UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Examination in: MEK2500 — Solid mechanics

Day of examination: Trial Exam 2015

Examination hours: 00.00 - 04.00

This examination set consists of 3 pages.

Appendices: None

Permitted aids: Rottmann's and Calculator of ap-

proved type

Make sure that your copy of the examination set is complete before you start solving the problems.

Problem 1.

This problem consists of 5 independent questions. Each question has a max score of 2 points.

- a) (2 points) Express Cauchy's infinitesimal strain tensor ε for a deformation f of a domain Ω with coordinates x.
- b) (2 points) What is the SI unit for strain?
- c) (2 points) What is the definition of stress and what is its SI unit?
- d) (2 points) Define the tensile strength of an elastic material.
- e) (2 points) What are the natural bounds for the Poisson ratio ν ? If a body (say a sphere) has Poisson ratio larger than the natural upper bound, how will the body deform when a pure pressure is applied to its boundaries?

(Continued on page 2.)

Problem 2.

Assume that an elastic body B occupies a domain $\Omega \subset \mathbb{R}^3$ with coordinates $x = (x_1, x_2, x_3)$. Assume that the body is deformed with a deformation f given by:

(1)
$$f(x) = ((\kappa_1 + 1)x_1, (\kappa_2 + 1)x_2, x_3)$$

for real, positive constants κ_1, κ_2 . Let the Frobenius norm of an $n \times n$ matrix A be denoted ||A|| with

(2)
$$||A||^2 = \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2$$

- a) (5 points) Compute the inverse deformation $g = f^{-1}$ that maps a coordinate $y \in f(\Omega)$ to $x \in \Omega$.
- **b)** (5 points) Compute the displacement u = u(x) of the body B and Cauchy's infinitesimal strain tensor ε associated with u.
- c) (5 points) Compute the principal strains and principal directions of strain associated with ε . Give a condition on κ_1, κ_2 such that the largest principal strain is less then 1%.
- d) (5 points) Compute the Cauchy stress tensor of the body, assuming that the body is isotropic, homogeneous and linearly elastic with Lame parameters $\mu = 2.0$ MPa, $\lambda = 100.0$ MPa.

Problem 3.

Assume a linear regime with small strains and no distinction between Eulerian and Lagrangian coordinates.

Consider a two-dimensional rectangular body of length a (m) and height b (m) with coordinates $(x_1, x_2) \in [0, a] \times [0, b]$.

- Assume that the body is isotropic and homogeneous with Lamé parameters μ and λ and density ρ .
- We shall consider the case where the body is clamped at the ends where $x_0 = 0$ or $x_0 = a$ (and $x_1 \in [0, b]$), hence u = (0, 0) there.

(Continued on page 3.)

• Assume that a constant body force f acts downwards in the body, that is: f = (0, -g) for some constant g (N/m^d), d = 2.

Consider this setting for the questions below.

- a) (5 points) State the dynamic elasticity equations describing the displacement $u = u(x,t) = (u_1(x,t), u_2(x,t))$ of a homogeneous, isotropic, linearly elastic body with coordinates $x \in \mathbb{R}^2$, $t \in (0,T)$, Lamé parameters μ and λ and density ρ and a given body force f.
- b) (5 points) Assume that the body is in elastic equilibrium and that there are no normal stresses. There may be tangential stresses on all boundaries. Compute the resulting stress tensor σ .
- c) (5 points) From the result in b), compute the corresponding strain tensor in terms of the applied body force f and the material parameters μ and λ .
- d) (5 points) From the result in c), compute the corresponding displacement in terms of the applied body force f and the material parameters μ and λ .

Hint: Recall the inverse (isotropic, homogeneous) Hooke's law

(3)
$$\varepsilon = \frac{1}{2\mu} \left(\sigma - \frac{\lambda}{3\lambda + 2\mu} \operatorname{tr} \sigma I \right)$$

END