5 Uniqueness of measures. Solutions to Problems 5.1-5.10

Problem 5.1 Since $X \in \mathcal{D}$ and since complements are again in \mathcal{D}, we have $\emptyset=X^{c} \in \mathcal{D}$.
If $A, B \in \mathcal{D}$ are disjoint, we set $A_{1}:=A, A_{2}:=B, A_{j}:=\emptyset \forall j \geqslant 3$. Then $\left(A_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{D}$ is a sequence of pairwise disjoint sets, and by $\left(\Delta_{3}\right)$ we find that

$$
A \cup B=\bigcup_{j \in \mathbb{N}} A_{j} \in \mathcal{D}
$$

Since $\left(\Sigma_{1}\right)=\left(\Delta_{3}\right),\left(\Sigma_{2}\right)=\left(\Delta_{2}\right)$ and since $\left(\Sigma_{3}\right) \Longrightarrow\left(\Delta_{3}\right)$, it is clear that every σ-algebra is also a Dynkin system; that the converse is, in general, wrong is seen in Problem 5.2.

Problem 5.2 Consider $\left(\Delta_{3}\right)$ only, as the other two conditions coincide: $\left(\Sigma_{j}\right)=\left(\Delta_{j}\right), j=1,2$. We show that $\left(\Sigma_{3}\right)$ breaks down even for finite unions. If $A, B \in \mathcal{D}$ are disjoint, it is clear that A, B and also $A \uplus B$ contain an even number of elements. But if A, B have non-void intersection, and if this intersection contains an odd number of elements, then $A \cup B$ contains an odd number of elements. Here is a trivial example:

$$
A=\{1,2\} \in \mathcal{D}, \quad B=\{2,3,4,5\} \in \mathcal{D}
$$

whereas

$$
A \cup B=\{1,2,3,4,5\} \notin \mathcal{D}
$$

This means that $\left(\Delta_{3}\right)$ holds, but $\left(\Sigma_{3}\right)$ fails.
Problem 5.3 Mind the misprint: $A \subset B$ must be assumed and is missing in the statement of the problem! We verify the hint first. Using de Morgan's laws we get
$R \backslash Q=R \backslash(R \cap Q)=R \cap(R \cap Q)^{c}=\left(R^{c} \cup(R \cap Q)\right)^{c}=\left(R^{c} \cup(R \cap Q)\right)^{c}$
where the last equality follows since $R^{c} \cap(R \cap Q)=\emptyset$.
Now we take $A, B \in \mathcal{D}$ such that $A \subset B$. In particular $A \cap B=A$. Taking this into account and setting $Q=A, R=B$ we get from the
above relation

$$
B \backslash A=(\underbrace{\underbrace{B^{c}}_{\in \mathcal{D}} \uplus A}_{\in \mathcal{D}})^{c} \in \mathcal{D}
$$

where we repeatedly use $\left(\Delta_{2}\right)$ and $\left(\Delta_{2}\right)$.
Problem 5.4 (i) Since the σ-algebra \mathcal{A} is also a Dynkin system, it is enough to prove $\delta(\mathcal{D})=\mathcal{D}$ for any Dynkin system \mathcal{D}. By definition, $\delta(\mathcal{D})$ is the smallest Dynkin system containing \mathcal{D}, thus $\mathcal{D} \subset \delta(\mathcal{D})$. On the other hand, \mathcal{D} is itself a Dynkin system, thus, because of minimality, $\mathcal{D} \supset \delta(\mathcal{D})$.
(ii) Clearly, $\mathcal{G} \subset \mathcal{H} \subset \delta(\mathcal{H})$. Since $\delta(\mathcal{H})$ is a Dynkin system containing \mathcal{G}, the minimality of $\delta(\mathcal{G})$ implies that $\delta(\mathcal{G}) \subset \delta(\mathcal{H})$.
(iii) Since $\sigma(\mathcal{G})$ is a σ-algebra, it is also a Dynkin system. Since $\mathcal{G} \subset$ $\sigma(\mathcal{G})$ we conclude (again, by minimality) that $\delta(\mathcal{G}) \subset \sigma(\mathcal{G})$.

Problem 5.5 Clearly, $\delta(\{A, B\}) \subset \sigma(\{A, B\})$ is always true.
By Theorem 5.5, $\delta(\{A, B\})=\sigma(\{A, B\})$ if $\{A, B\}$ is \cap-stable, i.e. if $A=B$ or $A=B^{c}$ or if at least one of A, B is X or \emptyset.

Let us exclude these cases. If $A \cap B=\emptyset$, then

$$
\delta(\{A, B\})=\sigma(\{A, B\})=\left\{\emptyset, A, A^{c}, B, B^{c}, A \uplus B, A^{c} \cap B^{c}, X\right\} .
$$

If $A \cap B \neq \emptyset$, then

$$
\delta(\{A, B\})=\left\{\emptyset, A, A^{c}, B, B^{c}, X\right\}
$$

while $\sigma(\{A, B\})$ is much larger containing, for example, $A \cap B$.
Problem 5.6 We prove the hint first. Let $\left(G_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{G}$ as stated in the problem, i.e. satisfying (1) and (2), and define the sets $F_{N}:=G_{1} \cup \ldots \cup$ G_{N}. As $\mathcal{G} \subset \mathcal{A}$, it is clear that $F_{N} \in \mathcal{A}$ (but not necessarily in $\mathcal{G} \ldots$). Moreover, it is clear that $F_{N} \uparrow X$.

We begin with a more general assertion: For any finite union of \mathcal{G}-sets $A_{1} \cup \ldots \cup A_{N}$ we have $\mu\left(A_{1} \cup \ldots \cup A_{N}\right)=\nu\left(A_{1} \cup \ldots \cup A_{N}\right)$.

Proof. Induction Hypothesis: $\mu\left(A_{1} \cup \ldots \cup A_{N}\right)=\nu\left(A_{1} \cup \ldots \cup A_{N}\right)$ for some $N \in \mathbb{N}$ and any choice of $A_{1}, \ldots, A_{N} \in \mathcal{G}$.

Induction Start $(N=1)$: is obvious.

Induction Step $N \rightsquigarrow N+1$: We have by the strong additivity of measures and the \cap-stability of \mathcal{G} that

$$
\begin{aligned}
& \mu\left(A_{1} \cup \ldots \cup A_{N} \cup A_{N+1}\right) \\
& =\mu\left(\left(A_{1} \cup \ldots \cup A_{N}\right) \cup A_{N+1}\right) \\
& =\mu\left(A_{1} \cup \ldots \cup A_{N}\right)+\mu\left(A_{N+1}\right)-\mu\left(\left(A_{1} \cup \ldots \cup A_{N}\right) \cap A_{N+1}\right) \\
& =\mu\left(A_{1} \cup \ldots \cup A_{N}\right)+\mu\left(A_{N+1}\right)-\mu((\underbrace{A_{1} \cap A_{N+1}}_{\in \mathcal{G}}) \cup \ldots \cup(\underbrace{A_{N} \cap A_{N+1}}_{\in \mathcal{G}})) \\
& =\nu\left(A_{1} \cup \ldots \cup A_{N}\right)+\nu\left(A_{N+1}\right)-\nu\left(\left(A_{1} \cap A_{N+1}\right) \cup \ldots \cup\left(A_{N} \cap A_{N+1}\right)\right) \\
& \vdots \\
& =\nu\left(A_{1} \cup \ldots \cup A_{N} \cup A_{N+1}\right)
\end{aligned}
$$

where we used the induction hypothesis twice, namely for the union of the $N \mathcal{G}$-sets A_{1}, \ldots, A_{N} as well as for the $N \mathcal{G}$-sets $A_{1} \cap A_{N+1}, \ldots, A_{N} \cap$ A_{N+1}. The induction is complete.

In particular we see that $\mu\left(F_{N}\right)=\nu\left(F_{N}\right), \nu\left(F_{N}\right) \leqslant \nu\left(G_{1}\right)+\ldots+$ $\nu\left(G_{N}\right)<\infty$ by subadditivity, and that (think!) $\mu\left(G \cap F_{N}\right)=\nu\left(G \cap F_{N}\right)$ for any $G \in \mathcal{G}$ (just work out the intersection, similar to the step in the induction....). This shows that on the \cap-stable system

$$
\tilde{\mathcal{G}}:=\{\text { all finite unions of sets in } \mathcal{G}\}
$$

μ and ν coincide. Moreover, $\mathcal{G} \subset \tilde{\mathcal{G}} \subset \mathcal{A}$ so that, by assumption $\mathcal{A}=\sigma(\mathcal{G}) \subset \sigma(\tilde{\mathcal{G}}) \subset \sigma(\mathcal{A}) \subset \mathcal{A}$, so that equality prevails in this chain of inclusions. This means that $\tilde{\mathcal{G}}$ is a generator of \mathcal{A} satisfying all the assumptions of Theorem 5.7, and we have reduced everything to this situation.

Problem 5.7 Intuition: in two dimensions we have rectangles. Take $I, I^{\prime} \in$ \mathcal{J}. Call the lower left corner of $I a=\left(a_{1}, a_{2}\right)$, the upper right corner $b=\left(b_{1}, b_{2}\right)$, and do the same for I^{\prime} using a^{\prime}, b^{\prime}. This defines a rectangle uniquely. We are done, if $I \cap I^{\prime}=\emptyset$. If not (draw a picture!) then we get an overlap which can be described by taking the right-and-uppermost of the two lower left corners a, a^{\prime} and the left-and-lower-most of the two upper right corners b, b^{\prime}. That does the trick.

Now rigorously: since $I, I^{\prime} \in \mathcal{J}$, we have for suitable $a_{j}, b_{j}, a_{j}^{\prime}, b_{j}^{\prime}$'s:

$$
I=\stackrel{n}{\times}\left[a_{j=1}, b_{j}\right) \text { and } I^{\prime}=\underset{j=1}{\underset{\times}{\times}}\left[a_{j}^{\prime}, b_{j}^{\prime}\right) .
$$

We want to find $I \cap I^{\prime}$, or, equivalently the condition under which $x \in I \cap I^{\prime}$. Now

$$
\begin{aligned}
x=\left(x_{1}, \ldots, x_{n}\right) \in I & \Longleftrightarrow x_{j} \in\left[a_{j}, b_{j}\right) \quad \forall j=1,2, \ldots, n \\
& \Longleftrightarrow a_{j} \leqslant x_{j}<b_{j} \quad \forall j=1,2, \ldots, n
\end{aligned}
$$

and the same holds for $x \in I^{\prime}$ (same x, but $I^{\prime}-$ no typo). Clearly $a_{j} \leqslant x_{j}<b_{j}$, and, at the same time $a_{j}^{\prime} \leqslant x_{j}<b_{j}^{\prime}$ holds exactly if

$$
\begin{gathered}
\max \left(a_{j}, a_{j}^{\prime}\right) \leqslant x_{j}<\min \left(b_{j}, b_{j}^{\prime}\right) \quad \forall j=1,2, \ldots, n \\
\Longleftrightarrow x \in \underset{j=1}{\times}\left[\max \left(a_{j}, a_{j}^{\prime}\right), \min \left(b_{j}, b_{j}^{\prime}\right)\right) .
\end{gathered}
$$

This shows that $I \cap I^{\prime}$ is indeed a 'rectangle', i.e. in \mathcal{J}. This could be an empty set (which happens if I and I^{\prime} do not meet).

Problem 5.8 First we must make sure that $t \cdot B$ is a Borel set if $B \in \mathcal{B}$. We consider first rectangles $I=\llbracket a, b)) \in \mathcal{J}$ where $a, b \in \mathbb{R}^{n}$. Clearly, $t \cdot I=\llbracket t a, t b))$ where $t a, t b$ are just the scaled vectors. So, scaled rectangles are again rectangles, and therefore Borel sets. Now fix $t>0$ and set

$$
\mathcal{B}_{t}:=\left\{B \in \mathcal{B}^{n}: t \cdot B \in \mathcal{B}^{n}\right\}
$$

It is not hard to see that \mathcal{B}_{t} is itself a σ-algebra and that $\mathcal{J} \subset \mathcal{B}_{t} \subset \mathcal{B}^{n}$. But then we get

$$
\mathcal{B}^{n}=\sigma(\mathcal{J}) \subset \sigma\left(\mathcal{B}_{t}\right)=\mathcal{B}_{t} \subset \mathcal{B}^{n}
$$

showing that $\mathcal{B}_{t}=\mathcal{B}^{n}$, i.e. scaled Borel sets are again Borel sets.
Now define a new measure $\mu(B):=\lambda^{n}(t \cdot B)$ for Borel sets $B \in \mathcal{B}^{n}$ (which is, because of the above, well-defined). For rectangles $\llbracket a, b$)) we get, in particular,

$$
\begin{aligned}
\left.\mu \llbracket a, b))=\lambda^{n}((t \cdot \llbracket a, b))\right) & \left.\left.=\lambda^{n} \llbracket t a, t b\right)\right) \\
& =\prod_{j=1}^{n}\left(\left(t b_{j}\right)-\left(t a_{j}\right)\right) \\
& =\prod_{j=1}^{n} t \cdot\left(b_{j}-a_{j}\right) \\
& =t^{n} \cdot \prod_{j=1}^{n}\left(b_{j}-a_{j}\right)
\end{aligned}
$$

$$
\left.\left.=t^{n} \lambda^{n} \llbracket a, b\right)\right)
$$

which shows that μ and $t^{n} \lambda^{n}$ coincide on the \cap-stable generator \mathcal{D} of \mathcal{B}^{n}, hence they're the same everywhere. (Mind the small gap: we should make the mental step that for any measure ν a positive multiple, say, $c \cdot \nu$, is again a measure - this ensures that $t^{n} \lambda^{n}$ is a measure, and we need this in order to apply Theorem 5.7. Mind also that we need that μ is finite on all rectangles (obvious!) and that we find rectangles increasing to \mathbb{R}^{n}, e.g. $[-k, k) \times \ldots \times[-k, k)$ as in the proof of Theorem 5.8(ii).)

Problem 5.9 Define $\nu(A):=\mu \circ \theta^{-1}(A)$. Obviously, ν is again a finite measure. Moreover, since $\theta^{-1}(X)=X$, we have

$$
\mu(X)=\nu(X)<\infty \text { and, by assumption, } \mu(G)=\nu(G) \quad \forall G \in \mathcal{G} .
$$

Thus, $\mu=\nu$ on $\mathcal{G}^{\prime}:=\mathcal{G} \cup\{X\}$. Since \mathcal{G}^{\prime} is a \cap-stable generator of \mathcal{A} containing the (trivial) exhausting sequence X, X, X, \ldots, the assertion follows from the uniqueness theorem for measures, Theorem 5.7.

Problem 5.10 The necessity of the condition is trivial since $\mathcal{G} \subset \sigma(\mathcal{G})=\mathcal{B}$, resp., $\mathcal{H} \subset \sigma(\mathcal{H})=\mathcal{C}$.
Fix $H \in \mathcal{H}$ and define

$$
\mu(B):=P(B \cap H) \text { and } \nu(B):=P(B) P(H) .
$$

Obviously, μ and ν are finite measures on \mathcal{B} having mass $P(H)$ such that μ and ν coincide on the \cap-stable generator $\mathcal{G} \cup\{X\}$ of \mathcal{B}. Note that this generator contains the exhausting sequence X, X, X, \ldots By the uniqueness theorem for measures, Theorem 5.7, we conclude

$$
\mu=\nu \text { on the whole of } \mathcal{B} \text {. }
$$

Now fix $B \in \mathcal{B}$ and define

$$
\rho(C):=P(B \cap C) \text { and } \tau(C):=P(B) P(C) .
$$

Then the same argument as before shows that $\rho=\sigma$ on \mathcal{C} and, since $B \in \mathcal{B}$ was arbitrary, the claim follows.

6 Existence of measures. Solutions to Problems 6.1-6.11

Problem 6.1 We know already that $\mathcal{B}[0, \infty)$ is a σ-algebra (it is a trace σ-algebra) and, by definition,

$$
\Sigma=\{B \cup(-B): B \in \mathcal{B}[0, \infty)\}
$$

if we write $-B:=\{-b: b \in \mathcal{B}[0, \infty)\}$.
Since the structure $B \cup(-B)$ is stable under complementation and countable unions it is clear that Σ is indeed a σ-algebra.

One possibility to extend μ defined on Σ would be to take $B \in \mathcal{B}(\mathbb{R})$ and define $B^{+}:=B \cap[0, \infty)$ and $B^{-}:=B \cap(-\infty, 0)$ and to set

$$
\nu(B):=\mu\left(B^{+} \cup\left(-B^{+}\right)\right)+\mu\left(\left(-B^{-}\right) \cup B^{-}\right)
$$

which is obviously a measure. We cannot expect uniqueness of this extension since Σ does not generate $\mathcal{B}(\mathbb{R})$-not all Borel sets are symmetric.

Problem 6.2 By definition we have

$$
\mu^{*}(Q)=\inf \left\{\sum_{j} \mu\left(B_{j}\right):\left(B_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{A}, \cup_{j \in \mathbb{N}} B_{j} \supset Q\right\} .
$$

(i) Assume first that $\mu^{*}(Q)<\infty$. By the definition of the infimum we find for every $\epsilon>0$ a sequence $\left(B_{j}^{\epsilon}\right)_{j \in \mathbb{N}} \subset \mathcal{A}$ such that $B^{\epsilon}:=$ $\bigcup_{j} B_{j}^{\epsilon} \supset Q$ and, because of σ-subadditivity,

$$
\mu\left(B^{\epsilon}\right)-\mu^{*}(Q) \leqslant \sum_{j} \mu\left(B_{j}^{\epsilon}\right)-\mu^{*}(Q) \leqslant \epsilon
$$

Set $B:=\bigcap_{k} B^{1 / k} \in \mathcal{A}$. Then $B \supset Q$ and $\mu(B)=\mu^{*}(B)=\mu^{*}(Q)$. By the very definition of \mathcal{A}^{*} and since $B \in \mathcal{A} \subset \mathcal{A}^{*}$ we get

$$
\mu^{*}(Q) \stackrel{(6.4)}{=} \mu^{*}(B \cap Q)+\mu^{*}(B \backslash Q)=\mu(B)+\mu^{*}(B \backslash Q)
$$

so that $\mu^{*}(B \backslash Q)=0$. Since (the outer measure) μ^{*} is monotone, we conclude that for all \mathcal{A}-measurable sets $N \subset A \backslash Q$ we have $\mu(N)=\mu^{*}(N) \leqslant \mu^{*}(B \backslash Q)=0$.

If $\mu^{*}(Q)=\infty$, we take the exhausting sequence $\left(A_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{A}$ with $A_{j} \uparrow X$ and $\mu\left(A_{j}\right)<\infty$ and set $Q_{j}:=A_{j} \cap Q$ for every $j \in \mathbb{N}$. By the first part we can find sets $C_{j} \in \mathcal{A}$ with $\mu\left(C_{j}\right)=\mu^{*}\left(Q_{j}\right)$ and $\mu^{*}\left(C_{j} \backslash Q_{j}\right)=0$. Then

$$
C:=\bigcup_{j} C_{j} \supset \bigcup_{j} Q_{j}=Q, \quad \mu(C)=\infty=\mu^{*}(Q)
$$

and, using (the hint of) Problem 4.9, and the monotonicity and σ-subadditivity of μ^{*} :

$$
\bigcup_{j} C_{j} \backslash \bigcup_{j} Q_{j} \subset \bigcup_{j} C_{j} \backslash Q_{j}
$$

and
$\mu^{*}\left(\bigcup_{j} C_{j} \backslash \bigcup_{j} Q_{j}\right) \leqslant \mu^{*}\left(\bigcup_{j} C_{j} \backslash Q_{j}\right) \leqslant \sum_{j} \mu^{*}\left(\bigcup_{j} C_{j} \backslash Q_{j}\right)=0$.
(ii) Define $\bar{\mu}:=\left.\mu^{*}\right|_{\mathcal{A}^{*}}$. We know from Theorem 6.1 that $\bar{\mu}$ is a measure on \mathcal{A}^{*} and, because of the monotonicity of μ^{*}, we know that for all $N^{*} \in \mathcal{A}^{*}$ with $\bar{\mu}\left(N^{*}\right)$ we have

$$
\forall M \subset N^{*}: \mu^{*}(M) \leqslant \mu^{*}\left(N^{*}\right)=\bar{\mu}\left(N^{*}\right)=0
$$

It remains to show that $M \in \mathcal{A}^{*}$. Because of (6.4) we have to show that

$$
\forall Q \subset X: \mu^{*}(Q)=\mu^{*}(Q \cap M)+\mu(Q \backslash M)
$$

Since μ^{*} is subadditive we find for all $Q \subset X$

$$
\begin{aligned}
\mu^{*}(Q) & =\mu^{*}((Q \cap M) \cup(Q \backslash M)) \\
& \leqslant \mu^{*}(Q \cap M)+\mu^{*}(Q \backslash M) \\
& =\mu^{*}(Q \backslash M) \\
& \leqslant \mu^{*}(Q)
\end{aligned}
$$

which means that $M \in \mathcal{A}^{*}$.
(iii) Obviously, $\left(X, \mathcal{A}^{*}, \bar{\mu}\right)$ extends (X, \mathcal{A}, μ) since $\mathcal{A} \subset \mathcal{A}^{*}$ and $\left.\bar{\mu}\right|_{\mathcal{A}}=$ μ. In view of Problem 4.13 we have to show that

$$
\begin{equation*}
\mathcal{A}^{*}=\{A \cup N: A \in \mathcal{A}, \quad N \in \mathfrak{N}\} \tag{*}
\end{equation*}
$$

with $\mathfrak{N}=\{N \subset X: N$ is subset of an \mathcal{A}-measurable null set or, alternatively,

$$
\mathcal{A}^{*}=\left\{A^{*} \subset X: \exists A, B \in \mathcal{A}, A \subset A^{*} \subset B, \mu(B \backslash A)=0\right\} .(* *)
$$

We are going to use both equalities and show ' \supset ' in ($*$) and ' \subset ' in $(* *)$ (which is enough since, cf. Problem 4.13 asserts the equality of the right-hand sides of $(*),(* *)!)$.

'D':
By part (ii), subsets of \mathcal{A}-null sets are in \mathcal{A}^{*} so that every set of the form $A \cup N$ with $A \in \mathcal{A}$ and N being a subset of an \mathcal{A} null set is in \mathcal{A}^{*}.
${ }^{\prime} \subset$ ': By part (i) we find for every $A^{*} \in \mathcal{A}^{*}$ some $A \in \mathcal{A}$ such that $A \supset A^{*}$ and $A \backslash A^{*}$ is an \mathcal{A}^{*} null set. By the same argument we get $B \in \mathcal{A}, B \supset\left(A^{*}\right)^{c}$ and $B \backslash\left(A^{*}\right)^{c}=B \cap A^{*}=A^{*} \backslash B^{c}$ is an \mathcal{A}^{*} null set. Thus,

$$
B^{c} \subset A^{*} \subset A
$$

and

$$
A \backslash B^{c} \subset\left(A \backslash A^{*}\right) \cup\left(A^{*} \backslash B^{c}\right)=\left(A \backslash A^{*}\right) \cup\left(B \backslash\left(A^{*}\right)^{c}\right)
$$

which is the union of two \mathcal{A}^{*} null sets, i.e. $A \backslash B^{c}$ is an \mathcal{A} null set.
Problem 6.3 (i) A little geometry first: a solid, open disk of radius r, centre 0 is the set $B_{r}(0):=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<r^{2}\right\}$. Now the n-dimensional analogue is clearly $\left\{x \in \mathbb{R}^{n}: x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}<r^{2}\right\}$ (including $n=1$ where it reduces to an interval). We want to inscribe a box into a ball.
Claim: $Q_{\epsilon}(0):=\underset{j=1}{\underset{\times}{x}}\left[-\frac{\epsilon}{\sqrt{n}}, \frac{\epsilon}{\sqrt{n}}\right) \subset B_{2 \epsilon}(0)$. Indeed,

$$
\begin{aligned}
x \in Q_{\epsilon}(0) & \Longrightarrow x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \leqslant \frac{\epsilon^{2}}{n}+\frac{\epsilon^{2}}{n}+\ldots+\frac{\epsilon^{2}}{n}<(2 \epsilon)^{2} \\
& \Longrightarrow x \in B_{2 \epsilon}(0),
\end{aligned}
$$

and the claim follows.
Observe that $\lambda^{n}\left(Q_{\epsilon}(0)\right)=\prod_{j=1}^{n} \frac{2 \epsilon}{\sqrt{n}}>0$. Now take some open set U. By translating it we can achieve that $0 \in U$ and, as we know, this movement does not affect $\lambda^{n}(U)$. As $0 \in U$ we find some $\epsilon>0$ such that $B_{\epsilon}(0) \subset U$, hence

$$
\lambda^{n}(U) \geqslant \lambda^{n}\left(B_{\epsilon}(0)\right) \geqslant \lambda\left(Q_{\epsilon}(0)\right)>0 .
$$

(ii) For closed sets this is, in general, wrong. Trivial counterexample: the singleton $\{0\}$ is closed, it is Borel (take a countable sequence of nested rectangles, centered at 0 and going down to $\{0\}$) and the Lebesgue measure is zero.
To get strictly positive Lebesgue measure, one possibility is to have interior points, i.e. closed sets which have non-empty interior do have positive Lebesgue measure.

Problem 6.4 (i) Without loss of generality we can assume that $a<b$. We have $\left[a+\frac{1}{k}, b\right) \uparrow(a, b)$ as $k \rightarrow \infty$. Thus, by the continuity of measures, Theorem 4.4, we find (write $\lambda=\lambda^{1}$, for short)

$$
\lambda(a, b)=\lim _{k \rightarrow \infty} \lambda\left[a+\frac{1}{k}, b\right)=\lim _{k \rightarrow \infty}\left(b-a-\frac{1}{k}\right)=b-a .
$$

Since $\lambda[a, b)=b-a$, too, this proves again that

$$
\lambda(\{a\})=\lambda([a, b) \backslash(a, b))=\lambda[a, b)-\lambda(a, b)=0
$$

(ii) The hint says it all: H is contained in the union $\bigcup_{k \in \mathbb{N}} A_{k}$ and we have $\lambda^{2}\left(A_{k}\right)=\left(2 \epsilon 2^{-k}\right) \cdot(2 k)=4 \cdot \epsilon \cdot k 2^{-k}$. Using the σ-subadditivity and monotonicity of measures (the A_{k} 's are clearly not disjoint) we get

$$
0 \leqslant \lambda^{2}(H) \leqslant \lambda^{2}\left(\bigcup_{k=1}^{\infty} A_{k}\right) \leqslant \sum_{k=1}^{\infty} \lambda\left(A_{k}\right)=\sum_{k=1}^{\infty} 4 \cdot \epsilon \cdot k 2^{-k}=C \epsilon
$$

where C is the finite (!) constant $4 \sum_{k=1}^{\infty} k 2^{-k}$ (check convergence!). As ϵ was arbitrary, we can let it $\rightarrow 0$ and the claim follows.
(iii) n-dimensional version of (i): We have $I=\underset{j=1}{\underset{j}{\times}}\left(a_{j}, b_{j}\right)$. Set $I_{k}:=$ $\underset{j=1}{\underset{\times}{x}}\left[a_{j}+\frac{1}{k}, b_{j}\right.$). Then $I_{k} \uparrow I$ as $k \rightarrow \infty$ and we have (write $\lambda=\lambda^{n}$, for short)

$$
\lambda(I)=\lim _{k \rightarrow \infty} \lambda\left(I_{k}\right)=\lim _{k \rightarrow \infty} \prod_{j=1}^{n}\left(b_{j}-a_{j}-\frac{1}{k}\right)=\prod_{j=1}^{n}\left(b_{j}-a_{j}\right) .
$$

n-dimensional version of (ii): The changes are obvious: $A_{k}=$ $\left[-\epsilon 2^{-k}, \epsilon 2^{-k}\right) \times[-k, k)^{n-1}$ and $\lambda^{n}\left(A_{k}\right)=2^{n} \cdot \epsilon \cdot 2^{-k} \cdot k^{n-1}$. The rest stays as before, since the sum $\sum_{k=1}^{\infty} k^{n-1} 2^{-k}$ still converges to a finite value.

Problem 6.5 (i) All we have to show is that $\lambda^{1}(\{x\})=0$ for any $x \in \mathbb{R}$. But this has been shown already in problem 6.3(i).
(ii) Take the Dirac measure: δ_{0}. Then $\{0\}$ is an atom as $\delta_{0}(\{0\})=1$.
(iii) Let C be countable and let $\left\{c_{1}, c_{2}, c_{3}, \ldots\right\}$ be an enumeration (could be finite, if C is finite). Since singletons are in \mathcal{A}, so is C as a countable union of the sets $\left\{c_{j}\right\}$. Using the σ-additivity of a measure we get

$$
\mu(C)=\mu\left(\cup_{j \in \mathbb{N}}\left\{c_{j}\right\}\right)=\sum_{j \in \mathbb{N}} \mu\left(\left\{c_{j}\right\}\right)=\sum_{j \in \mathbb{N}} 0=0 .
$$

(iv) If $y_{1}, y_{2}, \ldots, y_{N}$ are atoms of mass $P\left(\left\{y_{j}\right\}\right) \geqslant \frac{1}{k}$ we find by the additivity and monotonicity of measures

$$
\begin{aligned}
\frac{N}{k} & \leqslant \sum_{j=1}^{N} P\left(\left\{x_{j}\right\}\right) \\
& =P\left(\bigcup_{j=1}^{N}\left\{y_{j}\right\}\right) \\
& =P\left(\left\{y_{1}, \ldots, y_{N}\right\}\right) \leqslant P(\mathbb{R})=1
\end{aligned}
$$

so $\frac{N}{k} \leqslant 1$, i.e. $N \leqslant k$, and the claim in the hint (about the maximal number of atoms of given size) is shown.
Now denote, as in the hint, the atoms with measure of size $\left[\frac{1}{k}, \frac{1}{k-1}\right)$ by $y_{1}^{(k)}, \ldots y_{N(k)}^{(k)}$ where $N(k) \leqslant k$ is their number. Since

$$
\bigcup_{k \in \mathbb{N}}\left[\frac{1}{k}, \frac{1}{k-1}\right)=(0, \infty)
$$

we exhaust all possible sizes for atoms.
There are at most countably many (actually: finitely many) atoms in each size range. Since the number of size ranges is countable and since countably many countable sets make up a countable set, we can relabel the atoms as $x_{1}, x_{2}, x_{3}, \ldots$ (could be finite) and, as we have seen in exercise 4.6(ii), the set-function

$$
\nu:=\sum_{j} P\left(\left\{x_{j}\right\}\right) \cdot \delta_{x_{j}}
$$

(no matter whether the sum is over a finite or countably infinite set of j 's) is indeed a measure on \mathbb{R}. But more is true: for any

Borel set A

$$
\begin{aligned}
\nu(A) & =\sum_{j} P\left(\left\{x_{j}\right\}\right) \cdot \delta_{x_{j}}(A) \\
& =\sum_{j: x_{j} \in A} P\left(\left\{x_{j}\right\}\right) \\
& =P\left(A \cap\left\{x_{1}, x_{2}, \ldots\right\}\right) \leqslant P(A)
\end{aligned}
$$

showing that $\mu(A):=P(A)-\nu(A)$ is a positive number for each Borel set $A \in \mathcal{B}$. This means that $\mu: \mathcal{B} \rightarrow[0, \infty]$. Let us check M_{1} and M_{2}. Using M_{1}, M_{2} for P and ν (for them they are clear, as P, ν are measures!) we get

$$
\mu(\emptyset)=P(\emptyset)-\nu(\emptyset)=0-0=0
$$

and for a disjoint sequence $\left(A_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{B}$ we have

$$
\begin{aligned}
\mu\left(\bigcup_{j} A_{j}\right) & =P\left(\bigcup_{j} A_{j}\right)-\nu\left(\bigcup_{j} A_{j}\right) \\
& =\sum_{j} P\left(A_{j}\right)-\sum_{j} \nu\left(A_{j}\right) \\
& =\sum_{j}\left(P\left(A_{j}\right)-\nu\left(A_{j}\right)\right) \\
& =\sum_{j} \mu\left(A_{j}\right)
\end{aligned}
$$

which is M_{2} for μ.
Problem 6.6 (i) Fix a sequence of numbers $\epsilon_{k}>0, k \in \mathbb{N}_{0}$ such that $\sum_{k \in \mathbb{N}_{0}} \epsilon_{k}<\infty$. For example we could take a geometric series with general term $\epsilon_{k}:=2^{-k}$. Now define open intervals $I_{k}:=$ $\left(k-\epsilon_{k}, k+\epsilon_{k}\right), k \in \mathbb{N}_{0}$ (these are open sets!) and call their union $I:=\bigcup_{k \in \mathbb{N}_{0}} I_{k}$. As countable union of open sets I is again open. Using the σ-(sub-)additivity of $\lambda=\lambda^{1}$ we find

$$
\lambda(I)=\lambda\left(\bigcup_{k \in \mathbb{N}_{0}} I_{k}\right) \stackrel{(*)}{\leqslant} \sum_{k \in \mathbb{N}_{0}} \lambda\left(I_{k}\right)=\sum_{k \in \mathbb{N}_{0}} 2 \epsilon_{k}=2 \sum_{k \in \mathbb{N}_{0}} \epsilon_{k}<\infty .
$$

By 6.4(i), $\lambda(I)>0$.
Note that in step $(*)$ equality holds (i.e. we would use σ-additivity rather than σ-subadditivity) if the I_{k} are pairwise disjoint. This happens, if all $\epsilon_{k}<\frac{1}{2}$ (think!), but to be on the safe side and in order not to have to worry about such details we use sub-additivity.
(ii) Take the open interior of the sets $A_{k}, k \in \mathbb{N}$, from the hint to 6.4(ii). That is, take the open rectangles $B_{k}:=\left(-2^{-k}, 2^{-k}\right) \times$ $(-k, k), k \in \mathbb{N}$, (we choose $\epsilon=1$ since we are after finiteness and not necessarily smallness). That these are open sets will be seen below. Now set $B=\bigcup_{k \in \mathbb{N}} B_{k}$ and observe that the union of open sets is always open. B is also unbounded and it is geometrically clear that B is connected as it is some kind of lozenge-shaped 'staircase' (draw a picture!) around the y-axis. Finally, by σ subadditivity and using $6.4(\mathrm{ii})$ we get

$$
\begin{aligned}
\lambda^{2}(B)=\lambda^{2}\left(\bigcup_{k \in \mathbb{N}} B_{k}\right) & \leqslant \sum_{k \in \mathbb{N}} \lambda^{2}\left(B_{k}\right) \\
& =\sum_{k \in \mathbb{N}} 2 \cdot 2^{-k} \cdot 2 \cdot k \\
& =4 \sum_{k \in \mathbb{N}} k \cdot 2^{-k}<\infty .
\end{aligned}
$$

It remains to check that an open rectangle is an open set. For this take any open rectangle $R=(a, b) \times(c, d)$ and pick $(x, y) \in R$. Then we know that $a<x<b$ and $c<y<d$ and since we have strict inequalities, we have that the smallest distance of this point to any of the four boundaries (draw a picture!) $h:=\min \{\mid a-$ $x|,|b-x|,|c-y|,|d-y|\}>0$. This means that a square around (x, y) with side-length $2 h$ is inside R and what we're going to do is to inscribe into this virtual square an open disk with radius h and centre (x, y). Since the circle is again in R, we are done. The equation for this disk is

$$
\left(x^{\prime}, y^{\prime}\right) \in B_{h}(x, y) \Longleftrightarrow\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}<h^{2}
$$

Thus,

$$
\begin{gathered}
\quad\left|x^{\prime}-x\right| \leqslant \sqrt{\left|x-x^{\prime}\right|^{2}+\left|y-y^{\prime}\right|^{2}}<h \\
\text { and }\left|y^{\prime}-y\right| \leqslant \sqrt{\left|x-x^{\prime}\right|^{2}+\left|y-y^{\prime}\right|^{2}}<h
\end{gathered}
$$

i.e. $x-h<x^{\prime}<x+h$ and $y-h<y^{\prime}<y+h$ or $\left(x^{\prime}, y^{\prime}\right) \in$ $(x-h, x+h) \times(y-h, y+h)$, which means that $\left(x^{\prime}, y^{\prime}\right)$ is in the rectangle of sidelength $2 h$ centered at (x, y). since $\left(x^{\prime}, y^{\prime}\right)$ was an arbitrary point of $B_{h}(x, y)$, we are done.
(iii) No, this is impossible. Since we are in one dimension, connectedness forces us to go between points in a straight, uninterrupted
line. Since the set is unbounded, this means that we must have a line of the sort (a, ∞) or $(-\infty, b)$ in our set and in both cases Lebesgue measure is infinite. In all dimensions $n>1$, see part (ii) for two dimensions, we can, however, construct connected, unbounded open sets with finite Lebesgue measure.

Problem 6.7 Fix $\epsilon>0$ and let $\left\{q_{j}\right\}_{j \in \mathbb{N}}$ be an enumeration of $\mathbb{Q} \cap[0,1]$. Then

$$
U:=U_{\epsilon}:=\bigcup_{j \in \mathbb{N}}\left(q_{j}-\epsilon 2^{-j-1}, q_{j}-\epsilon 2^{-j-1}\right) \cap[0,1]
$$

is a dense open set in $[0,1]$ and, because of σ-subadditivity,

$$
\lambda(U) \leqslant \sum_{j \in \mathbb{N}} \lambda\left(q_{j}-\epsilon 2^{-j-1}, q_{j}-\epsilon 2^{-j-1}\right)=\sum_{j \in \mathbb{N}} \frac{\epsilon}{2^{j}}=\epsilon .
$$

Problem 6.8 Assume first that for every $\epsilon>0$ there is some open set $U_{\epsilon} \supset N$ such that $\lambda\left(U_{\epsilon}\right) \leqslant \epsilon$. Then

$$
\lambda(N) \leqslant \lambda\left(U_{\epsilon}\right) \leqslant \epsilon \quad \forall \epsilon>0,
$$

which means that $\lambda(N)=0$.
Conversely, let $\lambda^{*}(N)=\inf \left\{\sum_{j} \lambda\left(U_{j}\right): U_{j} \in \mathcal{O}, \cup_{j \in \mathbb{N}} U_{j} \supset N\right\}$. Since for the Borel set N we have $\lambda^{*}(N)=\lambda(N)=0$, the definition of the infimum guarantees that for every $\epsilon>0$ there is a sequence of open sets $\left(U_{j}^{\epsilon}\right)_{j \in \mathbb{N}}$ covering N, i.e. such that $U^{\epsilon}:=\bigcup_{j} U_{j}^{\epsilon} \supset N$. Since U^{ϵ} is again open we find because of σ-subadditivity

$$
\lambda(N) \leqslant \lambda\left(U^{\epsilon}\right)=\lambda\left(\bigcup_{j} U_{j}^{\epsilon}\right) \leqslant \sum_{j} \lambda\left(U_{j}^{\epsilon}\right) \leqslant \epsilon .
$$

Attention: A construction along the lines of Problem 3.12, hint to part (ii), using open sets $U^{\delta}:=N+B_{\delta}(0)$ is, in general not successful:

- it is not clear that U^{δ} has finite Lebesgue measure (o.k. one can overcome this by considering $N \cap[-k, k]$ and then letting $k \rightarrow$ $\infty . .$.
- $U^{\delta} \downarrow \bar{N}$ and $n o t N$ (unless N is closed, of course). If, say, N is a dense set of $[0,1]$, this approach leads nowhere.

Problem 6.9 Observe that the sets $C_{k}:=\bigcup_{j=k}^{\infty} A_{j}, k \in \mathbb{N}$, decrease as $k \rightarrow \infty$-we admit less and less sets in the union, i.e. the union becomes smaller. Since P is a probability measure, $P\left(C_{k}\right) \leqslant 1$ and therefore Theorem 4.4(iii') applies and shows that

$$
P\left(\bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} A_{j}\right)=P\left(\bigcap_{k=1}^{\infty} C_{k}\right)=\lim _{k \rightarrow \infty} P\left(C_{k}\right)
$$

On the other hand, we can use σ-subadditivity of the measure P to get

$$
P\left(C_{k}\right)=P\left(\bigcup_{j=k}^{\infty} A_{j}\right) \leqslant \sum_{j=k}^{\infty} P\left(A_{j}\right)
$$

but this is the tail of the convergent (!) sum $\sum_{j=1}^{\infty} P\left(A_{j}\right)$ and, as such, it goes to zero as $k \rightarrow \infty$. Putting these bits together, we see

$$
P\left(\bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} A_{j}\right)=\lim _{k \rightarrow \infty} P\left(C_{k}\right) \leqslant \lim _{k \rightarrow \infty} \sum_{j=k}^{\infty} P\left(A_{j}\right)=0
$$

and the claim follows.
Problem 6.10 (i) We can work out the 'optimal' \mathcal{A}-cover of (a, b) :
Case 1: $a, b \in[0,1)$. Then $[0,1)$ is the best possible cover of (a, b), thus $\mu^{*}(a, b)=\mu[0,1)=\frac{1}{2}$.
Case 2: $a, b \in[1,2)$. Then $[1,2)$ is the best possible cover of (a, b), thus $\mu^{*}(a, b)=\mu[1,2)=\frac{1}{2}$.
Case 3: $a \in[0,1), b \in[1,2)$. Then $[0,1) \cup[1,2)$ is the best possible cover of (a, b), thus $\mu^{*}(a, b)=\mu[0,1)+\mu[1,2)=1$.
And in the case of a singleton $\{a\}$ the best possible cover is always either $[0,1)$ or $[1,2)$ so that $\mu^{*}(\{a\})=\frac{1}{2}$ for all a.
(ii) Assume that $(0,1) \in \mathcal{A}^{*}$. Since $\mathcal{A} \subset \mathcal{A}^{*}$, we have $[0,1) \in \mathcal{A}^{*}$, hence $\{0\}=[0,1) \backslash(0,1) \in \mathcal{A}^{*}$. Since $\mu^{*}(0,1)=\mu^{*}(\{0\})=\frac{1}{2}$, and since μ^{*} is a measure on \mathcal{A}^{*} (cf. step 4 in the proof of Theorem 6.1), we get

$$
\frac{1}{2}=\mu[0,1)=\mu^{*}[0,1)+\mu^{*}(0,1)+\mu^{*}\{0\}=\frac{1}{2}+\frac{1}{2}=1
$$

leading to a contradiction. Thus neither $(0,1)$ nor $\{0\}$ are elements of \mathcal{A}^{*}.

Problem 6.11 Since $\mathcal{A} \subset \mathcal{A}^{*}$, the only interesting sets (to which one could extend μ) are those $B \subset \mathbb{R}$ where both B and B^{c} are uncountable. By definition,

$$
\gamma^{*}(B)=\inf \left\{\sum_{j} \gamma\left(A_{j}\right): A_{j} \in \mathcal{A}, \bigcup_{j} A_{j} \supset B\right\} .
$$

The infimum is obviously attained for $A_{j}=\mathbb{R}$, so that $\gamma^{*}(B)=$ $\gamma^{*}\left(B^{c}\right)=1$. On the other hand, since γ^{*} is necessarily additive on \mathcal{A}^{*}, the assumption that $B \in \mathcal{A}^{*}$ leads to a contradiction:

$$
1=\gamma(\mathbb{R})=\gamma^{*}(\mathbb{R})=\gamma^{*}(B)+\gamma^{*}\left(B^{c}\right)=2
$$

Thus, $\mathcal{A}=\mathcal{A}^{*}$.

