
5 Uniqueness of measures.

Solutions to Problems 5.1–5.10

Problem 5.1 Since X ∈ D and since complements are again in D, we have
∅ = Xc ∈ D.

If A,B ∈ D are disjoint, we set A1 := A,A2 := B,Aj := ∅ ∀j > 3.
Then (Aj)j∈N ⊂ D is a sequence of pairwise disjoint sets, and by (∆3)
we find that

A ·∪B = ·⋃

j∈N
Aj ∈ D.

Since (Σ1) = (∆3), (Σ2) = (∆2) and since (Σ3) =⇒ (∆3), it is clear
that every σ-algebra is also a Dynkin system; that the converse is, in
general, wrong is seen in Problem 5.2.

Problem 5.2 Consider (∆3) only, as the other two conditions coincide:
(Σj) = (∆j), j = 1, 2. We show that (Σ3) breaks down even for fi-
nite unions. If A,B ∈ D are disjoint, it is clear that A,B and also
A ·∪B contain an even number of elements. But if A,B have non-void
intersection, and if this intersection contains an odd number of ele-
ments, then A ∪ B contains an odd number of elements. Here is a
trivial example:

A = {1, 2} ∈ D, B = {2, 3, 4, 5} ∈ D,

whereas

A ∪B = {1, 2, 3, 4, 5} 6∈ D.

This means that (∆3) holds, but (Σ3) fails.

Problem 5.3 Mind the misprint: A ⊂ B must be assumed and is missing
in the statement of the problem! We verify the hint first. Using de
Morgan’s laws we get

R\Q = R\ (R∩Q) = R∩ (R∩Q)c = (Rc∪ (R∩Q))c = (Rc ·∪(R∩Q))c

where the last equality follows since Rc ∩ (R ∩Q) = ∅.
Now we take A,B ∈ D such that A ⊂ B. In particular A ∩ B = A.
Taking this into account and setting Q = A,R = B we get from the
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2 Schilling: Measures, Integrals & Martingales

above relation

B \ A =
(
Bc︸︷︷︸
∈D

·∪A
︸ ︷︷ ︸
∈D

)c ∈ D

where we repeatedly use (∆2) and (∆2).

Problem 5.4 (i) Since the σ-algebra A is also a Dynkin system, it is
enough to prove δ(D) = D for any Dynkin system D. By def-
inition, δ(D) is the smallest Dynkin system containing D, thus
D ⊂ δ(D). On the other hand, D is itself a Dynkin system, thus,
because of minimality, D ⊃ δ(D).

(ii) Clearly, G ⊂ H ⊂ δ(H). Since δ(H) is a Dynkin system containing
G, the minimality of δ(G) implies that δ(G) ⊂ δ(H).

(iii) Since σ(G) is a σ-algebra, it is also a Dynkin system. Since G ⊂
σ(G) we conclude (again, by minimality) that δ(G) ⊂ σ(G).

Problem 5.5 Clearly, δ({A,B}) ⊂ σ({A,B}) is always true.

By Theorem 5.5, δ({A,B}) = σ({A,B}) if {A,B} is ∩-stable, i.e. if
A = B or A = Bc or if at least one of A,B is X or ∅.
Let us exclude these cases. If A ∩B = ∅, then

δ({A,B}) = σ({A,B}) =
{∅, A,Ac, B,Bc, A ·∪B,Ac ∩Bc, X

}
.

If A ∩B 6= ∅, then

δ({A,B}) =
{∅, A,Ac, B,Bc, X}

while σ({A,B}) is much larger containing, for example, A ∩B.

Problem 5.6 We prove the hint first. Let (Gj)j∈N ⊂ G as stated in the
problem, i.e. satisfying (1) and (2), and define the sets FN := G1∪ . . .∪
GN . As G ⊂ A, it is clear that FN ∈ A (but not necessarily in G...).
Moreover, it is clear that FN ↑ X.

We begin with a more general assertion: For any finite union of G-sets
A1 ∪ . . . ∪ AN we have µ(A1 ∪ . . . ∪ AN) = ν(A1 ∪ . . . ∪ AN).

Proof. Induction Hypothesis: µ(A1 ∪ . . .∪AN) = ν(A1 ∪ . . .∪AN) for
some N ∈ N and any choice of A1, . . . , AN ∈ G.

Induction Start (N = 1): is obvious.
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Induction Step N  N + 1: We have by the strong additivity of
measures and the ∩-stability of G that

µ
(
A1 ∪ . . . ∪ AN ∪ AN+1

)

= µ
(
(A1 ∪ . . . ∪ AN) ∪ AN+1

)

= µ
(
A1 ∪ . . . ∪ AN

)
+ µ(AN+1)− µ((A1 ∪ . . . ∪ AN) ∩ AN+1

)

= µ
(
A1 ∪ . . . ∪ AN

)
+ µ(AN+1)− µ((A1 ∩ AN+1︸ ︷︷ ︸

∈G

) ∪ . . . ∪ (AN ∩ AN+1︸ ︷︷ ︸
∈G

)
)

= ν
(
A1 ∪ . . . ∪ AN

)
+ ν(AN+1)− ν((A1 ∩ AN+1) ∪ . . . ∪ (AN ∩ AN+1)

)
...

= ν
(
A1 ∪ . . . ∪ AN ∪ AN+1

)

where we used the induction hypothesis twice, namely for the union of
the N G-sets A1, . . . , AN as well as for the N G-sets A1∩AN+1, . . . , AN∩
AN+1. The induction is complete.

In particular we see that µ(FN) = ν(FN), ν(FN) 6 ν(G1) + . . . +
ν(GN) <∞ by subadditivity, and that (think!) µ(G∩FN) = ν(G∩FN)
for any G ∈ G (just work out the intersection, similar to the step in the
induction....). This shows that on the ∩-stable system

G̃ := {all finite unions of sets in G}

µ and ν coincide. Moreover, G ⊂ G̃ ⊂ A so that, by assumption
A = σ(G) ⊂ σ(G̃) ⊂ σ(A) ⊂ A, so that equality prevails in this chain
of inclusions. This means that G̃ is a generator of A satisfying all the
assumptions of Theorem 5.7, and we have reduced everything to this
situation.

Problem 5.7 Intuition: in two dimensions we have rectangles. Take I, I ′ ∈
J. Call the lower left corner of I a = (a1, a2), the upper right corner
b = (b1, b2), and do the same for I ′ using a′, b′. This defines a rectangle
uniquely. We are done, if I ∩ I ′ = ∅. If not (draw a picture!) then we
get an overlap which can be described by taking the right-and-upper-
most of the two lower left corners a, a′ and the left-and-lower-most of
the two upper right corners b, b′. That does the trick.

Now rigorously: since I, I ′ ∈ J, we have for suitable aj, bj, a
′
j, b
′
j’s:

I =
n×
j=1

[
aj, bj

)
and I ′ =

n×
j=1

[
a′j, b

′
j

)
.
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We want to find I ∩ I ′, or, equivalently the condition under which
x ∈ I ∩ I ′. Now

x = (x1, . . . , xn) ∈ I ⇐⇒ xj ∈ [aj, bj) ∀j = 1, 2, . . . , n

⇐⇒ aj 6 xj < bj ∀j = 1, 2, . . . , n

and the same holds for x ∈ I ′ (same x, but I ′—no typo). Clearly
aj 6 xj < bj, and, at the same time a′j 6 xj < b′j holds exactly if

max(aj, a
′
j) 6 xj < min(bj, b

′
j) ∀j = 1, 2, . . . , n

⇐⇒ x ∈ n×
j=1

[
max(aj, a

′
j),min(bj, b

′
j)
)
.

This shows that I ∩ I ′ is indeed a ‘rectangle’, i.e. in J. This could be
an empty set (which happens if I and I ′ do not meet).

Problem 5.8 First we must make sure that t · B is a Borel set if B ∈ B.
We consider first rectangles I = [[a, b)) ∈ J where a, b ∈ Rn. Clearly,
t · I = [[ta, tb)) where ta, tb are just the scaled vectors. So, scaled
rectangles are again rectangles, and therefore Borel sets. Now fix t > 0
and set

Bt := {B ∈ Bn : t ·B ∈ Bn}.
It is not hard to see that Bt is itself a σ-algebra and that J ⊂ Bt ⊂ Bn.
But then we get

Bn = σ(J) ⊂ σ(Bt) = Bt ⊂ Bn,

showing that Bt = Bn, i.e. scaled Borel sets are again Borel sets.

Now define a new measure µ(B) := λn(t · B) for Borel sets B ∈ Bn

(which is, because of the above, well-defined). For rectangles [[a, b)) we
get, in particular,

µ[[a, b)) = λn
(
(t · [[a, b))) = λn[[ta, tb))

=
n∏
j=1

(
(tbj)− (taj)

)

=
n∏
j=1

t · (bj − aj
)

= tn ·
n∏
j=1

(
bj − aj

)
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= tnλn[[a, b))

which shows that µ and tnλn coincide on the ∩-stable generator J of Bn,
hence they’re the same everywhere. (Mind the small gap: we should
make the mental step that for any measure ν a positive multiple, say,
c · ν, is again a measure—this ensures that tnλn is a measure, and
we need this in order to apply Theorem 5.7. Mind also that we need
that µ is finite on all rectangles (obvious!) and that we find rectangles
increasing to Rn, e.g. [−k, k)× . . .× [−k, k) as in the proof of Theorem
5.8(ii).)

Problem 5.9 Define ν(A) := µ ◦ θ−1(A). Obviously, ν is again a finite
measure. Moreover, since θ−1(X) = X, we have

µ(X) = ν(X) <∞ and, by assumption, µ(G) = ν(G) ∀G ∈ G.

Thus, µ = ν on G′ := G ∪ {X}. Since G′ is a ∩-stable generator of A

containing the (trivial) exhausting sequence X,X,X, . . ., the assertion
follows from the uniqueness theorem for measures, Theorem 5.7.

Problem 5.10 The necessity of the condition is trivial since G ⊂ σ(G) = B,
resp., H ⊂ σ(H) = C.

Fix H ∈ H and define

µ(B) := P (B ∩H) and ν(B) := P (B)P (H).

Obviously, µ and ν are finite measures on B having mass P (H) such
that µ and ν coincide on the ∩-stable generator G ∪ {X} of B. Note
that this generator contains the exhausting sequence X,X,X, . . .. By
the uniqueness theorem for measures, Theorem 5.7, we conclude

µ = ν on the whole of B.

Now fix B ∈ B and define

ρ(C) := P (B ∩ C) and τ(C) := P (B)P (C).

Then the same argument as before shows that ρ = σ on C and, since
B ∈ B was arbitrary, the claim follows.



6 Existence of measures.

Solutions to Problems 6.1–6.11

Problem 6.1 We know already that B[0,∞) is a σ-algebra (it is a trace
σ-algebra) and, by definition,

Σ =
{
B ∪ (−B) : B ∈ B[0,∞)

}

if we write −B := {−b : b ∈ B[0,∞)}.
Since the structure B ∪ (−B) is stable under complementation and
countable unions it is clear that Σ is indeed a σ-algebra.

One possibility to extend µ defined on Σ would be to take B ∈ B(R)
and define B+ := B ∩ [0,∞) and B− := B ∩ (−∞, 0) and to set

ν(B) := µ(B+ ∪ (−B+)) + µ((−B−) ∪B−)

which is obviously a measure. We cannot expect uniqueness of this
extension since Σ does not generate B(R)—not all Borel sets are sym-
metric.

Problem 6.2 By definition we have

µ∗(Q) = inf

{∑
j

µ(Bj) : (Bj)j∈N ⊂ A, ∪
j∈N

Bj ⊃ Q

}
.

(i) Assume first that µ∗(Q) < ∞. By the definition of the infimum
we find for every ε > 0 a sequence (Bε

j)j∈N ⊂ A such that Bε :=⋃
j B

ε
j ⊃ Q and, because of σ-subadditivity,

µ(Bε)− µ∗(Q) 6
∑
j

µ(Bε
j)− µ∗(Q) 6 ε.

Set B :=
⋂
k B

1/k ∈ A. Then B ⊃ Q and µ(B) = µ∗(B) = µ∗(Q).

By the very definition of A∗ and since B ∈ A ⊂ A∗ we get

µ∗(Q)
(6.4)
= µ∗(B ∩Q) + µ∗(B \Q) = µ(B) + µ∗(B \Q)

so that µ∗(B \Q) = 0. Since (the outer measure) µ∗ is monotone,
we conclude that for all A-measurable sets N ⊂ A \ Q we have
µ(N) = µ∗(N) 6 µ∗(B \Q) = 0.

6
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If µ∗(Q) =∞, we take the exhausting sequence (Aj)j∈N ⊂ A with
Aj ↑ X and µ(Aj) <∞ and set Qj := Aj ∩Q for every j ∈ N. By
the first part we can find sets Cj ∈ A with µ(Cj) = µ∗(Qj) and
µ∗(Cj \Qj) = 0. Then

C :=
⋃
j

Cj ⊃
⋃
j

Qj = Q, µ(C) =∞ = µ∗(Q)

and, using (the hint of) Problem 4.9, and the monotonicity and
σ-subadditivity of µ∗:

⋃
j

Cj

∖⋃
j

Qj ⊂
⋃
j

Cj \Qj

and

µ∗
(⋃

j

Cj

∖⋃
j

Qj

)
6 µ∗

(⋃
j

Cj\Qj

)
6
∑
j

µ∗
(⋃

j

Cj\Qj

)
= 0.

(ii) Define µ̄ := µ∗
∣∣
A∗ . We know from Theorem 6.1 that µ̄ is a measure

on A∗ and, because of the monotonicity of µ∗, we know that for
all N∗ ∈ A∗ with µ̄(N∗) we have

∀M ⊂ N∗ : µ∗(M) 6 µ∗(N∗) = µ̄(N∗) = 0.

It remains to show that M ∈ A∗. Because of (6.4) we have to
show that

∀Q ⊂ X : µ∗(Q) = µ∗(Q ∩M) + µ(Q \M).

Since µ∗ is subadditive we find for all Q ⊂ X

µ∗(Q) = µ∗
(
(Q ∩M) ∪ (Q \M)

)

6 µ∗(Q ∩M) + µ∗(Q \M)

= µ∗(Q \M)

6 µ∗(Q),

which means that M ∈ A∗.

(iii) Obviously, (X,A∗, µ̄) extends (X,A, µ) since A ⊂ A∗ and µ̄
∣∣
A

=
µ. In view of Problem 4.13 we have to show that

A∗ = {A ∪N : A ∈ A, N ∈ N} (∗)
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with N = {N ⊂ X : N is subset of an A-measurable null set or,
alternatively,

A∗ = {A∗ ⊂ X : ∃A,B ∈ A, A ⊂ A∗ ⊂ B, µ(B \A) = 0}. (∗∗)
We are going to use both equalities and show ‘⊃’ in (∗) and ‘⊂’ in
(∗∗) (which is enough since, cf. Problem 4.13 asserts the equality
of the right-hand sides of (∗), (∗∗)!).
‘⊃’: By part (ii), subsets of A-null sets are in A∗ so that every set
of the form A∪N with A ∈ A and N being a subset of an A null
set is in A∗.

‘⊂’: By part (i) we find for every A∗ ∈ A∗ some A ∈ A such that
A ⊃ A∗ and A \ A∗ is an A∗ null set. By the same argument we
get B ∈ A, B ⊃ (A∗)c and B \ (A∗)c = B ∩A∗ = A∗ \Bc is an A∗

null set. Thus,
Bc ⊂ A∗ ⊂ A

and

A \Bc ⊂ (A \ A∗) ∪ (A∗ \Bc
)

=
(
A \ A∗) ∪ (B \ (A∗)c

)

which is the union of two A∗ null sets, i.e. A \Bc is an A null set.

Problem 6.3 (i) A little geometry first: a solid, open disk of radius r,
centre 0 is the set Br(0) := {(x, y) ∈ R2 : x2 + y2 < r2}. Now the
n-dimensional analogue is clearly {x ∈ Rn : x2

1+x2
2+. . .+x2

n < r2}
(including n = 1 where it reduces to an interval). We want to
inscribe a box into a ball.

Claim: Qε(0) :=
n×××
j=1

[
− ε√

n
, ε√

n

)
⊂ B2ε(0). Indeed,

x ∈ Qε(0) =⇒ x2
1 + x2

2 + . . .+ x2
n 6

ε2

n
+
ε2

n
+ . . .+

ε2

n
< (2ε)2

=⇒ x ∈ B2ε(0),

and the claim follows.

Observe that λn(Qε(0)) =
∏n

j=1
2ε√
n
> 0. Now take some open set

U . By translating it we can achieve that 0 ∈ U and, as we know,
this movement does not affect λn(U). As 0 ∈ U we find some
ε > 0 such that Bε(0) ⊂ U , hence

λn(U) > λn(Bε(0)) > λ(Qε(0)) > 0.
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(ii) For closed sets this is, in general, wrong. Trivial counterexample:
the singleton {0} is closed, it is Borel (take a countable sequence
of nested rectangles, centered at 0 and going down to {0}) and
the Lebesgue measure is zero.

To get strictly positive Lebesgue measure, one possibility is to have
interior points, i.e. closed sets which have non-empty interior do
have positive Lebesgue measure.

Problem 6.4 (i) Without loss of generality we can assume that a < b.
We have [a + 1

k
, b) ↑ (a, b) as k → ∞. Thus, by the continuity of

measures, Theorem 4.4, we find (write λ = λ1, for short)

λ(a, b) = lim
k→∞

λ

[
a+

1

k
, b

)
= lim

k→∞

(
b− a− 1

k

)
= b− a.

Since λ[a, b) = b− a, too, this proves again that

λ({a}) = λ([a, b) \ (a, b)) = λ[a, b)− λ(a, b) = 0.

(ii) The hint says it all: H is contained in the union
⋃
k∈NAk and

we have λ2(Ak) = (2ε 2−k) · (2k) = 4 · ε · k2−k. Using the σ-sub-
additivity and monotonicity of measures (the Ak’s are clearly not
disjoint) we get

0 6 λ2(H) 6 λ2

(
∞∪
k=1

Ak

)
6

∞∑

k=1

λ(Ak) =
∞∑

k=1

4 · ε · k2−k = Cε

where C is the finite (!) constant 4
∑∞

k=1 k2−k (check conver-
gence!). As ε was arbitrary, we can let it → 0 and the claim
follows.

(iii) n-dimensional version of (i): We have I =
n×××
j=1

(aj, bj). Set Ik :=

n×××
j=1

[aj + 1
k
, bj). Then Ik ↑ I as k →∞ and we have (write λ = λn,

for short)

λ(I) = lim
k→∞

λ(Ik) = lim
k→∞

n∏
j=1

(
bj − aj − 1

k

)
=

n∏
j=1

(bj − aj) .

n-dimensional version of (ii): The changes are obvious: Ak =
[−ε2−k, ε2−k)× [−k, k)n−1 and λn(Ak) = 2n · ε ·2−k ·kn−1. The rest
stays as before, since the sum

∑∞
k=1 k

n−12−k still converges to a
finite value.
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Problem 6.5 (i) All we have to show is that λ1({x}) = 0 for any x ∈ R.
But this has been shown already in problem 6.3(i).

(ii) Take the Dirac measure: δ0. Then {0} is an atom as δ0({0}) = 1.

(iii) Let C be countable and let {c1, c2, c3, . . .} be an enumeration
(could be finite, if C is finite). Since singletons are in A, so is
C as a countable union of the sets {cj}. Using the σ-additivity of
a measure we get

µ(C) = µ(∪j∈N{cj}) =
∑

j∈N
µ({cj}) =

∑

j∈N
0 = 0.

(iv) If y1, y2, . . . , yN are atoms of mass P ({yj}) > 1
k

we find by the
additivity and monotonicity of measures

N

k
6

N∑
j=1

P ({xj})

= P

(
N∪
j=1
{yj}

)

= P ({y1, . . . , yN}) 6 P (R) = 1

so N
k
6 1, i.e. N 6 k, and the claim in the hint (about the maximal

number of atoms of given size) is shown.

Now denote, as in the hint, the atoms with measure of size [ 1
k
, 1
k−1

)

by y
(k)
1 , . . . y

(k)
N(k) where N(k) 6 k is their number. Since

⋃

k∈N

[
1
k
, 1
k−1

)
= (0,∞)

we exhaust all possible sizes for atoms.

There are at most countably many (actually: finitely many) atoms
in each size range. Since the number of size ranges is countable
and since countably many countable sets make up a countable set,
we can relabel the atoms as x1, x2, x3, . . . (could be finite) and, as
we have seen in exercise 4.6(ii), the set-function

ν :=
∑
j

P ({xj}) · δxj

(no matter whether the sum is over a finite or countably infinite
set of j’s) is indeed a measure on R. But more is true: for any
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Borel set A

ν(A) =
∑
j

P ({xj}) · δxj(A)

=
∑

j : xj∈A
P ({xj})

= P (A ∩ {x1, x2, . . .}) 6 P (A)

showing that µ(A) := P (A)− ν(A) is a positive number for each
Borel set A ∈ B. This means that µ : B → [0,∞]. Let us check
M1 and M2. Using M1,M2 for P and ν (for them they are clear,
as P, ν are measures!) we get

µ(∅) = P (∅)− ν(∅) = 0− 0 = 0

and for a disjoint sequence (Aj)j∈N ⊂ B we have

µ

(⋃
j

Aj

)
= P

(⋃
j

Aj

)
− ν
(⋃

j

Aj

)

=
∑
j

P (Aj)−
∑
j

ν(Aj)

=
∑
j

(
P (Aj)− ν(Aj)

)

=
∑
j

µ(Aj)

which is M2 for µ.

Problem 6.6 (i) Fix a sequence of numbers εk > 0, k ∈ N0 such that∑
k∈N0

εk < ∞. For example we could take a geometric series

with general term εk := 2−k. Now define open intervals Ik :=
(k− εk, k+ εk), k ∈ N0 (these are open sets!) and call their union
I :=

⋃
k∈N0

Ik. As countable union of open sets I is again open.
Using the σ-(sub-)additivity of λ = λ1 we find

λ(I) = λ

( ⋃

k∈N0

Ik

)
(∗)
6
∑

k∈N0

λ(Ik) =
∑

k∈N0

2εk = 2
∑

k∈N0

εk <∞.

By 6.4(i), λ(I) > 0.

Note that in step (∗) equality holds (i.e. we would use σ-additivity
rather than σ-subadditivity) if the Ik are pairwise disjoint. This
happens, if all εk <

1
2

(think!), but to be on the safe side and in or-
der not to have to worry about such details we use sub-additivity.
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(ii) Take the open interior of the sets Ak, k ∈ N, from the hint to
6.4(ii). That is, take the open rectangles Bk := (−2−k, 2−k) ×
(−k, k), k ∈ N, (we choose ε = 1 since we are after finiteness and
not necessarily smallness). That these are open sets will be seen
below. Now set B =

⋃
k∈NBk and observe that the union of open

sets is always open. B is also unbounded and it is geometrically
clear that B is connected as it is some kind of lozenge-shaped
‘staircase’ (draw a picture!) around the y-axis. Finally, by σ-
subadditivity and using 6.4(ii) we get

λ2(B) = λ2

( ⋃

k∈N
Bk

)
6
∑

k∈N
λ2(Bk)

=
∑

k∈N
2 · 2−k · 2 · k

= 4
∑

k∈N
k · 2−k <∞.

It remains to check that an open rectangle is an open set. For this
take any open rectangle R = (a, b) × (c, d) and pick (x, y) ∈ R.
Then we know that a < x < b and c < y < d and since we have
strict inequalities, we have that the smallest distance of this point
to any of the four boundaries (draw a picture!) h := min{|a −
x|, |b− x|, |c− y|, |d− y|} > 0. This means that a square around
(x, y) with side-length 2h is inside R and what we’re going to do
is to inscribe into this virtual square an open disk with radius h
and centre (x, y). Since the circle is again in R, we are done. The
equation for this disk is

(x′, y′) ∈ Bh(x, y) ⇐⇒ (x− x′)2 + (y − y′)2 < h2

Thus,

|x′ − x| 6
√
|x− x′|2 + |y − y′|2 < h

and |y′ − y| 6
√
|x− x′|2 + |y − y′|2 < h

i.e. x − h < x′ < x + h and y − h < y′ < y + h or (x′, y′) ∈
(x− h, x+ h)× (y − h, y + h), which means that (x′, y′) is in the
rectangle of sidelength 2h centered at (x, y). since (x′, y′) was an
arbitrary point of Bh(x, y), we are done.

(iii) No, this is impossible. Since we are in one dimension, connect-
edness forces us to go between points in a straight, uninterrupted
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line. Since the set is unbounded, this means that we must have
a line of the sort (a,∞) or (−∞, b) in our set and in both cases
Lebesgue measure is infinite. In all dimensions n > 1, see part
(ii) for two dimensions, we can, however, construct connected,
unbounded open sets with finite Lebesgue measure.

Problem 6.7 Fix ε > 0 and let {qj}j∈N be an enumeration of Q ∩ [0, 1].
Then

U := Uε :=
⋃

j∈N

(
qj − ε2−j−1, qj − ε2−j−1

) ∩ [0, 1]

is a dense open set in [0, 1] and, because of σ-subadditivity,

λ(U) 6
∑

j∈N
λ
(
qj − ε2−j−1, qj − ε2−j−1

)
=
∑

j∈N

ε

2j
= ε.

Problem 6.8 Assume first that for every ε > 0 there is some open set
Uε ⊃ N such that λ(Uε) 6 ε. Then

λ(N) 6 λ(Uε) 6 ε ∀ε > 0,

which means that λ(N) = 0.

Conversely, let λ∗(N) = inf
{∑

j λ(Uj) : Uj ∈ O, ∪j∈N Uj ⊃ N
}

.

Since for the Borel set N we have λ∗(N) = λ(N) = 0, the definition
of the infimum guarantees that for every ε > 0 there is a sequence of
open sets (U ε

j )j∈N covering N , i.e. such that U ε :=
⋃
j U

ε
j ⊃ N . Since

U ε is again open we find because of σ-subadditivity

λ(N) 6 λ(U ε) = λ

(⋃
j

U ε
j

)
6
∑
j

λ(U ε
j ) 6 ε.

Attention: A construction along the lines of Problem 3.12, hint to part
(ii), using open sets U δ := N +Bδ(0) is, in general not successful:

• it is not clear that U δ has finite Lebesgue measure (o.k. one can
overcome this by considering N ∩ [−k, k] and then letting k →
∞...)

• U δ ↓ N̄ and not N (unless N is closed, of course). If, say, N is a
dense set of [0, 1], this approach leads nowhere.
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Problem 6.9 Observe that the sets Ck :=
⋃∞
j=k Aj, k ∈ N, decrease as

k →∞—we admit less and less sets in the union, i.e. the union becomes
smaller. Since P is a probability measure, P (Ck) 6 1 and therefore
Theorem 4.4(iii’) applies and shows that

P

( ∞⋂
k=1

∞⋃
j=k

Aj

)
= P

( ∞⋂
k=1

Ck

)
= lim

k→∞
P (Ck).

On the other hand, we can use σ-subadditivity of the measure P to get

P (Ck) = P

( ∞⋃
j=k

Aj

)
6
∑∞

j=k P (Aj)

but this is the tail of the convergent (!) sum
∑∞

j=1 P (Aj) and, as such,
it goes to zero as k →∞. Putting these bits together, we see

P

( ∞⋂
k=1

∞⋃
j=k

Aj

)
= lim

k→∞
P (Ck) 6 lim

k→∞

∞∑

j=k

P (Aj) = 0,

and the claim follows.

Problem 6.10 (i) We can work out the ‘optimal’ A-cover of (a, b):

Case 1: a, b ∈ [0, 1). Then [0, 1) is the best possible cover of (a, b),
thus µ∗(a, b) = µ[0, 1) = 1

2
.

Case 2: a, b ∈ [1, 2). Then [1, 2) is the best possible cover of (a, b),
thus µ∗(a, b) = µ[1, 2) = 1

2
.

Case 3: a ∈ [0, 1), b ∈ [1, 2). Then [0, 1) ·∪[1, 2) is the best possible
cover of (a, b), thus µ∗(a, b) = µ[0, 1) + µ[1, 2) = 1.

And in the case of a singleton {a} the best possible cover is always
either [0, 1) or [1, 2) so that µ∗({a}) = 1

2
for all a.

(ii) Assume that (0, 1) ∈ A∗. Since A ⊂ A∗, we have [0, 1) ∈ A∗,
hence {0} = [0, 1) \ (0, 1) ∈ A∗. Since µ∗(0, 1) = µ∗({0}) = 1

2
, and

since µ∗ is a measure on A∗ (cf. step 4 in the proof of Theorem
6.1), we get

1

2
= µ[0, 1) = µ∗[0, 1) + µ∗(0, 1) + µ∗{0} =

1

2
+

1

2
= 1

leading to a contradiction. Thus neither (0, 1) nor {0} are elements
of A∗.
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Problem 6.11 Since A ⊂ A∗, the only interesting sets (to which one could
extend µ) are those B ⊂ R where both B and Bc are uncountable. By
definition,

γ∗(B) = inf
{∑

j

γ(Aj) : Aj ∈ A,
⋃
j

Aj ⊃ B
}
.

The infimum is obviously attained for Aj = R, so that γ∗(B) =
γ∗(Bc) = 1. On the other hand, since γ∗ is necessarily additive on
A∗, the assumption that B ∈ A∗ leads to a contradiction:

1 = γ(R) = γ∗(R) = γ∗(B) + γ∗(Bc) = 2.

Thus, A = A∗.


