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The Halpin-Tsai equations are based upon the “self- 
consistent micromechanics method” developed by Hill. Her- 
mans eniplovetf this model to obtain a solution in terms of 
Hill’s “reduced moduli”. Halpin and ’Tsai have reduced Her- 
nians’ solution to a simpler analytical form arid extended its use 
for a variety of filament geometries. The development of these 
niicromechanics relationships, which form the operational 
bases for the composite analogy of Halpin and Kardos for 
setni-cr),stalliiie polymers, are reviewed herein. 

INTRODUCTION 
andom or nearly random distributions of reinforce- R ments, finite in dimension and arranged in a matrix, 

constitute many naturally occurring and synthetic mate- 
rials. In fact, crystalline polymers are hypothesized to 
behave (1-6), with respect to their mechanical proper- 
ties, as a multiphase composite solid. In most naturally 
occurring and synthetic materials, the spatial orienta- 
tion of the discontinuous reiiiforcetnent is between a 
truly random three-dimensional arrangement and a 
truly random two-dimensional arrangement. Halpin 
and Pagano (7,X) have shown that such materials can be 
modeled mathematically as laminated systems. Sub- 
sequent work has supported this hypothesis (1-6, 9). This 
composite laminate-analogy has been extended to 
semicrystalline polymers by Halpin and Kardos (1-3,6). 

The concept of the composite analogy for semi- 
crystalline polymers has its basis in the fact that it is 
possible to construct a material having isotropic mechan- 
ical properties from layers or plies of a material which 
has anisotropic mechanical properties. The mechanical 
properties become isotropic as the number of distinct 
equal-angular ply orientations increases (7, 8). The 
mechanical properties of the quasi-isotropic state be- 
come a unique function of the anisotropic properties of 
the reference ply material. Anisotropic ply properties 
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are, in turn, defined by the specifics of the heterogene- 
ous phases which make up the oriented ply structure. 
This methodology is denoted  by the  term mi- 
cromechanics. 

The objective of this communication is to review the 
development of the micromechanics relationships 
known as the Halpin-Tsai equations. These relation- 
ships are central to the efforts to develop relationships 
sensitive to differences in crystalline morphology and 
the attendant changes in the mechanical characteristics 
of semicrystalline polymeric solids. The  mi- 
croniechanics employed in this developmtmt are based 
upon the “self-consistent method” developed by Hill 
(10). Hill rigorously modeled the composite as a single 
fiber, encased in a cylinder of matrix; with both embed- 
ded in an unbounded homogeneous medium which is 
macroscopically indistinguishable from the composite. 
Hermans (11) employed this model to obtain a solution 
in terms of Hill’s “reduced moduli”. Halpin and Tsai 
have reduced Hermans’ results to a simpler analytical 
form and extended its use to a h ide  variety of reinforce- 
ment geometries. Crystallite morphology in semicrys- 
talline polymers ranges from fibriller-like crystallite 
geometries in fibers and highly drawn bulk sheets to a 
ribbon or lamella-like geometry in spherilitic bulk 
polymers. This range of morphologies can be ap- 
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proached rigorously through use of the Halpin-Tsai equ- 
ations. 

DETAILS OF THE DERIVATION OF THE 
HALPIN-TSAI EQUATIONS 

Relations Between Hill’s Notation and Stiffness and 
Engineering Constants 

The Halpin-Tsai equations are the handy forms of 
Hill’s generalized self-consistent model results with 
engineering approximations to make them suitable for 
the designing of composite materials. We will therefore 
first discuss Hill’s results (10). Hill assumed acomposite 
cylinder model in which the embedded phase consisted 
of continuous and perfectly aligned cylindrical fibers. 
Both materials were assumed to be homogeneous and 
elastically transversely isotropic about the fiber direc- 
tion. The cross-section and spatial arrangement of the 
fibers were subject merely to a requirement of statistical 
homogeneity and transverse isotropy. Alternatively, 
Kerner’s (13) method may be used in which each fiber is 
assumed to behave as though it were surrounded by a 
concentric matrix cylinder; outside this cylinder lies a 
body with the properties of the composite. The main 
results following either assumption are the same (12). 

For the above mentioned composite material which is 
transversely isotropic about the fiber direction, taken as 
the “1” direction, Hooke’s law can be written from any 
standard book on elasticity (12) as 

- 

CllC12C120 0 0 ’ €1 

C 1 2 c 2 2 C 2 3 0  €2 

C 1 2 C 2 3 C 2 2 0  €3 

= 0 0 0 C,,O 0 €4 

0 0 0 0 C,,0 €5 

- 

- 

- 

- 

- 

- - 
c s  = CSS% (5 ) 

€6 = C6,E, (6 1 
- - 

We will now show relations between Hill’s notation 
and the standard notation used above. Hill used the 
following notation to write these relations as 

%(G, + G3) = k(Z,  + E3) + l:, (7 ) 

- 
@I3 = 2pE13 (11) 

c 1 2  = 2F12 (12) 
- 

The Cij terms can be expressed in Hill’s notation by the 
following manipulation, 

%(Eq 2 + Ey 3 )  = %(G2 + Cr3) = C1,E1- 
+ w,, + C23) (E, + €3) 

Comparing this with E q  7 

C,, = 1: %(C2, + C,,) = k 
Comparison of Eqs 1 and 8 gives, 

C,, = 1; C,, = n 

Comparing E q s  2 and 3 with Eq 9 

C,, - C,, = 2m 

Therefore C Z 2  = k + m; C,, = k - m. From Eqs 5,6,11, 
and 12, C,, = C6, = p. 

The C, matrix is now rewritable in Hill’s notation. 

n 1  1 0 0 0  
l k + m k + m  0 0 0  
1 k + m k + m  0 0 0  
0 0  0 m 0 0  
0 0  0 o p o  
0 0  0 0 o p  

We can correlate Hill’s notation with the moduli of 
elasticity since we know the relations between C, and k ,  
1, m, n, p, and C,, are expressed in terms of the moduli of 
elasticity. Table 1 summarizes these relations (they 
apply to both constituent and composite moduli) for 
transversely isotropic phases. 

Derivation of Hermans’ Results 
We will now discuss the generalized self-consistent 

model analysis of a composite with aligned continuous 
fibers by J. J. Hermans (11). The composite is treated by 
assuming each fiber to behave as though it were sur- 
rounded by a cylinder of pure matrix; outside this cylin- 
der lies a body with the properties of the composite. 

(Notation: The subscripts ‘f‘ and ‘rn‘ denote the fiber 
(em bedded) phase and matrix phase respectively. The 
volume fractions are c$ and (1 - +), respectively. Sym- 
bols with a bar and without the material subscript repre- 
sent the composite properties. Cylindrical co-ordinates, 
r, 8, and z are used; z is in the fiber direction.) 

Each fiber of radiusa and elastic constants k ,  1, n, mA 
pf is imagined to be embedded in a cylinder of radius R 
in which the elastic constants are k , ,  l,, n,n, m,,,, p,, 
(Hill’s notation is used here also). This cylinder in turn is 
surrounded by an unbounded homogeneous medium 
which is macroscopically indistinguishable from the 
composite. Suppose that a uniform transverse radial 
stress s is applied at infinity and that E ,  is kept equal to 
zero by a necessary longitudinal stress uz. Under these 
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Table 1. Relations Between Hill’s (10) Notation and Stiffness and Engineering Constants 

Moduli in Hill’s notation cu Engineering constants 

k 
(plane strain bulk 

modulus) 

n 
m (transverse shear 

modulus) 

j~ (longitudinal 
shear modulus) 

1/(2k) 

n - 12/k 

4(kn - 12)mz 
(k + m)n - I 

conditions the displacement in the radial direction, ur, 
would be a function of r alone, (since there is symmetry 
about 8) and may be written as 

u ,  = Ar + Blr, ug = 0 

The corresponding strains are given by 

E = - = A - - - . E  h r  B , = j ~ o + r = I = A + B / r 2  U r  ur r2 ’ d r  

E ,  - E~ = - 2Blr‘ 

E , ,  = % (zO- y+ yo ) = o  

UsingconstitutiveEq 7, u, + u, = 4kA. (“l”-+z, “2”+ 
r, “3” + 8 are the relations between the two co-ordinate 
systems.) From Eq 9, u, - we = -. From E q  10, 

w,, = 0. In the core (fiber; r < a), because of finite strain 
B = B ,  = 0, the strain in the core is uniform. In the shell 
(a < r < R ) ; A  = A m  and B = B,. In the remainder ofthe 
body (r > R ) ,  where properties match with the compos- 
ite, 

&A = S (k is the modulus for in-plane strain) 

-4mB 
rL 

The volume average of E ,  + E~ is 
_ _  __ 
E, + E ,  = U# + 2A,rN(RL - a’) + ~ A c *  (13) 

where LV is the number of fibers per unit volume and c* 
= 1 - r N l i L .  Also ifk is the modulus ofthe composite as 
a whole, the stress averaged through the unit volume is 

k ( E ,  +<,) = &,A& + 2kmAmrN (R2 - a’) + 2k,Ac* 
.- __ 

(14) 

Substituting for 72, +-Eo) from E9 13 
__ k,A,+ + k m A m r N ( R ’  - a’) +k,Ac* 

A,$ + A m r N ( R 2  - a’) + Ac* k =  

As there are N fibers in a unit volume, each having .rrR2 
as the average volume available to it, we may assume 
r R 2 N  = 1 which simplifies the above equation to 

(15) 
- k,A,4 + kmAm ( 1  - +) 

A,+ + Am(1 - 4) k =  

The ratio ofA,lA, is to be calculated from the boundary 
conditions; u, and a, are continuous at T = a. The same 
conditions are valid a t r  = R, but these are not necessary 
to evaluate Z. 

It should be again mentioned here that the theory 
assumes each fiber to behave as though it were sur- 
rounded by a concentric cylinder which has the elastic 
moduli of the matrix. This determines the stress and 
strain field inside and around the fiber, but one should 
not conclude that a volume fraction c* of the system 
consists of material with modulusk ( 1 1 ) .  From the first 
boundary condition that u,  is continuous at r = a ,  

A, = A, + BmJaL 

u, = 2(kA - mB/r’). Using the second boundary condi- 
tion that ur is continuous at r = a ,  gives kfAf  = k,A, - 
m,B,/u‘. Substituting B,lu‘ = A, - A ,  from the first 
equation above into the second equation yields 

(k, + mrn24, = (km + n1m)Am 
Substituting for A, in terms ofA, in E q  15, we get 

(16) 
__ k m ( k ,  + mrn)(l- 4) + k&m + ?nm)4 

(k, + m m )  (1 - 4) + (km + mrnM 
k =  

The results for the remaining moduli based on an ap- 
proach similar to that outlined fo rk  are quoted below 
from Hermans (13) 
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Kerner’s Results 
Since the Halpin-Tsai equations can also be shown to 

be the approximate form of Kerner‘s equations for par- 
ticulate reinforced composites, we will summarize the 
derivation of Kerner’s equations to gain more necessary 
background. 

Kerner (13) deduced the shear modulus G and bulk 
modulusx of a macroscopically isotropic and homogene- 
ous composite in terms of the moduli and concentration 
of its components. These components were assumed to 
be in the form of grains suspended in and bonded to 
some uniform suspending medium. It  was assumed also 
that the grains were distributed spatially at random, and 
that in the mean they were spherical. 

(Notation: Quantities referring to any grain species 
are labelled with subscript i; index rn refers to the sus- 
pending fluid and symbols with a bar and without sub- 
script refer to the composite properties. ) 

= bulk modulus (k in Hill’s notation is plane strain 
bulk modulus and different from 
K. ) 

G = shear modulus 
Consider a large mass of the composite and let it be 

subject to a simple hydrostatic compression. The mass 
behaves elastically in average like some uniform mate- 
rial having a shear modulus G and bulk modulus Kwhich 
is to be expressed in terms of the moduli and volume 
fractions of the components. 

The total change in volume in the composite will be 
the sum ofthe volume changes in its different parts. The 
desired results in terms of K and G are; 

+i 

3Ki + 4G, 
For a binary (two components, including a matrix) com- 
posite we use the subscript f to denote the property of a 
filler phase. 

-- 
K =  

K# K,(1 - 4) 

4 (1 - 4) (19) 
3Kf + 4Gm + 3 K ,  + 4G, 

3K, + 4Gm + 3 K ,  + 4GTn 

For the shear modulus we have 

d G 6  (1 - 4) + 
(20) G = (7 - 5v,)G, + (8 - 10v,n)G, 15(1 - v,) 

CM: *- (1 - d) I /  I I I L  

(7 - 5v,)G, + (8 - 10v,)Gf 15(1 - v,) 

Hashin’s formulas for a hollow fiber reinforced compos- 
ite (14) can also be reduced to the above generalized 
formula. 

Derivation of Hill’s Relations for E l ,  and vI2 

The universal relations between the main overall elas- 
tic moduli of a fiber composite with transversely iso- 
tropic phases as derived by Hill (10) are shown below. 

These results are useful in developing the approximate 
Halpin-Tsai formulae for the tensile modulus (Ell) and 
Poisson ratio (vI2)  for continuous fiber composites 

1 
2k 

- 
V12 =- = v# + vm(l - 4) 

The Reuss bound is based on the assumption that 
uniform stress is present in the composite and it is ofthe 
following form for the plane-strain bulk modulus 

Hence from E 9  22, El ,  z $(Ell), + (1 - 4) (Ell), and 
from E4 21, u12 +(vl2), + (1 - 4)(v1Jm accordingly as 

(v1 - v2) (kl - k2) 5 0 
Halpin and Tsai (7) have approximated the above 

relations to give reasonable estimates of the continuous 
fiber-reinforced composite elastic coefficients as follows: 

Ell = P 1 l ) d J  + (Ell),(l - 4) (23) 
- 
~ 1 2  = ( v 1 J d  - (V12)m(1 - 4) (24 ) 

The results in Eqs 21 and 22 or 23 and 24 are indepen- 
dent of either the geometrical distribution or shape of 
the parallel fibers (ribbons, etc.) and the constituents 
are either isotropic or trarisversely isotropic with respect 
to the longitudinal direction. The approximation in E9s 
23 and24 to achieve the “rule of mixtures” is the neglect 
of the interaction between the constituents due to the 
ddference in their Poisson ratios, i.e., by the use of the 
parallel spring model. Extensive experience indicates 
that correlations of Eqs 23 and 24 with both experiment 
and machine calculations are insensitive to this assump- 
tion. 

Rearrangement of Various Equations to Develop the 
Halpin-Tsai Equations 

Herein we show how Halpin and Tsai rearranged the 
formulae resulting from exact theory of elasticity to con- 
form to a generalized formula as follows: 

where 

(25) 
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- - 
p = acomposite modulus, k ,  m or p, p = corresponding 
fiber modulus, k ,  mf or pf respectively, p ,  = corre- 
sponding matrix modulus, k,,, m,, or P,, respectively, 
and 5 = a measure of reinforcement geometry which 
depends on loading conditions. 

ulus k as follows, after dividing numerator and de- 

Equation 19 for the bulk modulus of the composite 
is modified by setting KAK, = M R ,  dividing by 3 K ,  in 
numerator and denominator and calling 4G,/3Km = 5. 

-- K - M R  + 5 - 4 M R  - 45 + M R 4  + h f R 4 5  
K r n  

Thus, .- 

0 We rewrite Eq 16 for the plane-strain bulk mod- M R  + 5 - M R +  - 54 + 4 + 54 
4Gnf M R - 1  71 =--- 

nominator by k,. 1 - 714 3K,' M R t  5 
-~ - + '"with 5 =- 

0 Equation 20 for the shear modulus of the composite 
is rewritten as 

~ 

G - 4 M R ( 1  + 5) f (l - + 6) 
G M  + 5 )  f (l - + 5) 
-- 

- 
- 

+ '" This is the Halpin-Tsai equation form 
k, 1 - 714' 
with 5 =% 

Equation 17 for the transverse shear modulus 6 is 
rewritten by, (1) dividing numerator and denominator 

k m  

bym:, ( 2 )  usingMR =-, " f  (3)  dividing the numerator 
m, 

k 
m m 

and denominator by 2 + 2, and (4) denoting (kmlm,)/ 

(kmlm, + 2 )  = 5 as 

In the above development of the Halpin-Tsai equations 

M, = 5 in every case, however, 5 has di@erent ex- 

pressions for different composite moduli anti is a unique 
function of the Poisson's ratio of the matrix in each 
specific case, as illustrated in Table 2. The range of 
values 5 can take is also indicated. 

One should notice that 5 is also less than 2 and approx- 
imately unity when the transverse crossection of the 

p ,  

M E - 1  where 7 = ~ 

M R + 5 '  

rewritten to conform with the Halpin-Tsai format. 

reinforceinent possesses an effective aspect ratio of 
unity. Note that a fiber and a spherical or cubical particle 
have comparable transverse moduli. 

Hashin's forrniilae (14) for hollow-fiber-reinforced 
composites can also be reduced to a Halpin-Tsai format. 
The required modification in the symbol hI,< for particu- 
lar cases is given below. 

Equation 18 for longitudinal shear modulus is also 

- 
p -- 

P m  

- M, + 1 + 4(M, - 1) 
M ,  + 1 - 4(MH - 1) 

M I( - 1 
hff? + 5' Pm 

Here 5 = I ,  7 =- a n d f i  = kf,. 

'l'hc above formulae are for a continuous fiber- 
reinforced composite with transversely isotropic phascs 
and are derived by using a self-consistrnt model and put 
in the geiieralizecl form of the Halpin-Tsai equation. 

Kerner's vqiiatioirs for an isotropic particulate coin- 
posite can also b c l  rc.arranget1 to conforni to the Halpin- 

a t  ormat. . f 

a) For the bulk modulus K ,  

b) For the shear modulus G2:3 

where a is the ratio of the inside and outsick radii of the 
hollow fiber. For a solid fiber, a = 0; 
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Table 2. 5, Filler Geometry Reinforcement Parameter in the 
Halpin-Tsai Equations as it Appears in Various Equations in 

Terms of Engineering Moduli 

Composite modulus 5 
ii 

(Plane-strain bulk 6- - mm €2212 1 + v23 
modulus for continuous 
f i  ber-reinforced 

- G= E2,/2(1 - L2, - 2?12v21) 
- (1 - v23 - 2u12u21)m - 

composite) (1 + '23)m 

- 
m 

51, would be <1 (5  = 1) 

(Transverse shear 
modulus G2, for 
continuous fiber- 
reinforced composite) 

- 
CL 

(Longitudinal shear 
modulus) 

(Bulk modulus for 
particulate composite) 

K 

If matrix were isotropic and incom- 
pressi ble 

1.5 
< m a " = =  = 1 ; 5 5 1  

5& = 1.0 

4 G m  - 4,Em12 1 + ~ m )  
= 3K, - 3Em,3((1 - 2 4  

vm 5 - -  (Shear modulus of 
particulate composite; G = 8-10v, o 718 

7 - 5um 

0.25 5.7515.5 
56 = 1 0.5 1.5 

DISCUSSION OF THE PARAMETERS IN THE 

Halpin and Tsai (7) have made further simplications 
by directly employing the engineering constants E ,, Em, 
G ,  G, for P f  and Pm in the equations summarized in 
Table 2 for purposes of interpolation from existing mi- 
cromechanics calculations. Thus P would yield directly 
an estimate of E,,, C,,, C,, and also u,, if analogous 
equations were constructed for it. 

Directly employing the engineering constants in- 
volves approximation only in the formula for k ,  the 
plane strain bulk modulus and K ,  the bulk modulus for 
particulate composites, by calling them E,, for the re- 
spective composites. This is a good approximation as the 

P f  P 
Halpin-Tsai equations involve ratios like - and - 

f'm pm 
which do not change much, relatively. 

W I N - T S A I  EQUATIONS 

Kf { E / 3 ( 1  - 2v))f E f  

K m  { E / 3 ( 1  - 2 ~ ) ) ~  E m  
- _ -  - - _  

The essential approximation of Halpin and Tsai is that 
the computations for E,, or I? and the 5 terms of Table 2 
are insensitive to the differences in the constituent Pois- 
son ratios. This approximation is comparable to the sim- 
plification ofEll and v12 in the section on the derivation 
of Hill's relations for El,  and vl,. 

Reliable estimates for the 5 factor can be obtained by 
comparison of the Halpin-Tsai equations with the nu- 
merical micromechanics solutions employing the formal 
elasticity theory. Figures 1 (a) and (6) show the predic- 
tions for the transverse stiffness E,,  and the longitudinal 
shear stiffness GI,, using tEZ2 = 2 and tC,, = 1 in the 
Hdpin-Tsai equations. 

The predicted dependence of moduli on the filler/ 
matrix stdlness ratios for several volume fractions of 
filler are compared with the results of Adams and Doner 
(15) shown by solid curves. The agreement is very good 
up to a volume fraction ofabout 0.70. The exact elasticity 
calculations predict the moduli to rise faster with in- 
creasing volume fraction of reinforcement above 0.70 as 
compared to the Halpin-Tsai equation, Figs. 1 and 2. 
Hewitt and de Malherbe (16) have suggested the follow- 
ing modifications to compensate for this effect: 

5c,, = 1 + 40 $2" 

We will now show how the limiting values of the 
parameters 5 and 7) in Table 2 affect the Halpin-Tsai 
Equations. The equations once more are as follows, 

20 

16 

12 

8 

4 

0 
I 2 4 6 8 10 20 40 60 100 a00 400 1000 

( a  1 
CONSTITUENT STIFFNESS RATIO, Ef/E, 

28 I 1 1 1 1  I 1 1 1  I 1 ,  

FILAMENT VOWME (V,) 

" 
I 2 4 6 8 1 0  20 4 0 6 0 1 0 0 2 0 0 4 0 0  000 

CONSTITUENT SHEAR MODULUS RATIO, Gf  /G, 
(b) 

F i g .  1 .  Comparison of Halpin-Tsai calculation (solid circles) 
wi th  Adams and Doner's (15) square array calculations for  (a)  
transverse stiffness, and (b)  longitudinal shear stiffness. The 
Halpin-Tsai predictions f o r  Q = 0.75 are shown by the dotted 
line. (a) lEZ2 = 2; (b)  &,, = 1 .  
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FIBER VDLUME FRACTK)N FIBER VOLUME FRACTION 
(.a I ( b )  

Fig. 2. Comparison of Halpin-Tsai calculation (circles) with 
Foye’s calculation (I 7) for (a )  the transverse stiffness, and (b) 
the longitudinal shear stiffness of a composite containing rec- 
tangularly shapedfibers. (a)  (cE22)Ponl = 2(a/b); ( b )  log lc,, = dg 
log (alb). 

.- 

p - 1+5r)+ 
p ,  1 - 74 

where 5 is a measure of the reinforcement geometry as 
we have developed above. 

Limiting values of r )  are: a) For very rigid inclusions 
(i.e., M R  -+ x), r )  = 1; b) For homogeneous material 

-1 ( M R  = I), r )  = 0; and c) For voids ( M E  = 0), r )  =- 5 ’  
Thus, the limiting values of 5 are 5 = 0 and 5 = m. 

\ .. , P 1 1 

a Numerator 
Lim. 

P 5- a 5 
Liin. - = 
<+% P ,  d Ilenominator 

(L’ Hospital rule) 

Liin. 
c+= a 5 

~ 

- 1 + ( M R  - l)+ 
P 
-- 

p ,  
.~ 

p,,, = p / 4  + P,(1 - 4) 
The above result is the same as the equations forE,, and 
v12 (Eqs 23 and 2 4 )  for the continuous fiber-reinforced 
composite. It is important to observe that F continually 
progressed from the lower bound when 5 = O to the 
upper bound as 5 + x at fixed volumvtric coiicentration 
of reinforcement and packing geometry. It is generally 
recognized that the lower bound is associated with an 

effective reinforcement aspect ratio of unity and that the 
upper bound corresponds to an aspect ratio approaching 
infinity. Numerical solutions consistent with the govern- 
ing equations of elasticity have been developed by Foye 
(17) for the effect of filament shape on transverse mod- 
uli. In general, the transverse moduli increases as the 
filaments become more elongated in the direction of the 
applied stress. Thus 5 must be a measure of the 
geometry (aspect ratio) of the reinforcement phase as 
both have identical effects. 

Figures 2(a)  and (b )  show the Halpin-Tsai calculation 
(7) (circles in the figures) for the transverse stiffness and 
the longitudinal shear stiffness of a composite containing 
rectangularly shaped fibers. These are compared with 
Foye’s (17) calculations for fibers in a diamond array for 
various filler geometries and as a function of the volume 
fraction of filler phase. Figure 2(a)  equally well de- 
scribes the dependence of longitudinal stiffriess, El, ,  of 
an oriented discontinuous fiber-reinforced composite on 
the aspect ratio (alb), where ‘a’ is now the fiber length 
and ’b’ is the fiber width. The curve with (alb) = 1 in Fig. 
2(b) is also applicable for the shear modulus, G12, of the 
discontinuous reinforced composite and describes its 
dependence on the filler volume fraction. 

Further examination of the dependence of the trans- 
verse stiffness moduli and the shear moduli upon in- 
creasing aspect ratio of rectangular filaments gives 
confidence in the interpolatioii procedure. The factors 
CE and tc are functions of the widthlthickness ratios and 
were found by fitting Foye’s results as illustrated inFigs. 
2 and 3.  The resulting forms for the two terms are: 

L,, = W l b )  

log (c,, = v3 log ( a h )  

The last formula for I& is applicable to composites 
with filaments or platelets as the filler phase. In the 
limiting case for circular or square fibers with the fiber 
axis as direction 1, t&, = 1, sincea = b in this case. Also 
(c,, = 1 and therefore C , ,  = C,,, satisfying the trans- 
verse isotropy. Also, for the transverse modulusE,,, tEZ2 
= 2 since a = 6. 

The Halpin-Tsai equations retain the wine form for 
discontinuous laver or lameller-shaped reinforcements 

Id I 1 1 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I 1 1 1 1 1 1 1 1  I111IU 

10 10 lo2 lo3 lo4 10’ 

E ,  REINFORCEMENT FACTOR 

Fig. 3. Correlation of coefficient, c, in Ey 25 with the transverse 
aspect ratio of rectangularly shapedfibers. 
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(2,6,  18). For these compositesP representsE,,, E,,,  or 
G12 and 5 is given by the following expressions. 

&‘Ell = 2 (llt), where 1 is the length of the tape in the 
1-direction and t is the thickness of the tape in the 
3-direction. As 5 + m, we know from the above discus- 
sion of limiting values of the Halpin-Tsai equations that 
they yield the modulus for the continuous fiber rein- 
forced composite. 

CEz2 = 2(wIt), where w is the width of the tape in 
the 2-direction. For circular or square fibers, w = t ;  
therefore &‘E22 = 2 .  

<c = 1, this gives a conservative estimate. 
Figures 2(a) and (b )  indicate good agreement be- 

tween the Halpin-Tsai formulae and elasticity calcula- 
tions for different aspect ratios and volume fractions. 
More importantly, as there are no exact theoretical so- 
lutions available for short fiber or discontinuous lamella 
reinforced composites, these formulae can be extended 
to predict the stifFnesses of unidirectionally oriented 
short-fiber-reinforced composites, which are the build- 
ing blocks for composites with any type of orientation of 
the filler phases. 

Figure 4 (a )  presents the experimentally observed ( 2 ,  
4) stiffness variation in the fiber direction for an oriented 
short-fiber sheet as a function of the aspect ratio. At an 
aspect ratio of unity the system is a particulate rein- 
forced composite and possesses a nearly isotropic mod- 
ulus approaching in value the lower bound. As the rein- 
forcement phase is extended in one dimension, and as 
LId increases, the composite modulus increases in that 
direction. Furthermore, the material becomes highly 

Halpin-Tsai Equation-- 

I I I I I I l l 1  

- 
- 

v ) -  

1 Laminate Calculation 

._ - m Nylon-Rubber 
IW - 

- 
Quasi- Isotropic 

0 
I I I I l l l l l  I I I  

//d 

Fig. 4 .  (a} Effect ofjiber lld on the effective longitudinal tensile 
stiffness of an unidirectionally oriented discontinuous nylon 
jiberlrubber composite. Burs represent experimental results. (b)  
Effect ofjiber lld on the effective tensile stiffness of a rubber 
filled with randomly oriented discontinuous nylanjibers. Solid 
circles and squares represent experimentul results. 

anisotropic; that is, the elastic stiffness is strongly de- 
pendent on direction. Figure 4(b) presents the depen- 
dence of the effective extensional moduli, the solid cir- 
cles, for randomly oriented short fiber composites as a 
function ofaspect ratio at aconstant volumetric composi- 
tion of reinforcement. As the aspect ratio lld becomes 
large, the stiffness of the random array of short fibers in a 
matrix attains a plateau representing the equivalent con- 
tinuous filament result. Note that at an aspect ratio of 
lo2, the random short-filament reinforcement yields a 
stiffness property which is 10 times greater than the 
equivalent spherically shaped particulate reinforcement 
at that volumetric concentration. These results provide 
independent experimental verification of the Halpin- 
Tsai equations. 

Thus the Halpin-Tsai formulae enable one to calculate 
the effect of the volume fraction of the filler phase, the 
relative moduli of the constituents, and the reinforce- 
ment geometry on the composite moduli in a simple 
straight-forward way. The specific forms of the formulae 
are equally applicable to isotropic and transversely iso- 
tropic constituent phases. 

CONCLUSIONS 
The Halpin-Tsai equations are developed from 

rigorous elasticity calculations. The geometry factor 5 
may be expressed in terms of combinations of engineer- 
ing elastic constants and differences in Poissons ratios. 
1 he only assumption made in assigning various values 
for the geometrical factor is that the engineering stiff- 
ness expressions for the composite ply are insensitive to 
the differences in Poisson ratios of the constituent 
phases making up the ply. That this is indeed the case is 
borne out both by comparison with machine calculations 
based on the exact equations and by experimental data 
on carefully controlled short fiber systems. 

The Halpin-Tsai equations demonstrate the sig- 
nificant effect of reinforcement geometry alone on the 
stiffiiess properties of a unidirectionally oriented ply at 
both constant volume fraction and packing geometry; 
changing from a sphere (aspect ratio of one in the princi- 
pal material direction) to a long fiber (aspect ratio ap- 
proaching infinity) gives an order of magnitude or more 
increase in stiffiiess for both a unidirectional and a ran- 
domly distributed reinforcement depending on the con- 
stituent stiffness properties. Furthermore, the equa- 
tions predict, in agreement with experimental demon- 
stration, that progressing from a fiber to a tape or 
platelet by expanding the transverse reinforcement tii- 
mension also results in an additional order of magnitude 
or more improvement in the stiffness properties. 

0 I n  considering the prediction of crystalline 
polymer properties utilizing a micromacromechanics 
approach, the Halpin-‘lsai equations can account very 
nicely for the principal material direction (the polymer 
backbone chain direction) being either colinear (ex- 
teiided chain crystal) or perpendicular to (folded-chain 
lamella) the principal geometric direction of the rein- 
forcement. This is so because the equations recognize 
anisotropy as well as geometry through Hermans‘ q u a -  

r 3  
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tions which account for both isotropic and transversely 
isotropic phases. 
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