5 Uniqueness of measures. Solutions to Problems 5.1–5.10

Problem 5.1 Since $X \in \mathcal{D}$ and since complements are again in \mathcal{D} , we have $\emptyset = X^c \in \mathcal{D}$.

If $A, B \in \mathcal{D}$ are disjoint, we set $A_1 := A, A_2 := B, A_j := \emptyset \ \forall j \geq 3$. Then $(A_j)_{j \in \mathbb{N}} \subset \mathcal{D}$ is a sequence of pairwise disjoint sets, and by (Δ_3) we find that

$$A \cup B = \bigcup_{j \in \mathbb{N}} A_j \in \mathcal{D}.$$

Since $(\Sigma_1) = (\Delta_3)$, $(\Sigma_2) = (\Delta_2)$ and since $(\Sigma_3) \implies (\Delta_3)$, it is clear that every σ -algebra is also a Dynkin system; that the converse is, in general, wrong is seen in Problem 5.2.

Problem 5.2 Consider (Δ_3) only, as the other two conditions coincide: $(\Sigma_j) = (\Delta_j), j = 1, 2$. We show that (Σ_3) breaks down even for finite unions. If $A, B \in \mathcal{D}$ are disjoint, it is clear that A, B and also $A \cup B$ contain an even number of elements. But if A, B have non-void intersection, and if this intersection contains an odd number of elements, then $A \cup B$ contains an odd number of elements. Here is a trivial example:

$$A = \{1, 2\} \in \mathcal{D}, \quad B = \{2, 3, 4, 5\} \in \mathcal{D},$$

whereas

$$A \cup B = \{1, 2, 3, 4, 5\} \notin \mathcal{D}.$$

This means that (Δ_3) holds, but (Σ_3) fails.

Problem 5.3 Mind the **misprint:** $A \subset B$ must be assumed and is **missing** in the statement of the problem! We verify the hint first. Using de Morgan's laws we get

$$R \setminus Q = R \setminus (R \cap Q) = R \cap (R \cap Q)^c = (R^c \cup (R \cap Q))^c = (R^c \cup (R \cap Q))^c$$

where the last equality follows since $R^c \cap (R \cap Q) = \emptyset$.

Now we take $A, B \in \mathcal{D}$ such that $A \subset B$. In particular $A \cap B = A$. Taking this into account and setting Q = A, R = B we get from the above relation

$$B \setminus A = \left(\underbrace{B^c}_{\in \mathcal{D}} \bigcup A\right)^c \in \mathcal{D}$$

where we repeatedly use (Δ_2) and (Δ_2) .

- **Problem 5.4** (i) Since the σ -algebra \mathcal{A} is also a Dynkin system, it is enough to prove $\delta(\mathcal{D}) = \mathcal{D}$ for any Dynkin system \mathcal{D} . By definition, $\delta(\mathcal{D})$ is the smallest Dynkin system containing \mathcal{D} , thus $\mathcal{D} \subset \delta(\mathcal{D})$. On the other hand, \mathcal{D} is itself a Dynkin system, thus, because of minimality, $\mathcal{D} \supset \delta(\mathcal{D})$.
 - (ii) Clearly, $\mathcal{G} \subset \mathcal{H} \subset \delta(\mathcal{H})$. Since $\delta(\mathcal{H})$ is a Dynkin system containing \mathcal{G} , the minimality of $\delta(\mathcal{G})$ implies that $\delta(\mathcal{G}) \subset \delta(\mathcal{H})$.
 - (iii) Since $\sigma(\mathfrak{G})$ is a σ -algebra, it is also a Dynkin system. Since $\mathfrak{G} \subset \sigma(\mathfrak{G})$ we conclude (again, by minimality) that $\delta(\mathfrak{G}) \subset \sigma(\mathfrak{G})$.

Problem 5.5 Clearly, $\delta(\{A, B\}) \subset \sigma(\{A, B\})$ is always true.

By Theorem 5.5, $\delta(\{A, B\}) = \sigma(\{A, B\})$ if $\{A, B\}$ is \cap -stable, i.e. if A = B or $A = B^c$ or if at least one of A, B is X or \emptyset .

Let us exclude these cases. If $A \cap B = \emptyset$, then

$$\delta(\{A,B\}) = \sigma(\{A,B\}) = \{\emptyset, A, A^c, B, B^c, A \cup B, A^c \cap B^c, X\}.$$

If $A \cap B \neq \emptyset$, then

$$\delta(\{A,B\}) = \{\emptyset, A, A^c, B, B^c, X\}$$

while $\sigma(\{A, B\})$ is much larger containing, for example, $A \cap B$.

Problem 5.6 We prove the hint first. Let $(G_j)_{j \in \mathbb{N}} \subset \mathcal{G}$ as stated in the problem, i.e. satisfying (1) and (2), and define the sets $F_N := G_1 \cup \ldots \cup G_N$. As $\mathcal{G} \subset \mathcal{A}$, it is clear that $F_N \in \mathcal{A}$ (but not necessarily in \mathcal{G} ...). Moreover, it is clear that $F_N \uparrow X$.

We begin with a more general assertion: For any finite union of \mathcal{G} -sets $A_1 \cup \ldots \cup A_N$ we have $\mu(A_1 \cup \ldots \cup A_N) = \nu(A_1 \cup \ldots \cup A_N)$.

Proof. Induction Hypothesis: $\mu(A_1 \cup \ldots \cup A_N) = \nu(A_1 \cup \ldots \cup A_N)$ for some $N \in \mathbb{N}$ and any choice of $A_1, \ldots, A_N \in \mathcal{G}$.

Induction Start (N = 1): is obvious.

Induction Step $N \rightsquigarrow N + 1$: We have by the strong additivity of measures and the \cap -stability of \mathcal{G} that

$$\mu(A_1 \cup \ldots \cup A_N \cup A_{N+1})$$

$$= \mu((A_1 \cup \ldots \cup A_N) \cup A_{N+1})$$

$$= \mu(A_1 \cup \ldots \cup A_N) + \mu(A_{N+1}) - \mu((A_1 \cup \ldots \cup A_N) \cap A_{N+1})$$

$$= \mu(A_1 \cup \ldots \cup A_N) + \mu(A_{N+1}) - \mu((\underbrace{A_1 \cap A_{N+1}}_{\in 9}) \cup \ldots \cup (\underbrace{A_N \cap A_{N+1}}_{\in 9}))$$

$$= \nu(A_1 \cup \ldots \cup A_N) + \nu(A_{N+1}) - \nu((A_1 \cap A_{N+1}) \cup \ldots \cup (A_N \cap A_{N+1}))$$

$$\vdots$$

$$= \nu(A_1 \cup \ldots \cup A_N \cup A_{N+1})$$

where we used the induction hypothesis twice, namely for the union of the N G-sets A_1, \ldots, A_N as well as for the N G-sets $A_1 \cap A_{N+1}, \ldots, A_N \cap A_{N+1}$. The induction is complete.

In particular we see that $\mu(F_N) = \nu(F_N), \ \nu(F_N) \leq \nu(G_1) + \ldots + \nu(G_N) < \infty$ by subadditivity, and that (think!) $\mu(G \cap F_N) = \nu(G \cap F_N)$ for any $G \in \mathcal{G}$ (just work out the intersection, similar to the step in the induction....). This shows that on the \cap -stable system

 $\tilde{\mathfrak{G}} := \{ \text{all finite unions of sets in } \mathfrak{G} \}$

 μ and ν coincide. Moreover, $\mathfrak{G} \subset \mathfrak{\tilde{G}} \subset \mathcal{A}$ so that, by assumption $\mathcal{A} = \sigma(\mathfrak{G}) \subset \sigma(\mathfrak{\tilde{G}}) \subset \sigma(\mathcal{A}) \subset \mathcal{A}$, so that equality prevails in this chain of inclusions. This means that $\mathfrak{\tilde{G}}$ is a generator of \mathcal{A} satisfying all the assumptions of Theorem 5.7, and we have reduced everything to this situation.

Problem 5.7 Intuition: in two dimensions we have rectangles. Take $I, I' \in \mathcal{J}$. Call the lower left corner of $I \ a = (a_1, a_2)$, the upper right corner $b = (b_1, b_2)$, and do the same for I' using a', b'. This defines a rectangle uniquely. We are done, if $I \cap I' = \emptyset$. If not (draw a picture!) then we get an overlap which can be described by taking the right-and-uppermost of the two lower left corners a, a' and the left-and-lower-most of the two upper right corners b, b'. That does the trick.

Now rigorously: since $I, I' \in \mathcal{J}$, we have for suitable a_j, b_j, a'_j, b'_j 's:

$$I = \underset{j=1}{\overset{n}{\times}} \left[a_j, b_j \right) \text{ and } I' = \underset{j=1}{\overset{n}{\times}} \left[a'_j, b'_j \right).$$

We want to find $I \cap I'$, or, equivalently the condition under which $x \in I \cap I'$. Now

$$x = (x_1, \dots, x_n) \in I \iff x_j \in [a_j, b_j) \quad \forall j = 1, 2, \dots, n$$
$$\iff a_j \leqslant x_j < b_j \quad \forall j = 1, 2, \dots, n$$

and the same holds for $x \in I'$ (same x, but I'—no typo). Clearly $a_j \leq x_j < b_j$, and, at the same time $a'_j \leq x_j < b'_j$ holds exactly if

$$\max(a_j, a'_j) \leqslant x_j < \min(b_j, b'_j) \quad \forall j = 1, 2, \dots, n$$
$$\iff x \in \underset{j=1}{\overset{n}{\times}} \left[\max(a_j, a'_j), \min(b_j, b'_j) \right).$$

This shows that $I \cap I'$ is indeed a 'rectangle', i.e. in \mathcal{J} . This could be an empty set (which happens if I and I' do not meet).

Problem 5.8 First we must make sure that $t \cdot B$ is a Borel set if $B \in \mathcal{B}$. We consider first rectangles $I = [\![a, b]\!] \in \mathcal{J}$ where $a, b \in \mathbb{R}^n$. Clearly, $t \cdot I = [\![ta, tb]\!]$ where ta, tb are just the scaled vectors. So, scaled rectangles are again rectangles, and therefore Borel sets. Now fix t > 0and set

$$\mathcal{B}_t := \{ B \in \mathcal{B}^n : t \cdot B \in \mathcal{B}^n \}.$$

It is not hard to see that \mathcal{B}_t is itself a σ -algebra and that $\mathcal{J} \subset \mathcal{B}_t \subset \mathcal{B}^n$. But then we get

$$\mathcal{B}^n = \sigma(\mathcal{J}) \subset \sigma(\mathcal{B}_t) = \mathcal{B}_t \subset \mathcal{B}^n,$$

showing that $\mathcal{B}_t = \mathcal{B}^n$, i.e. scaled Borel sets are again Borel sets.

Now define a new measure $\mu(B) := \lambda^n(t \cdot B)$ for Borel sets $B \in \mathcal{B}^n$ (which is, because of the above, well-defined). For rectangles [a, b) we get, in particular,

$$\mu[[a,b]) = \lambda^n ((t \cdot [[a,b]])) = \lambda^n [[ta,tb]]$$
$$= \prod_{j=1}^n ((tb_j) - (ta_j))$$
$$= \prod_{j=1}^n t \cdot (b_j - a_j)$$
$$= t^n \cdot \prod_{j=1}^n (b_j - a_j)$$

$$=t^n\lambda^n[\![a,b]\!]$$

which shows that μ and $t^n \lambda^n$ coincide on the \cap -stable generator \mathcal{J} of \mathcal{B}^n , hence they're the same everywhere. (Mind the small gap: we should make the mental step that for any measure ν a positive multiple, say, $c \cdot \nu$, is again a measure—this ensures that $t^n \lambda^n$ is a measure, and we need this in order to apply Theorem 5.7. Mind also that we need that μ is finite on all rectangles (obvious!) and that we find rectangles increasing to \mathbb{R}^n , e.g. $[-k, k) \times \ldots \times [-k, k)$ as in the proof of Theorem 5.8(ii).)

Problem 5.9 Define $\nu(A) := \mu \circ \theta^{-1}(A)$. Obviously, ν is again a finite measure. Moreover, since $\theta^{-1}(X) = X$, we have

$$\mu(X) = \nu(X) < \infty$$
 and, by assumption, $\mu(G) = \nu(G) \quad \forall G \in \mathcal{G}.$

Thus, $\mu = \nu$ on $\mathcal{G}' := \mathcal{G} \cup \{X\}$. Since \mathcal{G}' is a \cap -stable generator of \mathcal{A} containing the (trivial) exhausting sequence X, X, X, \ldots , the assertion follows from the uniqueness theorem for measures, Theorem 5.7.

Problem 5.10 The necessity of the condition is trivial since $\mathcal{G} \subset \sigma(\mathcal{G}) = \mathcal{B}$, resp., $\mathcal{H} \subset \sigma(\mathcal{H}) = \mathcal{C}$.

Fix $H \in \mathcal{H}$ and define

$$\mu(B) := P(B \cap H)$$
 and $\nu(B) := P(B)P(H)$.

Obviously, μ and ν are finite measures on \mathcal{B} having mass P(H) such that μ and ν coincide on the \cap -stable generator $\mathcal{G} \cup \{X\}$ of \mathcal{B} . Note that this generator contains the exhausting sequence X, X, X, \ldots By the uniqueness theorem for measures, Theorem 5.7, we conclude

 $\mu = \nu$ on the whole of \mathcal{B} .

Now fix $B \in \mathcal{B}$ and define

$$\rho(C) := P(B \cap C)$$
 and $\tau(C) := P(B)P(C)$.

Then the same argument as before shows that $\rho = \sigma$ on \mathcal{C} and, since $B \in \mathcal{B}$ was arbitrary, the claim follows.

6 Existence of measures. Solutions to Problems 6.1–6.11

Problem 6.1 We know already that $\mathcal{B}[0,\infty)$ is a σ -algebra (it is a trace σ -algebra) and, by definition,

$$\Sigma = \left\{ B \cup (-B) : B \in \mathcal{B}[0,\infty) \right\}$$

if we write $-B := \{-b : b \in \mathcal{B}[0, \infty)\}.$

Since the structure $B \cup (-B)$ is stable under complementation and countable unions it is clear that Σ is indeed a σ -algebra.

One possibility to extend μ defined on Σ would be to take $B \in \mathcal{B}(\mathbb{R})$ and define $B^+ := B \cap [0, \infty)$ and $B^- := B \cap (-\infty, 0)$ and to set

$$\nu(B) := \mu(B^+ \cup (-B^+)) + \mu((-B^-) \cup B^-)$$

which is obviously a measure. We cannot expect uniqueness of this extension since Σ does not generate $\mathcal{B}(\mathbb{R})$ —not all Borel sets are symmetric.

Problem 6.2 By definition we have

$$\mu^*(Q) = \inf \left\{ \sum_j \mu(B_j) : (B_j)_{j \in \mathbb{N}} \subset \mathcal{A}, \bigcup_{j \in \mathbb{N}} B_j \supset Q \right\}.$$

(i) Assume first that $\mu^*(Q) < \infty$. By the definition of the infimum we find for every $\epsilon > 0$ a sequence $(B_j^{\epsilon})_{j \in \mathbb{N}} \subset \mathcal{A}$ such that $B^{\epsilon} := \bigcup_j B_j^{\epsilon} \supset Q$ and, because of σ -subadditivity,

$$\mu(B^{\epsilon}) - \mu^*(Q) \leqslant \sum_j \mu(B_j^{\epsilon}) - \mu^*(Q) \leqslant \epsilon.$$

Set $B := \bigcap_k B^{1/k} \in \mathcal{A}$. Then $B \supset Q$ and $\mu(B) = \mu^*(B) = \mu^*(Q)$. By the very definition of \mathcal{A}^* and since $B \in \mathcal{A} \subset \mathcal{A}^*$ we get

$$\mu^*(Q) \stackrel{(6.4)}{=} \mu^*(B \cap Q) + \mu^*(B \setminus Q) = \mu(B) + \mu^*(B \setminus Q)$$

so that $\mu^*(B \setminus Q) = 0$. Since (the outer measure) μ^* is monotone, we conclude that for all \mathcal{A} -measurable sets $N \subset A \setminus Q$ we have $\mu(N) = \mu^*(N) \leq \mu^*(B \setminus Q) = 0.$ If $\mu^*(Q) = \infty$, we take the exhausting sequence $(A_j)_{j \in \mathbb{N}} \subset \mathcal{A}$ with $A_j \uparrow X$ and $\mu(A_j) < \infty$ and set $Q_j := A_j \cap Q$ for every $j \in \mathbb{N}$. By the first part we can find sets $C_j \in \mathcal{A}$ with $\mu(C_j) = \mu^*(Q_j)$ and $\mu^*(C_j \setminus Q_j) = 0$. Then

$$C := \bigcup_{j} C_{j} \supset \bigcup_{j} Q_{j} = Q, \quad \mu(C) = \infty = \mu^{*}(Q)$$

and, using (the hint of) Problem 4.9, and the monotonicity and σ -subadditivity of μ^* :

$$\bigcup_j C_j \setminus \bigcup_j Q_j \subset \bigcup_j C_j \setminus Q_j$$

and

$$\mu^*\left(\bigcup_j C_j \setminus \bigcup_j Q_j\right) \leqslant \mu^*\left(\bigcup_j C_j \setminus Q_j\right) \leqslant \sum_j \mu^*\left(\bigcup_j C_j \setminus Q_j\right) = 0.$$

(ii) Define $\bar{\mu} := \mu^* |_{\mathcal{A}^*}$. We know from Theorem 6.1 that $\bar{\mu}$ is a measure on \mathcal{A}^* and, because of the monotonicity of μ^* , we know that for all $N^* \in \mathcal{A}^*$ with $\bar{\mu}(N^*)$ we have

$$\forall\,M\subset N^*\,:\,\mu^*(M)\leqslant\mu^*(N^*)=\bar\mu(N^*)=0.$$

It remains to show that $M \in \mathcal{A}^*$. Because of (6.4) we have to show that

$$\forall Q \subset X : \mu^*(Q) = \mu^*(Q \cap M) + \mu(Q \setminus M).$$

Since μ^* is subadditive we find for all $Q \subset X$

$$\mu^*(Q) = \mu^*((Q \cap M) \cup (Q \setminus M))$$

$$\leq \mu^*(Q \cap M) + \mu^*(Q \setminus M)$$

$$= \mu^*(Q \setminus M)$$

$$\leq \mu^*(Q),$$

which means that $M \in \mathcal{A}^*$.

(iii) Obviously, $(X, \mathcal{A}^*, \bar{\mu})$ extends (X, \mathcal{A}, μ) since $\mathcal{A} \subset \mathcal{A}^*$ and $\bar{\mu}|_{\mathcal{A}} = \mu$. In view of Problem 4.13 we have to show that

$$\mathcal{A}^* = \{ A \cup N : A \in \mathcal{A}, \quad N \in \mathfrak{N} \}$$
(*)

with $\mathfrak{N} = \{N \subset X : N \text{ is subset of an } \mathcal{A}\text{-measurable null set or, alternatively,}$

$$\mathcal{A}^* = \{A^* \subset X : \exists A, B \in \mathcal{A}, \ A \subset A^* \subset B, \ \mu(B \setminus A) = 0\}. \ (**)$$

We are going to use both equalities and show ' \supset ' in (*) and ' \subset ' in (**) (which is enough since, cf. Problem 4.13 asserts the equality of the right-hand sides of (*), (**)!).

<u>'</u>: By part (ii), subsets of \mathcal{A} -null sets are in \mathcal{A}^* so that every set of the form $A \cup N$ with $A \in \mathcal{A}$ and N being a subset of an \mathcal{A} null set is in \mathcal{A}^* .

<u>'C'</u>: By part (i) we find for every $A^* \in \mathcal{A}^*$ some $A \in \mathcal{A}$ such that $A \supset A^*$ and $A \setminus A^*$ is an \mathcal{A}^* null set. By the same argument we get $B \in \mathcal{A}, B \supset (A^*)^c$ and $B \setminus (A^*)^c = B \cap A^* = A^* \setminus B^c$ is an \mathcal{A}^* null set. Thus,

$$B^c \subset A^* \subset A$$

and

$$A \setminus B^{c} \subset (A \setminus A^{*}) \cup (A^{*} \setminus B^{c}) = (A \setminus A^{*}) \cup (B \setminus (A^{*})^{c})$$

which is the union of two \mathcal{A}^* null sets, i.e. $A \setminus B^c$ is an \mathcal{A} null set.

Problem 6.3 (i) A little geometry first: a solid, open disk of radius r, centre 0 is the set $B_r(0) := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < r^2\}$. Now the *n*-dimensional analogue is clearly $\{x \in \mathbb{R}^n : x_1^2 + x_2^2 + \ldots + x_n^2 < r^2\}$ (including n = 1 where it reduces to an interval). We want to inscribe a box into a ball.

Claim:
$$Q_{\epsilon}(0) := \underset{j=1}{\overset{n}{\times}} \left[-\frac{\epsilon}{\sqrt{n}}, \frac{\epsilon}{\sqrt{n}} \right] \subset B_{2\epsilon}(0).$$
 Indeed,
 $x \in Q_{\epsilon}(0) \implies x_1^2 + x_2^2 + \ldots + x_n^2 \leqslant \frac{\epsilon^2}{n} + \frac{\epsilon^2}{n} + \ldots + \frac{\epsilon^2}{n} < (2\epsilon)^2$
 $\implies x \in B_{2\epsilon}(0),$

and the claim follows.

Observe that $\lambda^n(Q_{\epsilon}(0)) = \prod_{j=1}^n \frac{2\epsilon}{\sqrt{n}} > 0$. Now take some open set U. By translating it we can achieve that $0 \in U$ and, as we know, this movement does not affect $\lambda^n(U)$. As $0 \in U$ we find some $\epsilon > 0$ such that $B_{\epsilon}(0) \subset U$, hence

$$\lambda^n(U) \ge \lambda^n(B_{\epsilon}(0)) \ge \lambda(Q_{\epsilon}(0)) > 0.$$

(ii) For closed sets this is, *in general*, wrong. Trivial counterexample: the singleton {0} is closed, it is Borel (take a countable sequence of nested rectangles, centered at 0 and going down to {0}) and the Lebesgue measure is zero.

To get strictly positive Lebesgue measure, one possibility is to have interior points, i.e. closed sets which have non-empty interior do have positive Lebesgue measure.

Problem 6.4 (i) Without loss of generality we can assume that a < b. We have $[a + \frac{1}{k}, b) \uparrow (a, b)$ as $k \to \infty$. Thus, by the continuity of measures, Theorem 4.4, we find (write $\lambda = \lambda^1$, for short)

$$\lambda(a,b) = \lim_{k \to \infty} \lambda\left[a + \frac{1}{k}, b\right] = \lim_{k \to \infty} \left(b - a - \frac{1}{k}\right) = b - a.$$

Since $\lambda[a, b] = b - a$, too, this proves again that

$$\lambda(\{a\}) = \lambda([a,b) \setminus (a,b)) = \lambda[a,b) - \lambda(a,b) = 0.$$

(ii) The hint says it all: H is contained in the union $\bigcup_{k\in\mathbb{N}} A_k$ and we have $\lambda^2(A_k) = (2\epsilon 2^{-k}) \cdot (2k) = 4 \cdot \epsilon \cdot k2^{-k}$. Using the σ -sub-additivity and monotonicity of measures (the A_k 's are clearly not disjoint) we get

$$0 \leqslant \lambda^2(H) \leqslant \lambda^2 \left(\bigcup_{k=1}^{\infty} A_k \right) \leqslant \sum_{k=1}^{\infty} \lambda(A_k) = \sum_{k=1}^{\infty} 4 \cdot \epsilon \cdot k 2^{-k} = C\epsilon$$

where C is the finite (!) constant $4\sum_{k=1}^{\infty} k2^{-k}$ (check convergence!). As ϵ was arbitrary, we can let it $\rightarrow 0$ and the claim follows.

(iii) *n*-dimensional version of (i): We have $I = \bigotimes_{j=1}^{n} (a_j, b_j)$. Set $I_k :=$

 $\overset{n}{\underset{j=1}{\times}} [a_j + \frac{1}{k}, b_j). \text{ Then } I_k \uparrow I \text{ as } k \to \infty \text{ and we have (write } \lambda = \lambda^n, \text{ for short)}$

$$\lambda(I) = \lim_{k \to \infty} \lambda(I_k) = \lim_{k \to \infty} \prod_{j=1}^n \left(b_j - a_j - \frac{1}{k} \right) = \prod_{j=1}^n \left(b_j - a_j \right).$$

n-dimensional version of (ii): The changes are obvious: $A_k = [-\epsilon 2^{-k}, \epsilon 2^{-k}) \times [-k, k)^{n-1}$ and $\lambda^n(A_k) = 2^n \cdot \epsilon \cdot 2^{-k} \cdot k^{n-1}$. The rest stays as before, since the sum $\sum_{k=1}^{\infty} k^{n-1} 2^{-k}$ still converges to a finite value.

Problem 6.5 (i) All we have to show is that $\lambda^1(\{x\}) = 0$ for any $x \in \mathbb{R}$. But this has been shown already in problem 6.3(i).

- (ii) Take the Dirac measure: δ_0 . Then $\{0\}$ is an atom as $\delta_0(\{0\}) = 1$.
- (iii) Let C be countable and let $\{c_1, c_2, c_3, \ldots\}$ be an enumeration (could be finite, if C is finite). Since singletons are in \mathcal{A} , so is C as a countable union of the sets $\{c_j\}$. Using the σ -additivity of a measure we get

$$\mu(C) = \mu(\bigcup_{j \in \mathbb{N}} \{c_j\}) = \sum_{j \in \mathbb{N}} \mu(\{c_j\}) = \sum_{j \in \mathbb{N}} 0 = 0.$$

(iv) If y_1, y_2, \ldots, y_N are atoms of mass $P(\{y_j\}) \ge \frac{1}{k}$ we find by the additivity and monotonicity of measures

$$\frac{N}{k} \leqslant \sum_{j=1}^{N} P(\{x_j\})$$
$$= P\left(\bigcup_{j=1}^{N} \{y_j\}\right)$$
$$= P(\{y_1, \dots, y_N\}) \leqslant P(\mathbb{R}) = 1$$

so $\frac{N}{k} \leq 1$, i.e. $N \leq k$, and the claim in the hint (about the maximal number of atoms of given size) is shown.

Now denote, as in the hint, the atoms with measure of size $\left[\frac{1}{k}, \frac{1}{k-1}\right)$ by $y_1^{(k)}, \ldots, y_{N(k)}^{(k)}$ where $N(k) \leq k$ is their number. Since

$$\bigcup_{k \in \mathbb{N}} \left[\frac{1}{k}, \frac{1}{k-1} \right) = (0, \infty)$$

we exhaust all possible sizes for atoms.

There are at most countably many (actually: finitely many) atoms in each size range. Since the number of size ranges is countable and since countably many countable sets make up a countable set, we can relabel the atoms as x_1, x_2, x_3, \ldots (could be finite) and, as we have seen in exercise 4.6(ii), the set-function

$$\nu := \sum_{j} P(\{x_j\}) \cdot \delta_{x_j}$$

(no matter whether the sum is over a finite or countably infinite set of j's) is indeed a measure on \mathbb{R} . But more is true: for any

Borel set A

$$\nu(A) = \sum_{j} P(\{x_j\}) \cdot \delta_{x_j}(A)$$
$$= \sum_{j: x_j \in A} P(\{x_j\})$$
$$= P(A \cap \{x_1, x_2, \ldots\}) \leqslant P(A)$$

showing that $\mu(A) := P(A) - \nu(A)$ is a positive number for each Borel set $A \in \mathcal{B}$. This means that $\mu : \mathcal{B} \to [0, \infty]$. Let us check M_1 and M_2 . Using M_1, M_2 for P and ν (for them they are clear, as P, ν are measures!) we get

$$\mu(\emptyset) = P(\emptyset) - \nu(\emptyset) = 0 - 0 = 0$$

and for a disjoint sequence $(A_j)_{j \in \mathbb{N}} \subset \mathcal{B}$ we have

$$\mu\left(\bigcup_{j} A_{j}\right) = P\left(\bigcup_{j} A_{j}\right) - \nu\left(\bigcup_{j} A_{j}\right)$$
$$= \sum_{j} P(A_{j}) - \sum_{j} \nu(A_{j})$$
$$= \sum_{j} \left(P(A_{j}) - \nu(A_{j})\right)$$
$$= \sum_{j} \mu(A_{j})$$

which is M_2 for μ .

Problem 6.6 (i) Fix a sequence of numbers $\epsilon_k > 0, k \in \mathbb{N}_0$ such that $\sum_{k \in \mathbb{N}_0} \epsilon_k < \infty$. For example we could take a geometric series with general term $\epsilon_k := 2^{-k}$. Now define *open* intervals $I_k := (k - \epsilon_k, k + \epsilon_k), k \in \mathbb{N}_0$ (these are open sets!) and call their union $I := \bigcup_{k \in \mathbb{N}_0} I_k$. As countable union of open sets I is again open. Using the σ -(sub-)additivity of $\lambda = \lambda^1$ we find

$$\lambda(I) = \lambda\left(\bigcup_{k \in \mathbb{N}_0} I_k\right) \stackrel{(*)}{\leqslant} \sum_{k \in \mathbb{N}_0} \lambda(I_k) = \sum_{k \in \mathbb{N}_0} 2\epsilon_k = 2\sum_{k \in \mathbb{N}_0} \epsilon_k < \infty.$$

By 6.4(i), $\lambda(I) > 0$.

Note that in step (*) equality holds (i.e. we would use σ -additivity rather than σ -subadditivity) if the I_k are pairwise disjoint. This happens, if all $\epsilon_k < \frac{1}{2}$ (think!), but to be on the safe side and in order not to have to worry about such details we use sub-additivity. (ii) Take the open interior of the sets A_k , $k \in \mathbb{N}$, from the hint to 6.4(ii). That is, take the open rectangles $B_k := (-2^{-k}, 2^{-k}) \times (-k, k)$, $k \in \mathbb{N}$, (we choose $\epsilon = 1$ since we are after *finiteness* and not necessarily *smallness*). That these are open sets will be seen below. Now set $B = \bigcup_{k \in \mathbb{N}} B_k$ and observe that the union of open sets is always open. B is also unbounded and it is geometrically clear that B is connected as it is some kind of lozenge-shaped 'staircase' (draw a picture!) around the y-axis. Finally, by σ -subadditivity and using 6.4(ii) we get

$$\lambda^{2}(B) = \lambda^{2} \left(\bigcup_{k \in \mathbb{N}} B_{k}\right) \leqslant \sum_{k \in \mathbb{N}} \lambda^{2}(B_{k})$$
$$= \sum_{k \in \mathbb{N}} 2 \cdot 2^{-k} \cdot 2 \cdot k$$
$$= 4 \sum_{k \in \mathbb{N}} k \cdot 2^{-k} < \infty$$

It remains to check that an open rectangle is an open set. For this take any open rectangle $R = (a, b) \times (c, d)$ and pick $(x, y) \in R$. Then we know that a < x < b and c < y < d and since we have strict inequalities, we have that the smallest distance of this point to any of the four boundaries (draw a picture!) $h := \min\{|a - x|, |b - x|, |c - y|, |d - y|\} > 0$. This means that a square around (x, y) with side-length 2h is inside R and what we're going to do is to inscribe into this virtual square an open disk with radius h and centre (x, y). Since the circle is again in R, we are done. The equation for this disk is

$$(x', y') \in B_h(x, y) \iff (x - x')^2 + (y - y')^2 < h^2$$

Thus,

$$\begin{aligned} |x' - x| &\leqslant \sqrt{|x - x'|^2 + |y - y'|^2} < h \\ \text{and} \ |y' - y| &\leqslant \sqrt{|x - x'|^2 + |y - y'|^2} < h \end{aligned}$$

i.e. x - h < x' < x + h and y - h < y' < y + h or $(x', y') \in (x - h, x + h) \times (y - h, y + h)$, which means that (x', y') is in the rectangle of sidelength 2h centered at (x, y). since (x', y') was an arbitrary point of $B_h(x, y)$, we are done.

(iii) No, this is impossible. Since we are in one dimension, connectedness forces us to go between points in a straight, uninterrupted line. Since the set is unbounded, this means that we must have a line of the sort (a, ∞) or $(-\infty, b)$ in our set and in both cases Lebesgue measure is infinite. In all dimensions n > 1, see part (ii) for two dimensions, we can, however, construct connected, unbounded open sets with finite Lebesgue measure.

Problem 6.7 Fix $\epsilon > 0$ and let $\{q_j\}_{j \in \mathbb{N}}$ be an enumeration of $\mathbb{Q} \cap [0, 1]$. Then

$$U := U_{\epsilon} := \bigcup_{j \in \mathbb{N}} \left(q_j - \epsilon 2^{-j-1}, q_j - \epsilon 2^{-j-1} \right) \cap [0, 1]$$

is a dense open set in [0, 1] and, because of σ -subadditivity,

$$\lambda(U) \leqslant \sum_{j \in \mathbb{N}} \lambda \left(q_j - \epsilon 2^{-j-1}, q_j - \epsilon 2^{-j-1} \right) = \sum_{j \in \mathbb{N}} \frac{\epsilon}{2^j} = \epsilon.$$

Problem 6.8 Assume first that for every $\epsilon > 0$ there is some open set $U_{\epsilon} \supset N$ such that $\lambda(U_{\epsilon}) \leq \epsilon$. Then

$$\lambda(N) \leqslant \lambda(U_{\epsilon}) \leqslant \epsilon \quad \forall \epsilon > 0,$$

which means that $\lambda(N) = 0$.

Conversely, let $\lambda^*(N) = \inf \left\{ \sum_j \lambda(U_j) : U_j \in \mathcal{O}, \cup_{j \in \mathbb{N}} U_j \supset N \right\}$. Since for the Borel set N we have $\lambda^*(N) = \lambda(N) = 0$, the definition of the infimum guarantees that for every $\epsilon > 0$ there is a sequence of open sets $(U_j^{\epsilon})_{j \in \mathbb{N}}$ covering N, i.e. such that $U^{\epsilon} := \bigcup_j U_j^{\epsilon} \supset N$. Since U^{ϵ} is again open we find because of σ -subadditivity

$$\lambda(N) \leqslant \lambda(U^{\epsilon}) = \lambda\left(\bigcup_{j} U_{j}^{\epsilon}\right) \leqslant \sum_{j} \lambda(U_{j}^{\epsilon}) \leqslant \epsilon.$$

Attention: A construction along the lines of Problem 3.12, hint to part (ii), using open sets $U^{\delta} := N + B_{\delta}(0)$ is, in general not successful:

- it is not clear that U^{δ} has finite Lebesgue measure (o.k. one can overcome this by considering $N \cap [-k, k]$ and then letting $k \to \infty$...)
- $U^{\delta} \downarrow \overline{N}$ and *not* N (unless N is closed, of course). If, say, N is a dense set of [0, 1], this approach leads nowhere.

Problem 6.9 Observe that the sets $C_k := \bigcup_{j=k}^{\infty} A_j$, $k \in \mathbb{N}$, decrease as $k \to \infty$ —we admit less and less sets in the union, i.e. the union becomes smaller. Since P is a probability measure, $P(C_k) \leq 1$ and therefore Theorem 4.4(iii') applies and shows that

$$P\left(\bigcap_{k=1}^{\infty}\bigcup_{j=k}^{\infty}A_j\right) = P\left(\bigcap_{k=1}^{\infty}C_k\right) = \lim_{k\to\infty}P(C_k).$$

On the other hand, we can use σ -subadditivity of the measure P to get

$$P(C_k) = P\left(\bigcup_{j=k}^{\infty} A_j\right) \leqslant \sum_{j=k}^{\infty} P(A_j)$$

but this is the tail of the convergent (!) sum $\sum_{j=1}^{\infty} P(A_j)$ and, as such, it goes to zero as $k \to \infty$. Putting these bits together, we see

$$P\left(\bigcap_{k=1}^{\infty}\bigcup_{j=k}^{\infty}A_j\right) = \lim_{k\to\infty}P(C_k) \leqslant \lim_{k\to\infty}\sum_{j=k}^{\infty}P(A_j) = 0,$$

and the claim follows.

Problem 6.10 (i) We can work out the 'optimal' \mathcal{A} -cover of (a, b):

Case 1: $a, b \in [0, 1)$. Then [0, 1) is the best possible cover of (a, b), thus $\mu^*(a, b) = \mu[0, 1) = \frac{1}{2}$.

Case 2: $a, b \in [1, 2)$. Then [1, 2) is the best possible cover of (a, b), thus $\mu^*(a, b) = \mu[1, 2) = \frac{1}{2}$.

Case 3: $a \in [0, 1), b \in [1, 2)$. Then $[0, 1) \cup [1, 2)$ is the best possible cover of (a, b), thus $\mu^*(a, b) = \mu[0, 1) + \mu[1, 2) = 1$.

And in the case of a singleton $\{a\}$ the best possible cover is always either [0, 1) or [1, 2) so that $\mu^*(\{a\}) = \frac{1}{2}$ for all a.

(ii) Assume that $(0,1) \in \mathcal{A}^*$. Since $\mathcal{A} \subset \mathcal{A}^*$, we have $[0,1) \in \mathcal{A}^*$, hence $\{0\} = [0,1) \setminus (0,1) \in \mathcal{A}^*$. Since $\mu^*(0,1) = \mu^*(\{0\}) = \frac{1}{2}$, and since μ^* is a measure on \mathcal{A}^* (cf. step 4 in the proof of Theorem 6.1), we get

$$\frac{1}{2} = \mu[0,1) = \mu^*[0,1) + \mu^*(0,1) + \mu^*\{0\} = \frac{1}{2} + \frac{1}{2} = 1$$

leading to a contradiction. Thus neither (0, 1) nor $\{0\}$ are elements of \mathcal{A}^* .

Problem 6.11 Since $\mathcal{A} \subset \mathcal{A}^*$, the only interesting sets (to which one could extend μ) are those $B \subset \mathbb{R}$ where both B and B^c are uncountable. By definition,

$$\gamma^*(B) = \inf \left\{ \sum_j \gamma(A_j) : A_j \in \mathcal{A}, \bigcup_j A_j \supset B \right\}.$$

The infimum is obviously attained for $A_j = \mathbb{R}$, so that $\gamma^*(B) = \gamma^*(B^c) = 1$. On the other hand, since γ^* is necessarily additive on \mathcal{A}^* , the assumption that $B \in \mathcal{A}^*$ leads to a contradiction:

$$1 = \gamma(\mathbb{R}) = \gamma^*(\mathbb{R}) = \gamma^*(B) + \gamma^*(B^c) = 2.$$

Thus, $\mathcal{A} = \mathcal{A}^*$.