqueness of this
extension since X does not generate B(R)—not all Borel sets are sym-
metric.

Problem 6.2 By definition we have
p*(Q) = inf { Y u(B)) : (Bj)jen CA, A Bio Q}'
J

(i) Assume first that p*(Q) < oco. By the definition of the infimum
we find for every € > 0 a sequence (B§)jen C A such that B¢ :=
Uj B O @ and, because of o-subadditivity,

p(B) = w(Q) < 3 n(B)) - 1 (Q) < e

Set B := (0, BY/* € A. Then B D @ and u(B) = p*(B) = n*(Q).
By the very definition of A* and since B € A C A" we get

6.4)

Q) E (BN Q) + 1 (B\ Q) = u(B) + p*(B\ Q)

so that p*(B\ Q) = 0. Since (the outer measure) p* is monotone,
we conclude that for all A-measurable sets N C A\ @ we have

p(N) = p*(N) < p*(B\ Q) =0.

6
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(i)

If 41*(Q) = oo, we take the exhausting sequence (A;);en C A with
A; TXandu(A ) < oo and set Q; := A;NQ for every j € N. By
the first part we can find sets C; € A Wlth w(C;) = p*(Q;) and
1*(C5\ ;) = 0. Then

C = U(J DUQ] Q. u(C)=o00=p*Q)

and, using (the hint of) Problem 4.9, and the monotonicity and
o-subadditivity of p*:

UCj\UQj C UCj\Qj
and

M(UCJ\UQJ') < W(U@\@) < ZM*(UCJ'\Q;‘) =0

A We know from Theorem 6.1 that i is a measure
on A* and, because of the monotonicity of p*, we know that for

all N* € A* with g(N*) we have
VM CN*: p"(M) < p*(N*)=p(N*) =0.

It remains to show that M € A*. Because of (6.4) we have to
show that

VQCX : p(Q)=p (Q@NM)+ p(Q\ M).

Since p* is subadditive we find for all Q C X

u*(Q)— p((QNM)U(Q\M))
<SpHQNM) +p(Q\ M)
*(Q\M)

#(Q),

*

which means that M € A*.

Obviously, (X, A*, i) extends (X, A, u) since A C A* and /Z‘A =
. In view of Problem 4.13 we have to show that

A*={AUN : Ac A, Nen} (%)
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with 91 = {N C X : N is subset of an A-measurable null set or,
alternatively,

A*'={A"C X : JABe A, ACA CB, u(B\A) =0}. (xx)

We are going to use both equalities and show ‘D’ in (%) and ‘C’ in
(#x) (which is enough since, cf. Problem 4.13 asserts the equality
of the right-hand sides of (x), (xx)!).

‘D’ By part (ii), subsets of A-null sets are in A* so that every set
of the form AU N with A € A and N being a subset of an A null
set is in A™.

‘C’: By part (i) we find for every A* € A* some A € A such that
A D A" and A\ A* is an A* null set. By the same argument we
get BEA, BD (A*)°and B\ (A*)°=BNA*= A"\ B°is an A*
null set. Thus,
B°CA"CA
and
A\ B°C (A\A)U (A"\ B°) = (A\ A") U (B\ (A))

which is the union of two A* null sets, i.e. A\ B¢ is an A null set.

6.3 (i) A little geometry first: a solid, open disk of radius 7,
centre 0 is the set B,(0) := {(z,y) € R? : 2% +y* < r*}. Now the
n-dimensional analogue is clearly {z € R" : 2 +22+.. . +22 < r?}
(including n = 1 where it reduces to an interval). We want to
inscribe a box into a ball.

Claim: Q.(0) := X [‘7@7&) C By (0). Indeed,

N

2 2

_+...+€—<(26)2
n n

€ €

r€Q0) = i+ ri+.. i< —+

n
— I &€ BQE(O),

and the claim follows.

Observe that A"(Q.(0)) = [T}, \2/—% > 0. Now take some open set
U. By translating it we can achieve that 0 € U and, as we know,
this movement does not affect \"(U). As 0 € U we find some

€ > 0 such that B.(0) C U, hence
AYU) Z AN(B(0)) = MQc(0)) > 0.
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(i)

Problem

(iii)

For closed sets this is, in general, wrong. Trivial counterexample:
the singleton {0} is closed, it is Borel (take a countable sequence
of nested rectangles, centered at 0 and going down to {0}) and
the Lebesgue measure is zero.

To get strictly positive Lebesgue measure, one possibility is to have
interior points, i.e. closed sets which have non-empty interior do
have positive Lebesgue measure.

6.4 (i) Without loss of generality we can assume that a < b.
We have [a + 1,b) T (a,b) as k — oo. Thus, by the continuity of
measures, Theorem 4.4, we find (write A = A!; for short)

: 1 . 1
Aa,b) :kh_{go)\ {a—{—z,b) —kh_)rgO <b—a— E) =b—a.
Since A[a,b) = b — a, too, this proves again that
)\({CZ}) = )‘([a7 b) \ (aa b)) = )\[Cl, b) o )‘(a> b) =0.

The hint says it all: H is contained in the union (J,.\ Ax and
we have \?(Ag) = (2¢27%) - (2k) = 4 - ¢ - k27*. Using the o-sub-
additivity and monotonicity of measures (the Ax’s are clearly not
disjoint) we get

0 <A (H) <N (:ﬁlAk) < ;/\(Ak) = ;4~e~k2k = Ce

where C' is the finite (!) constant 4> 7 k27% (check conver-
gence!). As e was arbitrary, we can let it — 0 and the claim
follows.

n-dimensional version of (i): We have I = x (aj,b;). Set Ij, :=
j=1

j%l[aj ++,b;). Then I, T I as k — oo and we have (write A = A",
for short)

n 1 n
A) = Jim A(Z) = lim | (bj —aj — E) = H (bj — a;).

7=1 7j=1
n-dimensional version of (ii): The changes are obvious: A =
[—e27% €27F) x [k, k)" and A"(A) = 2"-€-27% - k"L The rest
stays as before, since the sum > -, k"7 *27" still converges to a
finite value.
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Problem 6.5 (i) All we have to show is that A!({z}) = 0 for any = € R.

(i)
(i)

But this has been shown already in problem 6.3(i).
Take the Dirac measure: dy. Then {0} is an atom as dy({0}) = 1.

Let C' be countable and let {ci,co,c¢3,...} be an enumeration
(could be finite, if C' is finite). Since singletons are in A, so is
C as a countable union of the sets {c¢;}. Using the o-additivity of
a measure we get

p(C) = u( JGN{CJ} ZN {C]} ZO = 0.

jJEN jJEN

If y1,92,...,yn are atoms of mass P({y;}) > 1 we find by the
additivity and monotonicity of measures

P({z;})

PTIZ
Mz

= P({y1,....yn}) < P(R) =1

¥ < 1,ie. N <k, and the claim in the hint (about the maximal
number of atoms of given size) is shown.

y=3

=

Now denote, as in the hint, the atoms with measure of size |

by ygk), . .y](\];()k) where N(k) < k is their number. Since

U [%7 ﬁ) = (07 OO)

we exhaust all possible sizes for atoms.

There are at most countably many (actually: finitely many) atoms
in each size range. Since the number of size ranges is countable
and since countably many countable sets make up a countable set,
we can relabel the atoms as x1, z2, x3, ... (could be finite) and, as
we have seen in exercise 4.6(ii), the set-function

vi= 3 P({a}) -4,

(no matter whether the sum is over a finite or countably infinite
set of j’s) is indeed a measure on R. But more is true: for any
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Problem

Borel set A
v(A) = 3 P({aih) -6, (4)

= Y P({x;})

jrx;eA
showing that p(A) := P(A) — v(A) is a positive number for each
Borel set A € B. This means that g : B — [0, 00]. Let us check

M, and M. Using My, M, for P and v (for them they are clear,
as P,v are measures!) we get

w(@) =P0)—v@)=0-0=0

and for a disjoint sequence (4;);en C B we have

{(Ua) = (U] ~(U)
= ZP(Aj) =) w4y

J

= Z (P(A;) — v(4)))
= ZN(Aj)

which is M, for pu.

6.6 (i) Fix a sequence of numbers ¢, > 0,k € Ny such that
> keng €k < 00. For example we could take a geometric series
with general term ¢, := 2%, Now define open intervals I :=
(k —€x, k+e€x), k € Ny (these are open sets!) and call their union
1= UkeNO I;,. As countable union of open sets I is again open.
Using the o-(sub-)additivity of A = A\! we find

=A(Un) <X am=Y =2 ax<w.
keNg keNo keNo keNo
By 6.4(i), \(I) > 0.
Note that in step (x) equality holds (i.e. we would use o-additivity
rather than o-subadditivity) if the [ are pairwise disjoint. This
happens, if all ¢, <  (think!), but to be on the safe side and in or-
der not to have to worry about such details we use sub-additivity.
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Take the open interior of the sets Ay, £ € N, from the hint to
6.4(ii). That is, take the open rectangles By := (—27% 27%) x
(—k,k), k € N, (we choose € = 1 since we are after finiteness and
not necessarily smallness). That these are open sets will be seen
below. Now set B = | J, .y Bx and observe that the union of open
sets is always open. B is also unbounded and it is geometrically
clear that B is connected as it is some kind of lozenge-shaped
‘staircase’ (draw a picture!) around the y-axis. Finally, by o-
subadditivity and using 6.4(ii) we get

N(B) = )\2( U Bk> <D N(BY)

keN keN
:ZQ.Q—]C.Q.]{;
keN
:4Zk-2_k < Q.
keN

It remains to check that an open rectangle is an open set. For this
take any open rectangle R = (a,b) x (¢,d) and pick (z,y) € R.
Then we know that a < x < b and ¢ < y < d and since we have
strict inequalities, we have that the smallest distance of this point
to any of the four boundaries (draw a picture!) h := min{|a —
x|, |b — x|, |c — y|,|d — y|} > 0. This means that a square around
(x,y) with side-length 2h is inside R and what we're going to do
is to inscribe into this virtual square an open disk with radius A
and centre (x,y). Since the circle is again in R, we are done. The
equation for this disk is

(2',y) € Bu(z,y) <= (z—2')°+ (y—y)° <h’

Thus,

7' — x| <]z —2P+y—y]P<h
and |y —y| <]z —a/P+y—yP<h

ez —h<2 <z+handy—h<y <y+hor (2,y) €
(x —h,z+ h) x (y — h,y + h), which means that (2’,3') is in the
rectangle of sidelength 2h centered at (z,y). since (z/,y') was an
arbitrary point of By(z,y), we are done.

No, this is impossible. Since we are in one dimension, connect-
edness forces us to go between points in a straight, uninterrupted
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line. Since the set is unbounded, this means that we must have
a line of the sort (a,00) or (—oo,b) in our set and in both cases
Lebesgue measure is infinite. In all dimensions n > 1, see part
(ii) for two dimensions, we can, however, construct connected,
unbounded open sets with finite Lebesgue measure.

Problem 6.7 Fix ¢ > 0 and let {¢;}jen be an enumeration of Q N [0, 1].
Then

U:=U, = U (5 —e2777 ' gy — 27771 N[0,1]
JeN

is a dense open set in [0, 1] and, because of o-subadditivity,

SRR N

JEN JEN

Problem 6.8 Assume first that for every ¢ > 0 there is some open set
U. D N such that A(U,) < e. Then

AN) < ANU) <e Ve>D0,

which means that A\(V) = 0.

Conversely, let \*(N) = inf{zj/\(Uj) L U; €0, UienU; O N}.
Since for the Borel set N we have \*(N) = A(N) = 0, the definition
of the infimum guarantees that for every € > 0 there is a sequence of
open sets (Us)jen covering N, i.e. such that U¢ := |J; U; D N. Since
U¢ is again open we find because of o-subadditivity

AN) < AU :A(UU;) <) OMUD <€

Attention: A construction along the lines of Problem 3.12, hint to part
(ii), using open sets U° := N + Bs(0) is, in general not successful:

e it is not clear that U° has finite Lebesgue measure (0.k. one can
overcome this by considering N N [—k, k] and then letting £ —
00...)

e U° | N and not N (unless N is closed, of course). If, say, N is a
dense set of [0, 1], this approach leads nowhere.
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Problem 6.9 Observe that the sets C} = U;‘;k Aj, k € N, decrease as
k — oo—we admit less and less sets in the union, i.e. the union becomes
smaller. Since P is a probability measure, P(C)) < 1 and therefore
Theorem 4.4(iii’) applies and shows that

P( N [’jAj) - P(;fjlck) = lim P(Cy).

k=1 j=k

On the other hand, we can use o-subadditivity of the measure P to get
Py =p(U4)) < TEopa)
J:

but this is the tail of the convergent (!) sum }>7°, P(A;) and, as such,
it goes to zero as k — oco. Putting these bits together, we see

oo

P(ﬁ ['jAj) — lim P(Cy) < lim S P(4;) =0,
k=1 j—k k—o0 k—o0 s

and the claim follows.

Problem 6.10 (i) We can work out the ‘optimal’ A-cover of (a, b):

Case 1: a,b € [0,1). Then [0, 1) is the best possible cover of (a,b),
thus p*(a,b) = p[0,1) = 5.

Case 2: a,b € [1,2). Then [1,2) is the best possible cover of (a, b),
thus p*(a,b) = p[1,2) = 1.

Case 3: a € [0,1),b € [1,2). Then [0,1) W[1, 2) is the best possible
cover of (a,b), thus p*(a,b) = u[0,1) + p[1,2) = 1.

And in the case of a singleton {a} the best possible cover is always
either [0,1) or [1,2) so that p*({a}) = 3 for all a.

(ii) Assume that (0,1) € A*. Since A C A*, we have [0,1) € A,
hence {0} = [0,1)\ (0,1) € A*. Since p*(0,1) = p*({0}) = 3, and
since p* is a measure on A* (cf. step 4 in the proof of Theorem
6.1), we get

=1

N | —

1 * * * 1
5 = 1(0.1) = [0, 1) + 7 (0,1) + w{0} = - +

leading to a contradiction. Thus neither (0, 1) nor {0} are elements

of A*.
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Problem 6.11 Since A C A*, the only interesting sets (to which one could
extend p) are those B C R where both B and B¢ are uncountable. By
definition,

7*(3):inf{2’y(/lj) cAje A, UAj DB}.

The infimum is obviously attained for A; = R, so that v*(B) =
v*(B¢) = 1. On the other hand, since v* is necessarily additive on
A*, the assumption that B € A* leads to a contradiction:

1=7(R) =7"(R) =7(B) +7(B°) = 2.

Thus, A = A*.



