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Isotropy means that a property is independent of direction, which implies that
the property can be quantified by the same physical value(s) independent of rotations
of the frame of reference. An isotropic tensor has the same components in all rotated
coordinate systems.

A tensor of rank 0, which is simply a scalar (e.g. temperature, salinity, etc.),
does not depend on the orientation of the coordinate axes at all. Thus the scalar is
isotropic.

In order to understand isotropy for vectors and tensors of higher rank, we first
need to consider the effect of rotating the frame of reference.

Let {ij} and {i′j}, with j = 1, 2, 3, be two orthonormal sets of basis vectors that
each span three-dimensional Eucledian space. Thus ij · ik = δjk and i

′

j · i
′

k = δjk.
Let us consider how the basis vectors transform between the primed and unprimed

systems. Suppose
i
′

j = ℓjkik and ij = ℓ′jki
′

k (1)

Upon taking the scalar product of the first equation with il and of the second
equation with i

′

k, and using the fact that the basis vectors are orthonormal, we get

ℓjl = i
′

j · il and ℓ′jl = ij · i
′

l (2)

Thus these are the cosines of the angles between each pair of basis vectors from the
two reference systems.

Consider the obvious identities

ℓjl = ℓ′lj (3)

and

i
′

j = ℓjkik = ℓjkℓ
′

kli
′

l = ℓjkℓlki
′

l and ij = ℓ′jki
′

k = ℓ′jkℓklil = ℓkjℓklil (4)

thus we get the two important relationships

ℓjkℓlk = δjl and ℓkjℓkl = δjl (5)

This can also be written in matrix form as

LT L = LLT = I (6)

where I is the identity matrix, and L is the matrix represented by ℓjk, and LT is the
transpose of L. A real matrix that satisfies this relationship is called an orthogonal
matrix.

Consider a representation of a vector v in the two frames of reference. We have

v = vjij = vjℓkji
′

k = v′

ki
′

k and v = v′

ji
′

j = v′

jℓjkik = vkik (7)
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thus the vector components transform in the same way as the basis vectors

v′

k = ℓkjvj and vk = ℓjkv
′

j (8)

Let us consider the existence of an isotropic tensor of rank 1, or an isotropic vec-
tor. If such a vector exists, then the components of the vector must be independent
of the reference system. Thus we get the condition

v′

j = vj = ℓjkvk (9)

First consider a rotation by π/2 around the third axis

L =







0 1 0
−1 0 0
0 0 1





 (10)

which requires v1 = v2 = 0. Then consider a similar rotation by π/2 around the first
axis, which would require v2 = v3 = 0. Thus we conclude that there is no nontrivial
isotropic vector.

Before considering isotropic tensors of higher rank, we may take advantage of
this moment to define, for the first time in this course, what we really mean by a
tensor. (Here we limit attention to so-called covariant tensors only.) A tensor of
rank n is a quantity Aj1j2...jn

that transforms according to the following law

A′

j1j2...jn

= ℓj1k1
ℓj2k2

. . . ℓjnkn
Ak1k2...kn

(11)

where ℓjk are the directional cosines as defined above. Thus the defining property
of a tensor is that each index transforms as if it represented a vector.

Let us consider isotropic tensors of rank 2. Here we shall limit our effort to show
that the Kronecker delta δij is an isotropic tensor of rank 2. We need to show that

δij = ℓikℓjlδkl (12)

Using the properties of the Kronecker delta, and the properties of orthogonal matrices,
the right-hand side becomes

ℓikℓjlδkl = ℓikℓjk = δij (13)

Thus we have shown that the Kronecker delta is an isotropic tensor. It can further-
more be shown that this is the only isotropic tensor of rank 2. Demonstration of
uniqueness is left as an exercise.

For our purposes we do not need to be concerned about the fact that there is
one isotropic tensor of rank 3.

In the following we shall give a demonstration of three isotropic tensors of rank
4. First consider the rank 4 tensor Aijkl = δijδkl. We need to show that

δijδkl = ℓipℓjqℓkrℓlsδpqδrs (14)

Using the properties of the Kronecker delta twice, and the properties of orthogonal
matrices twice, the right-hand side becomes

ℓipℓjqℓkrℓlsδpqδrs = ℓipℓjpℓkrℓlr = δijδkl (15)
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which is what we needed to show. Second consider another rank 4 tensor Aijkl =
δikδjl. We show that

ℓipℓjqℓkrℓlsδprδqs = ℓipℓjqℓkpℓlq = δikδjl (16)

Third consider yet another rank 4 tensor Aijkl = δilδjk. We show that

ℓipℓjqℓkrℓlsδpsδqr = ℓipℓjqℓkqℓlp = δilδjk (17)

It can furthermore be shown that any isotropic tensor of rank 4 can be expressed as
a linear combination of these three tensors, but a demonstration of this fact is left
as an exercise.

To summarize, we are in the process of establishing a relationship between tensor
rank and number of independent isotropic tensors

tensor rank 0 1 2 3 4 . . .
number of isotropic tensors 1 0 1 1 3 . . .

A commonly used representation of the most general isotropic tensor of rank 4
is

Tijkl = λδijδkl + µ(δikδjl + δilδjk) + ν(δikδjl − δilδjk) (18)

Let us apply the concept of isotropy to Hooke’s law of elasticity. Hooke’s law of
elasticity is the fundamental assumption that the stress is a linear function of the
strain

Pij = Aijklǫkl (19)

Now if we assume that the material is isotropic, we may let the tensor Aijkl in
Hooke’s law be given by the tensor Tijkl discussed above.

Pij = [λδijδkl + µ(δikδjl + δilδjk) + ν(δikδjl − δilδjk)] ǫkl (20)

= λδijǫkk + µ(ǫij + ǫji) + ν(ǫij − ǫji) (21)

Keeping in mind that the deformation tensor ǫkl is symmetric, we see that the
stress–strain relationship is simplified to

Pij = λδijǫkk + 2µǫij (22)

We may ask what would have happened if we had used a non-symmetric deform-
ation tensor instead of the symmetric strain tensor in Hooke’s law. In that case,
the stress contribution proportional to ν would be anti-symmetric, in contradiction
to the second stress principle of Cauchy which requires the stress tensor to be sym-
metric. This may help to motivate why only the two elastic coefficients λ and µ are
relevant for an isotropic medium.

Similarly, we can apply the concept of isotropy to a Newtonian fluid. For a
Newtonian fluid the fundamental assumption is made that the viscous stress is a
linear function of the rate of strain

σij = Aijklǫ̇kl (23)
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while the total stress is the linear superposition of isotropic pressure p and viscous
stress

Pij = −pδij + σij = −pδij + Aijklǫ̇kl (24)

If we require tha the medium is isotropic, and by an argument similar to that
of isotropic elasticity, and keeping in mind that the rate of strain tensor is also
symmetric, we end up with the expression

Pij = −pδij + λδij ǫ̇kk + 2µǫ̇ij (25)

Exercise: Show that the principal stress directions are equal to the principal
strain directions in an isotropic linear elastic medium.

Exercise: Show that the principal stress directions are equal to the principal
rate-of-strain directions in an isotropic Newtonian fluid.
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