
9 Integration of positive functions.

Solutions to Problems 9.1–9.12

Problem 9.1 We know that for any two simple functions f, g ∈ E+ we have
Iµ(f + g) = Iµ(f) + Iµ(g) (=additivity), and this is easily extended to
finitely many, say, m different positive simple functions. Observe now
that each ξj1Aj is a positive simple function, hence

Iµ

(
m∑
j=1

ξj1Aj

)
=

m∑
j=1

Iµ
(
ξj1Aj

)
=

m∑
j=1

ξjIµ
(
1Aj
)

=
m∑
j=1

ξjµ (Aj) .

Put in other words: we have used the linearity of Iµ.

Problem 9.2 We check Properties 9.8(i)–(iv).

(i) This follows from Properties 9.3 and Lemme 9.5 since
∫

1A dµ =
Iµ(1A) = µ(A).

(ii) This follows again from Properties 9.3 and Corollary 9.7 since for
un ∈ E+ with u = supn un (note: the sup’s are increasing limits!)
we have ∫

αu dµ =

∫
α sup

n
un dµ = sup

n
Iµ(αun)

= sup
n
αIµ(un)

= α sup
n
Iµ(un)

= α

∫
u dµ.

(iii) This follows again from Properties 9.3 and Corollary 9.7 since for
un, vn ∈ E+ with u = supn un, v = supn vn (note: the sup’s are
increasing limits!) we have
∫

(u+ v) dµ =

∫
lim
n→∞

(un + vn) dµ = lim
n→∞

Iµ(un + vn)

= lim
n→∞

(Iµ(un) + Iµ(vn))

= lim
n→∞

Iµ(un) + lim
n→∞

Iµ(vn)

=

∫
u dµ+

∫
v dµ.

1
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(iv) This was shown in step 1 of the proof of the Beppo Levi theorem
9.6

Problem 9.3 Consider on the space ([−1, 0], λ), λ(dx) = dx is Lebesgue
measure on [0, 1], the sequence of ‘tent-type’ functions

fk(x) =

{
0, −1 6 x 6 − 1

k
,

k3
(
x+ 1

k
), − 1

k
6 x 6 0,

(k ∈ N),

(draw a picture!). These are clearly monotonically increasing functions
but, as a sequence, we do not have fk(x) 6 fk+1(x) for every x! Note
also that each function is integrable (with integral 1

2
k) but the pointwise

limit is not integrable.

Problem 9.4 Following the hint we set sm = u1 + u2 + . . . + um. As a
finite sum of positive measurable functions this is again positive and
measurable. Moreover, sm increases to s =

∑∞
j=1 uj as m→∞. Using

the additivity of the integral (9.8 (iii)) and the Beppo Levi theorem 9.6
we get

∫ ∞∑
j=1

uj dµ =

∫
sup
m
sm dµ = sup

m

∫
sm dµ

= sup
m

∫
(u1 + . . .+ um) dµ

= sup
m

m∑
j=1

∫
uj dµ

=
∞∑
j=1

∫
uj dµ.

Conversely, assume that 9.9 is true. We want to deduce from it the
validity of Beppo Levi’s theorem 9.6. So let (wj)j∈N be an increasing
sequence of measurable functions with limit w = supj w. For ease of
notation we set w0 ≡ 0. Then we can write each wj as a partial sum

wj = (wj − wj−1) + · · ·+ (w1 − w0)

of positive measurable summands of the form uk := wk − wk−1. Thus,

wm =
m∑

k=1

uk and w =
∞∑

k=1

uk
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and, using the additivity of the integral,

∫
w dµ

9.9
=

∞∑

k=1

∫
uk dµ = sup

m

∫ m∑

k=1

uk dµ = sup
m

∫
wm dµ.

Problem 9.5 Set ν(A) :=
∫

1Au dµ. Then ν is a [0,∞]-valued set-function
defined for A ∈ A.

(M1) Since 1∅ ≡ 0 we have clearly ν(∅) =
∫

0 · u dµ = 0.

(M1) Let A = ·⋃j∈NAj a disjoint union of sets Aj ∈ A. Then

∞∑
j=1

1Aj = 1A

and we get from Corollary 9.9

ν(A) =

∫ ( ∞∑
j=1

1Aj

)
· u dµ =

∫ ∞∑
j=1

(
1Aj · u

)
dµ

=
∞∑
j=1

∫
1Aj · u dµ

=
∞∑
j=1

ν(Aj).

Problem 9.6 This is actually trivial: since our σ-algebra is P(N), all subsets
of N are measurable. Now the sub-level sets {u 6 α} = {k ∈ N :
u(k) 6 α} are always ⊂ N and as such they are ∈ P(N), hence u is
always measurable.

Problem 9.7 We have seen in Problem 4.6 that µ is indeed a measure. We
follow the instructions. First, for A ∈ A we get

∫
1A dµ = µ(A) =

∑

j∈N
µj(A) =

∑

j∈N

∫
1A dµj.

By the linearity of the integral, this easily extends to functions of the
form α1A + β1B where A,B ∈ A and α, β > 0:

∫
(α1A + β1B) dµ = α

∫
1A dµ+ β

∫
1B dµ
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= α
∑

j∈N

∫
1A dµj + β

∑

j∈N

∫
1B dµj

=
∑

j∈N

∫
(α1A + β1B) dµj

and this extends obviously to simple functions which are finite sums of
the above type. ∫

f dµ =
∑

j∈N

∫
f dµj ∀f ∈ E+.

Finally, take u ∈M+ and take an approximating sequence un ∈ E+ with
supn un = u. Then we get by Beppo Levi (indicated by an asterisk ∗)

∫
u dµ

∗
= sup

n

∫
un dµ = sup

n

∞∑
j=1

∫
un dµj

= sup
n

sup
m

m∑
j=1

∫
un dµj

= sup
m

sup
n

m∑
j=1

∫
un dµj

= sup
m

lim
n

m∑
j=1

∫
un dµj

= sup
m

m∑
j=1

lim
n

∫
un dµj

∗
= sup

m

m∑
j=1

∫
lim
n
un dµj

=
∞∑
j=1

∫
u dµj

where we repeatedly used that all sup’s are increasing limits and that
we may swap any two sup’s (this was the hint to the hint to Problem
4.6.)

Problem 9.8 Set wj := u − uj. Then the wj are a sequence of positive
measurable functions. By Fatou’s lemma we get∫

lim inf
j

wj dµ 6 lim inf
j

∫
wj dµ
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= lim inf
j

(∫
u dµ−

∫
uj dµ

)

=

∫
u dµ− lim sup

j

∫
uj dµ

(see, e.g. the rules for lim inf and lim sup in Appendix A). Thus,
∫
u dµ− lim sup

j

∫
uj dµ >

∫
lim inf

j
wj dµ

=

∫
lim inf

j
(u− uj) dµ

=

∫ (
u− lim sup

j
uj
)
dµ

and the claim follows by subtracting the finite value
∫
u dµ on both

sides.

Remark. The uniform domination of uj by an integrable function u is
really important. Have a look at the following situation: (R,B(R), λ),
λ(dx) = dx denotes Lebesgue measure, and consider the positive mea-
surable functions uj(x) = 1[j,2j](x). Then lim supj uj(x) = 0 but
lim supj

∫
uj dλ = lim supj j =∞ 6= ∫ 0 dλ.

Problem 9.9 (i) Have a look at Appendix A, Lemma A.2.

(ii) You have two possibilities: the set-theoretic version:

µ
(

lim inf
j

Aj
)

= µ

(⋃

k

⋂

j>k
Aj

)

∗
= sup

k
µ

(⋂

j>k
Aj

)

︸ ︷︷ ︸
6µ(Aj) ∀ j>k

hence, 6 infj>k µ(Aj)

6 sup
k

inf
j>k

µ(Aj)

= lim inf
j

µ(Aj)

which uses at the point ∗ the continuity of measures, Theorem
4.4.

The alternative would be (i) combined with Fatou’s lemma:

µ
(

lim inf
j

Aj
)

=

∫
1lim infj Aj dµ
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=

∫
lim inf

j
1Aj dµ

6 lim inf
j

∫
1Aj dµ

(iii) Again, you have two possibilities: the set-theoretic version:

µ
(

lim sup
j

Aj
)

= µ

(⋂

k

⋃

j>k
Aj

)

#
= inf

k
µ

(⋃

j>k
Aj

)

︸ ︷︷ ︸
>µ(Aj) ∀ j>k

hence, > supj>k µ(Aj)

> inf
k

sup
j>k

µ(Aj)

= lim sup
j

µ(Aj)

which uses at the point # the continuity of measures, Theorem
4.4. This step uses the finiteness of µ.

The alternative would be (i) combined with the reversed Fatou
lemma of Problem 9.8:

µ
(

lim sup
j

Aj
)

=

∫
1lim supj Aj dµ

=

∫
lim sup

j
1Aj dµ

> lim sup
j

∫
1Aj dµ

(iv) Take the example in the remark to the solution for Problem 9.8.
We will discuss it here in its set-theoretic form: take (R,B(R), λ)
with λ denoting Lebesgue measure λ(dx) = dx. Put Aj = [j, 2j] ∈
B(R). Then

lim sup
j

Aj =
⋂

k

⋃

j>k
[j, 2j] =

⋂

k

[k,∞) = ∅

But 0 = λ(∅) > lim supj λ(Aj) = lim supj j = ∞ is a contradic-
tion. (The problem is that λ[k,∞) =∞!)
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Problem 9.10 We use the fact that, because of disjointness,

1 = 1X =
∞∑
j=1

1Aj

so that, because of Corollary 9.9,

∫
u dµ =

∫ ( ∞∑
j=1

1Aj

)
· u dµ =

∫ ∞∑
j=1

(
1Aj · u

)
dµ

=
∞∑
j=1

∫
1Aj · u dµ.

Assume now that (X,A, µ) is σ-finite with an exhausting sequence of
sets (Bj)j ⊂ A such that Bj ↑ X and µ(Bj) < ∞. Then we make the
Bj’s pairwise disjoint by setting

A1 := B1, Ak := Bk \ (B1 ∪ · · · ∪Bk−1) = Bk \Bk−1.

Now take any sequence (ak)k ⊂ (0,∞) with
∑

k akµ(Ak) < ∞—e.g.
ak := 2−k/(µ(Ak) + 1)—and put

w(x) :=
∞∑
j=1

ak1Ak .

Then w is integrable and, obviously, w(x) > 0 everywhere.

Problem 9.11 (i) We check (M1), (M2). Using the fact that N(x, ·) is a
measure, we find

µN(∅) =

∫
N(x, ∅)µ(dx) =

∫
0µ(dx) = 0.

Further, let (Aj)j∈N ⊂ A be a sequence of disjoint sets and set
A = ·⋃j Aj. Then

µN(A) =

∫
N
(
x, ·
⋃

j
Aj

)
µ(dx) =

∫ ∑
j

N(x,Aj)µ(dx)

9.9
=
∑
j

∫
N(x,Aj)µ(dx)

=
∑
j

µN(Aj).
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(ii) We have for A,B ∈ A and α, β > 0,

N(α1A + β1B)(x) =

∫ (
α1A(y) + β1B(y)

)
N(x, dy)

= α

∫
1A(y)N(x, dy) + β

∫
1B(y)N(x, dy)

= αN1A(x) + βN1B(x).

Thus N(f + g)(x) = Nf(x) + Ng(x) for positive simple f, g ∈
E+(A). Moreover, since by Beppo Levi (marked by an asterisk ∗)
for an increasing sequence fk ↑ u

sup
k
Nfk(x) = sup

k

∫
fk(y)N(x, dy)

∗
=

∫
sup
k
fk(y)N(x, dy)

=

∫
u(y)N(x, dy)

= Nu(x)

and since the sup is actually an increasing limit, we see for pos-
itive measurable u, v ∈ M+(A) and the corresponding increasing
approximations via positive simple functions fk, gk:

N(u+ v)(x) = sup
k
N(fk + gk)(x)

= sup
k
Nfk(x) + sup

k
Ngk(x)

= Nu(x) +Nv(x).

Moreover, x 7→ N1A(x) = N(x,A) is a measurable function, thus
Nf(x) is a measurable function for all simple f ∈ E+(A) and,
by Beppo Levi (see above) Nu(x), u ∈ M+(A), is for every x
an increasing limit of measurable functions Nfk(x). Therefore,
Nu ∈M+(A).

(iii) If u = 1A, A ∈ A, we have
∫

1A(y)µN(dy) = µN(A) =

∫
N(x,A)µ(dx)

=

∫
N1A(x)µ(dx).

By linearity this carries over to f ∈ E+(A) and, by a Beppo-Levi
argument, to u ∈M+(A).
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Problem 9.12 Put

ν(A) :=

∫
u · 1A+

σ
dµ+

∫
(1− u) · 1A−σ dµ.

If A is symmetric w.r.t. the origin, A+ = −A− and A±σ = A. Therefore,

ν(A) =

∫
u · 1A dµ+

∫
(1− u) · 1A dµ =

∫
1A dµ = µ(A).

This means that ν extends µ. It also shows that ν(∅) = 0. Since ν
is defined for all sets from B(R) and since ν has values in [0,∞], it is
enough to check σ-additivity.

For this, let (Aj)j ⊂ B(R) be a sequence of pairwise disjoint sets. From
the definitions it is clear that the sets (Aj)

±
σ are again pairwise disjoint

and that ·⋃j(Aj)
±
σ =

( ·⋃
j Aj

)±
σ

. Since each of the set-functions

B 7→
∫
u · 1B dµ, C 7→

∫
(1− u) · 1C dµ

is σ-additive, it is clear that their sum ν will be σ-additive, too.

The obvious non-uniqueness of the extension does not contradict the
uniqueness theorem for extensions, since Σ does not generate B(R)!



10 Integrals of measurable functions and

null sets.

Solutions to Problems 10.1–10.16

Problem 10.1 Let u, v be integrable functions and a, b ∈ R. Assume that
either u, v are real-valued or that au+ bv makes sense (i.e. avoiding the
case ‘∞−∞’). Then we have

|au+ bv| 6 |au|+ |bv| = |a| · |u|+ |b| · |v| 6 K(|u|+ |v|)

with K = max{|a|, |b|}. Since the RHS is integrable (because of The-
orem 10.3 and Properties 9.8) we have that au + bv is integrable by
Theorem 10.3. So we get from Theorem 10.4 that

∫
(au+ bv) dµ =

∫
au dµ+

∫
bv dµ = a

∫
u dµ+ b

∫
v dµ

and this is what was claimed.

Problem 10.2 We follow the hint and show first that u(x) := x−1/2, 0 <
x < 1, is Lebesgue integrable. The idea here is to construct a sequence
of simple functions approximating u from below. Define

un(x) :=

{
0, if x ∈ (0, 1

n
)

u( j+1
n

), if x ∈ [ j
n
, j+1

n
), j = 1, . . . n− 1

⇐⇒ un =
n−1∑
j=1

u( j+1
n

)1� j
n
,
j+1
n

�

which is clearly a simple function. Also un 6 u and limn→∞ un(x) =
supn un(x) = u(x) for all x.

Since P (A) is just λ(A ∩ (0, 1)), the integral of un is given by

∫
un dP = IP (un) =

n−1∑
j=1

u( j+1
n

)λ[ j
n
, j+1

n
)

=
n−1∑
j=1

√
j+1
n
· 1
n

10
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6
n−1∑
j=1

1
n
6 1

and is thus finite, even uniformly in n! So, Beppo Levi’s theorem tells
us that ∫

u dP = sup
n

∫
un dP 6 sup

n
1 = 1 <∞

showing integrability.

Now u is clearly not bounded but integrable.

Problem 10.3 True, we can change an integrable function on a null set,
even by setting it to the value +∞ or −∞ on the null set. This is just
the assertion of Theorem 10.9 and its Corollaries 10.10, 10.11.

Problem 10.4 We have seen that a single point is a Lebesgue null set:
{x} ∈ B(R) for all x ∈ R and λ({x}) = 0, see e.g. Problems 4.11 and
6.4. If N is countable, we know that N = {xj : j ∈ N} = ·⋃j∈N{xj}
and by the σ-additivity of measures

λ(N) = λ

(
·⋃

j∈N
{xj}

)
=
∑

j∈N
λ ({xj}) =

∑

j∈N
0 = 0.

The Cantor set C from Problem 7.10 is, as we have seen, uncountable
but has measure λ(C) = 0. This means that there are uncountable sets
with measure zero.

In R2 and for two-dimensional Lebesgue measure λ2 the situation is
even easier: every line L in the plane has zero Lebesgue measure and
L contains certainly uncountably many points. That λ2(L) = 0 is seen
from the fact that L differs from the ordinate {(x, y) ∈ R2 : x = 0}
only by a rigid motion T which leaves Lebesgue measure invariant (see
Chapter 5) and λ2({x = 0}) = 0 as seen in Problem 6.4.

Problem 10.5 (i) Since {|u| > c} ⊂ {|u| > c} and, therefore, µ({|u| >
c}) 6 µ({|u| > c}), this follows immediately from Proposition
10.12. Alternatively, one could also mimic the proof of this Propo-
sition or use part (iii) of the present problem with φ(t) = t, t > 0.

(ii) This will follow from (iii) with φ(t) = tp, t > 0, since µ({|u| >
c}) 6 µ({|u| > c}) as {|u| > c} ⊂ {|u| > c}.

(iii) We have, since φ is increasing,

µ({|u| > c}) = µ({φ(|u|) > φ(c)})
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=

∫
1{x : φ(|u(x)|)>φ(c)}(x)µ(dx)

=

∫
φ(|u(x)|)
φ(|u(x)|) 1{x : φ(|u(x)|)>φ(c)}(x)µ(dx)

6
∫
φ(|u(x)|)
φ(c)

1{x : φ(|u(x)|)>φ(c)}(x)µ(dx)

6
∫
φ(|u(x)|)
φ(c)

µ(dx)

=
1

φ(c)

∫
φ(|u(x)|)µ(dx)

(iv) Let us set b = α
∫
u dµ. Then we follow the argument of (iii):

µ({u > b}) =

∫
1{x : u(x)>b}(x)µ(dx)

=

∫
u(x)

u(x)
1{x : u(x)>b}(x)µ(dx)

6
∫
u(x)

b
1{x : u(x)>b}(x)µ(dx)

6
∫
u

b
dµ

=
1

b

∫
u dµ

and substituting α
∫
u dµ for b shows the inequality.

(v) Using the fact that ψ is decreasing we get {|u| < c} = {ψ(|u|) >
ψ(c)}—mind the change of the inequality sign—and going through
the proof of part (iii) again we used there that φ increases only in
the first step in a similar role as we used the decrease of ψ here!
This means that the argument of (iii) is valid after this step and
we get, altogether,

µ({|u| < c}) = µ({ψ(|u|) > ψ(c)})
=

∫
1{x : ψ(|u(x)|)>ψ(c)}(x)µ(dx)

=

∫
ψ(|u(x)|)
ψ(|u(x)|) 1{x : ψ(|u(x)|)>φ(c)}(x)µ(dx)

6
∫
ψ(|u(x)|)
ψ(c)

1{x : ψ(|u(x)|)>ψ(c)}(x)µ(dx)
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6
∫
ψ(|u(x)|)
ψ(c)

µ(dx)

=
1

ψ(c)

∫
ψ(|u(x)|)µ(dx)

(vi) This follows immediately from (ii) by taking µ = P , c = α
√
V X,

u = X − EX and p = 2. Then

P (|X − EX| > αEX) 6 1

(α
√
V X)2

∫
|X − EX|2 dP

=
1

α2V X
V X =

1

α2
.

Problem 10.6 We mimic the proof of Corollary 10.13. Set N = {|u| =
∞} = {|u|p = ∞}. Then N =

⋂
k∈N{|u|p > k} and using Markov’s

inequality (MI) and the ‘continuity’ of measures, Theorem 4.4, we find

µ(N) = µ

(⋂

k∈N
{|u|p > k}

)
4.4
= lim

k→∞
µ({|u|p > k})

MI

6 lim
k→∞

1

k

∫
|u|p dµ

︸ ︷︷ ︸
<∞

= 0.

For arctan this is not any longer true for several reasons:

• ... arctan is odd and changes sign, so there could be cancelations
under the integral.

• ... even if we had no cancelations we have the problem that the
points where u(x) = ∞ are now transformed to points where
arctan(u(x)) = π

2
and we do not know how the measure µ acts

under this transformation. A simple example: Take µ to be a
measure of total finite mass (that is: µ(X) <∞), e.g. a probability
measure, and take the function u(x) which is constantly u ≡ +∞.
Then arctan(u(x)) = π

2
throughout, and we get

∫
arctanu(x)µ(dx) =

∫
π

2
dµ =

π

2

∫
dµ =

π

2
µ(X) <∞,

but u is nowhere finite!
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Problem 10.7 ‘=⇒’: since the Aj are disjoint we get the identities

1 �S
j Aj

=
∞∑

k=1

1Aj and so u · 1 �S
j Aj

=
∞∑

k=1

u · 1Aj ,

hence |u1An | = |u|1An 6 |u|1 �Sj Aj = |u1 �S
j Aj
| showing the integrability

of each u1An by Theorem 10.3. By a Beppo Levi argument (Theorem
9.6) or, directly, by Corollary 9.9 we get

∞∑
j=1

∫

Aj

|u| dµ =
∞∑
j=1

∫
|u|1Aj dµ =

∫ ∞∑
j=1

|u|1Aj dµ

=

∫
|u|1 �S

j Aj
dµ < ∞.

The converse direction ‘⇐=’ follows again from Corollary 9.9, now just
the other way round:

∫
|u|1 �S

j Aj
dµ =

∫ ∞∑
j=1

|u|1Aj dµ =
∞∑
j=1

∫
|u|1Aj dµ

=
∞∑
j=1

∫

Aj

|u| dµ < ∞

showing that u1 �S
j Aj

is integrable.

Problem 10.8 One possibility to solve the problem is to follow the hint.
We go here a different (shorter) direction.

(i) Observe that uj − v > 0 is a sequence of positive and integrable
functions. Applying Fatou’s lemma (in the usual form) yields
(observing the rules for lim inf, lim sup from Appendix A, compare
also Problem 9.8):

∫
lim inf

j
uj dµ−

∫
v dµ =

∫
lim inf

j
(uj − v) dµ

6 lim inf
j

∫
(uj − v) dµ

= lim inf
j

∫
uj dµ−

∫
v dµ

and the claim follows upon subtraction of the finite (!) number∫
v dµ.
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(ii) Very similar to (i) by applying Fatou’s lemma to the positive,
integrable functions w − uj > 0:

∫
w dµ−

∫
lim sup

j
uj dµ =

∫
lim inf

j
(w − uj) dµ

6 lim inf
j

∫
(w − uj) dµ

=

∫
w dµ− lim sup

j

∫
uj dµ

Now subtract the finite number
∫
w dµ on both sides.

(iii) We had the counterexample, in principle, already in Problem 9.8.
Nevertheless...

Consider Lebesgue measure on R. Put fj(x) = −1[−2j,−j](x) and
gj(x) = 1[j,2j](x). Then lim inf fj(x) = 0 and lim sup gj(x) = 0 for
every x and neither admits an integrable minorant resp. majorant.

Problem 10.9 Note the misprint in the statement: the RHS should
read

∑∞
j=0 P (|u| > j)

We can safely assume that u > 0 (since integrability of u is equivalent
to the integrability of |u|). Then

u(x) =
∞∑
j=0

u(x)1{j6u<j+1}(x) >
∞∑
j=0

j1{j6u<j+1}(x)

=
∞∑
j=0

j
(
1{j6u}(x)− 1{j+16u}(x)

)
.

Since for fixed x, u(x) < ∞, we have N1{N+16u}(x)
N→∞−−−→ 0. There-

fore, we can use Abel’s summation trick and get

N∑
j=0

j
(
1{j6u}(x)− 1{j+16u}(x)

)

= 0 · (1{06u}(x)− 1{16u}(x)
)

+ 1 · (1{16u}(x)− 1{26u}(x)
)

+ · · ·+N · (1{N6u}(x)− 1{N+16u}(x)
)

= 1{16u}(x) + 1{26u}(x) + · · ·+ 1{N6u}(x)−N1{N+16u}(x)

and this proves

∞∑
j=0

j1{j6u<j+1}(x) =
∞∑
j=1

1{j6u}(x).
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Therefore,

u =
∞∑
j=0

u1{j6u<j+1} 6
∞∑
j=0

(j + 1)1{j6u<j+1}

6
∞∑
j=0

2j1{j6u<j+1}

= 2
∞∑
j=1

1{j6u}(x) 6 2u.

The claim follows from this, the fact that
∫

const. dP = const. and
Corollary 9.9:

∞∑
j=0

P ({u > j}) =
∞∑
j=0

∫
1{u>j} dP =

∫ ∞∑
j=0

1{u>j} dP.

Problem 10.10 For u = 1B and v = 1C we have, because of independence,
∫
uv dP = P (A ∩B) = P (A)P (B) =

∫
u dP

∫
v dP.

For positive, simple functions u =
∑

j αj1Bj and v =
∑

k βk1Ck we find

∫
uv dP =

∑

j,k

αjβk

∫
1Aj1Bk dP

=
∑

j,k

αjβkP (Aj ∩Bk)

=
∑

j,k

αjβkP (Aj)P (Bk)

=

(∑
j

αjP (Aj)

)(∑

k

βkP (Bk)

)

=

∫
u dP

∫
v dP.

For measurable u ∈ M+(B) and v ∈ M+(C) we use approximating
simple functions uk ∈ E+(B), uk ↑ u, and vk ∈ E+(C), vk ↑ v. Then, by
Beppo Levi,

∫
uv dP = lim

k

∫
ukvk dP = lim

k

∫
uk dP lim

j

∫
vj dP
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=

∫
u dP

∫
v dP.

Integrable independent functions: If u ∈ L1(B) and v ∈ L1(C),
the above calculation when applied to |u|, |v| shows that u · v is inte-
grable since ∫

|uv| dP 6
∫
|u| dP

∫
|v| dP <∞.

Considering positive and negative parts finally also gives

∫
uv dP =

∫
u dP

∫
v dP.

Counterexample: Just take u = v which are integrable but not
square integrable, e.g. u(x) = v(x) = x−1/2. Then

∫
(0,1)

x−1/2 dx < ∞
but

∫
(0,1)

x−1 dx =∞, compare also Problem 10.2.

Problem 10.11 (i) Assume that f ∗ is A∗-measurable. The problem at
hand is to construct A-measurable upper and lower functions g
and f . For positive simple functions this is clear: if f ∗(x) =∑N

j=0 φj1B∗j (x) with φj > 0 and B∗j ∈ A∗, then we can use Prob-

lem 4.13(v) to find Bj, Cj ∈ A with µ(Cj \Bj) = 0

Bj ⊂ B∗j ⊂ Cj =⇒ φj1Bj 6 φj1B∗j 6 φj1Cj

and summing over j = 0, 1, . . . , N shows that f 6 f ∗ 6 g where
f, g are the appropriate lower and upper sums which are clearly
A measurable and satisfy

µ({f 6= g}) 6 µ(C0 \B0 ∪ · · · ∪ CN \BN)

6 µ(C0 \B0) + · · ·+ µ(CN \BN)

= 0 + · · ·+ 0 = 0.

Moreover, since by Problem 4.13 µ(Bj) = µ(Cj) = µ̄(B∗j ), we have

∑
j

φjµ(Bj) =
∑
j

φjµ̄(B∗j ) =
∑
j

φjµ(Cj)

which is the same as
∫
f dµ =

∫
f ∗ dµ̄ =

∫
g dµ.
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(ii), (iii) Assume that u∗ is A∗-measurable; without loss of generality
(otherwise consider positive and negative parts) we can assume
that u∗ > 0. Because of Theorem 8.8 we know that f ∗k ↑ u∗ for
f ∗k ∈ E+(A∗). Now choose the corresponding A-measurable lower
and upper functions fk, gk constructed in part (i). By consider-
ing, if necessary, max{f1, . . . , fk} we can assume that the fk are
increasing.

Set u := supk fk and v := lim infk gk. Then u, v ∈ M(A), u 6
u∗ 6 v, and by Fatou’s lemma∫

v dµ =

∫
lim inf

k
gk dµ 6 lim inf

k

∫
gk dµ

= lim inf
k

∫
f ∗k dµ̄

=

∫
u∗ dµ̄

6
∫
v dµ.

Since fk ↑ u we get by Beppo Levi and Fatou∫
u dµ = sup

k

∫
fk dµ = lim inf

k

∫
fk dµ

= lim inf
k

∫
gk dµ

>
∫

lim inf
k

gk dµ

=

∫
v dµ

>
∫
u dµ

This proves that
∫
u dµ =

∫
v dµ =

∫
u∗ dµ. This answers part

(iii) by considering positive and negative parts.

It remains to show that {u 6= v} is a µ-null set. (This does
not follow from the above integral equality, cf. Problem 10.16!)
Clearly, {u 6= v} = {u < v}, i.e. if x ∈ {u < v} is fixed, we deduce
that, for sufficiently large values of k,

fk(x) < gk(x), k large

since u = sup fk and v = lim infk gk. Thus,

{u 6= v} ⊂
⋃

k

{fk 6= gk}
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but the RHS is a countable union of µ-null sets, hence a null set
itself.

Conversely, assume first that u 6 u∗ 6 v for two A-measurable
functions u, v with u = v a.e. We have to show that {u∗ > α} ∈
A∗. Using that u 6 u∗ 6 v we find that

{u > α} ⊂ {u∗ > α} ⊂ {v > α}

but {v > α}, {u > α} ∈ A and {u > α} \ {v > α} ⊂ {u 6= v} is a
µ-null set. Because of Problem 4.13 we conclude that {u∗ > α} ∈
A∗.

Problem 10.12 Note the misprint in the statement: for the esti-
mate µ∗(E)+µ∗(F ) 6 µ∗(E ·∪F ) the sets E,F should be disjoint!

Throughout the solution the letters A,B are reserved for sets from A.

(i) a) Let A ⊂ E ⊂ B. Then µ(A) 6 µ(B) and going to the supA⊂E
and infE⊂B proves µ∗(E) 6 µ∗(E).

b) By the definition of µ∗ and µ∗ we find some A ⊂ E such that

|µ∗(E)− µ(A)| 6 ε.

Since Ac ⊃ Ec we can enlarge A, if needed, and achieve

|µ∗(Ec)− µ(Ac)| 6 ε.

Thus,

|µ(X)− µ∗(E)− µ∗(Ec)|
6 |µ∗(E)− µ(A)|+ |µ∗(Ec)− µ(Ac)|
6 2ε,

and the claim follows as ε→ 0.

c) Let A ⊃ E and B ⊃ F be arbitrary majorizing A-sets. Then
A ∪B ⊃ E ∪ F and

µ∗(E ∪ F ) 6 µ(A ∪B) 6 µ(A) + µ(B).

Now we pass on the right-hand side, separately, to the infA⊃E
and infB⊃F , and obtain

µ∗(E ∪ F ) 6 µ∗(E) + µ∗(F ).
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d) Let A ⊂ E and B ⊂ F be arbitrary minorizing A-sets. Then
A ·∪B ⊂ E ·∪F and

µ∗(E ·∪F ) > µ(A ·∪B) = µ(A) + µ(B).

Now we pass on the right-hand side, separately, to the supA⊃E
and supB⊃F , where we stipulate that A ∩B = ∅, and obtain

µ∗(E ·∪F ) > µ∗(E) + µ∗(F ).

(ii) By the definition of the infimum/supremum we find sets An ⊂
E ⊂ An such that

|µ∗(A)− µ(An)|+ |µ∗(A)− µ(An)| 6 1

n
.

Without loss of generality we can assume that the An increase and
that the An decrease. Now A∗ :=

⋃
nAn, A∗ :=

⋂
nA

n are A-sets
with A∗ ⊂ A ⊂ A∗. Now, µ(An) ↓ µ(A∗) as well as µ(An)→ µ∗(E)
which proves µ(A∗) = µ∗(E). Analogously, µ(An) ↑ µ(A∗) as well
as µ(An)→ µ∗(E) which proves µ(A∗) = µ∗(E).

(iii) In view of Problem 4.13 and (i), (ii), it is clear that

{
E ⊂ X : µ∗(E) = µ∗(E)

}
={

E ⊂ X : ∃A,B ∈ A, A ⊂ E ⊂ B, µ(B \ A) = 0
}

but the latter is the completed σ-algebra A∗. That µ∗
∣∣
A∗ =

µ∗
∣∣
A∗ = µ̄ is now trivial since µ∗ and µ∗ coincide on A∗.

Problem 10.13 Let A ∈ A and assume that there are non-measurable sets,
i.e. P(X) ! A. Take some N 6∈ A which is a µ-null set. Assume also
that N ∩ A = ∅. Then u = 1A and w := 1A + 2 · 1N are a.e. identical,
but w is not measurable.

This means that w is only measurable if, e.g. all (subsets of) null sets
are measurable, that is if (X,A, µ) is complete.

Problem 10.14 The function 1Q is nowhere continuous but u = 0 Lebesgue
almost everywhere. That is

{x : 1Q(x) is discontinuous} = R

while
{x : 1Q 6= 0} = Q is a Lebesgue null set,
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that is 1Q coincides a.e. with a continuous function but is itself at no
point continuous!

The same analysis for 1[0,∞) yields that

{x : 1[0,∞)(x) is discontinuous} = {0}

which is a Lebesgue null set, but 1[0,∞) cannot coincide a.e. with a
continuous function! This, namely, would be of the form w = 0 on
(−∞,−δ) and w = 1 on (ε,∞) while it ‘interpolates’ somehow between
0 and 1 if −δ < x < ε. But this entails that

{x : w(x) 6= 1[0,∞)(x)}

cannot be a Lebesgue null set!

Problem 10.15 Let (Aj)j∈N ⊂ A be an exhausting sequence Aj ↑ X such
that µ(Aj) <∞. Set

f(x) :=
∞∑
j=1

1

2j(µ(Aj) + 1)
1Aj(x).

Then f is measurable, f(x) > 0 everywhere, and using Beppo Levi’s
theorem

∫
f dµ =

∫ ( ∞∑
j=1

1

2j(µ(Aj) + 1)
1Aj

)
dµ

=
∞∑
j=1

1

2j(µ(Aj) + 1)

∫
1Aj dµ

=
∞∑
j=1

µ(Aj)

2j(µ(Aj) + 1)

6
∞∑
j=1

2−j = 1.

Thus, set P (A) :=
∫
A
f dµ. We know from Problem 9.5 that P is indeed

a measure.

If N ∈ Nµ, then, by Theorem 10.9,

P (N) =

∫

N

f dµ
10.9
= 0
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so that Nµ ⊂ NP .

Conversely, if M ∈MP , we see that

∫

M

f dµ = 0

but since f > 0 everywhere, it follows from Theorem 10.9 that 1M ·f =
0 µ-a.e., i.e. µ(M) = 0. Thus, NP ⊂ Nµ.

Remark. We will see later (cf. Chapter 19, Radon-Nikodým theorem)
that Nµ = NP if and only if P = f · µ (i.e., if P has a density w.r.t. µ)
such that f > 0.

Problem 10.16 Well, the hint given in the text should be good enough.


