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Note: each of the points (a), (b), (c), etc., has the same weight.

Exercise 1

An elastic arch as depicted below is subject to a pressure load on a part of its
surface. The bottom of the structure is in contact with a rigid, friction-less
surface. Assume that the structure is linearly elastic and that we have plain
strain conditions (i.e., no displacements perpendicularly to the figure plane).

pressure load

(Continued on page 2.)
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(a) We want to compute the von Mises stress as a measure of the stress
level in the structure. Set up a mathematical model to accomplish this
task (take advantage of symmetry if possible).

(b) Are the stresses computed by the model in (a) valid for any value of
the applied pressure load?

Exercise 2

A long, circular, straight pipe for transport of liquid metal is surrounded by
two layers of insulating materials.

insulating material II

Ts

insulating material I

liquid metal

The metal fills the space 0 ≤ r ≤ a, while the insulating materials I and II
fill the spaces a < r ≤ b and b < r ≤ c, respectively. A time varying pressure
gradient drives the metal flow. Outside the pipe the air temperature is Ts,
and this may vary with time, but not in the space direction along the pipe.
In a project we want to calculate how the temperature in the insulating
materials vary in time and space.

You have just taken over this project from someone else, and in his highly
preliminary report you see that the governing equations for heat flow in the
fluid and the insulating material is written. You immediately doubt the
correctness of the given equations.

(a) In the insulating materials the following equation is given:

c(s)
v

∂T (s)

∂t
=

∂

∂r

(
k(s)(r)

∂T (s)

∂r

)
(1)

(Continued on page 3.)
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where

k(s)(r) =

{
kI , a < r ≤ b,
kII , b < r ≤ c

(2)

Evaluate the correctness of the differential equation and state the phys-
ical interpretation of the symbols. Explain also the physical interpre-
tation of each term.

(b) The equations in the liquid metal are listed as follows:

�(f)c(f)
v

∂T (f)

∂t
= k(f) 1

r

∂

∂r

(
r
∂T (f)

∂r

)
+ m(T (f))

(
∂u

∂r

)n+2

, (3)

∂u

∂t
=

1

r

∂

∂r

(
rm(T (f))

∣∣∣∣∂u

∂r

∣∣∣∣
n−1

∂u

∂r

)
+ g(t) . (4)

Again, you are asked to evaluate whether these equations are correct.
The most important issue (on this exam) is to point out errors. A
complete derivation of the correct equations, such that each error is
explained in detail, is not necessary (but it might be a safe way of
anwsering the exercise if you do not remember how the different terms
should be).

(c) In the preliminary report you find the following boundary conditions:

∂u

∂r
= 0, r = 0, (5)

∂T (f)

∂r
= 0, r = 0, (6)

u = 0, r = a, (7)

∂T (f)

∂r
− ∂T (s)

∂r
= 0, r = a, (8)

T (f) = T (s), r = a, (9)

−kI ∂T (s)

∂r
= −kII

∂T (s)

∂r
, r = b, (10)

T (s) = T (s), r = b, (11)

kII ∂T (s)

∂r
+ hT (T (s) − Ts) = 0, r = c . (12)

Set up the correct boundary conditions that you need if you choose the
correct version of (1), (3) and (4) as the governing differential equations.

(Continued on page 4.)
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Exercise 3

(a) Find at least two physical interpretations of the boundary-value prob-
lem

u′′ = 0, u(0) = 0, u(1) = 1 .

In each case, state the physical meaning of u, the boundary conditions,
and the geometry (i.e., what the interval [0, 1] corresponds to in na-
ture). You do not need to derive the boundary-value problem from
more general equations of continuum mechanics, but you should men-
tion which of the general three-dimensional equations that constitute
the starting point for deriving this simplified model.

Collection of Mathematical Formulas

The Operator in Navier’s Equation with Radial Symmetry. Let r
be the radial coordinate in cylindrical coordinates. If

L(u) = (λ + µ)∇(∇ · u) + µ∇2u, (13)

then

L(u(r)ir) = ir(λ + 2µ)
d

dr

(
1

r

d

dr
(ru)

)
. (14)

Moreover,

L(u(r)ir + w(z)k) = ir(λ + 2µ)
d

dr

(
1

r

d

dr
(ru)

)
+ k(λ + 2µ)w′′(z) . (15)

In spherical coordinates we have

L(u(r)ir) = ir(λ + 2µ)
d

dr

(
1

r2

d

dr
(r2u)

)
(16)

Strains with Radial Symmetry. Radial displacement, u = u(r)ir, in
cylindrical coordinates (r, θ, z) have corresponding (infinitesimal) strains

E =
du

dr
irir +

u

r
iθiθ (17)

(Continued on page 5.)
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or

εrr =
du

dr
, εθθ =

u

r
. (18)

In spherical coordinates (r, θ, φ) the strains corresponding to a deformation
u = u(r)ir become

E =
du

dr
irir +

u

r
(iθiθ + iφiφ) (19)

or

εrr =
du

dr
, εθθ = εφφ =

u

r
. (20)

The Divergence of the Stress Tensor for Radial Symmetry. If the
deformation is radial such that the only non-vanishing stress tensor compo-
nents in cylindrical coordinates are σrr and σθθ, the divergence of the stress
tensor becomes

ir · ∇ · {σij} =
dσrr

dr
+

σrr − σθθ

r
. (21)

The corresponding expression in spherical coordinates has the form

ir · ∇ · {σij} =
dσrr

dr
+ 2

σrr − σθθ

r
. (22)

The Compatibility Equation for Radial Symmetry.. The compati-
bility equation in cylindrical coordinates, both for u = u(r)ir (plane strain)
and u = u(r)ir + w(z)k (e.g. plane stress), takes the form

1

r

d

dr

(
r

d

dr
(σrr + σθθ)

)
= 0 . (23)

Invariants. The invariants IB, IIB og IIIB of a tensor Bij are given by
the expressions

IB = Bii = trB, (24)

IIB =
1

2
(BiiBjj − BijBji) , (25)

IIIB = det{Bij} =
1

2
(BiiBjjBkk − 3BiiBjkBkj + 2BijBjkBki) . (26)

Hooke’s Generalized Law. Using the Lamé constants λ og µ one can
write Hooke’s generalized law for an isotropic linearly elastic material on the
form

σij = λεkkδij + 2µεij . (27)

With Young’s modulus E og Poisson’s ratio ν the law can be written

εij = − ν

E
σkkδij +

1 + ν

E
σij . (28)

(Continued on page 6.)
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Yield Criteria. Tresca’s yield criterion can be written

2τm = Y (29)

where τm denotes maximum shear stress, whereas von Mises’ yield criterion
can be compactly expressed as√

3

2
σ′

ijσ
′
ij = Y (30)

with the stress deviator tensor being defined as σ′
ij = σij −σkkδij/3. The pa-

rameter Y can be interpreted as the yield stress in uni-axial tension. Written
out with the original stress tensor components, von Mises’ criterion reads

(
1

2

[
(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2
]
+ 3

[
σ2

12 + σ2
13 + σ2

23

]) 1
2

= Y

(31)

Derivatives of Unit Vectors in Cylindrical and Spherical Coordi-
nates. Let ir, iθ og iφ be unit vectors in r-, φ- and θ-direction in spherical
coordinates (r, θ, φ), and

x = r cos θ sin φ

y = r sin θ sin φ

z = r cos φ .

Then

∇ = ir
∂

∂r
+ iφ

1

r

∂

∂φ
+ iθ

1

r sin φ

∂

∂θ
(32)

and
∂ir

∂φ
= iφ,

∂ir

∂θ
= sin φiθ (33)

The Laplace Operator with Radial Symmetry. The Laplace operator
has the following forms in cylindrical and spherical coordinates (r is the radial
coordinate and k(r) is some function):

∇ · (k(r)∇u(r)) =
1

r

d

dr

(
rk(r)

du

dr

)
cylindrical coord., (34)

∇ · (k(r)∇u(r)) =
1

r2

d

dr

(
r2k(r)

du

dr

)
spherical coord. . (35)

(Continued on page 7.)
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Stresses in a Sphere Subject to Inner and Outer Pressure. A thick-
walled sphere is subject to an inner pressure pi at the boundary r = a and
an outer pressure po at the boundary r = b. The non-vanishing stress tensor
components then becomes

σrr =
pob

3(r3 − a3)

r3(a3 − b3)
+

pia
3(b3 − r3)

r3(a3 − b3)
, (36)

σθθ = σφφ =
pob

3(2r3 + a3)

2r3(a3 − b3)
− pia

3(2r3 + b3)

2r3(a3 − b3)
. (37)

Axi-Symmetric Rotation. For a vector field v = u(r)iθ (e.g. v being
velocity or displacement) in cylindrical coordinates we have that

1

2
(∇v + (∇v)T ) =

1

2

(
du

dr
− u

r

)
(iθir + iriθ) . (38)

The divergence of the corresponding stress tensor becomes

∇ · {σij} =

(
∂σrθ

∂r
+ 2

σrθ

r

)
iθ, (39)

provided that the only non-vanishing stress tensor component is σrθ = σθr.
END


